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(57) ABSTRACT 

In accordance with some embodiments, systems, methods 
and media for encoding structured light imaging patterns 
and estimating depths in a scene are provided. In some 
embodiments, a system for estimating depths in a scene is 
provided, the system comprising: a light source; an image 
sensor; a hardware processor programmed to: cause the light 
source to emit K light patterns toward the scene, each of the 
K light patterns is different and includes a trapezoid-shaped 
wave, and at least one of the K light patterns includes at least 
two trapezoid-shaped waves; cause the image sensor to 
generate an intensity value during emission of each of the K 
light patterns such that the pixel is associated with at least K 
intensity values; determine a depth estimate for a portion of 
the scene imaged by the pixel based on the K intensity 
values associated with the pixel. 
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US 10,818,023 B2 
1 

SYSTEMS, METHODS, AND MEDIA FOR 
ENCODING STRUCTURED LIGHT 

IMAGING PATTERNS AND ESTIMATING 
DEPTHS IN A SCENE 

2 
oped. These patterns ( e.g., designed using Hilbert space 
filling curves) belonged to the class of discrete coding 
schemes (i.e., intensities of the patterns are from a discrete 
set). While these patterns perform adequately in high signal-

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

s to-noise ratio (SNR) settings (e.g., with no ambient light, 
with large source power and/or long capture times), perfor­
mance degrades as noise increases ( e.g., as the amount of 
ambient light increases relative to source power). 

Several different SL coding strategies have been proposed This invention was made with government support under 
HR0Oll-16-C-0025 awarded by the DOD/DARPA and 
N00014-16-l-2995 awarded by the NAVY/ONR. The gov­
ernment has certain rights in the invention. 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

10 in the past, such as binary Gray coded patterns, color coding, 
ramp coding, sinusoid coding, trapezoid coding, and edge 
coding. Other SL techniques have been proposed for miti­
gating errors due to interreflections and scattering, and these 
techniques can be broadly categorized as optical approaches 

NIA 

15 (e.g., based on polarization, or epipolar scanning), which 
require specialized hardware, and pattern coding approaches 
which involve designing patterns that are robust to global 
illumination (e.g., discrete binary patterns, or continuous 

BACKGROUND 
20 

sinusoid patterns). 
While many SL techniques and coding strategies have 

been proposed, little progress has been made on analyzing 
the relative performance of different coding schemes ana­
lytically. Both designing optimal SL patterns, especially for 
low SNR scenarios, and tools for analyzing the performance 

25 of different SL techniques are desirable. 

Structured light (SL) is a 3D imaging technique used in 
various applications, such as industrial automation, aug­
mented reality, and robot navigation. Various SL techniques 
have been developed that can achieve various degrees of 
accuracy, and that require various amounts of time to carry 
out. For example, SL systems that use laser scanning SL 
techniques can recover 3D shape ( e.g., the distance from the 
system to various points on the object) of one or more 
objects in a scene accurately (e.g., in the range of 10-100 
microns in accuracy), but such systems typically require a 30 

large acquisition time. This limits the usefulness of such 
systems in many applications that require high precision and 
that also have limited acquisition time budgets, such as 
industrial inspection applications. 

As another example, single-shot SL techniques can 35 

recover depths relatively quickly (e.g., using only a single 
image of the scene), but the depths that are recovered are 
spatially smoothed, resulting in a loss of detail (i.e., single­
shot SL techniques are relatively low accuracy). 

As yet another example, SL systems based on conven- 40 

tional multi-pattern SL techniques can recover depths rela­
tively accurately under ideal conditions (i.e., with low levels 
of ambient light), but the accuracy of such systems degrades 
in more demanding conditions. Such conventional multi­
pattern SL systems typically project a series of patterns 45 

toward the scene from a projector such that each projector 
colunm is assigned a unique temporal intensity code. In such 
an example, conventional multi-pattern SL systems can then 
use the codes to establish per-pixel correspondence for each 
camera pixel based on images of the scene captured while so 
each pattern is projected. This can allow such conventional 
multi-pattern systems to achieve relatively high spatial reso­
lution under certain conditions. However, the depth preci­
sion of conventional multi-pattern SL systems suffer in 
demanding scenarios ( e.g., with small time budgets, in a low 55 

signal-to-noise ratio environment), and this can limit the 
usefulness of such systems for various 3D imaging appli­
cations in which the conditions cannot be controlled to be 
favorable to conventional multi-pattern SL. 

Accordingly, new systems, methods, and media for 
encoding structured light imaging patterns and estimating 
depths in a scene that are less likely to produce errors are 
desirable. 

SUMMARY 

In accordance with some embodiments of the disclosed 
subject matter, systems, methods, and media for encoding 
structured light imaging patterns and estimating depths in a 
scene are provided. 

In accordance with some embodiments of the disclosed 
subject matter, a system for estimating depths in a scene is 
provided, the system comprising: a light source; an image 
sensor comprising a pixel; at least one hardware processor 
that is programmed to: cause the light source to emit K light 
patterns toward the scene, wherein each of the K light 
patterns includes at least one trapezoid-shaped wave and is 
different from each of the other K light patterns, and wherein 
at least one of the K light patterns includes at least two 
trapezoid-shaped waves; cause the image sensor to generate 
an intensity value during emission of each of the K light 
patterns such that the pixel is associated with at least K 
intensity values; determine a depth estimate for a portion of 
the scene imaged by the pixel based on the K intensity 
values associated with the pixel. 

In some embodiments, K2:4. 
In some embodiments, each of the K light patterns is 

based on a coding function, and wherein the K light patterns 
are based on a Hamiltonian cycle of a K-dimensional 
hypercube. 

In some embodiments, the at least one hardware processor 
is further programmed to cause the light source to emit a first 
light pattern of the K light patterns by causing a first 

In general, the depth precision of a multi-pattern SL 
system is related to the coding scheme (i.e., the set of 
patterns) used to project light toward the scene. While the 
problem of designing optimal patterns that achieve high 
depth precision has previously been recognized, finding a 
closed form (or even a numerical) solution has long been 
considered infeasible. Instead, a family of patterns based on 
intuitions from digital communications literature was <level-

60 plurality of colunms of the light source to emit light at a 
maximum intensity, and causing at least one colunm adja­
cent to the first plurality of colunms to emit light at a fraction 
of the maximum intensity. 

In some embodiments, the light source comprises a plu-
65 rality of colunms, each of the plurality of columns associated 

with a colunm index c, and wherein the plurality of colunms 
is sub-divided into at least 2K-4 sub-intervals A such that in 
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each sub-interval K-1 of the light patterns maintains a 
constant value over the columns in the sub-interval and one 
of the K patterns varies across the columns in the sub­
interval. 

In some embodiments, the at least one hardware processor 
is further programmed to determine a colunm index c' that 
is associated with a code corresponding to the K values 
associated with the pixel. 

In some embodiments, the at least one hardware processor 
is further programmed to: identify a median value of the K 
values associated with the pixel; cluster K-1 of the K values 
associated with the pixel into a low intensity cluster, and a 
high intensity cluster; determine a sub-interval of the at least 
2K-4 sub-intervals in which colunm index c' is located based 
on an order in which the K values were generated, and which 
of the K values is included in the low intensity cluster; and 
determine c' based on the sub-interval and the median value. 

In some embodiments, the at least one hardware processor 
is further programmed to: determine a location K within the 
sub-interval based on the relationship 

lmed - lmin 
K=--­

fmax - lmin 

where I med is the median value, Im,n is a mean of values in 
the low intensity cluster, and Imax is a mean of values in the 
high intensity cluster; and determine c' based on the location 
k. 

In accordance with some embodiments of the disclosed 
subject matter, a method for estimating depths in a scene is 
provided, the method comprising: causing a light source to 
emit K light patterns toward the scene, wherein each of the 
K light patterns includes at least one trapezoid-shaped wave 
and is different from each of the other K light patterns, and 
wherein at least one of the K light patterns includes at least 
two trapezoid-shaped waves; causing an image sensor com­
prising a pixel to generate an intensity value during emission 
of each of the K light patterns such that the pixel is 
associated with at least K intensity values; determine a depth 
estimate for a portion of the scene imaged by the pixel based 
on the K intensity values associated with the pixel. 

4 
matter when considered in connection with the following 
drawings, in which like reference numerals identify like 
elements. 

FIG. lA shows an example representation of a structured 
5 light imaging system using a continuous coding scheme to 

project a pattern of light planes toward a scene. 
FIG. 1B shows an example of projector patterns and 

corresponding function intensity profiles for a continuous 
sinusoid-based structured light coding scheme. 

1° FIG. 2A shows an example of a point plotted in a space 
of unknown parameters. 

FIG. 2B shows an example of a curve to which the point 
in FIG. 2A can be mapped in a space of measured intensities 

15 
with varying colunm index correspondence. 

FIG. 2C shows an example of a surface to which the point 
in FIG. 2A can be mapped in a space of measured intensities 
with varying colunm index and albedo. 

FIG. 2D shows an example of a volume to which the point 
20 in FIG. 2A can be mapped in a space of measured intensities 

with varying colunm index, albedo, and ambient light. 

25 

FIG. 2E shows examples of coding curves representing 
SL coding schemes that are not well suited to producing high 
depth resolution. 

FIG. 3 shows an example of a system for encoding 
structured light imaging patterns and estimating depths in a 
scene is shown in accordance with some embodiments of the 
disclosed subject matter. 

FIG. 4A shows an example of codes that can be used to 
30 implement a four pattern Hamiltonian coding scheme for 

structured light imaging in accordance with some embodi­
ments of the disclosed subject matter. 

FIG. 4B shows an example of codes that can be used to 

35 
implement a five pattern Hamiltonian coding scheme for 
structured light imaging in accordance with some embodi­
ments of the disclosed subject matter. 

FIG. SA shows an example of a ramp-based pattern and 
its coding curve shown as a geometrical representation in 

40 three dimensional space. 
FIG. SB shows an example of a triangle-based pattern and 

its coding curve shown as a geometrical representation in 
three dimensional space. 

FIG. SC shows an example of a sinusoid-based pattern 
45 and its coding curve shown as a geometrical representation 

in three dimensional space. 
FIG. SD shows an example of a Hamiltonian-based pat­

tern and its coding curve shown as a geometrical represen­
tation in three dimensional space. 

In accordance with some embodiments of the disclosed 
subject matter, a non-transitory computer readable medium 
containing computer executable instructions that, when 
executed by a processor, cause the processor to perform a 
method for estimating depths in a scene is provided, the 

50 
method comprising: causing a light source to emit K light 

FIG. 6A shows an example of projector intensity patterns 
as a function of column index for an eight pattern Hamil­
tonian coding scheme for structured light imaging in accor­
dance with some embodiments of the disclosed subject 
matter. 

patterns toward the scene, wherein each of the K light 
patterns includes at least one trapezoid-shaped wave and is 
different from each of the other K light patterns, and wherein 
at least one of the K light patterns includes at least two 55 
trapezoid-shaped waves; causing an image sensor compris­
ing a pixel to generate an intensity value during emission of 
each of the K light patterns such that the pixel is associated 
with at least K intensity values; determine a depth estimate 
for a portion of the scene imaged by the pixel based on the 60 

K intensity values associated with the pixel. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Various objects, features, and advantages of the disclosed 65 

subject matter can be more fully appreciated with reference 
to the following detailed description of the disclosed subject 

FIG. 6B shows another example of projector intensity 
patterns as a function of colunm index for an eight pattern 
Hamiltonian coding scheme for structured light imaging in 
accordance with some embodiments of the disclosed subject 
matter. 

FIG. 6C shows yet another an example of projector 
intensity patterns as a function of column index for an eight 
pattern Hamiltonian coding scheme for structured light 
imaging in accordance with some embodiments of the 
disclosed subject matter. 

FIG. 7 shows an example 700 of a process for measuring 
depth in a scene in accordance with some embodiments of 
the disclosed subject matter. 
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FIG. 8 shows examples of mean depth errors under low 
and high ambient lighting conditions for various coding 
schemes, including Hamiltonian coding, using different 
numbers of patterns. 

FIG. 9A shows examples of two scenes measured using 5 

structured light imaging techniques with a four pattern 
sinusoid-based coding scheme and a four pattern Hamilto­
nian-based coding scheme. 

FIG. 9B shows examples of depth values calculated for 
the scenes in FIG. 9A using the four pattern sinusoid-based 10 

coding scheme mapped as three dimensional surfaces. 
FIG. 9C shows examples of depth values calculated for 

the scenes in FIG. 9A using the four pattern Hamiltonian­
based coding scheme mapped as three dimensional surfaces. 

FIG. lOA shows examples of three scenes measured using 15 

structured light imaging techniques with a five pattern 
sinusoid-based coding scheme, a five pattern multi-fre­
quency sinusoid-based coding scheme, and a five pattern 
Hamiltonian-based coding scheme. 

FIG. 10B shows examples of depth values calculated for 20 

the scenes in FIG. lOA using the five pattern sinusoid-based 
coding scheme mapped as three dimensional surfaces. 

FIG. lOC shows examples of depth values calculated for 
the scenes in FIG. lOA using the five pattern multi-fre­
quency sinusoid-based coding scheme mapped as three 25 

dimensional surfaces. 
FIG. lOD shows examples of depth values calculated for 

the scenes in FIG. lOA using the five pattern Hamiltonian­
based coding scheme mapped as three dimensional surfaces. 

FIG. llA shows an example of a scene with interreflec- 30 

tions measured using structured light imaging techniques 
with a micro phase shifting-based coding scheme, a micro 
Hamiltonian-based coding scheme, and an antipodal Ham­
iltonian-based coding scheme. 

FIG. 11B shows an example of depth values calculated for 35 

the scene in FIG. llA using the micro phase shifting-based 
coding scheme mapped as a three dimensional surface. 

6 
light detected in different images of the scene captured as 
different patterns oflight are projected toward the scene. For 
example, multiple patterns can be successively projected 
toward the scene, with the patterns encoding positions along 
one or more directions. In some embodiments, the mecha­
nisms described herein can project patterns that are robust to 
noise to increase the accuracy of SL imaging, such as 
patterns based on Hamiltonian coding curves, which can be 
evaluated using techniques described herein for analyzing 
SL coding techniques. As described below, SL coding 
schemes can be characterized by an image formation equa-
tion that can be used to calculate a metric based on the 
geometry of SL coding schemes that can be used to ana­
lytically predict the performance of various SL coding 
schemes. Additionally, a surrogate metric is described that is 
based on a first order differential analysis of the image 
formation equation that is relatively easy to compute can be 
used to evaluate the performance of various SL coding 
schemes. 

As described below, in some embodiments, the mecha­
nisms described herein can be used to implement Hamilto­
nian coding schemes that can produce higher precision than 
conventional SL approaches ( e.g., by roughly an order of 
magnitude), especially in low SNR scenarios ( e.g., where 
there is a strong ambient light source), while requiring a 
relatively small number of images (e.g., as few as three). 
Note that conventional discrete coding techniques for SL 
imaging generally require relatively large numbers of 
images ( e.g., proportional to the log of the number of 
colurmis ). In some embodiments, continuous Hamiltonian 
coding schemes can be implemented using high frequency 
patterns that are robust to a broad range of global illumina­
tion. As described below, Hamiltonian codes implemented in 
accordance with some embodiments of the disclosed subject 
matter can outperform various conventional approaches, and 
more recently proposed coding schemes that were specifi-
cally designed for applications in which global illumination 
(i.e., relatively bright ambient light) cannot be avoided. 

In some embodiments, the mechanisms described herein 
FIG. llC shows an example of depth values calculated for 

the scene in FIG. llA using the micro Hamiltonian-based 
coding scheme mapped as a three dimensional surface. 

FIG. llD shows an example of depth values calculated for 
the scene in FIG. llA using the antipodal Hamiltonian­
based coding scheme mapped as a three dimensional sur­
face. 

40 can be used to adapt existing hardware to more accurately 
detect depths in a scene. For example, the mechanisms 
described herein can be used to configure an existing SL 
imaging device to use a Hamiltonian coding scheme (e.g., 

FIG. 12A shows an example of scenes with defocus due 45 

to subsurface scattering and a large depth range, respec­
tively, measured using structured light imaging techniques 
with a micro phase shifting-based coding scheme, and an 
antipodal Hamiltonian-based coding scheme. 

FIG. 12 B shows an example of depth values calculated 50 

for the scenes in FIG. 12A using the micro phase shifting­
based coding scheme mapped as a three dimensional sur­
face. 

FIG. 12C shows an example of depth values calculated for 
the scenes in FIG. 12A using the antipodal Hamiltonian- 55 

based coding scheme mapped as a three dimensional sur­
face. 

DETAILED DESCRIPTION 

rather than a sinusoid-based coding scheme) with the same 
light source and image sensor. Additionally, in some 
embodiments, the mechanisms described herein can be used 
in conjunction with other approaches for increasing SL 
imaging accuracy that do not rely on a particular types of 
patterns. For example, the mechanisms described herein can 
be used in conjunction with optical approaches for increas­
ing SL imaging accuracy ( e.g., SL transport techniques). 

FIG. lA shows an example representation of a structured 
light imaging system using a continuous coding scheme to 
project a pattern of light planes toward a scene. As shown in 
FIG. lA, a SL imaging system can include a projector and 
a camera, with the projector projecting one or more intensity 
patterns toward the scene and the camera capturing an image 
for each pattern. For example, single-shot techniques cap­
ture a single image of a single pattern, and assume that scene 

In accordance with various embodiments, mechanisms 
(which can, for example, include systems, methods, and 
media) for encoding structured light imaging patterns and 
estimating depths in a scene are provided. 

60 depths are locally smooth, resulting in loss of fine geometric 
details. As another example, multi-shot techniques involve 
projecting several patterns, and computing on a per-pixel 
basis. Multi-shot SL imaging systems can use patterns which 
can be expressed as a ID coding function, with all the pixels 

In some embodiments of the subject matter disclosed 
herein, SL systems can estimate depth in a scene (e.g., as 
distances to various points in the scene) based on patterns of 

65 positions within a particular colunm ( or row) of the projector 
having the same intensity. In such an example, the projector 
can be modeled as emitting several light planes, one from 
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with varying column index correspondence. In general, a 
structured light coding scheme can be defined by the coding 
functions [Pi, ... , Pk], which maps a point Pu=[ a, A, c] in 
the unknown space to a point PI=[I1 , ... , Ik] in a 

each column (or row), as shown in FIG. lA. In such an 
example, in order to compute depth at a camera pixel, the 
light plane that illuminates the scene point imaged by the 
pixel can be identified based on a unique intensity code 
assigned to every column. In such an example, the length of 
the code can be the number of projected patterns. In a more 
particular example, the intensity code can be binary with 
each column having two intensity values (e.g., a first inten­
sity value in a first pattern, and a second intensity value in 

5 K-dimensional space of measured intensities. For example, 
consider the ID set of unknown points, for fixed values of 
a and A, but varying correspondence c ( e.g., which can be 
graphed as a line segment in the space of FIG. 2A at a 
constant a and constant A). As shown in FIG. 2B, a 

a second pattern). Note that although the intensity code may 
be binary, the intensity value of each column is not limited 

10 sinusoid-based coding scheme for K=3 can map this set of 
unknown points to a ID set of points which form a circle in 
the measurement space (i.e., in general a circle is a ID shape 
that can be described using only a single dimension, 
although in this case it is tilted with respect to the intensity 

to a binary intensity and the two intensity values can be any 
suitable value between O (e.g., no light projection) and I 
(e.g., maximum intensity projection). As another more par­
ticular example, the intensity code can be N-ary with each 
column having N discrete intensity values that can be 
identified to determine the identity of the column ( e.g., the 
column index of the column). Binary and N-ary coding 
belong to the class of discrete coding methods, where the 
coding function takes only discrete values. These methods 20 

assume that the light source emits a discrete set of light 
planes. The number of possible depth values at a camera 
pixel is bounded by the number of light planes. Thus, the 
depth resolution achieved by a discrete coding method is 
limited. 

15 axes). Note that although the unknown points only vary 
along a single axis in the space of FIG. 2A, the circle in FIG. 
2B is tilted with respect to all three axes. Note that the axes 
are labeled for convenience, and the space of measured 
intensities can be oriented in other ways. 

FIG. 2C shows an example of a surface to which the point 
in FIG. 2A can be mapped in a space of measured intensities 
with varying column index and albedo. As shown in FIG. 
2C, a 2D set of unknowns in which where both c and a are 
varied ( e.g., which can be graphed as a portion of a plane in 

25 the space of FIG. 2A at a constant A) are mapped to a 2D set 
of points forming a hollow cone. As shown in FIG. 2C, as 
the albedo decreases, the measured intensities can decrease 
proportionally forming circles of decreasing radii to form 
the cone shown in FIG. 2C. 

FIG. 1B shows an example of projector patterns and 
corresponding function intensity profiles for a continuous 
sinusoid-based structured light coding scheme. In general, 
continuous SL coding schemes are based on coding func­
tions that are continuous and piece-wise differentiable func- 30 

tions. As shown in FIG. 1B, a sinusoid phase-shifting 
scheme, one of the most widely used SL techniques, is a 
continuous coding scheme in which the ID coding functions 
are sinusoids that are offset in phase across the column index 
c. Due to a continuum oflight planes, continuous techniques 35 

are capable of achieving significantly higher depth resolu­
tion as compared to discrete methods. Note that, while 
continuous coding schemes can theoretically achieve infinite 
depth resolution ( due to the continuous functions represent­
ing an infinite number of light planes), the finite resolution 40 

and dynamic range of the camera, finite numerical precision, 
and image noise place practical limits on the achievable 
resolution. 

The number of projected patterns ( and captured images) 
in a coding scheme can be represented by a value K, with 45 

each if the K projected patterns represented by a ID coding 
function P,(c), lsisK, where c (lscsNc) is the projector 
column index, and Ne is the total number of columns in the 
projector. The functions can be normalized so that OsP,(c) 
sl. Considering a scene point S that is illuminated by 50 

column number c and imaged at camera pixel p, the inten­
sities received at pixel p can be represented as: 

FIG. 2D shows an example of a volume to which the point 
in FIG. 2A can be mapped in a space of measured intensities 
with varying column index, albedo, and ambient light. As 
shown in FIG. 2D, a 3D set of unknowns in which each of 
a, A, and c vary (e.g., which can be graphed as a 3D set of 
unknowns as shown in FIG. 2A) can be mapped to a 3D 
volume of points, formed by extruding the cone along a line 
segment. 

Note that the geometries discussed above in FIGS. 2B 
through 2D represent the true intensities that can result from 
the unknown points, and that the measured intensity at any 
given pixel may lie outside of these geometries (e.g., due to 
the contribution of various sources of noise, such as noise 
generated within the camera). For example, I, can represent 
the true intensity measurement for pattern P, at a pixel p. In 
such an example, the actual measured intensity I',, including 
noise, can be represented as: 

(2) 

where v, is the noise in the intensity measurement I,, includ­
ing both read noise and photon noise. Accordingly, the point 
P 1,=[I'i, ... , I'K] representing the vector of actual measured 
intensities can lie outside of the space of possible true 
intensities ( e.g., as shown by the noise ellipsoid in FIG. 2D). 

In some embodiments, the effect of noise can be taken 
where a(p, c) is an albedo term, and A(p) is an ambient 
illumination term. For example, a(p, c) can be defined as the 
image brightness received at p if column c emits unit 
intensity ( e.g., a normalized intensity of I). As another 
example, A(p) can be defined as the image brightness at p 
due to light sources other than the projector. In general, both 
a(p, c) and A(p) are unknown, along with the column 
correspondence c. Accordingly, the space of unknowns can 
be represented as a 3D space with the axes corresponding to 
column index c, albedo a(p, c ), and ambient illumination 
A(p) which is shown in FIG. 2A. 

55 into account when calculating a depth value based on 
measured intensities for each of the K patterns in a coding 
scheme. For example, given the actual intensities PI,=[I'i, . 
.. , I'K] measured at a camera pixel, projector correspon­
dence can be computed by a decoding function, which is an 

FIG. 2B shows an example of a curve to which the point 
in FIG. 2A can be mapped in a space of measured intensities 

60 inverse mapping from the measurement space to the 
unknown space. Due to the randomness associated with the 
measurements PI,, the decoded unknown point can be mod­
eled as a random variable, whose distribution is denoted 
with an uncertainty region, shown in FIG. 2A. Note that 

65 although the uncertainty region is shown as an ellipsoid in 
FIG. 2A, the shape of the uncertainty region depends on the 
coding and decoding functions. Due to this uncertainty, the 
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decoding algorithm can compute an inaccurate correspon­
dence c'. This uncertainty can place fundamental limits on 
the achievable depth resolution for a particular coding 
scheme. For example, if the error in the computed corre­
spondence is represented as li.c=lc'-cl, given a coding 
scheme and a decoding function, the expected correspon­
dence error E(li.c), averaged over the entire space of 
unknowns, can be represented as: 

(3) 

where c' and c are the estimated and true projector corre­
spondence values for measured intensities PI,P (Pp)-N (PD 
~) is the Gaussian probability distribution function (illus­
trated as noise ellipsoid in FIG. 2D) of P 1 ,, with the true 
intensity point PI as the mean, noise covariance ~I, and p 
(PI,) representing the measured intensity at pixel p, including 
a noise component. In such an example, the double integral 
can be taken over the unknown space and the measurement 
space 

As described above in connection with EQ. (3), depth 
error is proportional to correspondence error, and accord­
ingly an optimal structured light coding scheme can be 
defined as the one that minimizes the expected correspon­
dence error E(li.c). However, the form of E(li.c) makes it 
difficult to optimize analytically, and is also relatively com­
putationally intensive to compute numerically. Additionally, 
because any optimization must be performed in the high­
dimensional space of coding functions, this increases the 
complexity of any optimization. However, in some embodi­
ments, a surrogate objective function can be used to perform 
an optimization based on a surrogate metric. This surrogate 
metric can be calculated based on a first order differential 
analysis of the image formation equation represented as EQ. 
(1). The surrogate metric can be defined in terms of the 
coding curve that serves as a geometric representation of a 
structured light coding scheme. For example, for a struc­
tured light coding scheme represented by patterns P ,, 1 sisK, 
the coding curve for this scheme can be the set of points 
[P1(c), ... , PK(c)] in the K-dimensional space, as the 
projector colunm index c is varied. In a more particular 
example, the coding curve of a sinusoid-based coding 
scheme is a circle in K-dimensional space (as shown in FIG. 
SC). Given a coding scheme, if A represents the length of the 
corresponding coding curve, a surrogate metric y can be 
represented as: 

(4) 

where c; is the maximum standard deviation of measure­
ment noise, and amean is the mean albedo term over the 
space of unknowns. 

10 
tionality is if the coding curve is not distance preserving). In 
some embodiments, the coding curve length A can be used 
as a metric for evaluating SL coding schemes and/or design­
ing high performance SL coding schemes. For example, if a 

5 coding scheme has a longer coding curve length, a lower 
expected correspondence error can be expected, which cor­
relates with a higher expected depth resolution. 

FIG. 2E shows examples of coding curves representing 
SL coding schemes that are not well suited to producing high 

10 depth resolution. As described above in connection with 
FIGS. 2A to 2D, in general SL coding schemes with long 
coding curves can achieve high depth resolution. However, 
some long schemes with long coding curves are not suitable 
for use with a SL imaging system and/or would introduce 

15 potential sources of errors that would at least somewhat 
negate any advantage gained from the length of the codding 
curve. For example, FIG. 2E includes a first curve 202 that 
is long, but self-intersecting, which prevents curve 202 from 
defining a unique mapping from projector correspondences 

20 to captured intensities, and thus, does not represent a valid 
SL coding scheme. As another example, FIG. 2E includes a 
second curve 204 (a helix) and a third curve 206 (a Hilbert 
space-filing curve) that are each long, and non self-inter­
secting. However, curves 204 and 206 have poor distance 

25 preserving properties, due to the presence of points on the 
curve that are distant along the curve, but close in the 
Euclidean distance sense within the coding curve space 
( e.g., two points that are relatively far apart along the curve 
but with a Euclidean distance that is less than the long axis 

30 of the noise ellipsoid, as shown in connection with curves 
204 and 206). Due to the closeness in Euclidean distance, 
using these curves may result in large depth errors even for 
small amounts of noise, as the measured intensities may 
correspond to a portion of the curve that is a large distance 

35 along the curve (and therefore represents a large difference 
in scene depth). While coding schemes based on these 
curves may be capable of achieving high performance in low 
noise settings, the performance is likely to rapidly deterio­
rate when moderate to high amounts of noise are present in 

40 the SL imaging system. Accordingly, coding curves that are 
well suited to producing high depth precision in less than 
optimal conditions can be characterized as relatively long, 
non self-intersecting, and distance preserving. As described 
below in connection with FIGS. 4A, 4B and SD, a family of 

45 curves that can be characterized with these properties are 
Hamiltonian cycles on hypercube graphs. For example, as 
shown in FIG. SD, a graph formed by the vertices and edges 
ofa K-dimensional intensity space hypercube includes 2xK 
corners, and a path that visits all of the 2xK corners of the 

50 hypercube traverses a relatively long distance ( e.g., compare 
to a coding curve of a sinusoid-based coding scheme), non 
self-intersecting, and distance preserving (i.e., points that are 
distant along the curve are also distant within the intensity 

In general, it would be expected that because a longer 
coding curve spreads the measurement points further apart 55 

in the measurement space, it would result in lower decoding 
errors due to noise. The structure of EQ. (4) indicates that 
this expectation is generally correct, and provides an 
approximate, but analytical expression for the performance 

space. 
Turning to FIG. 3, an example 300 of a system for 

encoding structured light imaging patterns and estimating 
depths in a scene is shown in accordance with some embodi­
ments of the disclosed subject matter. As shown, system 300 
can include a structured light source 302; an image sensor 
304; optics 306 (which can include, for example, a lens, a 
filter, etc.); a processor 308 for controlling operations of 

of SL coding schemes in terms of coding curve length. 60 

Accordingly, given a structured light coding scheme, its 
coding curve length A can be used as a surrogate that can be 
a relatively efficient technique for describing the schemes 
geometric properties. Additionally, given system dependent 
constant c; , and a mean scene albedo ameam y is, in general, 65 

approximately proportional to the expected correspondence 
error E(li.c) (note that an exception to this general propor-

system 300 which can include any suitable hardware pro­
cessor ( e.g., a microprocessor, digital signal processor, a 
microcontroller, an image processor, a GPU, etc.) or com­
bination of hardware processors; an input device 310 (such 
as a shutter button, a menu button, a microphone, a touch-
screen, a etc.) for accepting input from a user and/or from 
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the environment; memory 312; a signal generator 314 for 
generating one or more modulation signals for driving 
structured light source 302; and a communication system or 
systems 316 for allowing communication between processor 
308 and other devices, such as an automated system ( e.g., an 5 

automated industrial inspection system, an automated manu­
facturing system, an autonomous vehicle, etc.), a semi­
automated system, a smartphone, a wearable computer, a 
tablet computer, a laptop computer, a personal computer, a 
game console, a server, etc., via a communication link. In 10 

some embodiments, memory 312 can store pixel values 
output by image sensor 304, depth values calculated based 

pass filters (e.g., narrow bandpass filters) centered around 
the wavelength of light emitted by light source 302, any 
other suitable optics, and/or any suitable combination 
thereof. In some embodiments, a single filter can be used for 
the entire area of image sensor 304 and/or multiple filters 
can be used that are each associated with a smaller area of 
image sensor 304 (e.g., with individual pixels or groups of 
pixels). 

In some embodiments, signal generator 314 can be one or 
more signal generators that can generate signals to control 
light source 302 using a modulation signal. Although a 
single signal generator is shown in FIG. 3, any suitable 
number of signal generators can be used in some embodi­
ments. Additionally, in some embodiments, signal generator 

on output from image sensor 304, etc. Memory 312 can 
include a storage device ( e.g., a hard disk, a solid state drive, 
a Blu-ray disc, a Digital Video Disk (DVD), RAM, ROM, 15 

EEPROM, etc.) for storing a computer program for control­
ling processor 308. In some embodiments, memory 312 can 
include instructions for causing processor 308 to execute 
processes associated with the mechanisms described herein, 
such as processes described below in connection with FIG. 20 

7. 

314 can be implemented using any suitable number of 
specialized analog circuits each configured to output a signal 
that can be used to control a spatially varying projection of 
light onto a scene (e.g., scene 320). 

In some embodiments, system 300 can communicate with 
a remote device over a network using communication sys­
tem( s) 316 and a communication link. Additionally or alter­
natively, system 300 can be included as part of another 
device, such as an automated system, a semi-automated 
system, a security system, a smartphone, a tablet computer, 

In some embodiments, light source 302 can be any 
suitable light source that can be configured to emit patterned 
light toward a scene 320 in accordance with a modulation 
signal (e.g., M(x)) received from signal generator 316. For 
example, light source 302 can include one or more light 
emitting diodes (LEDs), one or more laser diodes, one or 
more lamps, and/or any other suitable light source. In some 
embodiments, light source 302 can emit light at any suitable 
wavelength or combination of wavelengths. For example, 
light source 302 can emit visible light, near-infrared light, 
infrared light, etc. In some embodiments, light source 302 
can be configured to emit light with a pattern that varies 
along one or more dimensions (e.g., varying as a column 
index changes, varying as a row index changes, varying as 
a function of both row and colurmi index, etc.). For example, 
light source 302 can include ( or be associated with) a spatial 
light modulator using one or more transmissive light crystal 
techniques modulation, one or more reflective liquid crystal 
on silicon modulation techniques, one or more digital light 
processing (DLP) modulation techniques (e.g., using micro 
mirrors that can be selectively oriented to emit light toward 
the scene or inhibit light from being emitted toward the 
scene). In some embodiments, light source 302 can include 
an array of light sources (e.g., LEDs, laser diodes, etc.) that 
can be controlled (e.g., individually addressed, addressed by 
colunm, etc.) to create a particular pattern of varying inten­
sity across one or more dimensions of scene 320. In some 
embodiments, light source 302 can be implemented using a 
scanning laser beam that is controlled to vary intensity as it 
is scanned across the scene. In some embodiments, light 
source 302 can be implemented using a point light source 
(e.g., a laser diode, an LED, etc.) and one or more masks 
(e.g., a transparency, a diffractive optical element, etc.). 

In some embodiments, image sensor 304 can be any 
suitable image sensor that can receive light reflected by 
scene 320 and, using one or more decoding techniques ( e.g., 
as described below in connection with FIG. 7), generate 
signals that are indicative of the depth of particular points of 
scene 320 based on an identification of which portion of the 
pattern ( e.g., a colurmi index c) was projected onto the scene 
point. Any suitable technique or combination of techniques 
can be used to generate signals based on the images of each 
pattern projected onto the scene captured by image sensor 
304. 

In some embodiments, optics 306 can include optics for 
focusing light received from scene 320, one or more band-

25 a laptop computer, etc. Parts of system 300 can be shared 
with a device within which system 300 is integrated. For 
example, if system 300 is integrated with an automated 
industrial inspection system, processor 308 can be a proces­
sor of the automated system and can be used to control 

30 operation of system 300. 
In some embodiments, system 300 can communicate with 

any other suitable device, where the other device can be one 
of a general purpose device such as a computer or a special 
purpose device such as a client, a server, etc. Any of these 

35 general or special purpose devices can include any suitable 
components such as a hardware processor (which can be a 
microprocessor, digital signal processor, a controller, etc.), 
memory, communication interfaces, display controllers, 
input devices, etc. For example, the other device can be 

40 implemented as an automated system, a semi-automated 
system, a digital camera, a security camera, an outdoor 
monitoring system, a smartphone, a wearable computer, a 
tablet computer, a personal data assistant (PDA), a personal 
computer, a laptop computer, a multimedia terminal, a game 

45 console or peripheral for a gaming counsel or any of the 
above devices, a special purpose device, etc. 

Communications by communication system 116 via a 
communication link can be carried out using any suitable 
computer network, or any suitable combination of networks, 

50 including the Internet, an intranet, a wide-area network 
(WAN), a local-area network (LAN), a wireless network, a 
digital subscriber line (DSL) network, a frame relay net­
work, an asynchronous transfer mode (ATM) network, a 
virtual private network (VPN). The communications link 

55 can include any communication links suitable for commu­
nicating data between system 300 and another device, such 
as a network link, a dial-up link, a wireless link, a hard-wired 
link, any other suitable communication link, or any suitable 
combination of such links. System 300 and/or another 

60 device (e.g., a server, a personal computer, a smartphone, 
etc.) can enable a user to execute a computer program uses 
information derived using the mechanisms described herein 
to, for example, control a user interface. 

It should also be noted that data received through the 
65 communication link or any other communication link( s) can 

be received from any suitable source. In some embodiments, 
processor 308 can send and receive data through the com-
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munication link or any other communication link(s) using, 
for example, a transmitter, receiver, transmitter/receiver, 
transceiver, or any other suitable communication device. 

FIG. 4A shows an example of codes that can be used to 
implement a four pattern Hamiltonian coding scheme for 
structured light imaging in accordance with some embodi­
ments of the disclosed subject matter. 

FIG. 4B shows an example of codes that can be used to 
implement a five pattern Hamiltonian coding scheme for 
structured light imaging in accordance with some embodi­
ments of the disclosed subject matter. 

Since the Hamiltonian cycle visits every vertex of the 
cube exactly once, and the length of each side is 1, the length 
of the curve is 2K-2. Since the coding curve length increases 
exponentially as a function of K, the length of a Hamiltonian 
cycle on a hypercube graph can be more than an order of 
magnitude more than the coding curve of conventional 
sinusoid coding, whose length increases only as vK, as 
described below in connection with FIG. SC. Additionally, 
given any two points on the curve, the ratio between their 
Euclidean distance and distance along the curve is bounded. 
Note that, in practice, the origin and the diagonally opposite 
vertex can be omitted from the Hamiltonian cycle in order 

14 
complete problem, with no known polynomial time algo­
rithms. However, for relatively small K, it is possible to find 
cycles using search based algorithms. 

FIGS. SA to SD show examples of a ramp-based pattern, 
5 a triangle-based pattern, a sinusoid-based pattern, and a 

Hamiltonian-based pattern that can be used to construct SL 
coding schemes, and the respective coding curves shown as 
a geometrical representation in three dimensional space. For 
example, FIG. SA shows a coding curve of a ramp-based 

10 coding scheme for K=3 having projected patterns that are a 
constant 1, a constant 0, and an intensity ramp ( e.g., the ramp 
shown in FIG. SA). In such an example, the coding curve for 
the ramp-based coding scheme is a line segment of length 1. 

15 
As another example, FIG. SB shows a coding curve of a 
triangle-based coding scheme having projected patterns that 
are the triangle shown in FIG. SB offset in various positions 
with respect to the column index. In such an example, the 
coding curve for a K=3 triangle-based coding scheme is a 

20 
non-planar polygon with a curve length of about 3.46 times 
the length of a ramp coding scheme (i.e., 2YK for K=3). As 
yet another example, FIG. SC shows a coding curve of a 
sinusoid-based SL coding scheme, which is a circle of radius 

to ensure that there are no projector colunms with a code of 25 
all zeroes or all ones. 

In general, when used for a SL coding scheme, Hamilto­
nian coding functions (i.e., coding functions for which the 
coding curve is a Hamiltonian cycle), are trapezoidal func­
tions (e.g., as shown in FIG. SD). For example, a Hamilto- 30 
nian-based SL coding scheme for K=3 can be implemented 
using three trapezoidal functions that are shifted copies of 
each other ( e.g., phase shifted by 

where K2:3 is the number of phase-shifts (number of mea­
surements). In a more particular example, for K=3, the 
coding curve length of sinusoid coding is roughly 3 .84 times 
that of ramp coding (i.e., 

Three phase-shifted trapezoidal functions have been pro­
posed in the past, and can be considered a special case of the 
family of Hamiltonian SL coding schemes. By contrast to 
the identical but phase-shifter curves for a K=3 Hamiltonian 
SL scheme, higher order Hamiltonian coding functions (i.e., 
K>3) are not necessarily shifted versions of each other, as 
shown in FIGS. 4A and 4B. 

For example, as shown in FIG. 4A, the first two patterns 
(P 1 , P 2 ) are phase shifted versions of each other, but the third 
pattern (P 3 ) and fourth pattern (P 4 ) are trapezoidal functions 
with higher frequencies and/or varying duty cycles. 

A coding scheme based on Hamiltonian cycles generally 
induces a one-to-one mapping between unknown space and 
measurement space, and the inverse mapping (which can be 
referred to as decoding) can be performed analytically, 
allowing for a relatively fast inference of depth from the 
captured intensities while each pattern was projected. 

FIGS. 4A and 4B are two examples of coding schemes 
that produce coding curves that form Hamiltonian cycles on 
K-dimensional unit cubes. More generally, for a Hamilto­
nian cycle on the K-dimensional unit cube as the coding 
curve, the i th coding functions P, for the Hamiltonian coding 
scheme can be defined as the value of the i th coordinate of 
points on the Hamiltonian cycle. As described above, the 
origin and the diagonally opposite vertex can be excluded 
from the Hamiltonian cycle so that for every projector 
colunm c, at least one ( out of K) projected values is 0, and 
at least one projected values is 1. Constructing such Ham­
iltonian cycles on this reduced set of vertices is an NP-

35 

for K=3). As yet another example, FIG. SD shows a coding 
40 curve of a Hamiltonian-based SL coding scheme, which is a 

cycle on a unit hypercube of dimension K, which corre­
sponds to a curve length of 2K-2, if K is odd, and 2K-4, if 
K is even. In the particular example shown in FIG. SD for 
K=3, the coding curve length is about 6 times the length of 

45 that of ramp coding (i.e., 2K-2 for K=3). Accordingly, given 
the same scene and imaging system, sinusoid-based coding 
(for K=3) can achieve approximately 3.84 times precision 
(i.e., lower error) as compared to ramp coding, and Hamil­
tonian-based coding (for K=3) can achieve approximately 

50 1.5 times precision of sinusoid-based coding. 
FIG. 6A shows an example of projector intensity patterns 

as a function of colurmi index for an eight pattern Hamil­
tonian coding scheme for structured light imaging in accor­
dance with some embodiments of the disclosed subject 

55 matter. Note that although the patterns in FIGS. 6A to 6C 
appear to be binary (i.e., transmittance of 0, completely 
opaque corresponding to a black color, or transmittance of 1, 
completely transparent corresponding to a white color) this 
is merely due to the relatively rapid transitions between 

60 transmittance of 0 and 1, and vice versa. As shown in boxes 
602 and 604, the transition between 0 and 1 transmittance 
(or vice versa) can include one or more colunms of trans­
mittance between 0 and 1, the particular values of which can 
be based on the value of the coding function at that colurmi 

65 index. 
FIG. 6B shows another example of projector intensity 

patterns as a function of colunm index for an eight pattern 
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Hamiltonian coding scheme for structured light imaging in 
accordance with some embodiments of the disclosed subject 
matter. 

FIG. 6C shows yet another an example of projector 
intensity patterns as a function of column index for an eight 
pattern Hamiltonian coding scheme for structured light 
imaging in accordance with some embodiments of the 
disclosed subject matter. 

16 
by first appending O to each element of the (K-1 )-bit Gray 
code, then listing the (K-1)-bit Gray code in reverse, 
appending 1 to each element. The starting point for such a 
reflected Gray code can be a 1-bit Gray code [O; 1]. A 

5 resulting Hamiltonian-based SL coding scheme can include 
a broad range of frequencies (i.e., including low frequen­
cies), which can render the coding scheme less suitable for 
applications in which the SL imaging system is likely to 

The image formation model described above in connec­
tion with EQ. (1) assumes that scene points are illuminated 10 

only directly by the projector, so that each camera pixel 
receives light only from a single projector colunm. However, 

encounter relatively high levels of global illumination. 
In some embodiments, for applications in which the SL 

imaging system is likely to encounter relatively high levels 
of global illumination, Hamiltonian functions based on Gray 
codes with only high spatial frequencies can be used. For 
example, results in combinatorial mathematics can be used 

in practice, scene points may receive light from other scene 
points as well (e.g., due to interreflections and scattering). 
Additionally, for scenes with large depths, the projected 
patterns may get defocused (e.g., due to limited depth-of­
focus of the projector optics). This can result in camera 
pixels receiving light from multiple projector colunms. Such 
effects, which can be collectively referred to as indirect or 
global illumination, can lead to significant errors in the 
recovered shape. Note that the coding schemes in FIGS. 4A 
and 4B including patterns with relatively low spatial fre­
quency ( e.g., at least patterns P 1 and P 2). Such low spatial 
frequency patterns can contribute to larger errors due to 
indirect illumination. In some embodiments, coding 
schemes with relatively high spatial frequency patterns can 
mitigate such errors in comparison to schemes including 
lower frequency patterns. 

Note that for K>3, the Hamiltonian cycle on a hypercube 
graph is not unique (i.e., modulo isomorphic cycles exist). A 
Hamiltonian cycle can be characterized by the order in 
which the hypercube vertices are visited, and for K>3, there 
exist multiple (exponential in K) orderings of the vertices of 
the hypercubes, corresponding to different Hamiltonian 
cycles. In some embodiments, the set of patterns cording 
functions for a particular Hamiltonian-based SL coding 
scheme can be based on a particular Hamiltonian cycle for 
a hypercube of dimension K. For example, FIGS. 6A and 6B 
show two different sets of Hamiltonian patterns for K=S. 

Additionally, different coding functions have different 
properties in terms of the set of constituent spatial frequen­
cies. For example, as shown FIG. 6A, the different patterns 
have a broad range of spatial frequencies ( e.g., progressing 
higher in spatial frequency), whereas, as shown in FIG. 6B, 
all of the patterns have relatively high, and similar frequen­
cies. 

Gray codes are a sequence of binary codes configured 
such that consecutive codes differ in only 1 bit (i.e., the 
Hamming distance between consecutive codes is 1 ). In some 
embodiments, a sequence of K-bit Gray codes can be 
constructed by first assigning a K-bit binary code to every 
vertex of a unit K-dimensional hypercube. In such embodi­
ments, the code can be based on the coordinates of the 
vertex. For example, the origin can be assigned a binary 
code [O, ... , OJ. In such an example, a Gray code sequence 
can determined by traversing all the vertices of the hyper­
cube along a Hamiltonian cycle. Accordingly, in some 
embodiments, a Hamiltonian cycle on a hypercube graph 
can correspond to both a Gray codes sequence, as well as a 
set of Hamiltonian functions. In such embodiments, the 
Hamiltonian functions can be analogous to a continuous 
version of a binary Gray codes. Note that different Hamil­
tonian cycles can induce Gray codes and Hamiltonian func­
tions with different characteristics. For example, the Ham­
iltonian patterns shown in FIG. 6A are based on reflected 
Gray codes, which are defined recursively. In a more par­
ticular example, a K-bit reflected Gray code can be created 

15 to construct Gray code sequences with desirable properties, 
such as codes with small stripe widths (and hence, high 
frequencies). In such an example, these Gray code 
sequences can be used to generate Hamiltonian functions 
that can be used in a Hamiltonian SL coding scheme that is 

20 relatively robust to global illumination. In a more particular 
example, FIG. 6B shows Hamiltonian patterns using a 
sequence of antipodal Gray codes, which have the property 
that the binary complement of a string appears a fixed 
distance from it in the ordering. As shown in FIG. 6B, 

25 antipodal Gray codes, and the corresponding Hamiltonian 
functions have a narrow set of relatively high frequencies, 
thus resulting in a coding scheme that is more robust to 
global illumination effects. 

In some embodiments, for applications in which the SL 
30 imaging system is likely to encounter relatively high levels 

of global illumination, Hamiltonian functions based on 
micro phase shifting can be used, which can involve the use 
of patterns with frequencies within a narrow, high-frequency 
band. In such embodiments, phase unwrapping can be 

35 performed by combining phase information from several 
high-frequencies, and multiple sets of Hamiltonian func­
tions, with small, co-prime periods (i.e., high frequencies) 
can be used to implement a Hamiltonian-based SL coding 
scheme that is relatively robust to global illumination 

40 effects. For example, FIG. 6C shows an example micro 
Hamiltonian coding scheme with K =8 patterns that corre­
spond to a combination of two sets of Hamiltonian patterns. 
More particularly, Hamiltonian patterns for K=3 and K=5 
coding schemes (e.g., as shown in FIGS. SD and 4B, 

45 respectively) can be used to form a K=S coding scheme, and 
the patterns can be compressed to have periods of 203 pixels 
( e.g., where 1 pixel corresponds to 1 column) and 97 pixels, 
respectively ( e.g., rather than the 1920 pixel period shown in 
FIGS. SD and 4B). That is, rather than using a single period 

50 of the patterns for K =3 and K =5, the patterns can be repeated 
multiple times across the projector. In the example shown in 
FIG. 6C, the total number of projector columns is Nc=1920. 
While each set recovers the correspondence modulo its 
respective period, the ambiguous correspondences can be 

55 combined via phase-unwrapping techniques to recover 
unambiguous depths. 

In some embodiments, micro Hamiltonian coding 
schemes can be configured in various different ways, which 
facilitates fine control of the properties ( e.g., spatial frequen-

60 cies) of the projected patterns, and FIG. 6C shows patterns 
for a single example of a micro Hamiltonian coding scheme. 
For example, several base Hamiltonian pattern sets, with 
different periods, can be combined into a single micro 
Hamiltonian coding scheme. For instance, a micro Hamil-

65 tonian scheme with K=S patterns can be designed by com­
bining K =3 and K =5 base Hamiltonian sets, or two K =4 base 
Hamiltonian sets with different periods, or one full K=3 set, 
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and 5 single patterns from the K=3 set. Given system 
parameters ( e.g., the number of projector colunms, number 
of projected patterns), and scene characteristics (e.g., 
amount and/or nature of global illumination), a search-based 
procedure can be used to compute the best combination of 
base patterns and periods ( e.g., from a set of available 
combinations) of a micro Hamiltonian coding scheme. Note 
that the patterns shown in FIG. 6C are an example of a micro 
Hamiltonian coding scheme that can be generated using 
these techniques. 

18 
intervals (for odd values of K) or 2K-4 sub-intervals (for 
even values of K). In each sub-interval, one ( out of the K) 
functions increases (or decreases) linearly from Oto 1 (or 1 
to 0), while the other K-1 functions are constant O or 1. In 

5 some embodiments, the sub-intervals can correspond to an 
index A, lsAs2K-2 (or 2K-4 for even K). In such embodi­
ments, given a set of measured intensities I=[Ii, I2 , ... , IK] 
for a particular image sensor pixel, the column index c ( or 
other index) can be determined by first estimating the 

10 sub-interval A in which the colunm index is present, and 
based on the sub-interval, determining the projector column 
corresponding to the pixel. 

Note that both micro Hamiltonian coding and Gray code 
based Hamiltonian coding (e.g., antipodal Hamiltonian pat­
terns) can provide robustness to global illumination. In 
general, Gray code based Hamiltonian schemes have a more 
restricted design space, and allow more limited control over 
the spatial frequencies of the projected patterns, while micro 
Hamiltonian coding provides greater control over the spatial 
frequencies. However, micro Hamiltonian codes can require 
phase unwrapping for decoding, and thus, may suffer from 
errors in low SNR scenarios due to incorrect unwrapping, 
while antipodal Hamiltonian codes can achieve high preci­
sion even in low SNR (e.g., as shown in, and described 
below in connection with, FIGS. llD and 12C). Note that 
although optimization approaches are described herein for 
Gray code based Hamiltonian codes and micro Hamiltonian 25 

codes, these are merely examples, and other optimization 
approaches can be used to generate Hamiltonian SL coding 
schemes that can achieve high SNR, and have desired spatial 
frequencies (e.g., very high frequencies that facilitate robust 
performance in the presence of specular interreflections ). 

In some embodiments, process 700 can estimate the index 
A of the sub-interval that c lies within, where c is the correct 

15 projector correspondence. In such embodiments, each index 
A can be associated with a particular combination of the K-1 
patterns that are constant values in the interval, and the value 
of each of those patterns in the interval. For example, 
process 700 can determine a first image(s) for which the 

20 pixel value is a minimum, and another image(s) for which 
the pixel value is a maximum. In such an example, an image 
for which the pixel value falls between the minimum and 
maximum value can be identified as the pattern that is not 
constant in the interval. 

In some embodiments, at 706, process 700 can attempt to 
determine the correct projector correspondence c by deter­
mining the sub-interval index A of the sub-interval that c lies 
in. In such embodiments, process 700 can decode which 
sub-interval c lies in based on a unique combination of the 

30 identities (i.e., indices i as described above) and values of 
the K-1 coding functions that are constant within the 
sub-interval, as each sub-interval has a unique combination 
of such identities and values. Process 700 can compute A by 
identifying the indices and values of the measured intensities 

FIG. 7 shows an example 700 of a process for measuring 
depth in a scene in accordance with some embodiments of 
the disclosed subject matter. At 702, process 700 can cause 
a light source (e.g., light source 302) to emit a series of K 
patterns oflight toward a scene. For example, the K patterns 
can be patterns from a Hamiltonian-based SL coding scheme 
that includes K patterns. In a more particular example, 
process 700 can cause the light source to emit the series of 
four patterns shown in FIG. 4A. In another more particular 
example, process 700 can cause the light source to emit the 
series of five patterns shown in FIG. 4B. In yet another more 
particular example, process 700 can cause the light source to 
emit a series of eight patterns, including the four patterns 
shown in FIG. 6A, 6B, or 6C. 

35 that correspond to the K-1 constant functions. 
In some embodiments, process 700 can identify the inten­

sities that are constant by performing a clustering of the K 
measured intensities ( at every pixel of the image sensor) into 
various clusters. For example, process 700 can place one or 

40 more of the intensities into a cluster corresponding to the 
coding functions being O (low intensities). Note that the 
intensities placed in this cluster are sometimes referred to 
herein as I1ow· As another example, process 700 can place 
one or more of the intensities into a cluster corresponding to 

At 704, process 700 can cause at least one image of the 
scene illuminated by each of the K patterns to be captured 
( e.g., by image sensor 304). For example, in connection with 
projecting each pattern at 702 (e.g., while projecting each 
pattern, within a particular period of time of each pattern 
being projected), process 700 can capture an image of the 
scene illuminated by a particular pattern. In a more particu­
lar example, process 700 can use the projection of a pattern 

45 the coding functions being 1 (high intensities). Note that the 
intensities placed in this cluster are sometimes referred to 
herein as Ih,gh· As yet another example, process 700 can 
place one or more of the intensities into a cluster corre­
sponding to the linearly increasing ( or decreasing) function. 

50 Note that this cluster and/or value is sometimes referred to 

to trigger capture of an image. In another more particular 
example, process 700 can initiate projection of the pattern by 
the light source at 702, and capture of an image of the scene 55 

illuminated by the light source at 704 substantially simul­
taneously. 

as the median intensity value for convenience, although it 
may not be the median value in the set of K intensity values 
(e.g., where K-2 values are 0, the true median value would 
be 0, but the median intensity value for the purpose of 
clustering can be whichever of the remaining two values 
does not belong in the high intensity cluster). That is, it is the 
value most likely to not belong in either of the other two 
clusters. Note that, as described above, the origin and 
opposite vertex can be omitted from the Hamiltonian cycle, 
which can insure that no code exists in which all values are 
0 or 1 in the coding function. In embodiments, process 700 
can be constrained such that the cluster with the median 
intensity value includes one, and only one, member. In some 
embodiments, the cluster in which a value is placed can be 

At 706, process 700 can determine, for each pixel of the 
image sensor, a corresponding projector pixel (e.g., a col­
unm index, a row index, etc.) based on the intensity values 60 

in the images captured at 704 while each pattern was being 
projected toward the scene. In some embodiments, process 
700 can use any suitable technique or combination of 
techniques to determine which projector pixel ( e.g., colunm 
index c) corresponds to the imaging pixel. For example, in 
some embodiments, coding functions P, (1 sisK) of a Ham­
iltonian SL coding can be sub-divided into 2K-2 sub-

65 used to determine the identities of the K-1 indices that are 
constant in the sub-interval), and can use this information to 
decode which sub-interval c is in. 
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In some embodiments, process 700 can use the sub-index 
interval A and the intensity value of the index i correspond­
ing to the median intensity value to determine the location 
of the correspondence c within the sub-interval. In some 
embodiments, process 700 can retrieve ( or otherwise 5 

receive) information about projected intensities P( c )=[P 1 ( c ), 
Pie), ... , Px(c)] for each colunm index c within the 
identified sub-interval A. A sub-interval of the coding func­
tions can correspond to a particular edge of the Hamiltonian 
cycle (e.g., a particular edge of the coding curve between 10 

two vertices of the hypercube). For example, if the projected 
intensities P(c) for the sub-interval lie on an edge between 
two cube vertices (e.g., Pzeft and Pr,ght), the coding curve 
point Pc for the particular colunm index correspondence to 

15 
c can be represented as a linear combination of Pzeft and P right 

as: P(c)=KPzeft+(l-K)P right, where OsK:d is the location of 
the correspondence c within the sub-interval. 

In some embodiments, process 700 can determine the 
average (e.g., arithmetic mean) of intensities in the cluster 20 
corresponding to a O in the coding function Im,n =meanCI1ow), 
where I1ow is the set of intensities in the low-intensity cluster. 
Additionally, in some embodiments, process 700 can deter­
mine the average ( e.g., arithmetic mean) of intensities in the 
cluster corresponding a 1 in the coding function I max =mean 25 
(Ih,gh), where Ih,gh is the set of intensities in the high­
intensity cluster. In some embodiments, process 700 can 
determine the location K within the sub-interval by finding 
the relative intensity of the intensity in the mean intensity 

20 
where Ne is the total number of projector columns in the 
patterns, and Ns is the total number of sub-intervals (e.g., 
2K-2 sub-intervals for odd values of K, or 2K-4 sub-
intervals for even values ofK). Additionally or alternatively, 
in some embodiments, one or more lookup tables can be 
stored in memory (e.g., memory 312) that relate colunms 
with code values ( e.g., every colunm is associated with a 
unique code comprising a sequence of intensities), sub­
interval A, and/or relative intensity value K, and the column 
index correspondence c can be determined from the lookup 
table. For example, this can be especially useful when 
sub-interval A, and/or relative intensity value K cannot be 
reliably determined due to one or more sources of imaging 
error (e.g., defocus, noise, interefl.lections, etc.). 

Note that, while Hamiltonian patterns described herein 
can effectively account for some degree of global illumina­
tion, higher frequency global illumination and/or ambient 
illumination may affect results more than lower frequency 
illumination. For example, global illumination caused by 
interreflections of the light projected by the light source 
(e.g., light source 302) can affect the projected patterns, and 
cause the observed imageto diverge from patterns that would 
be captured without interreflections. Such global illumina­
tion within the scene can vary based on how much of the 
scene is relatively highly reflective and/or the due to the 
amount of light reflected by one or more portions of the 
scene. In a more particular example, the mechanisms 
described herein can reduce the effect of relatively low 
frequency global illumination (e.g., due to interreflections 

cluster based on the following relationship: 

lmed - lmin 
K=--­

fmax - lmin' 

30 from a diffusely reflective surface and/or from a small 
portion of the scene) on depth estimates due to the design of 
the patterns. As described above in connection with FIGS. 
6A to 6C, higher frequency patterns can reduce the effect of 
such global illumination. However, as the frequency of 

where Imed is the intensity of the value placed in the third 
(median intensity) cluster (which, as discussed above, may 
not be the median value of the K intensity values). 

In some embodiments, having determined the sub-interval 
index A and the location K within the sub-interval, process 
700 can determine the column index correspondence c using 
any suitable technique or combination of techniques. For 
example, process 700 can access a look-up table that 
includes correspondences between colunm index c and 
relative intensity values (e.g., excluding effects of global 
illumination by taking into account the average high inten­
sity and average low intensity values) for the identified 
sub-interval A to determine a particular colunm index c to 
which the calculated relative intensity value K corresponds. 

35 global illumination grows (e.g., due to the presence of one 
or more mirrors and/or other sources of highly specular 
interreflections, or the presence of reflective surfaces across 
a larger portion of the scene), less benefit is provided from 
the same frequency patterns. In such examples, higher 

40 frequency Hamiltonian patterns can be used for measuring 
scenes with higher frequency global illumination. As 
another example, if the ambient light intensity (i.e., light 
from a source other than the projector) rapidly varies in time 
( e.g., the intensity of the ambient light at a particular imager 

45 pixel varies significantly between successive images in a 
sequence corresponding to the K projected patterns) the 
measured intensities can diverge from the patterns, which 
can produce erroneous depth measurements. In such an 
example, if the ambient light decreases between a first image 

50 corresponding to a first pattern and a second image corre­
sponding to a second pattern, even if a particular colunm is 
the same value in both patterns (e.g., a maximum intensity) 
the measured intensity may vary by more than the difference 
between the maximum intensity and minimum intensity 

In some embodiments, the correspondence between relative 
intensity values and colunm index within each sub-interval 
can be determined empirically (e.g., through a calibration 
procedure) and/or analytically ( e.g., by determining the 
expected value for each colunm index based on the slope of 
the increasing or decreasing coding function within each 
sub-interval). In some embodiments, the colunm index cor­
respondence c can be determined based on the number of 
colunms represented in the patterns, and the number of 
sub-intervals into which the pattern is divided. For example, 
the following relationship can be used to determine the 60 

colunm index correspondence c: 

55 were the ambient light constant. In some embodiments, the 
mechanisms described herein can be used in a complemen­
tary manner with other techniques for suppressing the effects 
of ambient illumination ( e.g., optical technique for suppress-
ing contributions from ambient illumination). 

At 708, process 700 can determine a depth of the scene at 
each imaging pixel based on the projector pixel correspond­
ing to each imaging pixel. In some embodiments, process 
700 can use any suitable technique or combination of 
techniques to determine the scene depth for each pixel. For 

c= 
N, 

(5) 

65 example, in some embodiments, based on the separation of 
the imager pixel location and the projector colunm location 
(e.g., lateral distance between the two locations), process 
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700 can determine the depth of the scene point imaged by 
the pixel. In general, the light measured by a particular 
imager pixel can be modeled as a ray reflected from a point 
in the scene toward the imager pixel, and the projector emits 
a light plane from each colunm of the light source with the 5 

pattern of intensity varying as the patterns change. In some 
embodiments, after determining the corresponding column 
index c, the depth in the scene can be determined based on 
the point at which the light ray hitting the imager pixel and 
the light plane projected by the light source intersect in the 10 

scene (e.g., as shown in FIG. lA). 
In some embodiments, process 700 can select a set of 

patterns to emit at 702 based on the composition of the scene 
and/or ambient lighting conditions. For example, process 
700 can estimate the amount of interreflection likely to be 15 

caused by one or more objects in the scene, and can select 
a set of patterns with higher frequency Hamiltonian patterns 
(e.g., the patterns shown in FIGS. 6B and 6C). In such an 
example, as the frequency of interreflections increases, 
process 700 can select higher frequency of Hamiltonian 20 

patterns. As another example, process 700 can determine if 
the intensity of ambient light is varying in the scene ( e.g., 
due to a light source with varying intensity, due to an object 
periodically blocking a light source, etc.), and if the ambient 
light intensity varies at a consistent frequency, process 700 25 

can modify the timing at which images are captured to 
attempt to ameliorate any effect that the temporally varying 
ambient light has on depth estimates. In some embodiments, 
system 700 can capture an image ( e.g., with or without a 
particular pattern projected) to provide as input to a machine 30 

learning system ( e.g., a neural network) trained to identify 
high-frequency reflectors (e.g., mirrors, specular surfaces, 
etc.) in the image to determine the amount of interreflections 
likely present in a scene. In such embodiments, process 700 
can select a set of projection patterns to use based on an 35 

estimated amount of interreflections that are expected based 
on the presence of one or more high-frequency reflectors 
identified by the machine learning system. Additionally or 
alternatively, in some embodiments, process 700 can capture 
an image ( e.g., with or without a particular pattern projected) 40 

to provide as input to a machine learning system trained to 
classify the image based on the expected frequency of 
interreflections (e.g., based on the presence of one or more 
high frequency reflectors), and based on the classification, 
process 700 can select a set of projection patterns to use 45 

based on a correspondence between the classes of the 
machine learning system and sets of projection patterns. 

FIG. 8 shows examples of mean depth errors under low 
and high ambient lighting conditions for various coding 
schemes, including Hamiltonian coding, using different 50 

numbers of patterns. The values shown in FIG. 8 were found 
using a structured light system that included a Canon T5i 
DSLR camera, and an Epson 3LCD projector. The scene 
being imaged was a diffuse, white planar surface, with 
known ground truth depths, approximately in the range 55 

[1100, 1600] millimeters. A broad range of SNR scenarios 
were emulated by using different brightness values of the 
source projector (i.e., the projector that projected the struc­
tured light patterns onto the scene), and another projector 
that acted as an ambient illumination source. As shown in 60 

FIG. 8, the depth errors for several coding schemes, at 
different source and ambient light strengths, and different 
number of patterns (K) were determined using this system. 
Note that the Y axes in FIG. 8 vary based on the maximum 
mean depth error mean of the coding schemes being evalu- 65 

ated. The total capture time was the same for all the coding 
methods. For K=3, ramp coding results in large errors, due 

22 
to a small coding curve length ( e.g., as described above in 
connection with FIG. SA). For K=4 and 5, Hamiltonian 
coding significantly outperforms existing approaches such 
as sinusoid coding. This can be attributed to the coding curve 
length for Hamiltonian coding, which increases exponen­
tially with K, while sinusoid coding increases only as YK 
(e.g., as described above in connection with FIGS. SC and 
SD). The coding curves for edgeterns and Hilbert patterns 
are not distance preserving, which results in larger depth 
errors at low SNR (low source brightness, high ambient 
brightness) settings. For K=5, Hamiltonian coding is com­
pared with a multi-frequency sinusoid scheme, which uses 
sinusoid patterns of multiple frequencies, for example, one 
high frequency and one low (unit) frequency. Three patterns 
were used for the unit frequency (separated by 

2n: 

3 

shifts), and two patterns at the highest spatial frequency in 
Hamiltonian coding patterns (separates by 

n: 

2 

shifts). The high frequency phase provides accurate but 
ambiguous projector correspondence. The low frequency 
phase is then used to resolve the ambiguities (phase unwrap­
ping). At high SNR, multi-frequency sinusoid scheme 
achieves similar performance as Hamiltonian coding. How­
ever, at low SNR, the multi-frequency sinusoid suffers from 
inaccurate unwrapping, and thus, larger depth errors. In 
contrast, the performance of Hamiltonian coding degrades 
more gradually as the SNR decreases. 

FIGS. 9A to 9C show examples of two scenes measured 
using structured light imaging techniques with a four pattern 
sinusoid-based coding scheme and a four pattern Hamilto­
nian-based coding scheme, and the depth values calculated 
for the scenes mapped as three dimensional surfaces based 
on each of the coding schemes. As shown by comparison 
between FIGS. 9B and 9C, while the sinusoid coding is able 
to resolve the general shape of the objects in the scene, the 
Hamiltonian coding is able to resolve finer details and 
produces less noisy depth values ( e.g., as indicated by the 
smoother surfaces shown in FIG. 9C). Note that the patterns 
shown in FIG. 4A were used to generate the depth values 
represented in FIG. 9C. 

FIGS. lOA to l0D show examples of three scenes mea­
sured using structured light imaging techniques with a five 
pattern sinusoid-based coding scheme, a five pattern multi­
frequency sinusoid-based coding scheme, and a five pattern 
Hamiltonian-based coding scheme, and the depth values 
calculated for the scenes mapped as three dimensional 
surfaces based on each of the coding schemes. Note that the 
patterns shown in FIG. 4B were used to generate the depth 
values represented in FIG. lOD. 

FIGS. 9A to 9C, and l0A to l0D generally illustrate the 
differences in results generated by Hamiltonian, single­
frequency sinusoid and multi-frequency sinusoid SL coding 
schemes. As shown, single-frequency sinusoid (e.g., in 
FIGS. 9B and 10B), in general, achieves a relatively low 
depth resolution, resulting in loss of surface detail. With the 
same source power and capture time, Hamiltonian coding 
recovers finer details such as the seam on the ball and the 



US 10,818,023 B2 
23 24 

order or sequence not limited to the order and sequence 
shown and described in the figures. Also, some of the above 
steps of the processes of FIG. 7 can be executed or per­
formed substantially simultaneously where appropriate or in 

ridge on the figure (FIG. 9C), and the facial features of the 
statue (FIG. lOD). Multi-frequency sinusoid coding can 
recover finer geometric details than single-frequency sinu­
soid, especially in high SNR conditions. However, the 
performance of multi-frequency sinusoid degrades consid­
erably in lower SNR conditions, which is apparent from the 
larger depth errors for the black ridges on the Rubik's cube, 
and the lava rock (FIG. lOC). In contrast, Hamiltonian 
coding can recover fine details such as the pores on the rock, 
despite the scene having extremely low albedo. 

5 parallel to reduce latency and processing times. 
Although the invention has been described and illustrated 

in the foregoing illustrative embodiments, it is understood 
that the present disclosure has been made only by way of 
example, and that numerous changes in the details of imple-

10 mentation of the invention can be made without departing 
from the spirit and scope of the invention, which is limited 
only by the claims that follow. Features of the disclosed 
embodiments can be combined and rearranged in various 

FIGS. llA to llD show examples of a scene with 
interreflections measured using structured light imaging 
techniques with a micro phase shifting-based coding 
scheme, a micro Hamiltonian-based coding scheme, and an 
antipodal Hamiltonian-based coding scheme, and the depth 15 

values calculated for the scenes mapped as three dimen­
sional surfaces based on each of the coding schemes. 

FIGS. 12A to 12C show examples of scenes including 
defocused portions measured using structured light imaging 
techniques with a micro phase shifting-based coding 20 

scheme, and an antipodal Hamiltonian-based coding 
scheme, and the depth values calculated for the scenes 
mapped as three dimensional surfaces based on each of the 
coding schemes. 

FIGS. llA to llD, and 12A to 12C generally illustrate 25 

depth recovery results for scenes with global illumination 
and/or defocus. The bowl in FIG. llA is made of white, 
glossy material, resulting in strong interreflections. The 
candle in FIG. 12A has subsurface scattering, and the 
depth-range for the forks in FIG. 12A is large, resulting in 30 

projector defocus. Each of the schemes depicted used eight 
patterns (i.e., K=S), including the micro phase shifting 
(MPS) scheme using sinusoids. While MPS generally per­
forms reliably in moderate to high SNR scenarios, its 
performance degrades at low SNR due to unwrapping errors, 35 

resulting in large depth incorrect unwrapping. However, the 
Hamiltonian schemes outperform MPS in the depicted 
scenes by using high frequency Hamiltonian patterns, 
instead of sinusoids. As shown in FIGS. llC, llD, and 12C, 
antipodal Hamiltonian techniques perform well for the 40 

scenes shown in FIGS. llA and 12A, even at low SNR, 
while mitigating errors due to global illumination effects that 
are present in the MPS results. 

In some embodiments, any suitable computer readable 
media can be used for storing instructions for performing the 45 

functions and/or processes described herein. For example, in 
some embodiments, computer readable media can be tran­
sitory or non-transitory. For example, non-transitory com­
puter readable media can include media such as magnetic 
media (such as hard disks, floppy disks, etc.), optical media 50 

(such as compact discs, digital video discs, Blu-ray discs, 
etc.), semiconductor media (such as RAM, Flash memory, 
electrically programmable read only memory (EPROM), 
electrically erasable progranmiable read only memory (EE­
PROM), etc.), any suitable media that is not fleeting or 55 

devoid of any semblance of permanence during transmis­
sion, and/or any suitable tangible media. As another 
example, transitory computer readable media can include 
signals on networks, in wires, conductors, optical fibers, 
circuits, or any suitable media that is fleeting and devoid of 60 

any semblance of permanence during transmission, and/or 
any suitable intangible media. 

It should be noted that, as used herein, the term mecha­
nism can encompass hardware, software, firmware, or any 
suitable combination thereof. 

It should be understood that the above described steps of 
the process of FIG. 7 can be executed or performed in any 

65 

ways. 
What is claimed is: 
1. A system for estimating depths in a scene, the system 

comprising: 
a light source; 
an image sensor comprising a pixel; 
at least one hardware processor that is programmed to: 
cause the light source to emit K light patterns toward the 

scene, wherein each of the K light patterns includes at 
least one trapezoid-shaped wave and is different from 
each of the other K light patterns, and wherein at least 
one of the K light patterns includes at least two trap­
ezoid-shaped waves, wherein K>4; 

cause the image sensor to generate an intensity value 
during emission of each of the K light patterns such that 
the pixel is associated with at least K intensity values; 

determine a depth estimate for a portion of the scene 
imaged by the pixel based on the K intensity values 
associated with the pixel. 

2. The system of claim 1, wherein each of the K light 
patterns is based on a coding function, and wherein the K 
light patterns are based on a Hamiltonian cycle of a K-di­
mensional hypercube. 

3. The system of claim 2, wherein the at least one 
hardware processor is further programmed to cause the light 
source to emit a first light pattern of the K light patterns by 
causing a first plurality of colllfillls of the light source to emit 
light at a maximum intensity, and causing at least one 
col= adjacent to the first plurality of colunms to emit light 
at a fraction of the maximum intensity. 

4. The system of claim 1, wherein the light source 
comprises a plurality of colunms, each of the plurality of 
colllfillls associated with a col= index c, and wherein the 
plurality of colunms is sub-divided into at least 2K-4 sub­
intervals A such that in each sub-interval K-1 of the light 
patterns maintains a constant value over the colunms in the 
sub-interval and one of the K patterns varies across the 
colllfillls in the sub-interval. 

5. The system of claim 4, wherein the at least one 
hardware processor is further programmed to determine a 
col= index c' that is associated with a code corresponding 
to the K values associated with the pixel. 

6. The system of claim 5, wherein the at least one 
hardware processor is further programmed to: 

identify a median value of the K values associated with 
the pixel; 

cluster K-1 of the K values associated with the pixel into 
a low intensity cluster, and a high intensity cluster; 

determine a sub-interval of the at least 2K-4 sub-intervals 
in which colunm index c' is located based on an order 
in which the K values were generated, and which of the 
K values is included in the low intensity cluster; and 

determine c' based on the sub-interval and the median 
value. 
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7. The system of claim 6, wherein the at least one 
hardware processor is further programmed to: 

determine a location K within the sub-interval based on 
the relationship 

lmed - lmin 
K=--­

fmax - lmin 

5 

10 
where I med is the median value, Im,n is a mean of values in 
the low intensity cluster, and Imax is a mean of values in the 
high intensity cluster; and 

determine c' based on the location K. 
8. A method for estimating depths in a scene, the method 15 

comprising: 
causing a light source to emit K light patterns toward the 

scene, wherein each of 
the K light patterns includes at least one trapezoid-shaped 

wave and is different from each of the other K light 20 

patterns, and wherein at least one of the K light patterns 
includes at least two trapezoid-shaped waves, wherein 
K>4; 

lmed - lmin 
K=--­

fmax - lmin 
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where Imed is the median value, Im,n is a mean of values in 
the low intensity cluster, and Imax is a mean of values in the 
high intensity cluster; and 

determining c' based on the location K. 
15. A non-transitory computer readable medium contain­

ing computer executable instructions that, when executed by 
a processor, cause the processor to perform a method for 
estimating depths in a scene, the method comprising: 

causing a light source to emit K light patterns toward the 
scene, wherein each of the K light patterns includes at 
least one trapezoid-shaped wave and is different from 
each of the other K light patterns, and wherein at least 
one of the K light patterns includes at least two trap­
ezoid-shaped waves, wherein K>4; 

causing an image sensor comprising a pixel to generate an 
intensity value during emission of each of the K light 
patterns such that the pixel is associated with at least K 
intensity values; 

determine a depth estimate for a portion of the scene 
imaged by the pixel based on the K intensity values 
associated with the pixel. 

causing an image sensor comprising a pixel to generate an 
intensity value during emission of each of the K light 25 

patterns such that the pixel is associated with at least K 
intensity values; 16. The non-transitory computer readable medium of 

claim 15, wherein each of the K light patterns is based on a 
coding function, and wherein the K light patterns are based 

30 on a Hamiltonian cycle of a K-dimensional hypercube. 

determine a depth estimate for a portion of the scene 
imaged by the pixel based on the K intensity values 
associated with the pixel. 17. The non-transitory computer readable medium of 

claim 16, further comprising causing the light source to emit 
a first light pattern of the K light patterns by causing a first 
plurality of colunms of the light source to emit light at a 

9. The method of claim 8, wherein each of the K light 
patterns is based on a coding function, and wherein the K 
light patterns are based on a Hamiltonian cycle of a K-di­
mensional hypercube. 

10. The method of claim 9, further comprising causing the 
light source to emit a first light pattern of the K light patterns 

35 maximum intensity, and causing at least one colurmi adja­
cent to the first plurality of colunms to emit light at a fraction 
of the maximum intensity. 

18. The non-transitory computer readable medium of 
claim 15, wherein the light source comprises a plurality of 

by causing a first plurality of colunms of the light source to 
emit light at a maximum intensity, and causing at least one 
colunm adjacent to the first plurality of colunms to emit light 
at a fraction of the maximum intensity. 

40 colurmis, each of the plurality of colurmis associated with a 
colurmi index c, and wherein the plurality of columns is 
sub-divided into at least 2K-4 sub-intervals A such that 
within each sub-interval K-1 of the K light patterns main-

11. The method of claim 8, wherein the light source 
comprises a plurality of colunms, each of the plurality of 
colunms associated with a colunm index c, and wherein the 
plurality of colurmis is sub-divided into at least 2K-4 sub- 45 

intervals A such that within each sub-interval K-1 of the K 
light patterns maintains a constant value over the colunms in 
the sub-interval and one pattern of the K patterns varies 
across the colunms in the sub-interval. 

12. The method of claim 11, further comprising deter- 50 

mining a colunm index c' that is associated with a code 
corresponding to the K values associated with the pixel. 

13. The method of claim 12, further comprising: 
identifying a median value of the K values associated with 

the pixel; 
clustering K-1 of the K values associated with the pixel 

into a low intensity cluster, and a high intensity cluster; 
determining a sub-interval of the at least 2K-4 sub­

intervals in which colunm index c' is located based on 

55 

an order in which the K values were generated, and 60 

which of the K values is included in the low intensity 
cluster; and 

tains a constant value over the colunms in the sub-interval 
and one pattern of the K patterns varies across the colunms 
in the sub-interval. 

19. The non-transitory computer readable medium of 
claim 18, wherein the method further comprises determining 
a colunm index c' that is associated with a code correspond­
ing to the K values associated with the pixel. 

20. The non-transitory computer readable medium of 
claim 19, wherein the method further comprises: 

identifying a median value of the K values associated with 
the pixel; 

clustering K-1 of the K values associated with the pixel 
into a low intensity cluster, and a high intensity cluster; 

determining a sub-interval of the at least 2K-4 sub-
intervals in which colunm index c' is located based on 
an order in which the K values were generated, and 
which of the K values is included in the low intensity 
cluster; and 

determining c' based on the sub-interval and the median 
value. determining c' based on the sub-interval and the median 

value. 
14. The method of claim 13, further comprising: 
determining a location K within the sub-interval based on 

the relationship 

21. The non-transitory computer readable medium of 
65 claim 20, wherein the method further comprises: 

determining a location K within the sub-interval based on 
the relationship 



lmed - lmin 
K=--­

fmax - lmin 
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where I med is the median value, Im,n is a mean of values in 
the low intensity cluster, and Imax is a mean of values in the 
high intensity cluster; and 

determining c' based on the location K. 

* * * * * 
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