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A system and method for acquiring medical images of a 
subject includes performing two-dimensional (2D) scan of a 
subject using a medical imaging system to acquire 2D data 
from at least two view angles and generating a three­
dimensional (3D) model of the subject from the 2D data. The 
method also includes extracting desired images of the sub­
ject from the 3D model. The desired images are at view 
angles different from the at least two view angles. The 
method further includes prescribing an imaging study of the 
subject using the desired images of the subject to control at 
least one of a signal-to-noise ratio of data acquired using the 
imaging study or a dose of ionizing radiation delivered to the 
subject during the imaging study. The method also includes 
performing the imaging study using the medical imaging 
system to acquire imaging data from the subject and recon­
structing images of the subject from the imaging data. 
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SYSTEM AND METHOD FOR 
RECONSTRUCTING IMAGE VOLUMES 

FROM SPARSE TWO-DIMENSIONAL 
PROJECTION DATA 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is based on, claims pnonty to, and 
incorporate herein by reference 62/734,960, filed Sep. 21, 
2018, and entitled "SYSTEM AND METHOD FOR 
RECONSTRUCTING IMAGE VOLUMES FROM 
SPARSE TWO-DIMENSIONAL PROJECTION DATA." 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

2 
tion data and, thus, increases the noise in the reconstructed 
images, if conventional FBP is used for reconstruction. 

One common example of the complexities of managing 
dose, signal, and clinical need for information is reflected in 
the use of scout scans as a precursor to a fully 3D MDCT 
imaging study. That is, 2D scout scans are often utilized as 
a planning step that is performed before undertaking a 3D 
MDCT imaging study and even MR imaging studies. Such 
scout scans typically include an anterior/posterior (A/P) 

10 view and a lateral view. Thus, two, 2D images taken from 
transverse view angles are provided and used to prescribe 
the 3D imaging study. Unfortunately, 2D scout scans do not 
provide sufficiently detailed information about interactions 
between x-rays and subjects and often leads to erroneous 

15 information for patient positioning, scan parameter prescrip­
tion, and finally the radiation dose delivery. Furthermore, 
some have attempted to use these 2D scout scans as a tool 
to perform dose control during the 3D imaging, such as to 

This invention was made with govennnent support under 
EB021183 awarded by the National Institutes of Health. The 20 
govennnent has certain rights in the invention. 

reduce or control dose based on anatomical information 
determined from the 2D scout scans. However, the limited 
information available from two 2D images makes sophisti­
cated dose control very difficult and dependent upon 
assumptions that can inject yet further errors into the dose 
control efforts. Of course, increasing the number of views or 

BACKGROUND 

25 imaging data acquired when performing the scout scans 
undermines the very dose control that is desired, by sub­
jecting the patient to additional dose from the scout scan 
before even beginning the 3D or higher-resolution imaging 

The present disclosure relates to systems and methods for 
medical image data preparation, acquisition, and/or recon­
struction. More particularly, systems and method are pro­
vided for generating medical images with greater efficiency, 
less artifacts, and/or greater information and flexibility than 
traditional techniques used with imaging systems, such as 30 

computed tomography (CT) imaging systems. 

study that is to be prescribed using the 2D scout scan. 
Thus, it would be desirable to have improved systems and 

methods to assist with managing signal-to-noise ratio and, in 
CT imaging, its relation to dose prescription/control. With conventional image reconstruction techniques, such 

as filtered backprojection for multi-detector CT (MDCT), 
C-arm cone beam CT (CBCT) imaging, on-board cone beam 
CT for image guidance in stereotactic body radiation therapy 35 

(SBRT) and radiation surgery such as gamma knife, indi­
vidual images are reconstructed from a corresponding set of 
data acquired with the medical imaging system. For 
example, one image is reconstructed from a single sinogram 

SUMMARY 

In accordance with one aspect of the disclosure, a method 
for acquiring four-dimensional ( 4D) medical images of a 
subject is provided that includes performing 2D fluoroscopic 
x-ray imaging of subject using a medical imaging system to 
acquire 2D fluoroscopic projection image data from two 
x-ray fluoroscopic image devices located to simultaneously 

in x-ray MDCT, CBCT imaging. The dominant framework 40 

for CT image reconstruction is filtered backprojection 
(FBP). Though well-understood and widely-adopted, FBP 
suffers from some inherent limitations and, thus, many 
efforts have been made to control the shortcomings of 
traditional CT hardware and the reconstruction of FBP. 45 

acquire x-ray fluoroscopic images of subjects. The method 
can also include extracting motion profile of the subject 
from the 4D subject model. 

In accordance with one aspect of the disclosure, a method 
For example, to monitor tumor motion in radiation 

therapy and radiosurgery, two x-ray source-detector assem­
blies are used in fluoroscopy data acquisition mode to 
acquire two separate views of two-dimensional (2D) x-ray 
fluoroscopy images. The tumor motion pattern or fiducial 
marker motion profile is then estimated from the acquired 
two individual 2D fluoroscopic images series. Due to the 
unavailability of gantry motion or slow mechanical gantry 
motion in data acquisitions, the desired cone beam CT 
fluoroscopic image volumes cannot be obtained for tumor 
motion extraction and patient positioning for high precision 
treatment requirement in radiosurgery and stereotactic body 
radiation therapy (SBRT). 

For another example, the ionizing radiation delivered to 
patients during MDCT imaging has been shown to be a 
potential mechanism of carcinogenesis. Hence, many have 
worked to develop hardware, software, and imaging proto­
cols to lower radiation dose, while still maintaining the 
image quality required for clinical analysis. X-ray tube 
current reduction is considered as one practical way to 
reduce the radiation dose. However, a reduction in detected 
x-ray fluence lowers the signal-to-noise ratio in the projec-

for acquiring medical images of a subject is provided that 
includes performing two-dimensional (2D) scout scan of a 
subject using a medical imaging system to acquire 2D data 
from at least two view angles and generating a three-

50 dimensional (3D) model of the subject from the 2D data. The 
method also includes extracting desired images of the sub­
ject from the 3D model. The desired images are at view 
angles different from the at least two view angles. The 
method further includes prescribing an imaging study of the 

55 subject using the desired images of the subject to control at 
least one of a signal-to-noise ratio of data acquired using the 
imaging study or a dose of ionizing radiation delivered to the 
subject during the imaging study. The method also includes 
performing the imaging study using the medical imaging 

60 system to acquire imaging data from the subject and recon­
structing images of the subject from the imaging data. 

In accordance with another aspect of the disclosure, a 
computed tomography (CT) system is provided that includes 
an x-ray source and associated detectors configured to 

65 acquire imaging data from a subject over a range of view 
angles. The system also includes a computer system includ­
ing at least one processor configured to cause the x-ray 
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source and associated detectors to acquire two-dimensional 
(2D) localizer images of a subject at least two view angles 
and generate a three-dimensional (3D) model of the subject 
from the 2D localizer images. The computer system is 
further configured to extract desired images of the subject 
from the 3D model, wherein the desired images are at view 
angles different from the at least two view angles and 
prescribe an imaging study of the subject using the desired 
images of the subject to control a dose of ionizing radiation 
delivered to the subject by the x-ray source during the 10 

imaging study. The computer system is also configured to 
cause the x-ray source and associated detectors to perform 
the imaging study to acquire imaging data from the subject 
and reconstruct images of the subject from the imaging data. 15 

FIG. 9 is a box plot of the percent difference in total 
patient attenuation between the true CT and the proposed 
method, measured in a randomly selected subset of 1000 
training and testing images. 

FIG. 10 is a series of images providing a side-by-side 
comparison of cross-sectional diagnostic CT and deep learn­
ing generated images for multiple anatomical regions rang­
ing from the upper chest to the pelvis. 

FIG. 11 is a set of linear plots of the total patient 
attenuation in CT images as function of the total patient 
attenuation measured in in the deep learning generated 
images for a randomly selected subset of 1000 images in 
both the training and testing dataset. 

DETAILED DESCRIPTION 
The foregoing and other aspects and advantages of the 

invention will appear from the following description. In the 
description, reference is made to the accompanying draw­
ings which form a part hereof, and in which there is shown 

Referring now to FIG. 1, a block diagram of an example 

by way of illustration a preferred embodiment of the inven- 20 

tion. Such embodiment does not necessarily represent the 
full scope of the invention, however, and reference is made 
therefore to the claims and herein for interpreting the scope 

system 10 is provided that can be configured to carry out 
techniques, methods, and processes accordance with the 
present disclosure. The system may include an imaging 
system 12 that is coupled to a computer system 14. The 
coupling of the imaging system 12 to the computer system 
14 may be a direct or dedicated network connection, or may 
be through a broad network 16, such as an intranet or the of the invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a schematic diagram of an example computer 
system that can be configured to implement the methods 
described herein. 

FIG. 2A is a schematic diagram of a C-arm x-ray com­
puted tomography (CT) imaging system configured in accor­
dance with the present disclosure. 

FIG. 2B is a perspective view of an example of an x-ray 
computed tomography (CT) system. 

FIG. 2C is a block diagram of CT system, such as 
illustrated in FIG. 2B. 

FIG. 3 is a block diagram of an image processing and/or 
reconstruction architecture in accordance with the present 
disclosure that may be utilized with or within the systems of 
FIGS. l-2C and/or other imaging systems. 

FIG. 4 is a graphical representation of a multilayer RNN 
for image reconstruction in accordance with the present 
disclosure. 

FIG. 5 is an illustration of an overall network framework 
including the multilayer RNN of FIG. 4 in accordance with 
the present disclosure. 

FIG. 6 is an illustration of an overall network framework 
including the multilayer RNN of FIG. 4 configured in an 
adversarial training scheme in accordance with the present 
disclosure. 

FIG. 7A is a schematic diagram of one, non-limiting 
implementation of a network framework in accordance with 
the present disclosure. 

FIG. 7B is a schematic diagram of one, non-limiting 
implementation of a RNN Scout "back projection" archi­
tecture in accordance with the present disclosure. 

FIG. 7C is a schematic diagram of one, non-limiting 
implementation of a CNN images decoder in accordance 
with the present disclosure. 

FIG. 8 is a series of images showing a comparison of 
coronal and sagittal images of a CAP CT exam for both a 
diagnostic CT and deep learning generated images together 
with a comparison of the total patient attenuation as a 
function of image index overlaid in the CT localizer image. 

25 Internet. 
The computer system 14 may be a workstation integrated 

with or separate from the medical imaging systems 12 or a 
variety of other medical imaging systems, including, as 
non-limiting examples, computed tomography (CT) system, 

30 magnetic resonance imaging (MRI) systems, positron emis­
sion tomography (PET) systems, single photon emission 
computed tomography (SPECT) systems, and the like. Fur­
thermore, the computer system 14 may be a workstation 
integrated within the medical imaging system 12 or may be 

35 a separate workstation or mobile device or computing sys­
tem. To this end, the following description of particular 
hardware and configurations of the hardware of the example 
computer system 14 is for illustrative purposes. Some com­
puter systems may have varied, combined, or different 

40 hardware configurations. 
Medical imaging data acquired by the medical imaging 

system 12 or other imaging system can be provided to the 
computer system 14, such as over the network 16 or from a 
storage device. To this end, the computer system 14 may 

45 include a communications port or other input port 18 for 
communication with the network 16 and system coupled 
thereto. Also, the computer system 14 may include memory 
and storage capacity 20 to store and access data or images. 

In some configuration, computer system 14 may include 
50 one or more processing systems or subsystems. That is, the 

computer system 14 may include one or more physical or 
virtual processors. As an example, the computer system 14 
may include one or more of a digital signal processor (DSP) 
22, a microprocessor unit (MPU) 24, and a graphics pro-

55 cessing unit (GPU) 26. If the computer system 14 is inte­
grated into the medical imaging system, a data acquisition 
unit 28 may be connected directly to the above-described 
processor(s) 22, 24, 26 over a communications bus 30, 
instead of communicating acquired data or images via the 

60 network 16. As an example, the communication bus 30 can 
be a group of wires, or a hardwire used for switching data 
between the peripherals or between any component, such as 
the communication buses described above. 

The computer system 14 may also include or be con-
65 nected to a display 32. To this end, the computer system 14 

may include a display controller 34. The display 32 may be 
a monitor connected to the computer system 14 or may be 
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integrated with the computer system 14, such as in portable 
computers or mobile devices. 

Referring to FIG. 2A, one, non-limiting example of the 
imaging system 12 of FIG. 1 is provided. Specifically, in this 
example, a so-called "C-arm" x-ray imaging system 100 is 
illustrated for use in accordance with some aspects of the 
present disclosure. Such an imaging system is generally 
designed for use in connection with interventional proce­
dures. Such systems stand in contrast to, for example, 
traditional computed tomography (CT) systems 200, such as 10 

illustrated in FIG. 2B, which may also serve as an example 
of the imaging system 12 of FIG. 1. 

Referring again to FIG. 2A, the C-arm x-ray imaging 
system 100 includes a gantry 102 having a C-arm to which 
an x-ray source assembly 104 is coupled on one end and an 15 

x-ray detector array assembly 106 is coupled at its other end. 
The gantry 102 enables the x-ray source assembly 104 and 
detector array assembly 106 to be oriented in different 
positions and angles around a subject 108, such as a medical 
patient or an object undergoing examination, which is posi- 20 

tioned on a table 110. When the subject 108 is a medical 
patient, this configuration enables a physician access to the 
subject 108. 

The x-ray source assembly 104 includes at least one x-ray 
source that projects an x-ray beam, which may be a fan- 25 

beam or cone-beam of x-rays, towards the x-ray detector 
array assembly 106 on the opposite side of the gantry 102. 
The x-ray detector array assembly 106 includes at least one 
x-ray detector, which may include a number ofx-ray detec-
tor elements. Examples of x-ray detectors that may be 30 

included in the x-ray detector array assembly 106 include 
flat panel detectors, such as so-called "small flat panel" 
detectors. Such a detector panel allows the coverage of a 
field-of-view of approximately twelve centimeters. 

Together, the x-ray detector elements in the one or more 35 

x-ray detectors housed in the x-ray detector array assembly 
106 sense the projected x-rays that pass through a subject 
108. Each x-ray detector element produces an electrical 
signal that may represent the intensity of an impinging x-ray 
beam and, thus, the attenuation of the x-ray beam as it passes 40 

through the subject 108. In some configurations, each x-ray 
detector element is capable of counting the number ofx-ray 
photons that impinge upon the detector. During a scan to 
acquire x-ray projection data, the gantry 102 and the com­
ponents mounted thereon rotate about an isocenter of the 45 

C-arm x-ray imaging system 100. 
The gantry 102 includes a support base 112. A support 

arm 114 is rotatably fastened to the support base 112 for 
rotation about a horizontal pivot axis 116. The pivot axis 116 
is aligned with the centerline of the table 110 and the support 50 

arm 114 extends radially outward from the pivot axis 116 to 
support a C-arm drive assembly 118 on its outer end. The 
C-arm gantry 102 is slidably fastened to the drive assembly 
118 and is coupled to a drive motor (not shown) that slides 
the C-arm gantry 102 to revolve it about a C-axis, as 55 

indicated by arrows 120. The pivot axis 116 and C-axis are 
orthogonal and intersect each other at the isocenter of the 
C-arm x-ray imaging system 100, which is indicated by the 
black circle and is located above the table 110. 

6 
about the system isocenter to acquire x-ray attenuation 
projection data from different angles. By way of example, 
the detector array is able to acquire thirty projections, or 
views, per second. 

The C-arm x-ray imaging system 100 also includes an 
operator workstation 122, which typically includes a display 
124; one or more input devices 126, such as a keyboard and 
mouse; and a computer processor 128. The computer pro-
cessor 128 may include a commercially available program­
mable machine running a commercially available operating 
system. The operator workstation 122 provides the operator 
interface that enables scanning control parameters to be 
entered into the C-arm x-ray imaging system 100. In gen­
eral, the operator workstation 122 is in communication with 
a data store server 130 and an image reconstruction system 
132. By way of example, the operator workstation 122, data 
store sever 130, and image reconstruction system 132 may 
be connected via a communication system 134, which may 
include any suitable network connection, whether wired, 
wireless, or a combination of both. As an example, the 
communication system 134 may include both proprietary or 
dedicated networks, as well as open networks, such as the 
Internet. 

The operator workstation 122 is also in communication 
with a control system 136 that controls operation of the 
C-arm x-ray imaging system 100. The control system 136 
generally includes a C-axis controller 138, a pivot axis 
controller 140, an x-ray controller 142, a data acquisition 
system (DAS) 144, and a table controller 146. The x-ray 
controller 142 provides power and timing signals to the 
x-ray source assembly 104, and the table controller 146 is 
operable to move the table 110 to different positions and 
orientations within the C-arm x-ray imaging system 100. 

The rotation of the gantry 102 to which the x-ray source 
assembly 104 and the x-ray detector array assembly 106 are 
coupled is controlled by the C-axis controller 138 and the 
pivot axis controller 140, which respectively control the 
rotation of the gantry 102 about the C-axis and the pivot axis 
116. In response to motion commands from the operator 
workstation 122, the C-axis controller 138 and the pivot axis 
controller 140 provide power to motors in the C-arm x-ray 
imaging system 100 that produce the rotations about the 
C-axis and the pivot axis 116, respectively. For example, a 
program executed by the operator workstation 122 generates 
motion commands to the C-axis controller 138 and pivot 
axis controller 140 to move the gantry 102, and thereby the 
x-ray source assembly 104 and x-ray detector array assem­
bly 106, in a prescribed scan path. 

The DAS 144 samples data from the one or more x-ray 
detectors in the x-ray detector array assembly 106 and 
converts the data to digital signals for subsequent process­
ing. For instance, digitized x-ray data is communicated from 
the DAS 144 to the data store server 130. The image 
reconstruction system 132 then retrieves the x-ray data from 
the data store server 130 and reconstructs an image there­
from. The image reconstruction system 130 may include a 
commercially available computer processor, or may be a 
highly parallel computer architecture, such as a system that 
includes multiple-core processors and massively parallel, 

The x-ray source assembly 104 and x-ray detector array 
assembly 106 extend radially inward to the pivot axis 116 
such that the center ray of this x-ray beam passes through the 
system isocenter. The center ray of the x-ray beam can thus 
be rotated about the system isocenter around either the pivot 
axis 116, the C-axis, or both during the acquisition ofx-ray 
attenuation data from a subject 108 placed on the table 110. 
During a scan, the x-ray source and detector array are rotated 

60 high-density computing devices. Optionally, image recon­
struction can also be performed on the processor 128 in the 
operator workstation 122. Reconstructed images can then be 
communicated back to the data store server 130 for storage 
or to the operator workstation 122 to be displayed to the 

65 operator or clinician. 
The C-arm x-ray imaging system 100 may also include 

one or more networked workstations 148. By way of 
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example, a networked workstation 148 may include a dis­
play 150; one or more input devices 152, such as a keyboard 
and mouse; and a processor 154. The networked workstation 
148 may be located within the same facility as the operator 
workstation 122, or in a different facility, such as a different 
healthcare institution or clinic. 

The networked workstation 148, whether within the same 
facility or in a different facility as the operator workstation 
122, may gain remote access to the data store server 130, the 
image reconstruction system 132, or both via the commu­
nication system 134. Accordingly, multiple networked 
workstations 148 may have access to the data store server 
130, the image reconstruction system 132, or both. In this 
manner, x-ray data, reconstructed images, or other data may 
be exchanged between the data store server 130, the image 
reconstruction system 132, and the networked workstations 
148, such that the data or images may be remotely processed 
by the networked workstation 148. This data may be 
exchanged in any suitable format, such as in accordance 
with the transmission control protocol (TCP), the Internet 
protocol (IP), or other known or suitable protocols. 

Similarly, referring to FIG. 2B and 2C, the imaging 
system 12 may include a traditional CT system 200, which 
includes a gantry 202 that forms a bore 204 extending 
therethrough. In particular, the gantry 202 has an x-ray 
source 206 mounted thereon that projects a fan-beam, or 
cone-beam, of x-rays toward a detector array 208 mounted 
on the opposite side of the bore 204 through the gantry 202 
to image the subject 210. 

The CT system 200 also includes an operator workstation 
212, which typically includes a display 214; one or more 
input devices 216, such as a keyboard and mouse; and a 
computer processor 218. The computer processor 218 may 
include a commercially available programmable machine 
running a commercially available operating system. The 
operator workstation 212 provides the operator interface that 
enables scanning control parameters to be entered into the 
CT system 200. In general, the operator workstation 212 is 
in communication with a data store server 220 and an image 
reconstruction system 222 through a communication system 
or network 224. By way of example, the operator worksta­
tion 212, data store sever 220, and image reconstruction 
system 222 may be connected via a communication system 
224, which may include any suitable network connection, 
whether wired, wireless, or a combination of both. As an 
example, the communication system 224 may include both 
proprietary or dedicated networks, as well as open networks, 
such as the Internet. 

The operator workstation 212 is also in communication 
with a control system 226 that controls operation of the CT 
system 200. The control system 226 generally includes an 
x-ray controller 228, a table controller 230, a gantry con­
troller 231, and a data acquisition system (DAS) 232. The 
x-ray controller 228 provides power and timing signals to 
the x-ray module(s) 234 to effectuate delivery of the x-ray 
beam 236. The table controller 230 controls a table or 
platform 238 to position the subject 210 with respect to the 
CT system 200. 

The DAS 232 samples data from the detector 208 and 
converts the data to digital signals for subsequent process­
ing. For instance, digitized x-ray data is communicated from 
the DAS 232 to the data store server 220. The image 
reconstruction system 222 then retrieves the x-ray data from 
the data store server 220 and reconstructs an image there­
from. The image reconstruction system 222 may include a 
commercially available computer processor, or may be a 
highly parallel computer architecture, such as a system that 

8 
includes multiple-core processors and massively parallel, 
high-density computing devices. Optionally, image recon­
struction can also be performed on the processor 218 in the 
operator workstation 212. Reconstructed images can then be 
communicated back to the data store server 220 for storage 
or to the operator workstation 212 to be displayed to the 
operator or clinician. 

The CT system 200 may also include one or more 
networked workstations 240. By way of example, a net-

IO worked workstation 240 may include a display 242; one or 
more input devices 244, such as a keyboard and mouse; and 
a processor 246. The networked workstation 240 may be 
located within the same facility as the operator workstation 

15 212, or in a different facility, such as a different healthcare 
institution or clinic. 

The networked workstation 240, whether within the same 
facility or in a different facility as the operator workstation 
212, may gain remote access to the data store server 220 

20 and/or the image reconstruction system 222 via the com­
munication system 224. Accordingly, multiple networked 
workstations 240 may have access to the data store server 
220 and/or image reconstruction system 222. In this manner, 
x-ray data, reconstructed images, or other data may be 

25 exchanged between the data store server 220, the image 
reconstruction system 222, and the networked workstations 
212, such that the data or images may be remotely processed 
by a networked workstation 240. This data may be 
exchanged in any suitable format, such as in accordance 

30 with the transmission control protocol (TCP), the Internet 
protocol (IP), or other known or suitable protocols. 

Using the systems described above, systems and methods 
are provided to reconstruct volumetric scout CT images 
from the 2D, two-view projection scout radiographs. The 

35 volumetric information can then be used to improve a 
variety of imaging processes, such as 3D volumetric imag­
ing performed with CT, MRI, or other imaging modalities. 
For CT imaging, the volumetric information created from 
only 2D, two-view projection scout radiographs can sub-

40 stantially increase clinical ability to provide accurate radia­
tion dose estimates that can inform scanning parameter 
prescription and, thus, overcome limitations of automatic 
exposure control schemes in diagnostic CT. 

An image estimate, x, is defined as the image that maxi-
45 mizes the a posteriori conditional probability P(xly) given 

the measured line integral data y E Y , where Y denotes 
sinogram space. This is accomplished via the Bayes infer­
ence and solving an optimization problem given by 
x=argmax P(xly)=argmax P(ylx)P(x). This method requires 

50 an explicit assumption about the a priori distribution P(x), 
which is typically available in current clinical CT acquisi­
tion schemes. Alternatively, in statistical machine learning, 
instead of using an explicit assumption on the prior P(x), the 
posterior distribution P(xly) is learned from the training data 

55 via a supervised learning process. 
As will be described, systems and methods are provided 

to reconstruct volumetric CT images using projection mea­
surements from two views, where not only the data suffi­
ciency conditions are severely violated, but also the prior 

60 information P(x) about the imaging object is not available or 
is limited. The two views may be acquired using a CT 
imaging system as 2D, two-view projection scout radio­
graphs. The two views may be orthogonal. For example, the 
two views may be an A/P view and a lateral view. However, 

65 any views may be used andA/P and lateral are non-limiting 
examples. In the case of CT imaging, these volumetric 
images can be used as 3-dimesional radiograph localizers to 
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accurately determine a radiologic path from any view angle 
in order to improve dose CT prescription, such as tube 
current modulation schemes. 

Referring to FIG. 3, one non-limiting example of a 
process 300 in accordance with the present disclosure is 
provided. At process block 302, the process 300 begins by 
acquiring a limited number ( e.g., 2 or 3 or 4 or 5 or the like) 
S of 2D images, such as two images. For example, the 
images may be orthogonal radiograph localizers acquired 
using a CT system. In this case, the images may be antero- 10 

posterior (A/P) and lateral view localizers. 
If the clinical imaging study involves the use of a contrast 

agent, the localizers may be acquired prior to the injection 
of intravenous (IV) or other contrast media. If contrast 
agents are utilized, the acquired images may be classified, 15 

for example, into four classes depending on the type of 
contrast media protocol: 1) IV, 2) oral contrast, 3) oral and 
IV, and 4) No contrast. 

At optional process block 304, the acquired 2D images 
may be translated and/or scaled to match a set of global 20 

coordinates, for example, using an affine transformation. 
Such translation and/or scaling may account for differences 
in image reconstruction parameters, such as image thick­
ness, voxel size and field of view position. In one non­
limiting example implementation, a matrix size of 512x512 25 

with 1.0xl.0xl.0 mm3 isotropic voxel size was used. 
At optional process block 306, after each image in the 

dataset is within the global coordinate system, images where 
patient's anatomy is outside the reconstructed field of view 
(e.g. shoulders, subcutaneous fat, etc.) can be automatically 30 

excluded in order to avoid potential data inconsistency (i.e. 
reconstruction of data not present in the image). 

At process block 308, the localizer images, which may be 
as few as two 2D images, are processed to create a 3D model 
of the patient. Specifically, given as set ofline integrals {y0 , 35 

Yu ... , y N} (input), measured over the distribution of 
attenuation coefficients of the imaging object represented by 
x (output), the process 300 at process block 308 seeks to 
model the conditional probability P(xly0 , ••• , YN) for this 
purpose. To do so a combination of recurrent and convolu- 40 

tional neural networks can be used that take the measured 
line integrals from the 2D radiograph localizers as input and 
generates a reconstructed 3D image volume as an output. 

10 
As described above, a neural network architecture may be 

utilized, as illustrated in FIG. 4. Again, given as set of line 
integrals {y 0, y i, . . . , y N} (input), measured over the 
distribution of attenuation coefficients of the imaging object 
represented by x (output), a model the conditional distribu­
tion P(xly0 , ••• , YN) is sought. For this purpose, the target 
image x can be divided into smaller image tiles { x0 

1
, ••• , 

xNL} and a sequence to sequence model can be used with a 
deep recurrent neural network to model P(x0 

1
, • • • , 

xNLly0, ... , YN). With a multilayer RNN, the output 
sequence { x0 1, . . . , xNL} can be computed with the 
following equations: 

Eqn. 1; 

Eqn. 2; 

~(l) 
xn (/)~ wxh(I) ( hn ) Eqn. 3; 

where h,, Cl) represents the network hidden state at layer 1 
and step n, why(/), whh(l) and wxh(I) represents the input-to­
hidden weights, hidden-to-hidden recurrent weights and the 
hidden-to-output weights respectively at layer I. 

With this architecture, the chain rule can be used to 
factorize P(x/, ... , xNLly0 , ••• , YN) as: 

P(xo1, • • •, xNLIYo, • • •, YN)~II1~/ II;~oN 
P(xn1 Iyo, ... , Yn) Eqn. 4; 

where P(xn1 ly0 , ••• , Yn) can be modeled with a softmax 
over the distribution of CT numbers (i.e. the probability of 
each voxel in the image taking the value of one of 4096 CT 
numbers for the typical dynamic range of a CT image, such 
as 12 bits). However, this approach can utilize a substantial 
amount of memory and computation while learning very 
slowly. Alternatively, given the continuous nature of the 
attenuation coefficients of the underlying imaging object, 
P(x/ ly0 , ••• , Yn) can be modeled with a logistic or Gaussian 
distribution. 

While the previously-described method can be used, 
gated RNNs such LSTMs have been shown to outperform 
standard RNNs given their increased ability to model long­
range temporal/spatial dependencies. Thus, a LSTM recur­
rent neural network can be used in which hidden states can 
be computed with the following equations: 

hn (/)~on (l)·tanh(sn (/)) Eqn. 5; 

o}0~a(W}l)·[hn_/>, h}1- 1>, ynJ+b
0 

(I) Eqn. 6; 

Sn (/)~f,, (l).Sn-1 (/)+in (l).gn (/) Eqn. 7; 

s}0~anh(W/0·[hn_/0, h}1-1, ynJ+b/0) Eqn. 8; 

f,, (ll~a(W}l)·[hn_/1), hn <1-1, ynJ+b}I)) Eqn. 9; 

in (l)~a(W/l)·[hn_/1), hn (/-!), Ynl+b/0) Eqn. 10; 

The choice of neural network architecture can vary, for 
example, by analytical reconstruction methods such as fil- 45 

tered backprojection (FBP) or by backprojection (BP) with­
out filtering step. Similar to FBP where a ramp kernel is 
applied globally to the projection data and the backprojec­
tion of single line integral measurements is a localized 
operation over image domain, the hidden state computed by 50 

a recurrent neural network (RNN) cell at each step models 
localized features in the reconstructed image, while recur­
rent connections allow every layer in the network to access 
the entire neighborhood of previously computed hidden 
states, as will be further explained. 

where the WO (I), bo (I), w/l, b/l, w)I), b/l and w,cl), b,(I) 
55 represent the weights of the of the output gate on Cl), cell state 

sn Cl), forget gate fn (I) and input gate in (I) at layer I. [h,,_ 1 Cl), 
h}1

-
1l, Ynl represent a concatenation operation. 

At process block 310, the 3D model of the patient is 
processed to extract desired images that are then used at 
process block 312 for imaging planning/prescription. That 
is, despite acquiring only a limited set ( e.g., 2 or 3 or 4 or 
5, etc.) of 2D images at process block 302, the 3D model is 60 

used to extract any number of images at any desired view 
angle to facilitate image plarming or prescription. In this 
way, at process block 314, an imaging process is performed 
according to the planning/prescription of process block 312 
that can ensure proper anatomical views, while reducing, 65 

controlling, and/or minimizing the dose delivered to the 
patient. 

The above-described architecture can use a single projec­
tion view as input. As illustrated in FIG. 5, in order to 
incorporate multiple views in the image reconstruction pro­
cess, independent RNNs can be used for each view, and then 
the hidden states hn (I) of each RNN can be concatenated. The 
resulting concatenated array is then processed by a CNN in 
order the compute the final image tiles x/ 

The above-described architecture can be designed to 
reconstruct CT images of any matrix size. In one non­
limiting example, two input projection views were used, 
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each with size 888x24 and an image volume with size 
288x288x4 was reconstructed. In this non-limiting example, 
the recurrent neural network had 9 layers that were com­
puted for 144 steps (i.e., L=9 and N=[0,144)). For the CNN 
architecture that takes the concatenation of the hidden states 
of the RNN as input, a U-Net can be used. Rather 
than assuming a model for the underlying distribution 
P(xJy0 , ••• , Yn), an adversarial training strategy can be 
used where the above-described architecture is treated as the 
generator of a conditional GAN where a CNN with residual 
connections is used as the discriminator, as illustrated in 
FIG. 6. In this case, the objective function is regularized by 
the Ll distance of the reconstructed and target image. 
Therefore, the final objective is: 

where 

LcAN(G, D) = [E)logD(x)] +[E,[log(l -D(G(yJJ] 

and 

Lu(G) = IEx)llx-G(y)lliJ. 

Eqn. 11 

One implementation of the above-described network 
framework is illustrated in FIG. 7A. Specifically, FIG. 7A 
shows the above-described network framework 700 imple­
mented using a non-limiting example of image and volume 
sizes to show the CNN scout encoder 702. As further shown 
in FIGS. 7B and 7C, non-limiting examples of an imple­
mentation of RNN Scout "back projection" (FIG. 7B) and 
CNN images decoder (FIG. 7C) are also provided. 

EXAMPLE 

In one non-limiting example study, clinical chest-abdo­
men-pelvis (CAP) CT exams from 667 patients were retro­
spectively collected. Inclusion criteria were as follow: 1) CT 
exams acquired with or without contras media ( oral, IV or 
oral & IV) and 2) scanned with anatomical ranges in six 
different regions ( chest alone, abdomen alone, pelvis alone, 
chest and abdomen, abdomen and pelvis or CAP). Only 
images reconstructed with a soft tissue kernel were included. 
After images were collected, to account for differences in 
image reconstruction parameters (i.e. FOY size and position, 
slice thickness, etc.) all CT image volumes were interpolated 

12 
network was trained using 163,840 images from 476 
patients and tested using the remaining 47819 images from 
191 patients. Mean and standard deviation for the total 
patient attenuation difference between the true CT and the 
deep learning generated images were 1.5±1.1 % and 
3.3±2.3% (n=l000 images) for the training and testing 
datasets. 

A method to approximate the attenuation distribution of 
body cross-sectional CT images using the CT radiograph 

10 localizers was deployed. The method enabled accurate 
radiation dose estimates and image quality prescription prior 
to the CT acquisition and help to overcome the current 
limitations of automatic exposure control schemes in diag­
nostic CT. 

15 

20 

By enabling accurate patient geometry and cross-sec­
tional attenuation distribution estimations from the radio­
graph localizers acquired prior to the actual CT scan, the 
method provides a new way to conceptualize radiation dose 
and image quality prescription for diagnostic MDCT. 

That is, the method can approximate a cross-sectional CT 
image from the CT radiograph localizers acquired prior to 
the actual the CT scan. It was found that the total patient 
attenuation measured in deep learning generated images, 
accurately approximated that of the true CT images with an 

25 absolute percent difference of 3.3±2.3% (n=l000 images). 
FIG. 8 shows a comparison of coronal sagittal images of a 
CAP CT exam for both a diagnostic CT and the deep 
learning generated images together with a comparison of the 
total patient attenuation as a function of image index over-

30 laid in the CT localizer image. One can see that the total 
patient attenuation derived from the deep learning images 
closely approximates that of the actual CT scan. FIG. 9 
shows a box plot of the percent difference in total patient 
attenuation between the true CT and the proposed method, 

35 measured in a randomly selected subset of 1000 training and 
testing images. FIG. 10 shows a side by side comparison of 
cross-sectional diagnostic CT and deep learning generated 
images in multiple anatomical regions for patients of various 
sizes. The deep learning images closely resemble the overall 

40 patient attenuation distribution in the diagnostic CT. There 
are some variations observed in the delineation of high­
attenuation objects, such as bone. This behavior is expected 
given that only 2 views are used to create the deep learning 
images (i.e. AP and lateral radiograph localizers) prior to 

45 acquiring the actual CT scan. 
FIG. 11 shows linear plots of the total patient attenuation 

in CT images as function of the total patient attenuation 
measured in in the deep learning generated images for a 
randomly selected subset of 1000 images in both the training 

50 and testing dataset. Results indicate excellent linear relation 
between measurements derived from the diagnostic CT and 
deep learning images. Furthermore, the variability in the 
measurements appears to be constant across a wide range of 

to a 1.0xl .0xl .0 mm3 isotropic voxel size. To control against 
potential data inconstency, CT images where patient's 
anatomy was outside the image FOY were excluded (i.e. 
truncated CT images). Finally, the interpolated CT image 
volume were registered to the CT radiograph localizers 
using the patient's positioning information in the DICOM 
header. The resulting radiograph localizers and CT images 55 

were divided into training and testing datasets that were then 
used to train a 36-layer deep neural network, that takes as 
inputs the AP and lateral localizers and outputs a CT image 
volume with 1.0xl.0xl.0 mm3 isotropic voxel size. Once the 
deep neural network was trained, in order to test the gen- 60 

eralization error of the model, the total patient attenuation 
was measured in a randomly selected subset of 1000 true CT 
and deep learning generated images for both the training and 
testing dataset and the absolute percent difference in total 
patient attenuation was calculated. 65 

patient sizes. 
The present invention has been described in terms of one 

or more preferred embodiments, and it should be appreciated 
that many equivalents, alternatives, variations, and modifi­
cations, aside from those expressly stated, are possible and 
within the scope of the invention. 

The invention claimed is: 
1. A method for acquiring medical images of a subject 

comprising: 
performing two-dimensional (2D) scout scan of a subject 

using a medical imaging system to acquire 2D data 
from at least two view angles; 

A total of751 CT exams from 667 patients were included 
in the dataset for a total of 211,659 images. A deep neural 

generating a three-dimensional (3 D) model of the subject 
from the 2D data; 
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extracting desired images of the subject from the 3D 
model, wherein the desired images are at view angles 
different from the at least two view angles; 

prescribing an imaging study of the subject using the 
desired images of the subject to control at least one of 
a signal-to-noise ratio of data acquired using the imag­
ing study or a dose of ionizing radiation delivered to the 
subject during the imaging study; 

performing the imaging study using the medical imaging 
system to acquire imaging data from the subject; and 10 

reconstructing images of the subject from the imaging 
data. 

2. The method of claim 1 wherein the medical imaging 
system is a computed tomography (CT) imaging system. 

3. The method of claim 1 wherein generating the 3D 15 

model of the subject form the 2D data includes providing the 
2D data to a combination of at least one of recurrent and 
convolutional neural networks. 

4. The method of claim 3 wherein the combination of at 
least one of recurrent and convolutional neural networks are 20 

configured to take measured line integrals from the 2D data 
as input and generates a reconstructed 3D image volume as 
an output to deliver the 3D model of the subject. 

5. The method of claim 1 wherein the 2D scout scan 
include an anteroposterior (A/P) 2D image and lateral 2D 25 

image of the subject. 
6. The method of claim 1 wherein the 2D scout scan 

include only 2 images. 
7. A computed tomography (CT) system comprising: 
an x-ray source and associated detectors configured to 30 

acquire imaging data from a subject over a range of 
view angles; 

a computer system including at least one processor con­
figured to: 
cause the x-ray source and associated detectors to 35 

acquire two-dimensional (2D) localizer images of a 
subject at least two view angles; 

generate a three-dimensional (3D) model of the subject 
from the 2D localizer images; 

extract desired images of the subject from the 3D 40 

model, wherein the desired images are at view angles 
different from the at least two view angles; 

prescribe an imaging study of the subject using the 
desired images of the subject to control a dose of 
ionizing radiation delivered to the subject by the 45 

x-ray source during the imaging study; 
cause the x-ray source and associated detectors to 

perform the imaging study to acquire imaging data 
from the subject; and 

reconstruct images of the subject from the imaging 50 

data. 

14 
acqumng two-dimensional (2D) fluoroscopic image 

series of a subject using a medical imaging system that 
acquires 2D projection data from at least two fluoro­
scopic units operated simultaneously during an imag­
ing process; 

generating a three-dimensional (3D) model from at least 
two of the 2D fluoroscopic image series at a given time 
point in the imaging process; 

creating a 3D model for each remaining time point across 
the imaging process to generate a four-dimensional 
(4D) model; 

extracting a motion profile from 4D model; and 
generating a treatment strategy, including subject posi­

tioning, using the 4D model. 
13. A computed tomography (CT) system comprising: 
an x-ray source and associated detectors configured to 

acquire imaging data from a subject over a range of 
view angles; 

a computer system including at least one processor con­
figured to: 
cause the x-ray source and associated detectors to 

acquire two-dimensional (2D) images of a subject in 
at least two groups of two view angles, wherein one 
group of the at least two view angles is acquired at 
a lower tube potential and another group of the at 
least two view angles is acquired at a higher tube 
potential; 

generate a first three-dimensional (3D) model of the 
subject from the 2D images using view angles 
acquired at the lower tube potential; 

generate a second 3D model of the subject from the 2D 
images using view angles acquired at the higher tube 
potential; 

combine the first and the second 3D models to a 
generate dual energy basis image volume; 

extract desired spectral images of the subject from at 
least one of the first and the second 3D models, 
wherein the desired spectral images are at view 
angles different from the at least two view angles 
acquired at the lower tube potential or the at least two 
view angles acquired at the higher tube potential; 

prescribe an imaging study of the subject using the 
desired images of the subject to control a dose of 
ionizing radiation to be delivered to the subject by the 
x-ray source during the imaging study; 

cause the x-ray source and associated detectors to perform 
the imaging study to acquire spectral imaging data from 
the subject; and 

reconstruct spectral images of the subject from the spec­
tral imaging data. 

14. The system of claim 13 wherein generating the first 

8. The system of claim 7 wherein generating the 3D model 
of the subject form the 2D localizer includes providing the 
2D localizer to a combination of at least one of recurrent and 
convolutional neural networks. 55 

3D model or the second3D model of the subject form the 2D 
images includes providing a 2D localizer to a combination 
of at least one of a recurrent or a convolutional neural 
networks. 

9. The system of claim 8 wherein the combination of at 
least one of recurrent and convolutional neural networks are 
configured to take measured line integrals from the 2D 
localizer as input and generates a reconstructed 3D image 
volume as an output to deliver the 3D model of the subject. 60 

10. The system of claim 7 wherein the 2D localizer 
images include an anteroposterior (A/P) 2D image and 
lateral 2D image of the subject. 

11. The system of claim 7 wherein the 2D localizer images 
include only 2 images. 

12. A method for acquiring medical images of a subject 
comprising: 

65 

15. The system of claim 14 wherein the combination of at 
least one of the recurrent or the convolutional neural net­
works are configured to take measured line integrals from 
the 2D localizer as input and generates a reconstructed 3D 
image volume as an output to deliver at least one of the first 
3D model or the second 3D model of the subject. 

16. The system of claim 14 wherein the 2D localizer is 
configured to generate images that include an anteroposte­
rior (A/P) 2D image or lateral 2D image of the subject. 
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17. The system of claim 13 wherein the 2D images 
include only 2 images for each tube potential. 

* * * * * 

16 




