${ }^{(12)}$ United States Patent
 Talaat et al.

(10) Patent No.: US 11,771,761 B2
(45) Date of Patent: Oct. 3, 2023
(54) ADJUVANT FOR ANIMAL AND HUMAN VACCINES
(71) Applicant: Wisconsin Alumni Research

Foundation, Madison, WI (US)
(72) Inventors: Adel M. Talaat, Madison, WI (US); Shaswath Chandrasekar, Madison, WI (US)
(73)

Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION, Madison, WI (US)
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 330 days.
(21) Appl. No.: 16/900,070
(22) Filed:

Jun. 12, 2020
(65)

Prior Publication Data
US 2020/0390883 A1 Dec. 17, 2020

Related U.S. Application Data

(60) Provisional application No. 62/860,640, filed on Jun. 12, 2019.
(51) Int. Cl.

A61K 39/39	(2006.01)
A61K 39/215	(2006.01)
A61K 39/00	(2006.01)
B82Y 5/00	(2011.01)

(52) U.S. Cl.

СРС A61K $39 / 39$ (2013.01); A61K 39/215
(2013.01); A61K 2039/55577 (2013.01); A61K 2039/55583 (2013.01); B82Y 5/00 (2013.01)
(58) Field of Classification Search СРС \qquad A61K 2039/55577; A61K 2039/55555; A61K 2039/53; A61K 39/04; A61K 2039/55583; A61K 39/12; A61K 38/162; A61K 39/215; A61K 39/39; A61K 47/36; C07K 14/35; C07K 14/195; C07K 14/005; C07K 14/165; C12N 1/36; C12N 15/86; C12N 1/20; C12N 1/205; C12N
15/1031; C12N 15/1136; C12N 15/74; C12N 15/88; C12N 2710/24134; C12N
2710/24143; C12N 2770/20022; C12N 2770/20034; C12N 7/00; C12N 1/00; C12N 11/00; C12N 15/00; A61P 31/06; A61P 37/04; A61P 31/14; G01N 33/5695;

G01N 2333/30; G01N 33/56933; C12R 2001/32; B82Y 5/00; C12Q 1/689; C12Q

2600/156; C12Q 2600/158
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

$9,220,764$	B 2	$12 / 2015$	Talaat
$9,663,758$	B 2	$5 / 2017$	Talaat
$2009 / 0169636$	A1	$7 / 2009$	O'Hagan
$2018 / 0147272$	A1	$5 / 2018$	Talaat

FOREIGN PATENT DOCUMENTS

WO WO2004092329 * 10/2004

OTHER PUBLICATIONS

Zhang P, et al. 2017. Astragalus polysaccharides enhance the immune response to avian infectious bronchitis virus vaccination in chickens. Microb Pathog 111:81-85.
Alpar, H. O., et al. "Quil-A-Chitosan: A novel mucosal adjuvant." (2003). MVADS Conference. Dublin, Ireland. Jun. 4-6, 2003.

Barhate, G., et al. "Quillaja saponaria extract as mucosal adjuvant with chitosan functionalized gold nanoparticles for mucosal vaccine delivery: stability and immunoefficiency studies." International journal of pharmaceutics 441.1-2 (2013): 636-642.
Behzadi S, et al. 2017. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 46:4218-4244.
Berge, S. M., et al. "Pharmaceutical salts." Journal of pharmaceutical sciences 66.1 (1977): 1-19.
Borges O, et al. 2005. Preparation of coated nanoparticles for a new mucosal vaccine delivery system. Int J Pharm 299:155-66.
Britton P, et al. 2012. Modification of the avian coronavirus infectious bronchitis virus for vaccine development. Bioengineered Bugs 3:114-119.
Cavanagh D, et al. 1997. Relationship between sequence variation in the S1 spike protein of infectious bronchitis virus and the extent of cross-protection in vivo. Avian Pathology 26:63-74.
Chhabra R, et al. 2015. Immune Responses to Virulent and Vaccine Strains of Infectious Bronchitis Viruses in Chickens. Viral Immunol 28:478-88.
Chhabra R, et al. 2015. Mucosal, Cellular, and Humoral Immune Responses Induced by Different Live Infectious Bronchitis Virus Vaccination Regimes and Protection Conferred against Infectious Bronchitis Virus Q1 Strain. Clin Vaccine Immunol 22:1050-9.
Collisson EW, et al. 2000. Cytotoxic T lymphocytes are critical in the control of infectious bronchitis virus in poultry. Dev Comp Immunol 24:187-200.
De Wit JJ, et al. 2014. Factors influencing the outcome of infectious bronchitis vaccination and challenge experiments. Avian Pathol 43:485-97.
Dolz R, et al. 2012. New insights on infectious bronchitis virus pathogenesis: Characterization of Italy 02 serotype in chicks and adult hens. Veterinary Microbiology 156:256-264.
Fraga AP, et al. 2013. Emergence of a New Genotype of Avian Infectious Bronchitis Virus in Brazil. Avian Diseases 57:225-232. Ganapathy K, et al. 2005. A comparison of methods of inducing lachrymation and tear collection in chickens for detection of virusspecific immuoglobulins after infection with infectious bronchitis virus. Avian Pathol 34:248-51.
(Continued)
Primary Examiner - Bao Q Li
(74) Attorney, Agent, or Firm - QUARLES \& BRADY LLP

(57)

ABSTRACT
Quil-A chitosan spherical nanostructure complexes as well as methods of making and using such complexes are disclosed herein. Also provided are Quil-A chitosan spherical nanostrucutres loaded with one or more RNA, DNA, or protein payload molecules as well as methods of making and using such loaded complexes.

11 Claims, 38 Drawing Sheets

Specification includes a Sequence Listing.

References Cited

OTHER PUBLICATIONS

Garg, R. et al. "A novel combination adjuvant platform for human and animal vaccines." Vaccine 35.35 (2017): 4486-4489.
Guo Z, et al. 2010. Priming with a DNA vaccine and boosting with an inactivated vaccine enhance the immune response against infectious bronchitis virus. J Virol Methods 167:84-9.
Hamers C, et al. 2007. DNA vaccination against pseudorabies virus and bovine respiratory syncytial virus infections of young animals in the face of maternally derived immunity. J Comp Pathol 137 Suppl 1:S35-41.
Harush-Frenkel O, et al. 2007. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun 353:26-32.
Ho Ni, et al. 2018. Adjuvants Enhancing Cross-Presentation by Dendritic Cells: The Key to More Effective Vaccines? Front Immunol 9:2874.
Hoven, V. P., et al. "Surface-charged chitosan: Preparation and protein adsorption." Carbohydrate Polymers 68.1 (2007): 44-53. International Searching Authority. International Search Report and Written Opinion for application PCT/US2020/037438, dated Nov. 4, 2020. 11 pages.
Jackwood MW, et al. 2009. Infectious bronchitis virus field vaccination coverage and persistence of Arkansas-type viruses in commercial broilers. Avian Dis 53:175-83.
Jazayeri SD, et al. 2019. Recent advances in delivery of veterinary DNA vaccines against avian pathogens. Vet Res 50:78.
Kapczynski DR, et al. 2003. Protection of chickens from infectious bronchitis by in ovo and intramuscular vaccination with a DNA vaccine expressing the S 1 glycoprotein. Avian Dis 47:272-85.
Kingstad-Bakke, B. A., et al. "Effective mosaic-based nanovaccines against avian influenza in poultry." Vaccine 37.35 (2019): 50515058.

Lai, RPJ, et al. "Mixed adjuvant formulations reveal a new combination that elicit antibody response comparable to Freund's adjuvants." PloS one 7.4 (2012): e35083.
Levast, B., et al. "Vaccine potentiation by combination adjuvants." Vaccines 2.2 (2014): 297-322.
Liu MA. 2003. DNA vaccines: a review. J Intern Med 253:402-10. Marangon S, et al. 2007. The use of vaccination in poultry production. Rev Sci Tech 26:265-74.
McKinley ET, et al. 2008. Avian coronavirus infectious bronchitis attenuated live vaccines undergo selection of subpopulations and mutations following vaccination. Vaccine 26:1274-84.
Mockett AP, et al. 1987. Maternally-derived antibody to infectious bronchitis virus: Its detection in chick trachea and serum and its role in protection. Avian Pathol 16:407-16.
Mohammed MA, et al. 2017. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics 9.

Mutwiri, G., et al. "Combination adjuvants: the next generation of adjuvants?." Expert review of vaccines 10.1 (2011): 95-107.
Orr-Burks N, et al. 2014. Immunoglobulin A as an early humoral responder after mucosal avian coronavirus vaccination. Avian Dis 58:279-86.
Oyewumi Mo, et al. 2010. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines 9:1095-107.

Rajput ZI, et al. 2007. Adjuvant effects of saponins on animal immune responses. J Zhejiang Univ Sci B 8:153-61.
Riteau N, et al. 2016. Chitosan: An Adjuvant with an Unanticipated Sting. Immunity 44:522-524.
Roy K, et al. 1999. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 5:387-91.
Seo SH, et al. 2000. Adoptive transfer of infectious bronchitis virus primed alphabeta T cells bearing CD8 antigen protects chicks from acute infection. Virology 269:183-9.
Shirvani E, et al. 2018. A Recombinant Newcastle Disease Virus (NDV) Expressing S Protein of Infectious Bronchitis Virus (IBV) Protects Chickens against IBV and NDV. Sci Rep 8:11951.
Sogias IA, et al. 2008. Why is chitosan mucoadhesive? Biomacromolecules 9:1837-42.
Tan B, et al. 2009. Coadministration of chicken GM-CSF with a DNA vaccine expressing infectious bronchitis virus (IBV) S1 glycoprotein enhances the specific immune response and protects against IBV infection. Arch Virol 154:1117-24.
Tan L, et al. 2016. Infectious bronchitis virus poly-epitope-based vaccine protects chickens from acute infection. Vaccine 34:52095216.

Tang M, et al. 2008. Enhancement of the immunogenicity of an infectious bronchitis virus DNA vaccine by a bicistronic plasmid encoding nucleocapsid protein and interleukin-2. J Virol Methods 149:42-8.
Tian L, et al. 2008. The immunoreactivity of a chimeric multiepitope DNA vaccine against IBV in chickens. Biochem Biophys Res Commun 377:221-5.
Wack, A., et al. "Combination adjuvants for the induction of potent, long-lasting antibody and T-cell responses to influenza vaccine in mice." Vaccine 26.4 (2008): 552-561.
Wolff JA, et al. 1990. Direct gene transfer into mouse muscle in vivo. Science 247:1465-8.
Yan F, et al. 2013. Protection of chickens against infectious bronchitis virus with a multivalent DNA vaccine and boosting with an inactivated vaccine. J Vet Sci 14:53-60.
Yang T, et al. 2009. Multivalent DNA vaccine enhanced protection efficacy against infectious bronchitis virus in chickens. J Vet Med Sci 71:1585-90.
Zhang F, et al. 2016. Intranasal Immunization of Mice to Avoid Interference of Maternal Antibody against H5N1 Infection. PLoS One 11:e0157041.
Bande et al., "Synthesis and Characterization of Chitosan-Saponin Nanoparticle for Application in Plasmid DNA Delivery," Journal of Nanomaterials, vol. 2015, Article ID 371529, 8 pages., Hindawi Publishing Corporation, http://dx.doi.org/10.1155/2015/371529, (2015). Kamstrup et al., "Preparation and characterization of quillaja saponin with less heterogeneity than Quil-A," Vaccine 18, (2000) pp. 2244-2249.
Moreno et al., "Preparation and Characterization of an Oral Vaccine Formulation Using Electrosprayed Chitosan Microparticles," AAPS PharmSciTech, vol. 19, No. 8, (2018), DOI: 10.1208/12249-018-1190-1.
Ren et al., "Construction and immunogenicity of a DNA vaccine coexpressing GP3 and GP5 of genotype-I porcine reproductive and respiratory syndrome virus," BMC Veterinary Research, (2014), 10:128.

[^0]FIG. 1

Chitosan-DNA Adjuvant

CWuswank Masmbel DNA

Clivesan DN W complexes (agexeg*ted wawostroctures)

QAC-DNA complex

Chitosk m Pasmid DNA

Qmin

FIG. 2 CONTINUED

FIG. 3 CONTINUED

FIg. 4 CONTINUED

\% \% \% \% K
FIG. 5

\%	** * * \% \% \% \% \% \%
*	
*	
∞	\$ $\%$.

FIG. 5 CONTINUED

\% \% \% \& (

FIG. 6

* PBS + Challenge * MLV (MidVac Ark) Chitosan DNA Prime + Boost + Boost
in Ovo DNA

Clinical severity Vaccine route

FIG. 6 CONTINUED

FIG. 7 CONTINUED

FIG. 8

FIG. 9

FIG. 13

FIG. 13 CONTINUED

FIG. 14

$0.001=$
0.00025
0.0000625
0.000015625
)

1
2
2
+

QAC conc. 1

QAC conc. 2
Chitosan

QuII A

All with $30 \mu \mathrm{~g}$ OVA protein

IN vaccinations 50ul

EIG. 16
$\frac{\text { Groups (} n=7 \text {) BL6 mice }}{\text { Adjuplex (control) }}$

OAC conc. 1

QAC conc. 2

Quil A

-All with $30 \mu \mathrm{~g}$ DQ-OVA protein for innate cell processing

-All with $30 \mu \mathrm{~g}$ OVA protein for T cell responses

FIG. 17

Groups	Vaccine construct ($\mathbf{N}=6$)	Dosage
Group-2		30\%
		30\%.
(iroup.4	OAC. IBV whole virus	30%

FIGS. 18A-18D

B)

FIGS. 20A-20B

FIGS. 21A-21B

B) Lymphocyte proliferation assay

FIGS. 23A-23B

B) Lung $\mathrm{CD8}{ }^{*}$ T-cell

FIGS. 26A-26B

B) Percentage weight gain

FIGS. 27A-27D

FIG. 28

pCAG-IBV Arkansas Nucleocapsid
6051 bp

FIG. 29

pCAG- IBV Arkansas Truncated Spike
8121 bp

FIG. 30

pCMV-SARS-CoV-2 Nucleocapsid
5471 bp

FIG. 31

pCMV-SARS CoV-2 Truncated Spike 7850 bp

ADJUVANT FOR ANIMAL AND HUMAN vACCINES

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 62/860,640, filed Jun. 12, 2019, which is incorporated herein by reference in its entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made with government support under 2016-67021-25042 awarded by the USDA/NIFA. The government has certain rights in the invention.

REFERENCE TO A SEQUENCE LISTING SUBMITTED VIA EFS-WEB

The content of the ASCII text file of the sequence listing named "960296_04039_ST25.txt" which is 78,561 bytes in size was created on Apr. 11, 2022 and electronically submitted via EFS-Web is incorporated herein by reference in its entirety.

BACKGROUND

Vaccines have been hailed as one of the greatest achievements in public health during the past century. Vaccines have been a key factor for fighting infectious diseases that afflict humans and animals, with corresponding increases in human average life expectancy. The global eradication of Smallpox virus in humans and Rinderpest virus in animals, and the near eradication or successful prevention of other viral or bacterial infections, for example meningitis in children due to Hemophilus influenze Type B , offer compelling examples.

Adjuvants play a key role in the successful use of vaccines in human and animal medicines. However, only a handful of such adjuvants are approved for human and animal use. Needed in the art are additional vaccine adjuvant compositions for the improvement of human and animal medicines.

SUMMARY OF THE INVENTION

In a first aspect, provided herein is a composition comprising disaggregated spherical nanostructures comprising Quil-A and chitosan. The disaggregated spherical nanostructures may additionally comprising a payload molecule.

In some embodiments, the payload molecule is selected from the group consisting of a DNA molecule, an RNA molecule, a polynucleotide, a protein, a polypeptide, a virus, a microbe, an attenuated virus, an attenuated microbe, a small molecule, an antibody, or a mixture thereof. In some embodiments, the payload molecule is negatively charged. In some embodiments, the payload is functionalized. In some embodiments, the payload molecule is an antigen specific for Mycobacterium avium subspecies paratuberculosis, Mycobacterium bovis, Mycobacterium tuberculosis, or Mycobacterium avium subspecies avium.

In some embodiments, the chitosan is functionalized by treatment with 5 -formyl-2-furan sulfonic acid and sodium borohydride such that the chitosan surface is negatively charged.

In some embodiments, the spherical nanostructures are between about 5 nm and about 100 nm in diameter in the absence of a payload molecule.

In a second aspect, provided herein is a vaccine formulation comprising an antigen, the disaggregated spherical nanostructures comprising Quil-A and chitosan described herein as an adjuvant, and a pharmaceutically acceptable carrier.

In a third aspect, provided herein is a vaccine formulation comprising an antigen specific for Mycobacterium avium subspecies paratuberculosis, Mycobacterium bovis, Mycobacterium tuberculosis, or Mycobacterium avium subspecies avium and the disaggregated spherical nanostructures comprising Quil-A and chitosan described herein.

In a forth aspect, provided herein is a method of forming a composition comprising Quil-A chitosan spherical nanostructures, comprising the steps of heating a first solution comprising Quil-A at about $55^{\circ} \mathrm{C}$. for about 30 minutes; heating a second solution comprising chitosan at about 55° C. for about 30 minutes; mixing equal volumes of the first and second solution dropwise to form a combined solution; vortex mixing the combined solution for about 30 seconds to form a combined, vortexed solution; and incubating the combined vortexed solution whereby a composition comprising Quil-A chitosan spherical nanostructures is formed.

In some embodiments, the combined vortexed solution is incubated at room temperature for about 1 hour. In some embodiments, the first solution additionally comprises a DNA antigen. In some embodiments, the combined vortexed solution is incubated at about 37 C with shaking at about 110 rpm for about 1 hour. In some embodiments, the first solution additionally comprises a protein antigen.
In some embodiments, the first solution comprises about 0.002% Quil-A and the second solution comprises about 0.04% chitosan. In some embodiments, the first solution and the second solution each have a pH between 5.5 and 7.0.

In a fifth aspect, provided herein is a composition comprising Quil-A chitosan spherical nanostructures produced by the methods described herein. In some embodiments the composition additionally comprises an antigen payload molecule.

In a sixth aspect, provided herein is a method of immunizing a subject against an antigen comprising the step of administering to the subject a vaccine formulation comprising a composition comprising Quil-A chitosan spherical nanostructures produced by the methods described herein and an antigen payload molecule. In some embodiments, the subject is selected from the group consisting of a human, a mouse, a rat, a cow, a horse, a pig, a goat, a sheep, a cat, a dog, or a bird.

INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, and patent application was specifically and individually indicated to be incorporated by reference.

BRIEF DESCRIPTION OF DRAWINGS

The patent or patent application file contains at least one drawing in color. Copies of this patent or patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee.

FIG. 1 shows the formation of adjuvant nanostructures using Quil-A and chitosan with a DNA immunogen.

FIG. 2 shows parenteral immunization with naked DNA constructs. Partial protection was observed with naked DNA vaccines for parenteral administration. A partial reduction in
viral burden and clinical signs of severity were observed with the naked IBV N vaccine construct, higher levels of circulating IBV specific IgY was observed in naked IBV N vaccinated groups vs spike subunit 1 glycoprotein (51), and mucosal Ig A was not detected.

FIG. 3 shows intra nasal immunization with naked DNA constructs. Partial protection was observed with naked DNA vaccines for intra nasal administration. Partial reduction in viral burden and clinical signs of severity were observed with the naked IBV N vaccine construct, IBV specific mucosal IgA was detected in naked DNA vaccinated birds, and no appreciable circulating IgY responses were detected in birds vaccinated intra nasally.
FIG. 4 shows immunization with adjuvanted DNA constructs. Partial reduction in viral burden and clinical signs of severity observed were with chitosan adjuvanted DNA constructs compared with the naked DNA construct. Chitosan alone does not boost protection. More robust induction of mucosal IBV-specific IgA were observed with QAC adjuvanted DNA constructs. Higher reduction in viral burden and clinical severity were observed with QAC adjuvanted DNA construct with levels comparable to commercial vaccines. Significant proliferation of T-lymphocytes in response to antigen observed with birds vaccinated with QAC adjuvanted DNA construct. DNA constructs are more immunogenic and protective when adjuvanted with QAC. This demonstrated that the QAC complex adjuvant boosts protection and immunogenicity compared to that observed with naked DNA vaccines alone without adjuvant.
FIG. 5 shows a comparison of the prime (single dose of adjuvanted vaccine as day 1) and prime-boost (two doses of the adjuvanted vaccine 2 weeks apart at day 1 and day 14) strategies. No difference in reduction of viral burden and clinical severity, antibody and cell-mediated responses were observed between birds immunized with prime or primeboost strategy.

FIG. 6 shows data comparing intra nasal and in ovo vaccination administration routes. Higher reduction in viral load was observed with birds vaccinated via the in ovo route, but the difference was not statistically significant. Higher antibody levels and cellular response was observed post vaccination and post challenge with in ovo group when compared to the intra nasal group. In ovo vaccination route might be a better route for vaccination because similar level of protection was observed (vs intra nasal) but this route is more easily scalable for large scale applications and can overcome interference by maternal derived antibodies (MDA) in commercial birds.
FIG. 7 shows TEM images of chitosan-DNA complexes and DLS size measurement of chitosan-DNA complexes.
FIG. 8 shows cells transfected with chitosan-pCAG-GFP complex.
FIG. 9 shows the results of a nuclease protection assay. DNA encapsulated in a chitosan-DNA complex was partially protected when treated with $5 \times$ DNase I.
FIG. 10 shows TEM images of empty QAC particles (left) and QAC particles with encapsulated DNA (middle and right, $30-60 \mathrm{~nm}$).
FIG. 11 shows cells transfected with QAC-pCAG-GFP complex ($100 \mathrm{ug} / \mathrm{ml}$).
FIG. 12 shows images of QAC nanostructures at varying ratios of Quil-A:chitosan (0.001:0.02-0.01).

FIG. 13 shows images of other structures formed by varying the ratio of Quil-A:chitosan in QAC complexes.
FIG. 14 shows the results of an in vitro antigen cross presentation assay (B3Z assay) using the QAC complex. QAC complex in vitro antigen cross presentation assay (B3Z
assay)-Antigen cross presentation is important for effective immune responses to viral infections. Dendritic cells are professional antigen presenting cells and are unique in their ability to cross-present exogenous antigens on MHC class I molecules and activate antigen specific cytotoxic T cells. We tested the ability of Quil-A:Chitosan (QAC) particles encapsulating ovalbumin (OVA) protein to efficiently cross present by dendritic cells (DCs) in an in vitro system using soluble OVA. Ag cross-presentation of OVA257-264 was detected using the CD8 T cell hybridoma cell line B3Z that expresses β-galactosidase under control of the IL-2 promoter. Our preliminary results indicate that QAC can efficiently mediate cross presentation as seen across multiple Quil-A:Chitosan ratios. However, Quil-A is toxic to cells in vitro which could potentially explain a drop in absorbance values with increasing Quil-A concentrations. Adjuvants in vivo have been shown to work by inducing basal local cell damage releasing damage-associated pattern molecules (DAMPs). These DAMPs can further recruit immune cells enhancing antigen and presentation leading to a robust immune response.
FIG. 15 shows an in vivo cross presentation study in mice using the QAC complex loaded with ovalbumin protein (OVA).

FIG. 16 shows an in vivo study to measure innate and adaptive immune responses following treatment with the QAC complex loaded with OVA.
FIG. 17 shows an in vivo study measuring protein immunogen immune response in chickens treated with the QAC complex loaded with whole inactivated infectious bronchitis virus (IBV).

FIGS. 18A-18D show the nano structure of QAC adjuvant system. A) Aggregates of chitosan-pCAG-GFP preparation (arrows) were seen with TEM. B) Nanoparticles of QAC-pCAG-GFP preparation (arrows) with TEM. Scale bar=100 nm. C) Number-based DLS data and (D) Zeta potential on QAC-pCAG-GFP nanoparticles at $25^{\circ} \mathrm{C}$. with Zetasizer ${ }^{(B)}$ software.

FIGS. 19A-19B show QAC nanoparticle payload delivery and release. (A) GFP+Expi293F cells post addition of QAC-pCAG-GFP (B) Sustained release kinetics observed in vitro. FIGS. 20A-20B show DNA vaccine construct. A) Plasmid map of pCAG-IBV Ark N, $6 \times$ His construct ($\mathrm{pQAC}-\mathrm{N}$) generated using Snapgene software. B) Western blot analysis with anti $6 \times \mathrm{His}$-HRP antibody confirming expression of N $6 \times$ His from $\mathrm{pCAG}-\mathrm{N} 6 \times$ His plasmid. Lanes are as follows. Supernatant (lane 2) and pellet (lane 4) from Expi293F cells transfected with control pCAG plasmid, Supernatant (lane 1) and pellet (lane 3) from Expi29F3 cells transfected with $\mathrm{pCAG}-\mathrm{N} 6 \times$ His plasmid and purified $\mathrm{N} 6 \times \mathrm{His}$ protein (lane 5).

FIGS. 21A-21B show safety of pQAC-N. A) Hatch rate $\%$ in ECEs inoculated with $\mathrm{pQAC}-\mathrm{N}$ vaccine. B) Weight gain of chicks immunized with pQAC N construct after 30 days post vaccination (dpv). Data show means \pm SD. Significance (*, $\mathrm{P}<0.05$) or non-significance (ns) was determined by one-way ANOVA with multiple comparisons.

FIGS. 22A-22B show $\mathrm{pQAC}-\mathrm{N}$ vaccine immunogenicity. Groups of white leghorn SPF chicks were either unvaccinated (PBS) or immunized with MLV (day-1) or naked unadjuvanted $\mathrm{pCAG}-\mathrm{N}$ or Chitosan complexed $\mathrm{pCAG}-\mathrm{N}$ or $\mathrm{pQAC}-\mathrm{N}$ vaccine ($100 \mathrm{ug} \mathrm{pQAC}-\mathrm{N}$) at day-1 and day-14. (A) IBV specific IgA in tears, significance (*, $\mathrm{P}<0.05$) was determined by two-way ANOVA and (B) lymphocyte proliferation assay on PBMCs harvested at day 20 post vaccination, significance (${ }^{*}, \mathrm{P}<0.05$; ${ }^{* *}, \mathrm{P}<0.01$) or non-signifi-
cance (ns) was determined by one-way ANOVA with multiple comparisons. Data show means \pm SD.

FIGS. 23A-23B show protective efficacy of pQAC-N vaccine. Groups of white leghorn SPF chicks were either unvaccinated (PBS) or immunized with MLV (day-1) or naked $\mathrm{pCAG}-\mathrm{N}$ or Chitosan $\mathrm{pCAG}-\mathrm{N}$ or $\mathrm{pQAC}-\mathrm{N}$ vaccine (100 ug) at day-1 and day-14. (A) Clinical sign severity represented as average score/bird over 8 days post challenge in each group (B) IBV log viral load/10 ul lachrymal fluid at 6 days post challenge. Significance (${ }^{*}, \mathrm{P}<0.05 ; * *$, $\mathrm{P}<0.01$; ***, $\mathrm{P}<0.001 ; * * * *, \mathrm{P}<0.0001$) or non-significance (ns) was determined by one-way ANOVA with multiple comparisons. Data show means \pm SD.
FIGS. 24A-24D show pQAC-N induces a robust T-cell response. (A) Lung cell proliferative capacity measured by CellTrace Violet dye dilution in unvaccinated, MLV and pQACN vaccinated chickens. Proliferation was measured in (A) total lung cells, (B) CD8 $\alpha+$, (C) CD4+ and (D) TCR $\gamma \delta+$ lung T cells after 4 days in culture post antigen stimulation.
FIGS. 25A-25C show protective efficacy of $\mathrm{pQAC}-\mathrm{N}$ vaccine in commercial birds. Groups of commercial white leghorn chicks were either unvaccinated (PBS) or immunized with pQAC N vaccine (100 ug) at day- 1 and day-14. (A) Serum IgY ELISA titres indicating presence of high levels of MDA (B) Clinical sign severity represented as average score/bird over 8 days post challenge in each group (C) IBV \log viral load/10 ul lachrymal fluid at 6 days post challenge. Significance (${ }^{*}, \mathrm{P}<0.05 ;{ }^{* *}, \mathrm{P}<0.01$) or nonsignificance (ns) was determined by unpaired t test. Data show means \pm SD.

FIGS. 26A-26B show reduced weight gain in MLV vaccinated commercial birds. Groups of commercial white leghorn chicks were either unvaccinated (PBS) or immunized with MLV (day-1) or PQAC N vaccine (100 ug) at day-1 and day-14. (A) Absolute weight of birds in grams at 14,21 and 28 dpv , significance $\left({ }^{* *}, \mathrm{P}<0.01\right)$ was determined by two-way ANOVA and compared with both PBS and $\mathrm{pQAC} N$ groups (B) Percentage weight gain of birds between 14 and 28 dpv . Data show means \pm SD.
FIGS. 27A-27D show Reduced tracheal viral shedding in $\mathrm{pQAC}-\mathrm{N}$ vaccinated commercial birds. Groups of commercial white leghorn chicks were either unvaccinated (PBS) or immunized with MLV (day-1) or $\mathrm{pQAC} N$ vaccine (100 ug) at day-1 and day-14. IBV specific IgY in serum (A) and $\operatorname{Ig} A$ in lachrymal fluid (B) significance (*, $\mathrm{P}<0.05$; **, $\mathrm{P}<0.01$; ***, $\mathrm{P}<0.001$; ${ }^{* * * *}, \mathrm{P}<0.0001$) was determined by two-way ANOVA (C) Clinical sign severity represented as average score/bird over 8 days post challenge in each group (D) IBV viral load in tracheal swabs at 6 days post challenge. Significance (${ }^{* * * *}, \mathrm{P}<0.001 ; * * * *, \mathrm{P}<0.0001$) or non-significance (ns) was determined by one-way ANOVA with multiple comparisons. Data show means \pm SD.

FIG. 28 shows a vector map of the pCAG-IBV Arkansas nucleocapsid plasmid (SEQ ID NO:1).
FIG. 29 shows a vector map of the pCAG-IBV Arkansas Truncated Spike plasmid (SEQ ID NO:2).
FIG. $\mathbf{3 0}$ shows a vector map of the pCMV-SARS-CoV-2 nucleocapsid plasmid (SEQ ID NO:3).
FIG. 31 shows a vector map of the pCMV-SARS-CoV-2 truncated spike plasmid (SEQ ID NO:4).

DETAILED DESCRIPTION OF THE DISCLOSURE

In General

The present disclosure broadly relates to a Quil-A chitosan complex as well as methods of making and using such a complex.

In some embodiments, the present disclosure describes an adjuvant for use in a vaccine. The adjuvant is a Quil-A chitosan complex (QAC complex), which stimulates an immune response when administered in a vaccine composition.

In some embodiments, Quil-A and chitosan are combined to form a nanostructure complex which may be used as an adjuvant in a vaccine composition. The QAC complex may be loaded with a payload molecule, such as the antigen or immunogen with which the QAC complex stimulates an immune response. The QAC complex may be formulated into a vaccine composition with a pharmaceutically acceptable carrier.

The use of the term "or" in the claims is used to mean "and/or" unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive. It is specifically contemplated that any listing of items using the term "or" means that any of those listed items may also be specifically excluded from the related embodiment.
Throughout this application, the term "about" means within 5% of a stated concentration range, density, temperature, or time frame.

As used herein the specification, "a" or "an" may mean one or more, unless clearly indicated otherwise. As used herein in the claims, when used in conjunction with the word "comprising," the words "a" or "an" may mean one or more than one.

The terms "comprise," "have," and "include" are openended linking verbs. Any forms or tenses of one or more of these verbs, such as "comprises," "comprising," "has," "having," "includes," and "including," are also open-ended. For example, any method that "comprises," "has" or "includes" one or more steps is not limited to possessing only those one or more steps and also covers other unlisted steps.

The terms "polypeptide," "peptide," and "protein," as used herein, refer to a polymer comprising amino acid residues predominantly bound together by covalent amide bonds. By the term "protein," we mean to encompass all the above definitions. The terms apply to amino acid polymers in which one or more amino acid residue may be an artificial chemical mimetic of a naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymers. As used herein, the terms may encompass amino acid chains of any length, including full length proteins, wherein the amino acids are linked by covalent peptide bonds. The protein or peptide may be isolated from a native organism, produced by recombinant techniques, or produced by synthetic production techniques known to one skilled in the art.

The term "therapeutically effective amount," as used herein, refers to an amount of an antigen or vaccine that would induce an immune response in a subject receiving the antigen or vaccine which is adequate to prevent signs or symptoms of disease, including adverse health effects or complications thereof, caused by infection with a pathogen, such as a virus or a bacterium. Humoral immunity or cell mediated immunity or both humoral and cell mediated immunity may be induced. The immunogenic response of an animal to a vaccine may be evaluated, e.g., indirectly through measurement of antibody titers, lymphocyte proliferation assays, or directly through monitoring signs and symptoms after challenge with wild-type strain. The protective immunity conferred by a vaccine may be evaluated by measuring, e.g., reduction in clinical signs such as mortality, morbidity, temperature number, overall physical condition, and overall health and performance of the subject. The
amount of a vaccine that is therapeutically effective may vary depending on the particular virus used, or the condition of the subject, and may be determined by a physician.

The term "protected," as used herein, refers to immunization of a patient against a disease. The immunization may be caused by administering a vaccine comprising an antigen. Specifically, in the present invention, the immunized patient is protected from a fungal, bacterial, or viral infection.
The term "vaccine," as used herein, refers to a composition that includes an antigen. Vaccine may also include a biological preparation that improves immunity to a particular disease. A vaccine may typically contain an agent, referred to as an antigen, that resembles a disease-causing microorganism, and the agent may often be made from weakened or killed forms of the microbe, its toxins or one of its surface proteins. The antigen may stimulate the body's immune system to recognize the agent as foreign, destroy it, and "remember" it, so that the immune system can more easily recognize and destroy any of these microorganisms that it later encounters.
Vaccines may be prophylactic, e.g., to prevent or ameliorate the effects of a future infection by any natural or "wild" pathogen, or therapeutic, e.g., to treat the disease. Administration of the vaccine to a subject results in an immune response, generally against one or more specific diseases. The amount of a vaccine that is therapeutically effective may vary depending on the particular virus used, or the condition of the patient, and may be determined by a physician. The vaccine may be introduced directly into the subject by the subcutaneous, oral, oronasal, or intranasal routes of administration.
A vaccine of the present invention will include a suitable antigen to stimulate an immune response in a subject or patient. It is envisioned that vaccines of the present invention are not limited to a specific antigen or disease target, except where specifically specified. In some embodiments, the vaccine of the present invention provides immunity against a fungus, a parasite, a bacteria, a microbe, or a virus.
In some embodiments, the vaccine of the present disclosure provides immunity against bacteria. In one embodiment of the invention, the vaccine comprises an antigen for a Mycobacterium species, such as, but not limited to, Mycobacterium avium subspecies paratuberculosis, Mycobacterium bovis, Mycobacterium tuberculosis, and Mycobacterium avium subspecies avium. A non-limiting example of an antigen of the present disclosure are the compositions described in U.S. Patent Publication No. 2018/0147272 ("Vaccine Candidates Against Johne's Disease"), U.S. Pat. No. 9,663,758 ("Global Gene Regulators (GGR) as vaccine candidates against paratuberculosis"), and U.S. Pat. No. 9,220,764 ("Immunogenic compositions against tuberculosis").

In some embodiments, the vaccine of the present disclosure provides immunity against a virus. In some embodiments, the vaccine comprises an antigen for infectious bronchitis virus. In some embodiments, the vaccine comprises an antigen for Severe Acute Respirator Syndrome Coronavirus 2 (SARS-CoV-2).
Vaccine Administration
The term "administration," as used herein, refers to the introduction of a substance, such as a vaccine, into a subject's body. The administration, e.g., parenteral administration, may include subcutaneous administration, intramuscular administration, transcutaneous administration, intradermal administration, intraperitoneal administration, intraocular administration, intranasal administration and intravenous administration.

The vaccine or the composition according to the invention may be administered to an individual according to methods known in the art. Such methods comprise application e.g. parenterally, such as through all routes of injection into or through the skin: e.g. intramuscular, intravenous, intraperitoneal, intradermal, mucosal, submucosal, or subcutaneous. Also, the vaccine may be applied by topical application as a drop, spray, gel or ointment to the mucosal epithelium of the eye, nose, mouth, anus, or vagina, or onto the epidermis of the outer skin at any part of the body.

Other possible routes of application are by spray, aerosol, or powder application through inhalation via the respiratory tract. In this last case, the particle size that is used will determine how deep the particles will penetrate into the respiratory tract.

Alternatively, application may be via the alimentary route, by combining with the food, feed or drinking water e.g. as a powder, a liquid, or tablet, or by administration directly into the mouth as a: liquid, a gel, a tablet, or a capsule, or to the anus as a suppository.
The term "immune status" or "immunocompetence," as used herein, refers to the ability of the body to produce a normal immune response following exposure to an antigen. Immunocompetence is the opposite of immunodeficiency or immuno-incompetent or immuno-compromised.

The present disclosure is generally applied to mammals, including but not limited to humans, cows, horses, sheep, pigs, goats, rabbits, dogs, cats, mice and rats. In some embodiments, the present disclosure can be applied to birds. In certain embodiments, non-human mammals, such as mice and rats, may also be used for the purpose of demonstration. One may use the present invention for veterinary purpose. For example, one may wish to treat commercially important farm animals, such as cows, horses, pigs, rabbits, goats, sheep, and birds, such as chickens. One may also wish to treat companion animals, such as cats and dogs.

Adjuvants

As used herein "Quil-A chitosan complex" or "QAC complex" refers to a composition of Quil-A and chitosan which forms distinct disaggregated spherical nanostructures. FIG. 12 shows an example of these disaggregated spherical nanostructures. As used herein, "disaggregated," refers to the formation of discrete observable particles as opposed to aggregated non-discrete assemblies with non-distinct boundaries. The QAC complex nanostructures are less 100 nm in diameter when measured in the absence of any payload molecules. For example, between about 5 nm and about 100 nm , between about 10 nm and about 95 nm , between about 15 nm an about 90 nm , between about 20 nm and about 90 nm , or between about 25 nm and about 85 nm . The QAC complex may be loaded with one or more payload molecules. The payload-QAC complex may be between about 20 nm and about 1000 nm in diameter. The specific size of the payload-QAC complex will vary depending on the size and amount of payload in the nanostructure.

In one embodiment, the QAC complex is formed by mixing a first solution of Quil-A into a second solution of chitosan to form a final mixed solution including the QAC complex. In the final mixed solution, the Quil-A and the chitosan are typically present at a ratio of between about $1: 15$ to about $1: 100$, between about $1: 15$ and about $1: 75$, between about $1: 15$ and about $1: 50$, between about $1: 15$ and about $1: 25$, between about $1: 17$ and about $1: 25$, or between about $1: 18$ and about 1:25. In some embodiments, the Quil-A and the chitosan are present at a ratio of about 1:20 (e.g., $1: 15,1: 16,1: 17,1: 18,1: 19,1: 20,1: 21,1: 22,1: 23$, $1: 24$, or $1: 25$) in the final mixed solution. In some embodi-
ments, in the final solution Quil-A is at a concentration of 0.001% and chitosan is at a concentration of between about 0.02% and about 0.1%. In some embodiments, in the final solution Quil-A is at a concentration between about 0.00001% and about 0.5%. In some embodiments, in the final solution the chitosan is at a concertation between about 0.00015% and about 7.5%.
In some embodiments, the Quil-A solution and the chitosan solution are mixed drop-wise. In some embodiments, the Quil-A solution and the chitosan solution are mixed by vortex mixing for about $15-90$ seconds (15 seconds, 20 seconds, 25 seconds, 30 seconds, 35 seconds, 40 seconds, 45 seconds, 50 seconds, 60 seconds, 70 seconds, 80 seconds or 90 seconds). In some embodiments, the Quil-A solution and the chitosan solution are mixed drop-wise followed by vortex mixing for about $15-90$ seconds (15 seconds, 20 seconds, 25 seconds, 30 seconds, 35 seconds, 40 seconds, 45 seconds, 50 seconds, 60 seconds, 70 seconds, 80 seconds or 90 seconds).
The Quil-A solution and the chitosan solution may be heated prior to mixing. In some embodiments, the Quil-A solution and the chitosan solution are heated to a temperature between about $20^{\circ} \mathrm{C}$. and about $60^{\circ} \mathrm{C}$. (e.g., $20^{\circ} \mathrm{C}$., 25° C., $30^{\circ} \mathrm{C} ., 35^{\circ} \mathrm{C}$., $40^{\circ} \mathrm{C}$., $45^{\circ} \mathrm{C}$., $50^{\circ} \mathrm{C}$., $55^{\circ} \mathrm{C}$., or $60^{\circ} \mathrm{C}$.) for between about 20 to about 40 minutes (20 minutes, 25 minutes, 30 minutes, 35 minutes, or 40 minutes) prior to mixing. In some embodiments, after mixing the final solution is incubated at room temperature for about 1 hour to promote QAC complex formation. In some embodiments, after mixing the final solution is incubated for 1 hour at between about $20^{\circ} \mathrm{C}$. and about $45^{\circ} \mathrm{C}$. (e.g., $20^{\circ} \mathrm{C}$., $21^{\circ} \mathrm{C}$., $22^{\circ} \mathrm{C} ., 23^{\circ} \mathrm{C} ., 24^{\circ} \mathrm{C} ., 25^{\circ} \mathrm{C} ., 26^{\circ} \mathrm{C} ., 27^{\circ} \mathrm{C} ., 28^{\circ} \mathrm{C} ., 29^{\circ}$ C., $30^{\circ} \mathrm{C} ., 31,32^{\circ} \mathrm{C} ., 33^{\circ} \mathrm{C} ., 34^{\circ} \mathrm{C} ., 35^{\circ} \mathrm{C} ., 36^{\circ} \mathrm{C}$., $37^{\circ} \mathrm{C}$., 38° C., 39° C., $40^{\circ} \mathrm{C} ., 41^{\circ} \mathrm{C}$., $42^{\circ} \mathrm{C} ., 43^{\circ} \mathrm{C} ., 44^{\circ} \mathrm{C}$., or 45° C.) with shaking at between about 90 rpm and about 150 rpm (e.g., $90 \mathrm{rpm}, 95 \mathrm{rpm}, 100 \mathrm{rpm}, 105 \mathrm{rpm}, 110 \mathrm{rpm}, 115 \mathrm{rpm}$, $120 \mathrm{rpm}, 125 \mathrm{rpm}, 130 \mathrm{rpm}, 135 \mathrm{rpm}, 140 \mathrm{rpm}, 145 \mathrm{rpm}$, or $150 \mathrm{rpm})$. The pH of the solutions may be between 5.5 and 7.0.

In some embodiments, the Quil-A solution is prepared by creating a stock solution of Quil-A in water and diluting the stock Quil-A solution with a buffered solution. The buffer may be any suitable buffer known in the art to buffer a solution at a pH between 5.5 and 7.0. In some embodiments the buffer is sodium sulfate buffer.
In some embodiments, the chitosan solution is prepared by creating a stock solution of chitosan in acetic acid and diluting the stock acetic acid solution with a buffered solution. The buffer may be any suitable buffer in the art to buffer a solution at a pH between 5.5 and 7.0. In some embodiments the buffer is sodium acetate buffer at pH 5.5 .
In some embodiments, a first solution of about 0.002% Quil-A in 50 mM sodium sulfate buffer pH 5.5 and a second solution of about 0.04% chitosan in 5 mM sodium acetate buffer pH 5.5 are each heated at $55^{\circ} \mathrm{C}$. for about 30 min . Equal volumes of the first and second solution are mixed dropwise then vortex mixed for about 30 s followed by incubation at room temperature for about 1 hour for QAC complex formation.

As used herein "Quil-A" refers to the powdered saponin fraction isolated from extract of the bark of Quillaja saponaria trees. Quil-A is commercially available, for example from Desert King sold under the product name Vet-Sap ${ }^{\text {TM }}$ (desertking.com/pharmaceutical-applications/ \#veterinary_adjuvant).
In some embodiments, the Quil-A is replaced with a surfactant or mild detergent. Surfactants and mild detergents
may include but are not limited to, polyoxyethylene (20) sorbitan monolaurate (Tween ${ }^{\text {TM }} 20$), polyethylene glycol sorbitan monostearate (Tween ${ }^{\mathrm{TM}} 60$), polyoxyethylenesorbitan tristearate (Tween ${ }^{\text {TM }} 65$), polyoxyethylene (20) sorbitan monooleate (Tween ${ }^{\mathrm{TM}} 80$), polyoxyethylenesorbitan trioleate (Tween ${ }^{\text {TM }} 85$), octyl oligooxyethelene (OPOE), $\mathrm{N}, \mathrm{N}-$ dimethyldodecylamine (LDAO), and polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether (Triton X-100). In general, when replacing Quil-A with a surfactant or mild detergent, the concentration of the surfactant or milk detergent will vary depending on the strength of the detergent or surfactant such that lower concentrations of stronger detergents and higher concentrations of weaker detergents are used.
As used herein "chitosan" refers to a linear polysaccharide composed of randomly distributed β-linked D-glucosamine and N-acetyl-D-glucosamine. Chitosan can be obtained from the chitin shells of shrimp and other crustaceans by treatment of the shells with an alkaline substance. Chitosan is a non-toxic, naturally occurring cationic polymer that readily complexes with DNA and negatively charged proteins. Chitosan is biocompatible and biodegradable. Compositions incorporating chitosan have sustained release kinetics and are immunomodulary by enhancing the T-cell response. In some embodiments, chitosan is deacetylated chitosan, for example $>75 \%$ deacetylated chitosan. Deacetylated chitosan ($>75 \%$) is available commercially from Sigma (C3646). Higher deacetylation percentages, for example about 90%, will meditate stronger binding with nucleic acids resulting in slower release kinetics from the nanoparticle structures of the Quil-A chitosan complex. In some embodiments, the chitosan is at least $70 \%, 75 \%, 80 \%$, $85 \%, 90 \%$, or 95% deacetylated. In some embodiments, the chitosan is between about 60% and about 90% deacetylated.
The QAC complex may be loaded with one or more payload molecules. The payload molecule may be an antigen of interest for use in a vaccine composition. The payload molecule may be an immunogen for use in a vaccine composition. The payload molecule may be, but is not limited to, a DNA molecule, an RNA molecule, a polynucleotide, a protein, a polypeptide, a virus, a microbe, an attenuated virus, an attenuated microbe, a small molecule, an antibody, or a mixture thereof.

In some embodiments, the payload is a live attenuated microbe. The pathogen of interested may be attenuated or reduced in virulence by any suitable means known in the art including but not limited to repeated passaging through a series of cell cultures, animal embryos (e.g., chicken embryos), or by genetic engineering to produce a mutated strain of the pathogen (e.g., mutant bacteria or mutant fungi).

In some embodiments, the payload is a recombinant protein. In some embodiments, the payload may be a subunit vaccine.
In some embodiments, the payload is an inactivated pathogen. The pathogen of interest may be inactivated by any suitable means known in the art including but not limited to, heat treatment, UV treatment, and chemical treatment (e.g., formaldehyde or glutaraldehyde).
In some embodiments, the payload is a recombinant viral vector. The recombinant viral vector may include, but is not limited to, an adeno viral vector or a poxvirus vector. Recombinant viral vectors may be used to deliver vaccine antigens by encoding immunogenic agents from a pathogen of interest.
In some embodiments, the payload is a recombinant nucleic acid. Recombinant nucleic acids may encode an
immunogenic agent from a pathogen of interest such as, but not limited to, bacterial genes and fungal genes. In some embodiments, the payload is a recombinant RNA or DNA molecule encoding an immunogenic or antigenic polypeptide.

As used herein, the terms "polynucleotide," "polynucleotide sequence," "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide (which terms may be used interchangeably), or any fragment thereof. These phrases also refer to DNA or RNA of natural or synthetic origin (which may be single-stranded or doublestranded and may represent the sense or the antisense strand). The polynucleotides may be cDNA or genomic DNA. Polynucleotides homologous to the polynucleotides described herein are also provided. Those of skill in the art understand the degeneracy of the genetic code and that a variety of polynucleotides can encode the same polypeptide.
In some embodiments, the payload is a polynucleotide construct. As used herein, the term "construct" refers to recombinant polynucleotides including, without limitation, DNA and RNA, which may be single-stranded or doublestranded and may represent the sense or the antisense strand. Recombinant polynucleotides are polynucleotides formed by laboratory methods that include polynucleotide sequences derived from at least two different natural sources or they may be synthetic. Constructs thus may include new modifications to endogenous genes introduced by, for example, genome editing technologies. Constructs may also include recombinant polynucleotides created using, for example, recombinant DNA methodologies.
The payload constructs provided herein may be prepared by methods available to those of skill in the art. Notably each of the constructs described are recombinant molecules and as such do not occur in nature. Generally, the nomenclature used herein and the laboratory procedures utilized in the present invention include molecular, biochemical, and recombinant DNA techniques that are well known and commonly employed in the art. Standard techniques available to those skilled in the art may be used for cloning, DNA and RNA isolation, amplification and purification. Such techniques are thoroughly explained in the literature.
The constructs provided herein may include a promoter operably linked to any one of the polynucleotides described herein. The promoter may be a heterologous promoter or an endogenous promoter associated with the antigenic or immunogenic payload polypeptide.
As used herein, the terms "heterologous promoter," "promoter," "promoter region," or "promoter sequence" refer generally to transcriptional regulatory regions of a gene, which may be found at the 5^{\prime} or 3^{\prime} side of the polynucleotides described herein, or within the coding region of the polynucleotides, or within introns in the polynucleotides. Typically, a promoter is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3^{\prime} direction) coding sequence. The typical 5^{\prime} promoter sequence is bounded at its 3 ' terminus by the transcription initiation site and extends upstream (5^{\prime} direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter sequence is a transcription initiation site (conveniently defined by mapping with nuclease S 1), as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase.

As used herein, a polynucleotide is "operably connected" or "operably linked" when it is placed into a functional relationship with a second polynucleotide sequence. For
instance, a promoter is operably linked to a polynucelotide if the promoter is connected to the polynucelotide such that it may effect transcription of the polynucelotide. In various embodiments, the polynucelotide may be operably linked to at least 1 , at least 2 , at least 3 , at least 4 , at least 5 , or at least 10 promoters.
Heterolgous promoters useful in the practice of the present invention include, but are not limited to, constitutive, inducible, temporally-regulated, developmentally regulated, chemically regulated, tissue-preferred and tissue-specific promoters. The heterologous promoter may be a plant, animal, bacterial, fungal, or synthetic promoter. Suitable promoters include, without limitation, promoters for Rous sarcoma virus (RSV), human immunodeficiency virus (HIV1), AmpR promoter, SV40, cytomegalovirus (CMV), SV40 virus, chicken beta actin (CAG), and the like as well as the translational elongation factor EF-l α promoter or ubiquitin promoter. Those of skill in the art are familiar with a wide variety of additional promoters for use in various cell types.
Vectors including any of the constructs or polynucleotides described herein are provided. The term "vector" is intended to refer to a polynucleotide capable of transporting another polynucleotide to which it has been linked. In some embodiments, the vector may be a "plasmid," which refers to a circular double-stranded DNA loop into which additional DNA segments may be ligated. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors can be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome, such as some viral vectors or transposons. Vectors may carry genetic elements, such as those that confer resistance to certain drugs or chemicals. In some embodiments, the payload is a vector as described herein.

In some embodiments, the payload is polypeptide antigen specific for Infectious Bronchitis Virus (IBV) or a polynucleotide encoding a polypeptide antigen specific for IBV. IBV is a member of the genus gammacoronavirus, family Coronaviridae, order Nidovirales with a 27.6 Kb single stranded positive sense RNA genome encoding major structural proteins, spike glycoprotein (S), envelope (E), membrane (M) and nucleocapsid (N). In some embodiments, the payload is selected form the group consisting of the IBV S, E, M, and N proteins and fragments thereof. In some embodiments, the payload is a polynucleotide encoding the IBV S, E, M, or N proteins or fragments thereof. In some embodiments, the payload a polypeptide at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or at least 99% to the IBV nucleocapsid protein of SEQ ID NO:5. In some embodiments, the payload is the IBV nucleocapsid protein of SEQ ID NO:5. In some embodiments, the payload is a polynucleotide encoding a polypeptide at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or at least 99% to the IBV nucleocapsid protein of SEQ ID NO:5. In some embodiments, the payload is a polynucleotide encoding the IBV nucleocapsid protein of SEQ ID NO:5. In some embodiments, the payload comprises the polynucleotide of SEQ ID NO:6 or a sequence at least 90% identical thereto.

In some embodiments, the payload a polypeptide at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or at least 99% to the IBV truncated spike protein of SEQ ID $\mathrm{NO}: 7$. In some embodiments, the payload is the IBV truncated spike protein of SEQ ID NO: 7. In some embodiments, the payload is a polynucleotide encoding a polypeptide at least 80%, at least 85%, at least 90%, at least 95%, at least
98%, or at least 99% to the IBV truncated spike protein of SEQ ID NO:7. In some embodiments, the payload is a polynucleotide encoding the IBV nucleocapsid protein of SEQ ID NO:7. In some embodiments, the payload comprises the polynucleotide of SEQ ID NO:8 or a sequence at least 90% identical thereto.
In some embodiments, the payload is a polypeptide antigen specific for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). SARS-CoV-2 includes the major structural proteins spike (S), envelope (E), membrane (M), and nucleocapsid (N). In some embodiments, the payload is selected from the group consisting of the SARS-CoV-2 S, E, M , and N proteins and fragments thereof. In some embodiments, the payload is a polynucleotide encoding the SARS-CoV-2 S, E, M, or N protein or fragments thereof. In some embodiments, the payload is a polypeptide at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or at least 99% to the SARS-CoV-2 nucleocapsid protein of SEQ ID NO:9. In some embodiments, the payload is the SARS-CoV-2 nucleocapsid protein of SEQ ID NO:9. In some embodiments, the payload is a polynucleotide encoding a polypeptide at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or at least 99% to the SARS-CoV-2 nucleocapsid protein of SEQ ID NO:9. In some embodiments, the payload is polynucleotide encoding the SARS-CoV-2 nucleocapsid protein of SEQ ID NO:9. In some embodiments, the payload comprises the polynucleotide of SEQ ID NO: 10 or a sequence at least 90% identical thereto.
In some embodiments, the payload is a polypeptide at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or at least 99% to the SARS-CoV-2 truncated spike protein of SEQ ID NO:11. In some embodiments, the payload is the SARS-CoV-2 truncated spike protein of SEQ ID NO:11. In some embodiments, the payload is a polynucleotide encoding a polypeptide at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or at least 99% to the SARS-CoV-2 truncated spike protein of SEQ ID NO:11. In some embodiments, the payload is polynucleotide encoding the SARS-CoV-2 truncated spike protein of SEQ ID NO:11. In some embodiments, the payload comprises the polynucleotide of SEQ ID NO:12 or a sequence at least 90% identical thereto.
In some embodiments, the payload is functionalized prior to loading into the QAC complex. Proteins, DNA molecules, and RNA molecules that are negatively charged at neutral pH are generally readily taken up by QAC particles due to the electrostatic interactions between the negatively charged payload and the positively charged QAC particles. To improve the loading capacity of neutral and positively charged payloads, the payload may be functionalized to alter the surface charge of the payload. For example, chemical modifications such as amination of protein molecules can introduce negatively charged amino groups. Chemical modifications such as carboxylation of protein molecules can increase the number of free carboxylic acid groups on the protein surface to enhance loading of the protein into the QAC complex. The isoelectric point of the protein molecule can be reduced by protein surface modification with malonic acid moieties to increase interaction with the chitosan component of the QAC complex.
In some embodiments, the chitosan is functionalized. Chitosan may be functionalized with negatively charged sulfonate groups by reaction of the amino group of chitosan with 5 -formyl-2-furan sulfonic acid (FFSA) followed by treatment using sodium borohydride to form a negatively charged chitosan surface. Use of the negatively charged
chitosan in the formation of the QAC complex will generally be favorable for loading of positively charged payload molecules.
In some embodiments, the QAC complex is loaded with a DNA molecule payload. The QAC-DNA loaded complex is formed by mixing a solution of Quil-A and DNA into a solution of chitosan to form a final mixed solution including the QAC-DNA complex. In the final mixed solution, the Quil-A and the chitosan are present at a ratio of between 1:15 to 1:100. In some embodiments, the Quil-A and the chitosan are present at a ratio of about 1:20 (e.g., 1:15, 1:16, $1: 17,1: 18,1: 19,1: 20,1: 21,1: 22,1: 23,1: 24$, or $1: 25$) in the final mixed solution. In some embodiments, in the final solution Quil-A is at a concentration of 0.001% and chitosan is at a concentration between about 0.02% and about 0.1%. In some embodiments, the DNA payload in the DNA Quil-A solution is at a concentration between about $10 \mu \mathrm{~g} / \mathrm{ml}$ and about $1000 \mu \mathrm{~g} / \mathrm{ml}$.

In some embodiments, the Quil-A DNA solution and the chitosan solution are mixed drop-wise. In some embodiments, the Quil-A DNA solution and the chitosan solution are mixed by vortex mixing for about $15-90$ seconds (15 seconds, 20 seconds, 25 seconds, 30 seconds, 35 seconds, 40 seconds, 45 seconds, 50 seconds, 60 seconds, 70 seconds, 80 seconds or 90 seconds). In some embodiments, the Quil-A DNA solution and the chitosan solution are mixed drop-wise followed by vortex mixing for about $15-90$ seconds (15 seconds, 20 seconds, 25 seconds, 30 seconds, 35 seconds, 40 seconds, 45 seconds, 50 seconds, 60 seconds, 70 seconds, 80 seconds or 90 seconds). The Quil-A DNA solution and the chitosan solution may be heated prior to mixing. In some embodiments, the Quil-A DNA solution and the chitosan solution are heated to a temperature between about $20^{\circ} \mathrm{C}$. and about $60^{\circ} \mathrm{C}$. (e.g., $20^{\circ} \mathrm{C} ., 25^{\circ} \mathrm{C} ., 30^{\circ} \mathrm{C} ., 35^{\circ} \mathrm{C}$., $40^{\circ} \mathrm{C}$., $45^{\circ} \mathrm{C}$. $50^{\circ} \mathrm{C}$., $55^{\circ} \mathrm{C}$., or $60^{\circ} \mathrm{C}$.) for between about 20 to about 40 minutes (20 minutes, 25 minutes, 30 minutes, 35 minutes, or 40 minutes) prior to mixing. In some embodiments, after mixing the final solution is incubated at room temperature for about 1 hour to promote QAC complex formation. In some embodiments, after mixing the final solution is incubated for 1 hour at between about $20^{\circ} \mathrm{C}$. and about $45^{\circ} \mathrm{C}$. (e.g., $20^{\circ} \mathrm{C} ., 21^{\circ} \mathrm{C} ., 22^{\circ} \mathrm{C} ., 23^{\circ} \mathrm{C} ., 24^{\circ} \mathrm{C} ., 25^{\circ}$ C., $26^{\circ} \mathrm{C} ., 27^{\circ} \mathrm{C} ., 28^{\circ} \mathrm{C} ., 29^{\circ} \mathrm{C} ., 30^{\circ} \mathrm{C} ., 31,32^{\circ} \mathrm{C} ., 33^{\circ} \mathrm{C}$., $34^{\circ} \mathrm{C} ., 35^{\circ} \mathrm{C} ., 36^{\circ} \mathrm{C} ., 37^{\circ} \mathrm{C} ., 38^{\circ} \mathrm{C} ., 39^{\circ} \mathrm{C} ., 40^{\circ} \mathrm{C}$., 41° C., $42^{\circ} \mathrm{C} ., 43^{\circ} \mathrm{C} ., 44^{\circ} \mathrm{C}$., or $45^{\circ} \mathrm{C}$.) with shaking at between about 90 rpm and about 150 rpm (e.g., $90 \mathrm{rpm}, 95 \mathrm{rpm}, 100$ $\mathrm{rpm}, 105 \mathrm{rpm}, 110 \mathrm{rpm}, 115 \mathrm{rpm}, 120 \mathrm{rpm}, 125 \mathrm{rpm}, 130$ $\mathrm{rpm}, 135 \mathrm{rpm}, 140 \mathrm{rpm}, 145 \mathrm{rpm}$, or 150 rpm). The pH of the solutions may be between 5.5 and 7.0 .
In some embodiments, a first solution of about 0.002% Quil-A and between about $1 \mu \mathrm{~g} / \mathrm{ml}$ and about $5,000 \mu \mathrm{~g} / \mathrm{ml}$ DNA in 50 mM sodium sulfate buffer and a second solution of about 0.04% chitosan in 5 mM sodium acetate buffer pH 5.5 are each heated at $55^{\circ} \mathrm{C}$. for about 30 min . Equal volumes of the first and second solution are mixed dropwise then vortex mixed for about 30 s followed by incubation at room temperature for about 1 hour to form the QAC DNA loaded complex.

In some embodiments, the QAC complex is loaded with a protein molecule payload. The QAC-protein loaded complex is formed by mixing a solution of Quil-A and protein into a solution of chitosan to form a final mixed solution including the QAC-protein complex. In the final mixed solution, the Quil-A and the chitosan are present at a ratio of between 1:15 to 1:100. In some embodiments, the Quil-A and the chitosan are present at a ratio of about 1:20 (e.g., $1: 15,1: 16,1: 17,1: 18,1: 19,1: 20,1: 21,1: 22,1: 23,1: 24$, or
$1: 25)$ in the final mixed solution. In some embodiments, in the final solution Quil-A is at a concentration of 0.001% and chitosan is at a concentration between about 0.02% and about 0.1%. In some embodiments, the protein payload in the protein Quil-A solution is at a concentration between about $10 \mu \mathrm{~g} / \mathrm{ml}$ and about $1000 \mu \mathrm{~g} / \mathrm{ml}$.

In some embodiments, the Quil-A protein solution and the chitosan solution are mixed drop-wise. In some embodiments, the Quil-A protein solution and the chitosan solution are mixed by vortex mixing for about $15-90$ seconds (15 seconds, 20 seconds, 25 seconds, 30 seconds, 35 seconds, 40 seconds, 45 seconds, 50 seconds, 60 seconds, 70 seconds, 80 seconds or 90 seconds). In some embodiments, the Quil-A protein solution and the chitosan solution are mixed dropwise followed by vortex mixing for about 15-90 seconds (15 seconds, 20 seconds, 25 seconds, 30 seconds, 35 seconds, 40 seconds, 45 seconds, 50 seconds, 60 seconds, 70 seconds, 80 seconds or 90 seconds). The Quil-A protein solution and the chitosan solution may be heated prior to mixing. In some embodiments, the Quil-A protein solution and the chitosan solution are heated to a temperature between about $20^{\circ} \mathrm{C}$. and about $60^{\circ} \mathrm{C}$. (e.g., $20^{\circ} \mathrm{C} ., 25^{\circ} \mathrm{C} ., 30^{\circ} \mathrm{C} ., 35^{\circ} \mathrm{C} ., 40^{\circ} \mathrm{C}$., $45^{\circ} \mathrm{C} ., 50^{\circ} \mathrm{C}$., $55^{\circ} \mathrm{C}$., or $60^{\circ} \mathrm{C}$.) for between about 20 to about 40 minutes (20 minutes, 25 minutes, 30 minutes, 35 minutes, or 40 minutes) prior to mixing. In some embodiments, after mixing the final solution is incubated at room temperature for about 1 hour to promote QAC complex formation. In some embodiments, after mixing the final solution is incubated for 1 hour at between about $20^{\circ} \mathrm{C}$. and about $45^{\circ} \mathrm{C}$. (e.g., $20^{\circ} \mathrm{C} ., 21^{\circ} \mathrm{C} ., 22^{\circ} \mathrm{C} ., 23^{\circ} \mathrm{C} ., 24^{\circ} \mathrm{C}$., 25° C., $26^{\circ} \mathrm{C} ., 27^{\circ} \mathrm{C} ., 28^{\circ} \mathrm{C} ., 29^{\circ} \mathrm{C} ., 30^{\circ} \mathrm{C} ., 31,32^{\circ} \mathrm{C} ., 33^{\circ} \mathrm{C}$., 34° C., 35° C., 36° C., 37° C., 38° C., $39^{\circ} \mathrm{C} ., 40^{\circ} \mathrm{C} ., 41^{\circ}$ C., $42^{\circ} \mathrm{C} ., 43^{\circ} \mathrm{C} ., 44^{\circ} \mathrm{C}$., or $45^{\circ} \mathrm{C}$.) with shaking at between about 90 rpm and about 150 rpm (e.g., $90 \mathrm{rpm}, 95 \mathrm{rpm}, 100$ $\mathrm{rpm}, 105 \mathrm{rpm}, 110 \mathrm{rpm}, 115 \mathrm{rpm}, 120 \mathrm{rpm}, 125 \mathrm{rpm}, 130$ $\mathrm{rpm}, 135 \mathrm{rpm}, 140 \mathrm{rpm}, 145 \mathrm{rpm}$, or 150 rpm). The pH of the solutions may be between 5.5 and 7.0.

In some embodiments, a first solution of about 0.002% Quil-A and between about $1 \mu \mathrm{~g} / \mathrm{ml}$ and about $5,000 \mu \mathrm{~g} / \mathrm{ml}$ protein in 50 mM sodium sulfate buffer and a second solution of about 0.04% chitosan in 5 mM sodium acetate buffer pH 5.5 are each heated at $55^{\circ} \mathrm{C}$. for about 30 min . Equal volumes of the first and second solution are mixed dropwise then vortex mixed for about 30 s followed by incubation at about $37^{\circ} \mathrm{C}$. for about 1 hour with shaking at about 110 rpm to form the QAC protein loaded complex.

A vaccine comprising a QAC complex adjuvant as described herein may also comprise other suitable agents or ingredients. Suitable agents may include a suitable carrier or vehicle for delivery. As used herein, the term "carrier" refers to a pharmaceutically acceptable solid or liquid filler, diluent or encapsulating material. A water-containing liquid carrier can contain pharmaceutically acceptable additives such as acidifying agents, alkalizing agents, antimicrobial preservatives, antioxidants, buffering agents, chelating agents, complexing agents, solubilizing agents, humectants, solvents, suspending and/or viscosity-increasing agents, tonicity agents, wetting agents or other biocompatible materials. A tabulation of ingredients listed by the above categories, may be found in the U.S. Pharmacopeia National Formulary, 1857-1859, (1990).

Some examples of the materials which can serve as pharmaceutically acceptable carriers are sugars, such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipi-
ents such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols, such as propylene glycol; polyols such as glycerin, sorbitol, mannitol and polyethylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen free water; isotonic saline; Ringer's solution, ethyl alcohol and phosphate buffer solutions, as well as other nontoxic compatible substances used in pharmaceutical formulations. Wetting agents, emulsifiers and lubricants such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions, according to the desires of the formulator.

Examples of pharmaceutically acceptable antioxidants include water soluble antioxidants such as ascorbic acid, cysteine hydrochloride, sodium bisulfite, sodium metabisulfite, sodium sulfite and the like; oil-soluble antioxidants such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol and the like; and metal-chelating agents such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid and the like. In another embodiment, the present formulation may also comprise other suitable agents such as a stabilizing delivery vehicle, carrier, support or complex-forming species. The coordinate administration methods and combinatorial formulations of the instant invention may optionally incorporate effective carriers, processing agents, or delivery vehicles, to provide improved formulations for delivery of the QAC complex and other biologically active agents and antigens of the composition.

The vaccine formulation may additionally include a biologically acceptable buffer to maintain a pH close to neutral (7.0-7.3). Such buffers preferably used are typically phosphates, carboxylates, and bicarbonates. More preferred buffering agents are sodium phosphate, potassium phosphate, sodium citrate, calcium lactate, sodium succinate, sodium glutamate, sodium bicarbonate, and potassium bicarbonate. The buffer may comprise about $0.0001-5 \%(w / v)$ of the vaccine formulation, more preferably about $0.001-1 \%(\mathrm{w} / \mathrm{v})$. Other excipients, if desired, may be included as part of the final vaccine formulation.

The remainder of the vaccine formulation may be an acceptable diluent, to 100%, including water. The vaccine formulation may also be formulated as part of a water-in-oil, or oil-in-water emulsion.

The vaccine formulation may be separated into vials or other suitable containers. The vaccine formulation herein described may then be packaged in individual or multi-dose ampoules, or be subsequently lyophilized (freeze-dried) before packaging in individual or multi-dose ampoules. The vaccine formulation herein contemplated also includes the lyophilized version. The lyophilized vaccine formulation may be stored for extended periods of time without loss of viability at ambient temperatures. The lyophilized vaccine may be reconstituted by the end user, and administered to a patient.

The term "lyophilization" or "lyophilized," as used herein, refers to freezing of a material at low temperature followed by dehydration by sublimation, usually under a high vacuum. Lyophilization is also known as freeze drying. Many techniques of freezing are known in the art of lyophilization such as tray-freezing, shelf-freezing, spray-freezing, shell-freezing and liquid nitrogen immersion. Each
technique will result in a different rate of freezing. Shellfreezing may be automated or manual. For example, flasks can be automatically rotated by motor driven rollers in a refrigerated bath containing alcohol, acetone, liquid nitrogen, or any other appropriate fluid. A thin coating of product is evenly frozen around the inside "shell" of a flask, permitting a greater volume of material to be safely processed during each freeze drying run. Tray-freezing may be performed by, for example, placing the samples in lyophilizer, equilibrating 1 hr at a shelf temperature of $0^{\circ} \mathrm{C}$., then cooling the shelves at $0.5^{\circ} \mathrm{C} . / \mathrm{min}$ to $-40^{\circ} \mathrm{C}$. Spray-freezing, for example, may be performed by spray-freezing into liquid, dropping by $\sim 20 \mu$ droplets into liquid N_{2}, sprayfreezing into vapor over liquid, or by other techniques known in the art.
The vaccine of the present invention may be either in a solid form or in a liquid form. Preferably, the vaccine of the present invention may be in a liquid form. The liquid form of the vaccine may have a concentration of about 0.5-20 $\mu \mathrm{g} / \mathrm{ml}$ Quil-A and about $100-250 \mu \mathrm{~g} / \mathrm{ml}$ chitosan. In some embodiments, the liquid form of the vaccine includes 10 $\mu \mathrm{g} / \mathrm{ml}$ Quil-A and $200 \mu \mathrm{~g} / \mathrm{ml}$ chitosan. The liquid form of the vaccine may have a concentration of about $10-1000 \mu \mathrm{~g} / \mathrm{ml}$ DNA payload or $5-500 \mu \mathrm{~g} / \mathrm{ml}$ RNA payload.
To vaccinate a patient, a therapeutically effective amount of vaccine comprising the QAC complex adjuvant or a QAC complex loaded with a payload antigen or immunogen may be administered to a patient. The therapeutically effective amount of vaccine may typically be one or more doses, preferably in the range of about $0.01-10 \mathrm{~mL}$, most preferably $0.1-1 \mathrm{~mL}$, containing 1-200 micrograms, most preferably 1-100 micrograms of vaccine formulation/dose. The therapeutically effective amount may also depend on the vaccination species. For example, for smaller animals such as mice, a preferred dosage may be about $0.01-1 \mathrm{~mL}$ of a $1-50$ microgram solution of antigen. For a human patient, a preferred dosage may be about $0.1-1 \mathrm{~mL}$ of a $1-50$ microgram solution of antigen. The therapeutically effective amount may also depend on other conditions including characteristics of the patient (age, body weight, gender, health condition, etc.), characteristics of the antigen or pathogen of interest, and others. In one embodiment the vaccine formulation of the present invention comprises the QAC complex adjuvant or a QAC complex loaded with a payload antigen or immunogen with Quil-A at a concentration of $10 \mu \mathrm{~g} / \mathrm{ml}$ and chitosan at a concentration of 200 $\mu \mathrm{g} / \mathrm{ml}$.
A vaccine of the present invention may be administered by using any suitable means as disclosed above. Preferably, a vaccine of the present invention may be administered by intranasal delivery, transmucosal administration, subcutaneous or intramuscular administration, e.g., needle injection. In some embodiments, vaccine compositions for protection against a viral infection are formulated for transmucosal delivery. In some embodiments, vaccine compositions for protection against a bacterial infection are formulated for subcutaneous administration.
After vaccination using a vaccine of the present invention comprising the QAC complex adjuvant, a patient may be immunized against at least one type of fungi, bacteria, or virus. In one specific embodiment, a patient after vaccination may be immunized against at least one species of bacteria. In one preferred embodiment, a patient after vaccination may be immunized from Mycobacterium avium subspecies paratuberculosis, Mycobacterium bovis, Mycobacterium tuberculosis, and Mycobacterium avium sub species avium.

The instant invention may also include kits, packages and multicontainer units containing the above described pharmaceutical compositions, active ingredients, and/or means for administering the same for use in the prevention and treatment of diseases and other conditions in mammalian subjects. Briefly, these kits include a container or formulation that contains the QAC complex adjuvant or a QAC complex loaded with a payload antigen or immunogen with mucosal or subcutaneous delivery enhancing agents disclosed herein formulated in a pharmaceutical preparation for delivery. In some embodiments, the kit includes a Quil-A solution as described herein and a chitosan solution as described herein for the preparation of QAC complex using a user supplied payload molecule.
As used herein, the term "pharmaceutically acceptable carrier" refers to any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. Preferably, the carrier is suitable for intravenous, intramuscular, subcutaneous, parenteral, spinal or epidermal administration (e.g., by injection or infusion).
A "pharmaceutically acceptable salt" refers to a salt that retains the desired biological activity of the parent compound and does not impart any undesired toxicological effects (see e.g., Berge, S. M., et al. (1977) J. Pharm. Sci. 66:1-19). Examples of such salts include acid addition salts and base addition salts. Acid addition salts include those derived from nontoxic inorganic acids, such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydroiodic, phosphorous and the like, as well as from nontoxic organic acids such as aliphatic mono- and dicarboxylic acids, phenylsubstituted alkanoic acids, hydroxy alkanoic acids, aromatic acids, aliphatic and aromatic sulfonic acids and the like. Base addition salts include those derived from alkaline earth metals, such as sodium, potassium, magnesium, calcium and the like, as well as from nontoxic organic amines, such as N, N 'dibenzylethylenediamine, N -methylglucamine, chloroprocaine, choline, diethanolamine, ethylenediamine, procaine and the like.
In one embodiment, the composition may also comprise suitable stabilizing delivery vehicle, carrier, support or com-plex-forming species, such as those as discussed above. For example, the composition may additionally comprise at least one of a stabilizer, a buffer, or an adjuvant.

The present invention has been described in terms of one or more preferred embodiments, and it should be appreciated that many equivalents, alternatives, variations, and modifications, aside from those expressly stated, are possible and within the scope of the invention.

Example 1

The embodiment described here demonstrates the preparation of loaded Quil-A chitosan complexes.
Infectious Bronchitis (IB) is an acute respiratory illness of domestic fowl caused by Infectious Bronchitis Virus (IBV) (1). IBV is a member of the genus gammacoronavirus, family Coronaviridae, order Nidovirales with a 27.6 Kb single stranded positive sense RNA genome encoding major structural proteins, spike glycoprotein (S), envelope (E), membrane (M) and nucleocapsid (N) (2). D3 associated clinical signs include tracheal rales, frequent sneezing with nasal exudate, lethargy, labored breathing, etc. Uncomplicated IB infections are not lethal and virus with associated symptoms are cleared within 10 days (3). Apart from replicating and causing pathology in the upper respiratory tract, IBV can also affect the oviducts and kidneys depending on
the strain of the virus. IBV control is of great economic importance to the poultry industry, infected broilers are subjected to increased condemnation at the slaughterhouses and layers are plagued with a drop in egg quality and production (4-6). High antigenic variation in the spike glycoprotein (S) is a hallmark of different IBV serotypes (6-8). Multiple serotypes co-circulate in birds, which complicates diagnosis and control of IBV. Current commercial modified live virus (MLV) vaccines confer homologous protection but fail to cross-protect against multiple and newly emerging serotypes. Sequence difference even as little as 4% in the 51 subunit of S protein can lead to vaccine failure (9,10). Unfortunately, MLVs have been shown to persist and transmit in vaccinated birds potentially mediating recombination with virulent circulating serotypes leading to the emergence of new serotypes (11-13). With the emergence of new serotypes like GA98 linked to the excessive use of MLV (14), there is an urgent need to develop a safe and effective vaccine against IBV, the focus of the current study.

The use of plasmid DNA as potential immunogens was described almost 30 years ago (15), however, only 5 DNAbased vaccines have been licensed for veterinary use (16). Nucleic acid based vaccines have significant advantages over MLV as they have a superior safety profile, invoke robust cell mediated immunity (CMI) with potent adjuvants, cost less to produce and are thermostable obviating the need for cold chain (17). DNA-based vaccines encoding IBV 51, M and N genes administered in ovo and intramuscularly have been studied with variable protection levels against IBV (18-26). The use of plasmid DNA vaccines in the field despite having practical advantages and being safe has been limited owing to poor immunogenicity and cellular availability. Nanocarriers increase bioavailability of antigen cargo generating an immediate uptake by immune cells and hence, are potent adjuvants(27). Nanocarriers can protect plasmid DNA and antigen cargo from degradation in vivo facilitating delivery in vaccine hostile mucosal surfaces (28, 29). To provide a safer alternative to current MLVs, we detail the development of nano carriers composed of natural adjuvants, Quil-A and chitosan (QAC) for the delivery of IBV plasmid DNA immunogen. Natural adjuvants (such as Quil-A and chitosan) are inexpensive to produce, making them ideal candidates for animal vaccines. Chitosan is a nontoxic, biodegradable, biocompatible natural polysaccharide. Chitosan is cationic in nature and can readily complex with negatively charged nucleic acids and proteins through electrostatic interactions (30). Chitosan is immunomodulatory, forms stable DNA/protein complexes and has mucoadhesive properties because of which they are widely applied for mucosal routes of administration(31). Quil-A is a potent adjuvant with mild surfactant properties (32) produced from the plant Quillaja saponaria, which can form nanoparticle compounds like ISCOMs and those formed with chitosan (QAC) as we detail below.

The sequence similarity of IBV Nucleocapsid (N) protein between diverse serotypes is greater than 90%, for this reason IBV N protein is an ideal immunogen candidate in an effort to develop a cross-protective vaccine. Immunization with N protein elicited a robust cytotoxic T-lymphocyte (CTL) response, an important correlate of protection against IBV (20, 33, 34). Adoptively transferred IBV reactive CD8+ T-cells protect against IBV challenge in naïve chickens (35, 36). In the present study, we evaluated the ability of a stable plasmid DNA construct expressing the IBV N protein complexed with the QAC adjuvant system given intra nasally to protect immunized birds against challenge with virulent
strain of IBV. Our results indicate that $\mathrm{pQAC}-\mathrm{N}$ vaccine elicits a CD8+ T-cell response which protect vaccinated birds against IBV challenge. Levels of protection in pQAC-N vaccinated birds were higher when compared to unadjuvanted or chitosan complexed plasmid DNA vaccine. Our data demonstrate that intra nasal immunization with pQAC-N induced a strong cell mediated immune response that protect vaccinated birds with a significant reduction in clinical signs and viral load to levels seen with commercial MLV vaccinated birds.

Results

Synthesis and characterization of pQAC-N nanovaccine. The green fluorescent protein (GFP) gene was inserted into the pCAG plasmid and was used as a DNA pay load for nanoparticle (NP) characterization. Transmission electron microscopy (TEM) analysis of chitosan-plasmid DNA complexes indicated presence of aggregated structures (FIG. 18A). However, when Quil-A was added to chitosan-DNA complex, defined particles were formed with the disaggregation of chitosan-DNA complexes (FIG. 18B). Size estimations using TEM analysis indicated that QAC-DNA nanoparticles were $<100 \mathrm{~nm}$ (FIG. 18B). Dynamic light scattering (DLS) was also used to measure the hydrodynamic size and zeta potential of QAC-pDNA particles. As expected, particles were $95 \pm 25 \mathrm{~nm}$ in size (94%) with a net positive zeta potential of $15 \pm 4.44 \mathrm{mV}$ (FIGS. 18C-18D).

The ability of QAC adjuvant system to deliver plasmid DNA payload was evaluated in vitro to examine its potential for immunization programs. The QAC nanoparticles encapsulating total 5 ug pCAG-GFP construct were added to a suspension of Expi293F cells. After 72 hrs post addition, presence of fluorescent cells was observed using fluorescence microscopy (FIG. 19A), indicating the delivery and expression of the GFP from the construct. The release kinetics of the GFP protein from the pCAG-GFP construct was evaluated in phosphate buffered saline (PBS) at pH 7.4 by quantifying the amount of starting and released plasmid DNA in buffer using spectrophotometry. The analysis showed that almost 42% of plasmid DNA within the nanoparticles was released within 15 days, the end point for our analysis. Overall, a biphasic release kinetics was observed with sustained release of DNA cargo for the first 10 days followed by a plateau over the next 5 days (FIG. 19B). The encapsulation efficiency of DNA (percentage of encapsulated DNA relative to the starting DNA) in QAC nanoparticles ranged from 70-90\%.

Finally, following successful encapsulation and sustained release of plasmid DNA with QAC, we used the same nanocarrier (QAC) to encapsulate plasmid DNA encoding N protein from IBV-Arkansas strain with a C-terminal $6 \times \mathrm{His}$ tag, henceforth referred to as $\mathrm{pQAC}-\mathrm{N}$. The expression of antigen was confirmed using western blot analysis with an anti-6 \times His antibody (FIGS. 20A-20B).

QAC-based nanovaccine is well tolerated by chickensIn ovo and spray vaccinations (intranasal) are two strategies used in the field for mass vaccinations of poultry flocks. The safety of $\mathrm{pQAC}-\mathrm{N}$ in chicken hosts was evaluated through two routes of administration, In ovo and intranasal, a proxy for field spray vaccinations. Embryo development and hatch rate of $\mathrm{pQAC}-\mathrm{N}(100 \mathrm{ug})$ inoculated specific pathogen free (SPF) embryonated chicken eggs (ECE) was similar to ECEs inoculated with PBS (100%, FIG. 21A). In addition, 1-day-old SPF chicks were immunized with pQAC-N construct intra nasally and monitored for general or respiratory distress, depression or in appetence and weight gain over the course of 30 days post vaccination. No signs for respiratory distress were observed in chicks immunized at 1 day of age
and weight gain over 30 days was not statistically different from chicks inoculated with PBS (FIG. 21B). Overall, our analysis in chickens and chicken embryos indicated that $\mathrm{pQAC}-\mathrm{N}$ is well-tolerated.
Immunization with $\mathrm{pQAC}-\mathrm{N}$ induces a robust immune response - Harderian glands play a critical role in the control of IBV infection in the upper respiratory tract by secreting IBV specific IgA antibodies into the lachrymal fluid (tears) (34). Accordingly, we examined the ability of pQAC-N vaccine to elicit IBV specific immune responses in birds following intranasal delivery. Lachrymal fluid samples collected at different time points, 10,20 days post vaccination (DPV, pre-challenge) and 3 days post challenge (DPC) were examined using ELISA plates coated with IBV Arkansas 51 and N proteins. IBV specific $\operatorname{Ig} A$ titers were detectable in $\mathrm{pQAC}-\mathrm{N}$ immunized birds at 20 DPV at levels higher than seen in chitosan pCAG-N immunized birds (FIG. 22A). Albeit detectable, IgA levels were not significantly higher than levels seen in other groups, naked (unadjuvanted) and chitosan complexed pCAG-N. IgA levels were 10 folds higher in birds immunized with commercial MLV when compared to other experimental vaccine groups (FIG. 22A), most likely because of the IgA against 51 which was not included in the pQAC-N but present in MLV.
To assess the effect of IBV specific cellular immune responses induced by $\mathrm{pQAC}-\mathrm{N}$, we measured the ability of PBMCs from immunized chickens to respond to IBV antigen stimulation. PBMCs were harvested from vaccinated birds at 20 DPV (pre-challenge time point) and processed for antigen specific cell proliferation assay (MTT assay). The stimulation of PBMCs from chickens vaccinated with pQAC-N resulted in significantly higher proliferation ($\mathrm{p}<0.05$) than that of PBMCs from other groups including MLV (FIG. 22B), suggesting a better cellular immunity following $\mathrm{pQAC}-\mathrm{N}$ immunization.
Reduced clinical severity and viral burden in immunized birds-To investigate the protective efficacy of $\mathrm{pQAC}-\mathrm{N}$ vaccine, all immunized birds were challenged with virulent IBV Arkansas-DPI serotype at 3 weeks post first vaccination (21 DPV) and the clinical severity of bird groups was scored up to 8 DPC (FIG. 23A). Vaccination with naked pCAG-N (unadjuvanted) and chitosan complexed $\mathrm{pCAG}-\mathrm{N}$ conferred partial protection against clinical signs associated with IBV. On the other hand, $\mathrm{pQAC}-\mathrm{N}$ and commercial MLV immunized bird groups were relatively asymptomatic with a significant reduction in clinical severity when compared to unvaccinated birds (FIG. 23A).
In addition, we used RT-qPCR to assess the level of viral RNA in lachrymal fluid of all birds at 6 DPC . A significant reduction in viral load (-2.5 logs) was found in the PQAC-N immunized birds when compared to control birds at levels comparable to commercial MLV vaccinated birds (FIG. 23B). A partial reduction in viral load was also observed in naked pCAG-N and chitosan pCAG-N administered birds (FIG. 23B). Overall, reduction in viral load was higher in the pQAC-N than other DNA-based vaccine constructs suggesting an important role played by Quil-A in the induced immunity in chickens.
Localized IBV-specific cellular responses in immunized birds-Induction of robust T-cell responses has been identified as relevant correlates of protection against IBV infection in previous studies (34). An antigen specific T cell proliferation assay based on CellTrace ${ }^{\mathrm{TM}}$ Violet Cell dye staining of lung cells to trace proliferating T cells was developed. Different T-cell subsets responding to antigen stimulation was identified using flow cytometry assisted T-cell assay. Twenty days after first vaccination, the IBV Ark

N protein specific proliferation was measured. The stimulation index (SI), which is the fold increase in stimulated to unstimulated cells calculated. Lung cells from $\mathrm{pQAC}-\mathrm{N}$ vaccinated birds responded well to antigen stimulation which was higher when compared to negative and MLV control groups (FIG. 24A). An increase in the stimulation of proliferating CD8+ and TCR $\gamma \delta+\mathrm{T}$ cells was observed in pQAC-N vaccinated birds in comparison to control birds (FIGS. 24B \& 24D), suggesting a potential role for $\mathrm{CD8}^{+}$ and TCR $\gamma \delta^{+}$cell in $\mathrm{pQAC}-\mathrm{N}$ immunity. On the other hand, the CD4+ T-cell proliferation was higher in MLV vaccinated birds (FIG. 24C).
Protective efficacy of $\mathrm{PQAC}-\mathrm{N}$ in the presence of maternally derived antibodies-Maternally derived antibodies (MDA), mainly IgY are transferred from vaccinated hens to progeny via the yolk. Presence of IBV specific MDA has shown to protect against IBV challenge in SPF chickens (37-39). Although effective against IBV infections, MDA can interfere with MLV vaccination and dampen development of active immunity (39). In this pilot study, we investigated the ability of $\mathrm{pQAC}-\mathrm{N}$ to mediate protection in the presence of interfering MDA. Commercial white leghorn chicks with high levels of circulating IBV specific $\operatorname{Ig} Y$ which persisted till about day-24 of age was used (FIG. 25A). As seen with the SPF chick, pQAC-N immunized commercial birds were also protected against IBV Arkansas DPI challenge with a significant reduction in viral load (FIG. $\mathbf{2 5 C}$) and clinical severity scores (FIG. 25B) compared to unvaccinated birds, suggesting the ability of the $\mathrm{pQAC}-\mathrm{N}$ to protect birds without interference by MDA.
After the pilot study, the ability of pQAC-N to reduce viral shedding in trachea was evaluated in comparison to MLV vaccinated birds. Similar to the previous trials, pQAC-N vaccinated birds had significantly reduced viral shedding in tracheal swabs and clinical severity post challenge on par with MLV vaccinated birds (FIGS. 27C \& 27D). Interestingly, MLV vaccinated birds showed signs of respiratory distress as late as 15 dpv , with one bird dying at 10 dpv which was not observed in the other groups and with SPF birds in the previous trial. Diagnostic analysis including necropsy with bacteriology and virology analysis was performed by the Wisconsin Veterinary Diagnostic Laboratory on the dead bird and on a euthanized control bird. Investigation revealed the presence of Staphylococcus aureus and Escherichia coli superinfection in the dead MLV vaccinated bird which was not detected in the euthanized control bird. Severe locally extensive pulmonary edema was reported in the lungs of the MLV vaccinated bird which was a result of bacteremia/sepsis, the likely cause of death. MLV vaccinated birds were significantly lighter in weight (FIG. 26A) and had reduced weight gain between 14-28 dpv (FIG. 26B), a potential consequence of bacterial superinfection. Discussion

Many experimental subunit and plasmid DNA vaccines against IBV have been developed and its efficacy detailed in previous studies. Intra muscularly (I.M) and in ovo administered experimental vaccines without adjuvants or complemented with natural and molecular adjuvants like IL-2 and GM-CSF have been shown to reduce viral shedding, clinical signs and improve protection rates against IBV (18-26). Alternative routes such as in ovo administration of 51 plasmid DNA vaccine has also been shown to elicit a modest immune response (19). Compared to 51 protein, higher protection rates against IBV challenge and increased total T-cells were shown with I.M immunization with plasmid encoding N protein (20, 23, 25). In this study, we detail the development of a safe mucosal vaccine adjuvant (QAC) for
intranasal immunization, a highly desired feature of mass vaccinations under field condition. The safety of QAC nanocarrier was examined by two common routes of field immunization, I.N and in ovo. Birds intranasally immunized by a single dose or double doses (at 1 and 14 days of age) did not show any signs of respiratory distress, and weight gain was same as observed with control birds. The in ovo immunization also did not affect embryo development and egg hatch rates. Previously, both Quil-A and chitosan were shown to be biocompatible with no adverse effects reported when administered to animals (30-32, 40). Similarly, our results indicate that the QAC adjuvant is safe, tolerable and biocompatible in chicken hosts.
For vaccine efficacy, our experimental vaccine ($\mathrm{PQAC}-\mathrm{N}$) was compared to the current commercial MLV in a challenge model adopted based on recommended guidelines from the food and drug administration with modifications (FDA-9CFR). The superiority of the QAC adjuvant system was shown in a challenge model where birds were challenged immediately at 7 days following vaccine boost with a relatively high dose of IBV Ark-DPI (6.5E9 genome copy no or $10^{6.5} \mathrm{EID}_{50}$). Specifically, we demonstrated the ability of QAC adjuvant system to enhance immunogenicity and protective efficacy of pCAG-N plasmid vaccine which otherwise conferred partial protection when administered independently (naked pCAG-N). It is possible that N protein uptake and processing by antigen-presenting cells (APCs) is a key step in the downstream activation of B and T-cells for developing a robust memory immune response (41) that was shown in the pQAC-N immunized birds. Factors that influence APC uptake of antigens includes particle surface charge, size, hydrophobicity and others (42). Soluble viral immunogens by themselves owing to their small size (<20 nm) are poorly taken up by APCs. Particulate adjuvant systems with a size range of $20-200 \mathrm{~nm}$ have been shown to promote APC uptake by endocytosis (42). Our findings have shown that QAC-based formulations formed spherical disaggregated particles of optimal size ($<100 \mathrm{~nm}$) for efficient APC uptake and processing, as expected when the Quil-A surfactant is added. Delivery systems with net positive surface charge like QAC (positive zeta potential 15 ± 4.4 mV), temporarily disrupt membrane of cells causing membrane flipping and/or fusion at cell surfaces mediating payload delivery or enter cells via clathrin-mediated endocytic pathway, a potential pathway for effective antigen uptake (43). Chitosan DNA particles promote the slow release of packaged DNA and similarly, we observed the sustained release of DNA payload complexed with QAC in vitro (44). Our in vitro analysis indicated that QAC could promote targeted delivery of payload into cells and/or act as antigen depots maintaining a sustained release of payload priming immune cells continually. Overall, encapsulation of plasmid DNA by QAC mediated slow release of immunogen which could help in continuous priming of antigen presenting cells and overcome the need for multiple immunizations.
pQAC-N vaccinated SPF birds had a significantly lower viral burden when compared to unvaccinated birds. Chitosan by itself did not reduce viral shedding observed with naked unadjuvanted pCAG-N construct, suggesting a key role of the nanocarrier size and composition used in our hands. Interestingly, a strong correlation between reduced clinical severity and reduction in viral load was observed. The protective efficacy of $\mathrm{pQAC}-\mathrm{N}$ was comparable to MLV with similar levels of reduced clinical severity and nonsignificant reduction in viral load observed between both groups. To our knowledge, with the exception of one study, most experimental IBV DNA vaccines have been tested
against serotypes not endemic to US, via I.M route and without a comparable commercial live virus group (20-26). Here we observed that the pQAC-N vaccine when administered I.N was able to protect vaccinated birds against a field-relevant IBV Arkansas-DPI, most likely because of the induced localized immunity as suggested before $(34,45)$. PBMCs harvested from pQAC-N vaccinated birds responded to antigen stimulation ex vivo with significantly higher proliferation than seen with control and other plasmid DNA vaccine groups. Moreover, the analysis of different immunological parameters indicated that $\mathrm{pQAC}-\mathrm{N}$ induces strong CMI responses in contrast to MLV, which induced potent antibody responses. The induction of CMI responses could be a hallmark for the pQAC-N nanovaccine. IBV N protein is a highly immunogenic antigen with mapped CTL epitopes in the C-terminal which mediate potent CTL memory responses. IBV specific memory CD8+ T-cell responses restrict IBV replication efficiently and are strong correlates of protection for IBV control (34). It is noteworthy here that birds vaccinated with an experimental IBV N -based vaccines generally have a higher percentage and proliferation of CD3+ CD8+ T-cells, albeit not specific to IBV, a limitation of assaying total T-cell numbers (20, 23, 25).

To decipher QAC-DNA mediated IBV specific immunity, we used flow cytometry assisted lymphocyte proliferation assay to identify and quantify subsets of T-cells responding to IBV antigen. Similar to results with MTT assay, we noticed lung cells from pQAC-N vaccinated birds had higher stimulation ex vivo when compared to the control groups. More reactive $\mathrm{CD} 8+$ and $\mathrm{TCR} \gamma \delta+\mathrm{T}$-cells were present in pQAC-N vaccinated birds, albeit non-significant. Large variations in recall proliferation within $\mathrm{pQAC}-\mathrm{N}$ vaccinated group was observed, a phenomenon that has been reported in other published studies investigating chicken immune responses (46). Presented results suggest that vaccination with $\mathrm{pQAC}-\mathrm{N}$ confers protection against IBV challenge to levels similar to MLV vaccination and that protection might be attributed to an induction of CD8+ and $\mathrm{TCR} \gamma \delta+$ memory T cell responses, rather than $\mathrm{CD} 4+$ induction observed with MLV vaccination. Further studies to elucidate the exact mechanism of $\mathrm{pQAC}-\mathrm{N}$ mediated immunity are needed.

Most commercial breeders are immunized with IBV vaccines and transfer IBV specific IgY to their progeny via egg yolk which can interfere with vaccine efficacy. Prior evidence suggests that DNA vaccination could overcome limitations of early vaccinations by priming the immune system even in the presence of interfering MDA (47-49). Our results indicate that $\mathrm{pQAC}-\mathrm{N}$ can mediate protection in the presence of MDA reducing viral shedding in lachrymal fluid and in the trachea. As observed in the trial with SPF chicks, IBV specific $\operatorname{Ig} A$ and $\operatorname{Ig} Y$ were detectable in $\mathrm{pQAC} N$ vaccinated birds albeit significantly lower than levels in MLV vaccinated birds. Mortality associated with IBV outbreaks in the field is usually low unless compounded by secondary bacterial infections (50). Interestingly, in the latest trial conducted, MLV vaccinated commercial birds had active bacterial superinfection leading to mortality in one bird ($\sim 8 \%$), reduced weight gain and presence of respiratory clinical signs which was not seen in pQAC-N vaccinated birds. This observation underscores the inferior safety profile of commercial MLV vaccines.

Although protective, addition of other inexpensive biocompatible adjuvants to generate a complementing humoral response could be used to the current $\mathrm{pQAC}-\mathrm{N}$ construct. In summary, we detailed the development of a safe plasmid

DNA vaccine complimented by a mucosal adjuvant system (QAC) which protects SPF and commercial birds against IBV challenge by eliciting a strong T-cell immune response. We postulate that the QAC nano-adjuvant system can be used as a vaccine adjuvant for the delivery of plasmid DNA and protein immunogens against other respiratory viruses and intracellular pathogens for poultry and other animals. Materials and Methods
Cells and Viruses-Expi293F cells obtained from ThermoFisher Scientific was used for confirming expression of IBV Ark N $6 \times$ His protein from vaccine construct. The cells were cultured in Expi293 medium at $37^{\circ} \mathrm{C}$., $125 \mathrm{rpm}, 8 \%$ CO2 atmosphere in plastic flasks with ventilated caps. The virulent IBV Arkansas DPI strain (a kind gift from Dr Ladman and Dr Gelb) was propagated in 9-day old SPF ECEs and allantoic fluid harvested four days after infection. The stock virus titre was determined using RT-qPCR (see below) and also titrated and expressed as 50% embryo infectious dose (EID $_{50}$) (51). IBV S1 gene sequence of Ark DPI challenge isolate is AF006624.
Preparation of plasmids-Arkansas Nucleocapsid (N6× His) and S1 gene (S1 $6 \times$ His) was amplified from reverse transcribed cDNA synthesized from IBV Arkansas 99 (ATCC VR-841) with a C-terminus $6 \times$ His tag. The forward primer ((5'-ATCACTGAATTCACCATGGCAAGCGG-TAAAGCAG-3') SEQ ID NO: 13) and reverse primer ((5'-ATCACTGCGGCCGCTTAGTGGTGATGGTGATG-ATGACCTCCTCCAAGTTCATTCTCTCCTAGAGCTG-C-3') SEQ ID NO: 14) were employed for amplifying N6 \times His. The forward primer ((5^{\prime}-ATCACTGAATTCAC-CATGTTGGTGAAGTCACTGTTTCTAGTG-3') SEQ ID NO: 15) and reverse primer ((5'-ATCACTGCGGCC-gCtCAGTGGTGATGGTGATGATGCCCTCCGCCGGAGGATCCAGTT CCATTAGTGATCTTAATGTAAAACTGGTTTTC') SEQ ID NO: 16) were employed for amplifying S1 $6 \times$ His. Amplified gene fragments were cloned into EcoRI and NotI restriction sites of pCAG-GFP plasmid, a gift from Connie Cepko (addgene plasmid \#11150, FIG. 3A). To confirm insertion of genes in the correct orientation, DNA sequencing was performed at the UW-Madison Biotechnology Center with an ABI Prism 3730XL DNA analyzer using BigDye terminators (Applied Biosystems, CA). To confirm expression of $\mathrm{N} 6 \times$ His and S1 $6 \times$ His protein, Expi293F cells seeded in 6-well format was transfected with an optimized ratio of DNA (4 ug): TransIT PRO transfection reagent (2 ul) according to manufacturer's instructions (Mirus Bio, WI, USA). Three days post transfection, cells were harvested for western blot analysis. Cell fractions were boiled in Laemmli sample buffer (BioRad, Hercules, Calif., USA) and resolved on a $4-20 \%$ SDS-PAGE gel by electrophoresis using a Mini-PROTEAN 3 system (BIO-RAD, CA). Polyacrylamide gels were electroblotted onto nitrocellulose membranes using a Turboblot \mathbb{B} system. Membranes were blocked in 5% (W/V) skim milk and probed with polyclonal anti-6xHis HRP antibody (ThermoFisher Scientific, MAI-21315-HRP). Membranes were developed using a solid phase 3,30,5,50-tetramethylbenzidine (TMB) substrate system.

Characterization of nanoparticles-Quil-A (VET-SAP, Desert King) stock solution of 0.2% was made in nuclease free water. Chitosan stock solution ($>75 \%$ deacetylated, Sigma) of 0.4% in 1% glacial acetic acid was prepared and diluted to 0.04% in 5 mM sodium acetate buffer, pH 5.5 . Both components was heated separately for 30 mins in a 55 C water bath. Equal volume of Quil-A-plasmid DNA solution was added drop by drop to the chitosan solution and the mixture was vortexed for 30 s . The solution was left at room
temperature for 1 hour to promote QAC-DNA particle formation. Plasmid DNA was diluted to $100 \mathrm{ug} / \mathrm{ml}$ in 50 mM sodium sulphate buffer and Quil-A was added to a final concentration of 0.002%. Size distribution and zeta potential of QAC-NPs in aqueous dispersion was measured by dynamic light scattering (DLS) on a Malvern zetasizer instrument at $25^{\circ} \mathrm{C}$. For size distribution, 50 ul of QAC-NPs in solution was placed in a low volume cuvette and analyzed directly. For zeta potential measurement, approximately 1 mL of the QAC-NPs in solution was placed in a disposable capillary zeta potential cell available from the Zetasizer Nano series. TEM experiments were performed at the Medical school Electron Microscopy facility of the University of Wisconsin-Madison using a Philips CM120 transmission electron microscope (FEI, Eindhoven, the Netherlands) at 80 kV . The size and morphology of vaccine preparations was reexamined via negative staining using the drop method. QAC NPs loaded with 1 mg total DNA was resuspended in $600 \mu \mathrm{~L}$ of 0.05 M phosphate buffered saline (PBS, pH 7.4) at $37^{\circ} \mathrm{C}$. At each time point, suspensions were removed and centrifuged at $14,000 \mathrm{rcf}$ for 20 min . The supernatant was removed and replaced with PBS and returned to incubation. Supernatant samples were quantified for released DNA from the QAC using a NanoDrop ${ }^{\text {TM }}$ Spectrophotometer and compared to the total DNA used. QAC-GFP DNA (5 ug) was added to 3×10^{7} Expi293F cells seeded into a 6 well plate. 72 hours post addition the presence of GFP+ cells was identified using an upright fluorescence microscope. Background fluorescence was normalized using GFP-Expi293F control cells.

Nanoparticle characterization-The QAC complex forms distinct nanoparticles. Various ratios of Quil-A and chitosan were tested as recited in Table 1 and Table 2 below. Also see FIGS. 12 and 13.

TABLE 1

Quil-A conc (\%)	Chitosan conc (\%)	Comments
0.00004	0.02	Aggregated structure
0.0002		Aggregated structure
0.001		Distinct nanostructure
0.005		Aggregated structure - thick sheets
0.025		Aggregated structure - thick sheets

TABLE 2

	Quil-A			Chitosan conc (\%)	Comments
conc (\%)					

QAC-protein protocol-Quil-A stock solution of 0.2% was made in nuclease free water. Chitosan stock solution of 0.4% in 1% glacial acetic acid was prepared and diluted to 0.04% in 5 mM sodium acetate buffer, pH 5.5 . Protein was diluted to $100 \mu \mathrm{~g} / \mathrm{ml}$ in 50 mM sodium sulfate buffer and Quil-A was added to a final concentration of 0.002%. Equal volume of Quil-A-protein solution was added drop by drop to the chitosan solution and the mixture was vortexed for 30 s. The solution was vigorously mixed in shaking conditions (110 rpm) for 1 hour at 37 C to promote QAC-protein particle formation.

Vaccine safety study - In this study, the tolerability and biocompatibility of pQAC-N was evaluated in 1-day-old white leghorn SPF chicks and. ECEs. A total of 30 chicks was divided into 3 groups of 10 each, Chicks from the first group was inoculated with PBS (negative control). Chicks from the other groups were inoculated with either a single dose (100 ug) or $2 \times$ the dose (200 ug) of pQAC-N at day-1 via the intranasal route. Chicks were monitored for general or respiratory distress, depression or in appetence and weight gain over the course of 30 days post inoculation. In another experiment, 6 embryonated chicken eggs (ECEs) was divided into 2 groups of 3 each. At 18.5 days post incubation, ECEs were either inoculated with PBS (negative control) or with 100 ug of $\mathrm{pQAC}-\mathrm{N}$ construct into the allantoic cavity. Embryo development and hatch rate of inoculated ECEs was monitored.
Vaccine efficacy studies-For all the vaccine experiments, birds were challenged with a dose of 6.5E9 genome copy no or $10^{6.5} \mathrm{EID}_{50} /$ bird of virulent IBV Arkansas DPI strain via direct intranasal instillations. The challenge dose was determined in an independent infection experiment wherein the challenge dose resulted in discernable clinical signs as early as 3 dpc and peak viral load replication was observed at 6 dpc . The protective efficacy of $\mathrm{pQAC}-\mathrm{N}$ construct was evaluated in 1-day-old white leghorn SPF chicks (Charles River Laboratories). A total of 50 chicks was divided equally into 5 groups ($\mathrm{n}=10$ each) and used for the efficacy study, first 2 groups were inoculated with PBS (negative control) or commercial Arkansas MLV (MildvacArk(®, Merck Animal Health USA, positive control) via direct intranasal instillations (dose according to manufacturer's instructions). The other groups were either vaccinated with naked (no adjuvant), chitosan complexed or pQAC-N at day- 1 and followed by a booster dose at day-14 via intranasal (IN) route. A vaccine dose ($100 \mathrm{ng} / \mathrm{bird}$) was administered at each vaccination time point. At 20 days post first vaccination time point (DPV), PBMCs were harvested from blood collected using previously described protocols for proliferation assay (see below). At 10,20 DPV \& 3 days post challenge (DPC) lachrymal fluid (tears) samples were harvested for ELISA and and at 6 DPC for viral load estimation (see below). Lachrymation was induced by placing sodium chloride (salt) crystals on the eyes and tears were collected using micropipettes (52). Clinical severity was noted everyday post challenge for 8 days. The severity scores of clinical signs of IBV were as follows; $0=$ normal, $1=$ Infrequent sneezing (single event during observation), $2=$ frequent sneezing (more than one event during observation), $1=$ mild rales, $2=$ severe rales, $2=$ presence of nasal exudate. The severity scores of IBV clinical signs, described in the figure legends were recorded once a day for each chicken for 8 days after challenge. The severity score represents as average score of clinical signs measured for each chicken over 8 days (53). Lachrymal fluid harvested at 6 dpc was analyzed for viral RNA using IBV N gene specific RT-qPCR.
In another experiment, $\mathrm{pQAC}-\mathrm{N}$ was used to immunize 1-day-old commercial white leghorn chicks (Cackle Hatchery \mathbb{R}, MO, USA). A total of 10 chicks was divided into 2 groups. Chicks from the first group ($\mathrm{n}=4$) was inoculated with PBS (negative control) while the second group ($\mathrm{n}=6$) was immunized with pQAC - N construct at day- 1 and followed by a booster dose at day-14 via intranasal (IN) route. Blood was collected from birds in the negative control group at day-10, 20 and 24 in age to quantitate MDA IgY. All birds were sampled, challenged and followed for clinical scores and virus titers as described above for the SPF chicks.

In the final experiment, $\mathrm{pQAC}-\mathrm{N}$ was used to immunize 3-day-old commercial white leghorn chicks (Welp Hatchery, IA, USA). A total of 35 chicks was divided into 3 groups. Chicks were either inoculated with PBS (negative control, $\mathrm{n}=11$) or commercial Arkansas MLV (Mildvac-Ark®, Merck Animal Health USA, positive control, $\mathrm{n}=12$) or with pQAC-N construct at day- 3 and followed by a booster dose at day-17 (14 dpv) via intranasal (IN) route as described above. Blood was collected from all the birds at $0,10,20$ and 24 dpv to quantitate MDA IgY and lachrymal fluid from all the birds at 10,20 and 24 dpv to quantitate IBV specific $\operatorname{Ig} A$. All birds were sampled, challenged and followed for clinical scores as described above for the SPF chicks. Tracheal swabs were taken at 6 dpc and analyzed for viral RNA using IBV N gene specific RT-qPCR. One bird in MLV group died at 10 dpv , one bird from MLV and PBS control groups each were euthanized at 12 dpv for necropsy and diagnosis by the Wisconsin Veterinary Diagnostic Laboratory (WVDL), Madison, Wis., USA.
Recombinant protein purification-The pCAG constructs with S1 $6 \times$ His and $\mathrm{N}_{6} \times$ His were transfected into Expi293F cells as described above using TransIT PRO transfection reagent according to manufacturer's instructions (Minis Bio, WI, USA). For S $16 \times$ His purification, supernatant was harvested and for $\mathrm{N}_{6} \times$ His purification, cells were harvested 3 days after transfection. The samples were purified using Thermo Scientific ${ }^{\text {TM }}$ HisPur ${ }^{\text {TM }}$ Ni-NTA Resin according to manufacturer's instructions (batch method). The protein was eluted with elution buffer (50 mM sodium phosphate, 0.3 M sodium chloride, 250 mM imidazole pH 8.0). The eluate was concentrated using PEG-20 solution ($800 \mathrm{mg} / \mathrm{ml}$) hygroscopically and dialyzed using Thermo Scientific ${ }^{\text {TM }}$ SnakeSkin ${ }^{\text {TM }}$ Dialysis Tubing (7 K MWCO) against PEG free PBS. Protein concentration was determined by Thermo Scientific ${ }^{\mathrm{TM}}$ Pierce $^{\mathrm{TM}}$ BCA Protein Assay Kit.
IBV specific ELISA-Sera and lachrymal fluid from different time-points were screened for humoral response against IBV Arkansas serotype. In order to measure IgY and IgA antibody levels in plasma and tears of chicken respectively, an IBV-specific enzyme-linked immunosorbent assay (ELISA) was developed as described previously with modifications(54). Briefly, ELISA plates were coated with inactivated IBV Arkansas ($100 \mathrm{ng} /$ well, IgY) or IBV Arkansas S1 and N $6 \times$ His protein (50 ng tota1/well, $\operatorname{Ig} A$) diluted in carbonate/bicarbonate buffer, pH 9.6 and incubated overnight at 4 C followed by blocking with 5% Skim milk to reduce background. A 50 ul of diluted serum ($1 / 200$) or tears (1/50) harvested at different time-points from immunized chickens was added to the wells and incubated at 37 C for 1 hour. Post washing (PBS-TritonX 100, 0.1\%), either HRP conjugated anti-chicken IgY (NBP1-74778, NOVUS Bio) or anti-chicken IgA (NB7284, NOVUS Bio) at dilutions of $1 / 1000$ was added to the wells and incubated at $37^{\circ} \mathrm{C}$. for 1 hr . Post washing, 50 ul of TMB substrate solution was added and incubated for 20 minutes or until color developed. The reaction was stopped by the addition of 1 M sulphuric acid and plates are read at 450 nm . To generate standard curves, sera and tears from severely IBV infected chickens from previous experiments was used. Two-fold serial dilutions was assigned and arbitrary value and used for analysis.
Assessment of IBV specific lymphocyte proliferation assay-PBMCs were prepared from harvested blood as described previously (46). PBMCs were adjusted to 10^{7} cells $/ \mathrm{ml}$ in RPMI 1640 (Invitrogen) supplemented with 10% inactivated fetal calf serum and $100 \mu \mathrm{l}$ cells per well were transferred into flat-bottomed 96 -well plates. Equal volumes of medium containing stimulant (IBV Ark DPI live virus,
$\mathrm{MOI}=1$) was added in triplicate and cultures were incubated for 2 days at $41^{\circ} \mathrm{C}$., $5 \% \mathrm{CO}_{2}$. Negative controls received 100μ RPMI 1640 medium only. After incubation, to each well, 15μ of MTT reagent (CellTiter 96® Non-Radioactive Cell Proliferation Assay, Promega) and cells incubated for a further 4 hrs at $41^{\circ} \mathrm{C}$., $5 \% \mathrm{CO}_{2}$ until development of MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl-tetrazolium bromide) formazan was observed. Post incubation, Dimethyl sulfoxide (DMSO) was added to dissolve the formazan crystals and incubated for an hour at $41^{\circ} \mathrm{C}$., $5 \% \mathrm{CO}_{2}$. The absorbance of the purple color was taken at 570 nm in an ELISA plate reader. PBMCs from 4 chicks/group was used to assess proliferative capacity. The output stimulation index (SI) is the ratio of absorbance post stimulation to the absorbance in unstimulated conditions.
Viral load measurement-RNA was extracted from lachrymal fluid (10μ l) or Tracheal swabs (100μ l) collected from chickens using Zymo Direct-Zol ${ }^{\text {TM }}$ RNA mini prep kit (Zymo Research, CA, USA) according to manufacturer's instructions. RT-qPCR was conducted in two steps: cDNA synthesis (Invitrogen ${ }^{\text {TM }}$ SuperScript ${ }^{\text {TM }}$ III First-Strand Synthesis System) and qPCR reactions. cDNA synthesis was performed with $0.5 \mu \mathrm{l}(50 \mathrm{ng} / \mu \mathrm{l})$ random hexamers, $0.5 \mu \mathrm{l}$ of 10 mMdNTPs , and $4 \mu \mathrm{RNA}$ and heated at $65^{\circ} \mathrm{C}$. for 5 min and chilled on ice followed by addition of $1 \mu 1$ of $10 \times \mathrm{RT}$ buffer, $1 \mu \mathrm{l}$ of 0.1 M DTT, $1 \mu \mathrm{l}$ of $25 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 0.5 \mu \mathrm{l}$ of RNaseOUT and $0.5 \mu \mathrm{l}$ of SuperScript III enzyme in final volume of $10 \mu 1$. The reaction conditions include $25^{\circ} \mathrm{C}$. for $5 \mathrm{~min}, 50^{\circ} \mathrm{C}$. for 60 min and $70^{\circ} \mathrm{C}$. for 15 min . SYBR green RT-qPCR was performed using an IBV N gene specific primer pair set forward primer: 5' ATGCTCAACCTAGTCCCTAGCA 3' (SEQ ID NO: 17) and reverse primer: 5^{\prime} TCAAACTGCGGATCATCACGT 3^{\prime} (SEQ ID NO: 18) amplifying 128 nt of N gene of IBV Arkansas DPI. PCRs were performed using a StepOnePlus ${ }^{\mathrm{TM}}$ Real-Time PCR System (Applied Biosystems, Foster City, Calif., U.S.A) under the following conditions: one cycle 95 C for 2 min followed by 40 cycles of 95 C for 3 sec and 60 C for 30 sec . Each $20 \mu 1$ reaction was carried out using $1 \mu 1$ of diluted cDNA (1/10), $10 \mu 1$ of GoTaq® qPCR mastermix (Promega), 2μ of forward and reverse primers and $7 \mu \mathrm{l}$ of nuclease free water. A serial 10 -fold dilution of pCAG-IBV Ark N $6 \times$ His plasmid was used to establish the standard curve. Temperature melt curve analysis was used to confirm the specificity of the product.
Flow cytometric assessment of IBV specific prolifera-tion-A subgroup of additional chicks ($\mathrm{N}=4$ each) from each vaccine group in the SPF chick vaccine efficacy study were used for flow cytometric assessment. All chicks were euthanized at 20 DPV and single cell suspensions from lungs were prepared using standard techniques and used for T-cell proliferation assay. Briefly, lungs were excised and placed in a gentleMACS dissociator M tube (Miltenyi 130-093-236) with 5 mL collagenase B ($2 \mathrm{mg} / \mathrm{ml}$, Roche). Lung tissue was processed using the gentleMACS dissociator followed by incubation for 30 min at $37^{\circ} \mathrm{C}$. Single-cell suspensions lung were prepared by gently squeezing through a $70-\mathrm{mm}$ cell strainer (Falcon) after lysing RBCs using $1 \times \mathrm{BD}$ Biosciences BD Pharm Lyse ${ }^{\mathrm{TM}}$. Total of 10^{7} cells $/$ mi were stained with CellTrace ${ }^{T M}$ Violet Cell Proliferation dye (Thermo Scientific C34557) according to manufacturer's instructions and 100 ul of cells plated/well in RPMI 1640 with 10% chicken immune serum. After overnight incubation at 41° C., $5 \% \mathrm{CO}_{2}$, cells were stimulated with 130 ng of IBV Arkansas N6xHis protein complexed with chitosan per well in 100 ul of RPMI 1640 with 10% chicken immune serum. Four days post stimulation, cells were stained for surface
markers, CD4-AF647 (clone CT-4), CD8 $\alpha-F I T C$ (clone 3-298) together and TCR $\gamma \delta$-FITC (clone TCR-1) independently for flow cytometry analysis. All antibodies were purchased from SouthernBiotech (Birmingham, Ala., USA). All samples were acquired on an BD LSR Fortessa flow cytometer. Data were analyzed with FlowJo software (BD Biosciences). The strategy for gating on proliferating CD4+ and CD8a+ T cells was debris exclusion on the Forward Scatter (FSC)-Side Scatter (SSC) dot plot followed by exclusion of dead cells by fixable viability dye eFluor 780 (Invitrogen ${ }^{\text {TM }}, \# 65-0865-14$) staining. Out of the live cells, total proliferated cells were gated positive using a histogram plot with ef450 on the x -axis (for CellTrace ${ }^{\mathrm{TM}}$ Violet). Finally, CD4 cells were gated positive at the AF647 axis and CD8a cells were gated positive at the FITC axis in a FITC-AF647 dot plot. A similar approach was used for identifying proliferating TCR $\gamma \delta+$ T-cells. The output, stimulation index (SI) is the ratio of \% proliferating cells post stimulation to the $\%$ proliferating cells in unstimulated condition.

Statistical analysis-Statistical analyses were performed using GraphPad software (La Jolla, Calif.). Weight gain, cellular immune assays, clinical severity scoring, viral loads were compared using an ordinary one-way ANOVA test with multiple comparisons where $*, \mathrm{P}<0.05 ; * *, \mathrm{P}<0.01 ; * * *$, $\mathrm{P}<0.001 ; * * * *, \mathrm{P}<0.0001$ were considered significantly different among groups. Antibody titers and absolute weight of birds were compared using a two-way ANOVA test where *, $\mathrm{P}<0.05 ; * *, \mathrm{P}<0.01 ; * * *, \mathrm{P}<0.001 ; * * * *, \mathrm{P}<0.0001$ were considered significantly different among groups.

REFERENCES

1. Cook J K A, Jackwood M, Jones R C. 2012. The long view: 40 years of infectious bronchitis research, vol 41, p 239-250.
2. Britton P, Armesto M, Cavanagh D, Keep S. 2012. Modification of the avian coronavirus infectious bronchitis virus for vaccine development. Bioengineered Bugs 3:114-119.
3. Geilhausen H E, Ligon F B, Lukert P D. 1973. The pathogenesis of virulent and avirulent avian infectious bronchitis virus. Archiv $\left.f\right|^{-』} r$ die gesamte Virusforschung 40:285-290.
4. Dolz R, Vergara-Alert J 1, P $\neg \vdash$ rez Mn, Pujols J, Maj•INá. 2012. New insights on infectious bronchitis virus pathogenesis: Characterization of Italy 02 serotype in chicks and adult hens. Veterinary Microbiology 156:256-264.
5. Han Z, Sun C, Yan B, Zhang X, Wang Y, Li C, Zhang Q, Ma Y, Shao Y, Liu Q, Kong X, Liu S. 2011. A 15-year analysis of molecular epidemiology of avian infectious bronchitis coronavirus in China. Infection, Genetics and Evolution 11:190-200.
6. Fraga A P, Balestrin E, Ikuta N, Fonseca A S K, Spilki F R, Canal $\mathrm{C}_{1} \mathrm{~W}$, Lunge V R. 2013.
Emergence of a New Genotype of Avian Infectious Bronchitis Virus in Brazil. Avian Diseases 57:225-232.
7. Cook J K, Jackwood M, Jones R C. 2012. The long view: 40 years of infectious bronchitis research. Avian Pathol 41:239-50.
8. de Wit J J, Cook J K A, van der Heijden H M J F. 2010. Infectious bronchitis virus in Asia, Africa, Australia and Latin America-history, current situation and control measures. Brazilian Journal of Poultry Science 12:97106.
9. Cavanagh D, Ellis M M, Cook J K A. 1997. Relationship between sequence variation in the S1 spike protein of infectious bronchitis virus and the extent of cross-protection in vivo. Avian Pathology 26:63-74.
10. Gelb J, Weisman Y, Ladman B S, Meir R. 2005. S1 gene characteristics and efficacy of vaccination against infectious bronchitis virus field isolates from the United States and Israel (1996 to 2000). Avian Pathology 34:194-203.
11. Jackwood M W, Hilt D A, McCall A W, Polizzi C N, McKinley E T, Williams S M. 2009. Infectious bronchitis virus field vaccination coverage and persistence of Arkan-sas-type viruses in commercial broilers. Avian Dis 53:175-83.
12. Hopkins S R Y H J. 1986. Reversion to virulence of chicken-passaged infectious bronchitis vaccine virus. Avian Diseases.
13. McKinley E T, Hilt D A, Jackwood M W. 2008. Avian coronavirus infectious bronchitis attenuated live vaccines undergo selection of subpopulations and mutations following vaccination. Vaccine 26:1274-84.
14. Lee C W, Jackwood M W. 2001. Origin and evolution of Georgia 98 (GA98), a new serotype of avian infectious bronchitis virus. Virus Research 80:33-39.
15. Wolff J A, Malone R W, Williams P, Chong W, Acsadi G, Jani A, Felgner P L. 1990. Direct gene transfer into mouse muscle in vivo. Science 247:1465-8.
16. Jazayeri S D, Poh C L. 2019. Recent advances in delivery of veterinary DNA vaccines against avian pathogens. Vet Res 50:78.
17. Liu M A. 2003. DNA vaccines: a review. J Intern Med 253:402-10.
18. Zhang P, Wang J, Wang W, Liu X, Liu H, Li X, Wu X. 2017. Astragalus polysaccharides enhance the immune response to avian infectious bronchitis virus vaccination in chickens. Microb Pathog 111:81-85.
19. Kapczynski D R, Hilt D A, Shapiro D, Sellers H S, Jackwood M W. 2003. Protection of chickens from infectious bronchitis by in ovo and intramuscular vaccination with a DNA vaccine expressing the 51 glycoprotein. Avian Dis 47:272-85.
20. Guo Z, Wang H, Yang T, Wang X, Lu D, Li Y, Zhang Y. 2010. Priming with a DNA vaccine and boosting with an inactivated vaccine enhance the immune response against infectious bronchitis virus. J Virol Methods 167:84-9.
21. Tan L, Zhang Y, Liu F, Yuan Y, Zhan Y, Sun Y, Qiu X, Meng C, Song C, Ding C. 2016. Infectious bronchitis virus poly-epitope-based vaccine protects chickens from acute infection. Vaccine 34:5209-5216.
22. Tian L, Wang H N, Lu D, Zhang Y F, Wang T, Kang R M. 2008. The immunoreactivity of a chimeric multiepitope DNA vaccine against IBV in chickens. Biochem Biophys Res Commun 377:221-5.
23. Tang M, Wang H, Zhou S, Tian G. 2008. Enhancement of the immunogenicity of an infectious bronchitis virus DNA vaccine by a bicistronic plasmid encoding nucleocapsid protein and interleukin-2. J Virol Methods 149:428.
24. Tan B, Wang H, Shang L, Yang T. 2009. Coadministration of chicken G M-CSF with a DNA vaccine expressing infectious bronchitis virus (IBV) 51 glycoprotein enhances the specific immune response and protects against IBV infection. Arch Virol 154:1117-24.
25. Yan F, Zhao Y, Hu Y, Qiu J, Lei W, Ji W, Li X, Wu Q, Shi X, Li Z. 2013. Protection of chickens against infectious bronchitis virus with a multivalent DNA vaccine and boosting with an inactivated vaccine. J Vet Sci 14:53-60.
26. Yang T, Wang H N, Wang X, Tang J N, Gao R, Li J, Guo Z C, Li Y L. 2009. Multivalent DNA vaccine enhanced protection efficacy against infectious bronchitis virus in chickens. J Vet Med Sci 71:1585-90.
27. Oyewumi M O, Kumar A, Cui Z. 2010. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines 9:1095-107.
28. Borges O, Borchard G, Verhoef J C, de Sousa A, Junginger HE. 2005. Preparation of coated nanoparticles for a new mucosal vaccine delivery system. Int J Pharm 299:155-66.
29. Brock A. Kingstad-Bakke S S C, YashdeepPhanse, Kathleen A. Ross, MasatoHatta, M. Suresh, Yoshihiro Kawaoka, Jorge E. Osorio, Balaji Narasimhan, Adel M. Talaat. 2019. Effective mosaic-based nanovaccines against avian influenza in poultry. Vaccine.
30. Riteau N, Sher A. 2016. Chitosan: An Adjuvant with an Unanticipated STING. Immunity 44:522-524.
31. Sogias I A, Williams A C, Khutoryanskiy V V. 2008. Why is chitosan mucoadhesive? Biomacromolecules 9:1837-42.
32. Rajput Z I, Hu S H, Xiao C W, Arijo A G. 2007. Adjuvant effects of saponins on animal immune responses. J Zhejiang Univ Sci B 8:153-61.
33. Seo S H, Wang L, Smith R, Collisson E W. 1997. The carboxyl-terminal 120-residue polypeptide of infectious bronchitis virus nucleocapsid induces cytotoxic T lymphocytes and protects chickens from acute infection. J Virol 71:7889-94.
34. Chhabra R, Chantrey J, Ganapathy K. 2015. Immune Responses to Virulent and Vaccine Strains of Infectious Bronchitis Viruses in Chickens. Viral Immunol 28:47888.
35. Collisson E W, Pei J, Dzielawa J, Seo S H. 2000. Cytotoxic T lymphocytes are critical in the control of infectious bronchitis virus in poultry. Dev Comp Immunol 24:187-200.
36. Seo S H, Pei J, Briles W E, Dzielawa J, Collisson E W. 2000. Adoptive transfer of infectious bronchitis virus primed alphabeta T cells bearing CD8 antigen protects chicks from acute infection. Virology 269:183-9.
37. Mockett A P, Cook J K, Huggins M B. 1987. Maternallyderived antibody to infectious bronchitis virus: Its detection in chick trachea and serum and its role in protection. Avian Pathol 16:407-16.
38. Mondal S P, Naqi S A. 2001. Maternal antibody to infectious bronchitis virus: its role in protection against infection and development of active immunity to vaccine. Vet Immunol Immunopathol 79:31-40.
39. de Wit J J, Cook J K. 2014. Factors influencing the outcome of infectious bronchitis vaccination and challenge experiments. Avian Pathol 43:485-97.
40. Roy K, Mao H Q, Huang S K, Leong K W. 1999. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 5:387-91.
41. Ho N I, Huis In't Veld L G M, Raaijmakers T K, Adema G J. 2018. Adjuvants Enhancing Cross-Presentation by Dendritic Cells: The Key to More Effective Vaccines? Front Immunol 9:2874.
42. Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek M Y, Dreaden E C, Brown D, Alkilany A M, Farokhzad O C, Mahmoudi M. 2017. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 46:4218-4244.
43. Harush-Frenkel O, Debotton N, Benita S, Altschuler Y. 2007. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun 353: 26-32.
44. Mohammed M A, Syeda J T M, Wasan K M, Wasan E K. 2017. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics 9 .
45. Chhabra R, Forrester A, Lemiere S, Awad F, Chantrey J, Ganapathy K. 2015. Mucosal, Cellular, and Humoral Immune Responses Induced by Different Live Infectious Bronchitis Virus Vaccination Regimes and Protection Conferred against Infectious Bronchitis Virus Q1 Strain. Clin Vaccine Immunol 22:1050-9.
46. Norup L R, Dalgaard T S, Pedersen A R, Juul-Madsen H R. 2011. Assessment of Newcastle disease-specific T cell proliferation in different inbred MHC chicken lines. Scand J Immunol 74:23-30.
47. Hamers C, Juillard V, Fischer L. 2007. DNA vaccination against pseudorabies virus and bovine respiratory syncytial virus infections of young animals in the face of maternally derived immunity. J Comp Pathol 137 Suppl 1:S35-41.
48. Griot C, Moser C, Cherpillod P, Bruckner L, Wittek R, Zurbriggen A, Zurbriggen R. 2004. Early DNA vaccination of puppies against canine distemper in the presence of maternally derived immunity. Vaccine 22:650-4.
49. Zhang F, Peng B, Chang H, Zhang R, Lu F, Wang F, Fang F, Chen Z. 2016. Intranasal Immunization of Mice to Avoid Interference of Maternal Antibody against H5N1 Infection. PLoS One 11:e0157041.
50. Ignjatovi-ç J, Sapats S. 2000. Avian infectious bronchitis virus. Revue scientifique et technique (International Office of Epizootics) 19:493-508.
51. MUENCH LJRAH. 1938. A SIMPLE METHOD OF ESTIMATING FIFTY PERCENT ENDPOINTS THE AMERICAN JOURNAL OF HYGIENE 27.
52. Ganapathy K, Cargill P W, Jones R C. 2005. A comparison of methods of inducing lachrymation and tear collection in chickens for detection of virus-specific immuoglobulins after infection with infectious bronchitis virus. Avian Pathol 34:248-51.
53. Shirvani E, Paldurai A, Manoharan V K, Varghese B P, Samal S K. 2018. A Recombinant Newcastle Disease Virus (NDV) Expressing S Protein of Infectious Bronchitis Virus (IBV) Protects Chickens against IBV and NDV. Sci Rep 8:11951.
54. Orr-Burks N, Gulley S L, Toro H, van Ginkel F W. 2014. Immunoglobulin A as an early humoral responder after mucosal avian coronavirus vaccination. Avian Dis 58:279-86.

Example 2

This prophetic example outlines a QAC complex antigen in vivo cross presentation study. Antigen cross presentation is important for effective immune response to tumors and viral infections. Dendritic cells are antigen presenting cells and are unique in their ability to cross-present exogenous antigens on MHC class I molecules and activate antigen specific cytotoxic T cells. This study examines the function of the QAC complex to mediate antigen cross presentation by dendritic cells (DCs, specifically, bone marrow derived DCs and splenic DCs) in an in vivo assay system using soluble ovalbumin protein (OVA).

BL6 mice will be separated into groups ($\mathrm{n}=4$) corresponding to treatment with Adjuplex control, a first concentration of QAC complex loaded with $30 \mu \mathrm{~g}$ OVA protein, a second concentration of QAC complex loaded with $30 \mu \mathrm{~g}$ OVA protein, chitosan loaded with $30 \mu \mathrm{O}$ OVA protein, and Quail-A loaded with $30 \mu \mathrm{~g}$ OVA protein. Mice will receive a $50 \mu \mathrm{~L}$ intra nasal vaccination with the selected treatment. After 9 days, phenotype and functional responses in bronchoalveolar lavage (BAL), lungs, and spleen will be assessed. At 13 days post treatment, data collection and
further analysis on the mice will be carried out. (FIG. 15) Phenotypic parameters measured include MHCI tetramers specific to ovalbumin peptide sequence SIINFEKL (SIINFEKL MHCI tetramers, SEQ ID NO: 19), CD103 and CD69 tissue residency, and KLRG1, CD127, CD44, and CD62L expression. Functional parameters measured include ovalbumin immunogenic peptide CD8 sequence SIINFEKL (OVA I CD8 SIINFEKL, SEQ ID NO: 19), ovalbumin immunogenic peptide CD4 sequence ISQAVHAAHAEINEAGR (OVA II CD4 ISQAVHAAHAEINEAGR, SEQ ID NO: 20), and expression of CD4, CD8, IL-2, IL-4, IL-6, IL-10, IL-13, IL-17, IFNg, and TNFa.

This study will confirm that the cross presentation measured in vitro in primary DC cells using the QAC complex is mirrored in vivo. Additionally, the mouse experiment will generate a model immunologic system for QAC mediated cross presentation in vivo for other antigens and immunogens.

Example 3

This prophetic example outlines an in vivo study to measure innate and adaptive immune responses to the loaded QAC complex. The QAC complex can strongly induce cross presentation with OVA in vitro in DC cells. The mouse study presented provides a model immunologic system for the study of in vivo QAC complex induced cross presentation. Measurements including antigen presenting cells will strongly augment the adjuvant mechanism. Chitosan has been demonstrated to work in vitro, but will not function in vivo for protein antigens. The present studies will confirm the function of the QAC complex in antigen presenting cell recruitment and activation.
BL6 mice will be separated into groups ($\mathrm{n}=7$) corresponding to treatment with Adjuplex control, a first concentration of QAC complex loaded with $30 \mu \mathrm{~g}$ OVA protein or DQOVA protein, a second concentration of QAC complex loaded with $30 \mu \mathrm{~g}$ OVA protein or DQ-OVA protein, chitosan loaded with $30 \mu \mathrm{~g}$ OVA protein or DQ-OVA, and Quail-A loaded with $30 \mu \mathrm{~g}$ OVA protein or DQ-OVA. Mice will receive a $50 \mu \mathrm{~L}$ intra nasal injection of the indicated treatment. After 3 days, mice treated with DQ-OVA will be examined for innate cell recruitment elicited by adjuvants and its effect on antigen processing in lungs and draining lymph nodes (LNs). At 7 days post treatment data collection and further analysis on the mice will be carried out. (FIG. 16). At 4 days after treatment, mice treated with OVA will be examined for T cell phenotype and functional responses in BAL, lungs, and spleen. At 13 days post treatment, data collection and further analysis on the mice will be carried out.

Phenotypic parameters measured in T cells will include SIINFEKL MHC I tetramers, and expression of CD103, CD69, KLRG1, CD127, CD44, and CD62L. Functional parameters measured include OVA I CD8 SIINFEKL, OVA II CD4 ISQAVHAAHAEINEAGR, and expression of CD4, CD8, IL-2, IL-4, IL-6, IL-10, IL-13, IL-17, IFNg, and TNFa. Parameters measured in innate immune cells include antigen uptake, such as uptake of unprocessed Texas Red or digested GFP, and analysis of antigen presenting cells including neutrophils, Alv macs, Eosinophils, CD103 cDCs, monocyte derived DCs, monocyte, Natural Killer cells, and new cell subsets. Antigen presenting cells (APCs) will be analyzed using flow cytometry to assay for antigen uptake which is essentially a flurophore encapsulated by QAC. If there is efficient antigen uptake, antigen presenting cells would have taken up the flurophore. Potent adjuvants are able to efficiently deliver payload to APCs and mediate antigen uptake.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 20
$<210\rangle$ SEQ ID NO 1
<211> LENGTH: 6051$<212>$ TYPE: DNA
<213> ORGANISM
<220> FEATURE
<223> OTHER INFORMATION: synthetic
<400 > SEOUENCE:
gtcgacattg attattgact agttattaat agtaatcaat tacggggtca ttagttcata 60
gcccatatat ggagttccgc gttacataac ttacggtaaa tggcccgcct ggctgaccgc 120
ccaacgacce ccgcccattg acgtcaataa tgacgtatgt tcccatagta acgecaatag 180
ggactttcca ttgacgtcaa tgggtggact atttacggta aactgcccac ttggcagtac 240
atcaagtgta tcatatgcca agtacgcccc ctattgacgt caatgacggt aatggcccg 300
cctggcatta tgcccagtac atgaccttat gggactttcc tacttggcag tacatctacg 360
tattagtcat cgctattacc atgggtcgag gtgagcccca cgttctgctt cactctcccc 420
atctccccce cetccceacc cccaatttg tatttatta tttttaatt atttgtgca 480
gcgatggggg cggggggggg gggggcgcgc gccaggcggg gcggggcggg gcgaggggcg 540
gggcggggeg aggcggagag gtgcggcgge agccaatcag agcggcgegc tccgaaagtt 600
tccttttatg gcgaggcggc ggcggcggcg gcectataaa aagcgaagcg cgcggcgggc 660
gggagtcgct gcgttgcctt cgccccgtgc cccgctccgc gccgcctcgc gccgccegce 720
ccggctctga ctgaccgcgt tactcccaca ggtgagcggg cgggacggcc cttctcctcc 780
gggctgtaat tagcgcttgg tttaatgacg gctcgtttct tttctgtggc tgcgtgaaag 840
ccttaaaggg ctccgggagg gccetttgtg cgggggggag cggctcgggg ggtgcgtgcg 900
tgtgtgtgtg cgtggggagc gccgcgtgcg gcccgcgctg cccggcggct gtgagcgctg 960
cgggcgcggc gcggggcttt gtgcgctccg cgtgtgcgcg aggggagcgc ggcegggggc 1020
ggtgccccgc ggtgcggggg ggctgcgagg ggaacaaagg ctgcgtgcgg ggtgtgtgcg 1080
tgggggggtg agcagggggt gtgggcgcgg cggtcgggct gtaacccccc cctgcacccc 1140
cctcccogag ttgctgagca cggcccggct tcgggtgcgg ggctccgtgc ggggcgtggc 1200
gcggggctcg ccgtgccggg cggggggtgg cggcaggtgg gggtgccggg cggggcgggg 1260
ccgcetcggg ceggggaggg ctcgggggag gggcgeggeg gcceccggag cgecggcggc 320
tgtcgaggcg cggcgagccg cagccattgc cttttatggt aatcgtgcga gagggcgcag 1380
ggacttcctt tgtcccaat etgtgcggag cegaaatctg ggaggcgecg ccgcaccccc 440
tctagcgggc gcggggcgaa gcggtgcggc gccggcagga aggaaatggg cggggagggc 1500
cttcgtgcgt cgccgcgecg cegtcccctt ctccctctcc agcctcgggg etgtccgegg 1560
ggggacggct gccttcgggg gggacggggc agggcggggt tcggcttctg gcgtgtgacc 1620
ggcggctcta gagcctctgc taaccatgtt catgccttct tctttttcct acagctcctg 1680
ggcaacgtge tggttattgt getgtctcat cattttggca aagaattcac catggcaage 74
ggtaaagcaa ctggaaagac agacgcccca gcgccagtca tcaaactagg aggaccaaag 1800
ccacctaaag ttggttcttc tggaaatgca tcttggtttc aagcaataaa agccaagaag 1860
ctaaattcac atccacctaa gtttgaaggt agcggtgttc ctgataatga aaatcttaaa 1920
acaagtcagc aacatggata ctggaggcgc caagccaggt ttaagccagt taaaggegga 1980
agaaaaccag tcccagatgc ttggtacttc tattatactg gaacaggacc agccgctgac 2040
-continued
ctgaattggg gtgatagcca agatggtata gtgtgggttg ctgcaaaggg tgctgatgtt 2100
aaatctagat ctcaccaggg tacaagggac cctgacaagt ttgaccaata tccactacga 2160
ttctcggacg gaggacctga tggtaatttc cgttgggact tcattcctct gaatcgtggt 2220
aggagtggaa gatcaacagc agcttcatca gcagcatcta gtagagcacc gtcgcgtgac 2280
ggctcgcgtg gtcgtagaag tggttctgaa gatgatctta ttgctcgtgc agcaaagata 2340
atccaggatc agcagaagaa gggttctcgc attactaagg ttaaggctga tgaaatggct 2400
caccgccggt attgcaagcg cactattcca cctggttata aggttgatca agtctttggc 2460
ccccgtacta aaggtaagga gggaaatttt ggtgatgaca agatgaatga ggaaggtatt 2520
aaggatgggc gtgttacagc aatgctcaac ctagtcccta gcagccatgc ttgtcttttt 2580
ggaagtagag tgacgcccaa actacaacca gatgggctgc acttgaaatt tgaatttact 2640
actgtggtcc cacgtgatga tccgcagttt gataattatg ttaaaatttg tgatcagtgt 2700
gttgatggtg taggaacacg tccaaaagat gatgaaccga gaccaaagtc acgctcaagt 2760
tcaagacctg ctacaagaac aagttctccg gcgccaagac aacaacgccc aaagaaggag 2820
aaaaagccaa agaagcagga tgatgaagta gataaagcat tgacctcaaa tgaggagagg 2880
aacaatgcac agctggaatt tgatgaggaa cccaaggtga ttaactgggg ggatgcagct 2940
ctaggagaga atgaacttgg aggaggtcat catcaccatc accactaagc ggcegcactc 3000
ctcaggtgca ggctgcctat cagaaggtgg tggctggtgt ggccaatgcc ctggctcaca 3060
aataccactg agatcttttt ccctctgcca aaaattatgg ggacatcatg aagceccttg 3120
agcatctgac ttctggctaa taaaggaaat ttattttcat tgcaatagtg tgttggaatt 3180
ttttgtgtct ctcactcgga aggacatatg ggagggcaaa tcatttaaaa catcagaatg 324
agtatttggt ttagagtttg gcaacatatg cccatatgct ggctgccatg aacaaaggtg 330
gctataaaga ggtcatcagt atatgaaaca gccccctgct gtccattcct tattccatag 3360
aaaagcettg acttgaggtt agatttttt tatatttgt tttgegttat tttttctt 3420
aacatcccta aaattttcct tacatgtttt actagccaga tttttcctcc tctcctgact 3480
actcccagtc atagctgtcc ctcttctctt atgaagatcc ctcgacctgc agcccaagct 3540
tggcgtaatc atggtcatag ctgtttcctg tgtgaaattg ttatccgctc acaattccac 3600
acaacatacg agccggaagc ataaagtgta aagcctgggg tgcctaatga gtgagctaac 366
tcacattaat tgcgttgcgc tcactgcccg ctttccagtc gggaaacctg tcgtgccagc 372
ggatccgcat ctcaattagt cagcaaccat agtcccgcce ctaactccgc ccatccegce 3780
cctaactccg cccagttccg cccattctcc gccccatggc tgactaattt tttttatta 3840
tgcagaggce gaggccgcct cggcctctga gctattccag aagtagtgag gaggcttttt 3900
tggaggccta ggcttttgca aaaagctaac ttgtttattg cagcttataa tggttacaaa 3960
taaagcaata gcatcacaaa tttcacaaat aaagcatttt tttcactgca ttctagttgt 4020
ggtttgtcca aactcatcaa tgtatcttat catgtctgga tccgctgcat taatgaatcg 4080
gccaacgcge ggggagaggc ggtttgegta ttgggegctc ttcegcttcc tcgetcactg 4140
actcgctgcg ctcggtcgtt cggctgcggc gagcggtatc agctcactca aaggcggtaa 4200
tacggttatc cacagaatca ggggataacg caggaaagaa catgtgagca aaaggccagc 4260
aaaaggccag gaaccgtaaa aaggccgcgt tgctggcgtt tttccatagg ctccgccccc 432
ctgacgagca tcacaaaaat cgacgctcaa gtcagaggtg gcgaaacccg acaggactat 4380
-continued

- continued
atctcccccc cotccccacc cccaatttg tatttatta tttttaatt attttgtgca 480
gcgatggggg cggggggggg gggggcgcgc gccaggcggg gcggggcggg gcgaggggcg 540
gggcggggcg aggcggagag gtgcggcggc agccaatcag agcggcgcgc tccgaaagtt 600
tcctttatg gcgaggcggc ggcggcggcg gccctataaa aagcgaagcg cgcggcgggc 660
gggagtegct gegttgcctt cgccccgtgc cccgctccgc gccgectegc gccgccegce 720
ccggctctga ctgaccgcgt tactcccaca ggtgagcggg cgggacggcc cttctcctcc 780
gggctgtaat tagcgcttgg tttaatgacg gctcgtttct tttctgtggc tgcgtgaaag 840
ccttaaaggg ctccgggagg gccctttgtg cgggggggag cggctcgggg ggtgcgtgcg 900
tgtgtgtgtg cgtggggagc gccgcgtgcg gcccgcgctg cccggcggct gtgagcgctg 960
cgggcgcggc gcggggcttt gtgcgctccg cgtgtgcgcq aggggagcgc gqcegggggc 1020
ggtgccccgc ggtgcggggg ggctgcgagg ggaacaaagg ctgcgtgcgg ggtgtgtgcg 1080
tgggggggtg agcagggggt gtgggcgcgg cggtcgggct gtaacccccc cctgcacccc 114
cctcccegag ttgctgagca cggcccggct tcgggtgcgg ggctccgtgc ggggcgtggc 1200
gcggggctcg ccgtgccggg cggggggtgg cggcaggtgg gggtgccggg cggggcgggg 1260
ccgcctcggg ccggggaggg ctcgggggag gggcgcggcg gcccccggag cgccggcggc 1320
tgtcgaggcg cggcgagccg cagccattgc cttttatggt aatcgtgcga gagggcgcag 1380
ggacttcctt tgtcccaaat ctgtgcggag ccgaaatctg ggaggcgecg ecgcaccccc 1440
tctagcggge gcggggcgaa gcggtgcggc gceggcagga aggaaatggg cggggagggc 1500
cttcgtgcgt cgcegcgecg cegtcecctt ctccetctcc agcetcgggg etgtcegcgg 1560
ggggacggct gccttcgggg gggacgggge agggcggggt tcggcttctg gcgtgtgacc 620
ggcggctcta gagcctctgc taaccatgtt catgccttct tctttttcct acagctcctg 1680
ggcaacgtgc tggttattgt gctgtctcat cattttggca aagaattcac catgttggtg 1740
aagtcactgt ttctagtgac cattttgttt gcactatgta gtgctaattt atatgacaac 1800
gaatcttttg tgtattacta ccagagtgct tttaggccag gacatggttg gcatttacat 1860
ggaggtgctt atgcagtagt taatgtgtct agtgaaaata ataatgcagg tactgcccca 1920
agttgcactg ctggtgctat tggctacagt aagaatttca gtgcggcctc agtagccatg 1980
actgcaccac taagtggtat gtcatggtct gcctcatctt tttgtacagc tcactgtaat 204
tttacttctt atatagtgtt tgttacacat tgttttaaga gcggatctaa tagttgtcct 2100
ttgacaggtc ttattccaag cggttatatt cgtattgctg ctatgaaaca tggaagtgct 2160
acgcctggtc acttatttta taacttaaca gtttctgtga ctaaatatcc taagtttaga 2220
tcgctacaat gtgttaataa tcatacttct gtatatttaa atggtgacct tgttttcaca 2280
tctaactata ctgaagatgt tgtagctgca ggtgtccatt ttaaaagtgg tggacctata 2340
acttataaag ttatgagaga ggttaaagcc ttggcttatt ttgtcaatgg tactgcacat 2400
gatgtcattc tatgtgatga cacacctaga ggtttgttag catgccaata taatactggc 2460
aatttttcag atggcttcta tcctttact aatactagta ttgttaagga taagtttatt 2520
gtttatcgtg aaagtagtgt caatactact ttgacattaa ctaatttcac gtttagtaat 2580
gaaagtggtg cecctcctaa tacaggtggt gttgacagtt ttatttata ccagacacaa 2540
acagctcaga gtggttatta taattttaat ttttcattc tgagtagttt tgtttatagg 2700
gaaagtaatt atatgtatgg atcttaccat ccacgttgta gttttagacc tgaaaccctt 2760
-continued
aatggtttgt ggtttaattc cetttctgtt tcattaacat acggtcccat tcaaggtggt 2820
tgtaagcaat ctgtatttaa tggtaaagca acttgttgtt atgcttattc atacggagga 2880
cctcgtgctt gtaaaggtgt ctatagaggt gagctaacac agcattttga atgtggtttg 2940
ttagtttatg ttactaagag cgatggctcc cgtatacaaa ctgcaacaca accacctgta 3000
ttaacccaaa atttttataa taacatcact ttaggtaagt gtgttgatta taatgtttat 3060
ggtagaactg gacaaggttt tattactaat gtaactgatt tagctacttc tcataattac 3120
ttagcggatg gaggattagc tattttagat acatctggtg ccatagacat cttcgttgta 3180
caaggtgaat atggccctaa ctactataag gttaatctat gtgaagatgt taaccaacag 3240
tttgtagttt ctggtggtaa attagtaggt attctcactt cacgtaatga aactggttct 3300
cagcctcttg aaaaccagtt ttacattaag atcactaatg gaacacatcg ttctagacgt 3360
tctgttaatg aaaatgttac gaattgccct tatgttagtt atggcaagtt ttgtataaaa 3420
cctgatggtt cagtttctcc tatagtacca aaagaacttg aacagtttgt ggcaccttta 3480
cttaatgtta ctgaaaatgt gctcatacct aacagttta acttaactgt tacagatgag 3540
tacatacaaa cgcatatgga taagatccaa attaattgtc tgcagtatgt ttgtggcaac 3600
tctttggctt gtagaaagct gtttcaacaa tatgggcetg tttgtgacaa catattgtct 3660
gtagtaaata gtgttggtca aaaagaagat atggaacttt taagcttcta ttcttctact 3720
aaaccatctg gttttaatac accagttttt agtaatctta gcactggtga gtttaatatc 3780
tctctttgt taacaaccec tagtagtcct agagggegtt ettttattga agatcttta 384
tttacaagtg ttgaatctgt tggattacca acagatgaag cttataaaaa gtgcactgca 3900
ggacctttag gctttcttaa agaccttgca tgtgctcgtg aatataatgg tttgcttgtg 3960
ttgcctccta ttataacagc agaaatgcaa actttgtata ctagttctct agtagtttct 4020
atggcttttg gtggtattac ttcagctggt gctatacctt ttgccacaca actgcaggct 4080
agaattaatc acttgggtat tacccagtca cttttgttga agaatcaaga aaaaattgct 4140
gcttccttta ataaggccat tggtcatatg caggaaggtt ttaggagtac atctctagca 4200
ttacaacaaa ttcaagatgt tgttaataag cagagtgcta ttcttactga gactatgtta 4260
gcacttaata aaaattttgg tgctatttct tctgtgattc aagacattta ccagcaactt 4320
gatgacatac aagcagatgc tcaagtggat cgactcataa ctggtagatt gtcatcactt 4380
tctgtcttag catctgctaa gcagtcggag tacattagag tgtcacaaca gcgtgagtta 4440
gctactcaga aaattaatga gtgtgttaaa tcacagtcta ttaggtattc cttttgtggt 4500
aatggacgac atgttttaac cataccacaa aatgccccta atggtatagt gtttatacac 4560
tttacttata caccagagag ctttattaat gttactgcag tagtaggttt ttgtgtaagt 4620
cctgctaatg ctagtcagta tgcaatagtg cecgctaatg gtaggggtat tttatacaa 4680
gttaatggta gttactacat cactgcacgt gatatgtata tgccaagaga tattactgca 4740
ggagatatag ttacgcttac ttcttgtcaa gcaaattatg taagtgtaaa caagaccgtc 4800
attactacat ttgtagacaa tgatgatttt gattttgatg acgagttatc aaaatggtgg 486
aatgaaacta agcacgagtt gccagacttt gaccagttta attacaccat tccegtttta 492
aatataactt atgatattga caagattgag gaagttatta agggacttaa tgattccttg 4980
attgacctcg aaacattgtc aattctcaaa acttatatta agtggccggg aggaggtcat 5040
catcaccatc accactaagc ggccgcactc ctcaggtgca ggctgcctat cagaaggtgg 5100
tggctggtgt ggccaatgcc ctggctcaca aataccactg agatcttttt ccctctgcca 5160
-continued
aaaattatgg ggacatcatg aagccccttg agcatctgac ttctggctaa taaaggaaat 5220
ttattttcat tgcaatagtg tgttggaatt ttttgtgtct ctcactcgga aggacatatg 5280
ggagggcaaa tcatttaaaa catcagaatg agtatttggt ttagagtttg gcaacatatg 5340
cccatatgct ggctgccatg aacaaaggtg gctataaaga ggtcatcagt atatgaaaca 5400
gccccctgct gtccattcct tattccatag aaaagccttg acttgaggtt agatttttt 5460
tatattttgt tttgtgttat tttttcttt aacatcccta aaatttccet tacatgttt 5520
actagccaga tttttcctcc tctcctgact actcccagtc atagctgtcc ctcttctctt 5580
atgaagatcc ctcgacctgc agcccaagct tggcgtaatc atggtcatag ctgtttcctg 5640
tgtgaaattg ttatccgctc acaattccac acaacatacg agccggaagc ataaagtgta 5700
aagcctgggg tgcctaatga gtgagctaac tcacattaat tgcgttgcgc tcactgcceg 5760
ctttccagtc gggaaacctg tcgtgccagc ggatccgcat ctcaattagt cagcaaccat 5820
agtcccgccc ctaactccgc ccatcccgcc cctaactccg cccagttccg cccattctcc 5880
gccccatgge tgactaattt ttttatta tgcagaggce gaggccgcct cggcetctga 5940
gctattccag aagtagtgag gaggcttttt tggaggccta ggcttttgca aaaagctaac 6000
ttgtttattg cagcttataa tggttacaaa taaagcaata gcatcacaaa tttcacaaat 5060
aaagcatttt tttcactgca ttctagttgt ggtttgtcca aactcatcaa tgtatcttat 6120
catgtctgga tccgctgcat taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta 6180
ttgggcgctc ttccgcttcc tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc 6240
gagcggtatc agctcactca aaggeggtaa tacggttatc cacagaatca ggggataacg 6300
caggaaagaa catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt 6360
tgctggcgtt tttccatagg ctccgccccc ctgacgagca tcacaaaaat cgacgctcaa 6420
gtcagaggtg gcgaaaccog acaggactat aaagatacca ggcgtttccc cctggaagct 6480
ccctcgtgcg ctctcctgtt cogaccetgc cgcttaccgg atacctgtcc gcctttctcc 6540
cttcgggaag cgtggcgctt tctcaatgct cacgctgtag gtatctcagt tcggtgtagg 6600
tcgttcgctc caagctgggc tgtgtgcacg aacccccegt tcagccogac cgetgcgect 6660
tatccggtaa ctatcgtctt gagtccaacc cggtaagaca cgacttatcg ccactggcag 6720
cagccactgg taacaggatt agcagagcga ggtatgtagg cggtgctaca gagttcttga 6780
agtggtggcc taactacggc tacactagaa ggacagtatt tggtatctgc gctctgctga 684
agccagttac cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgetg 6900
gtagcggtgg tttttttgtt tgcaagcagc agattacgeg cagaaaaaaa ggatctcaag 6960
aagatccttt gatcttttct acggggtctg acgctcagtg gaacgaaaac tcacgttaag 7020
ggattttggt catgagatta tcaaaaagga tcttcaccta gatccttta aattaaaaat 7080
gaagttttaa atcaatctaa agtatatatg agtaaacttg gtctgacagt taccaatgct 7140
taatcagtga ggcacctatc tcagcgatct gtctatttcg ttcatccata gttgcetgac 7200
tccccgtcgt gtagataact acgatacggg agggcttacc atctggcccc agtgctgcaa 7260
tgataccgcg agacccacgc tcaccggctc cagatttatc agcaataaac cagccagceg 7320
gaagggecga gegcagaagt ggtcctgcaa ctttatccgc ctccatccag tctattaatt 7380
gttgccggga agctagagta agtagttcgc cagttaatag tttgcgcaac gttgttgcca 7440
ttgctacagg catcgtggtg tcacgctcgt cgtttggtat ggcttcattc agctccggtt 7500
-continued

-continued
ataagctgca ataaacaagt taacaacaac aattgcattc attttatgtt tcaggttcag 1500
ggggaggtgt gggaggtttt ttaaagcaag taaaacctct acaaatgtgg tattggccca 1560
tctctatcgg tatcgtagca taacccettg gggcctctaa acgggtcttg aggggttttt 1620
tgtgccectc gggccggatt gctatctacc ggcattggcg cagaaaaaaa tgcetgatgc 1680
gacgctgcgc gtcttatact cccacatatg ccagattcag caacggatac ggcttcccca 1740
acttgcccac ttccatacgt gtcctcctta ccagaaattt atccttaagg tcgtcagcta 1800
tcctgcaggc gatctctcga tttcgatcaa gacattcctt taatggtctt ttctggacac 1860
cactaggggt cagaagtagt tcatcaaact tettccctc cctaatctca ttggttacct 1920
tgggctatcg aaacttaatt aaccagtcaa gtcagctact tggcgagatc gacttgtctg 1980
ggtttcgact acgctcagaa ttgcgtcagt caagttcgat ctggtccttg ctattgcacc 2040
cgttctccga ttacgagttt catttaaatc atgtgagcaa aaggccagca aaaggccagg 2100
aaccgtaaaa aggccgcgtt gctggcgttt ttccataggc tccgcccccc tgacgagcat 2160
cacaaaaatc gacgctcaag tcagaggtgg cgaaaccoga caggactata aagataccag 2220
gcgtttcccc ctggaagctc cctcgtgcgc tctcctgttc cgaccctgcc gcttaccgga 2280
tacctgtccg cetttctcc ttcgggaagc gtggcgcttt ctcatagctc acgetgtagg 2340
tatctcagtt cggtgtaggt cgttcgctcc aagctggget gtgtgcacga accecccgtt 2400
cagccegace getgcgcctt atccggtaac tatcgtcttg agtccaacce ggtaagacac 2460
gacttatcge cactggcagc agccactggt aacaggatta gcagagcgag gtatgtagge 2520
ggtgctacag agttcttgaa gtggtggcet aactacggct acactagaag aacagtattt 2580
ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag ctcttgatcc 2640
ggcaaacaaa ccaccgctgg tagcggtggt tttttgttt gcaagcagca gattacgegc 2700
agaaaaaag gatctcaaga agatcctttg atcttttcta cggggtctga cgctcagtgg 2760
aacgaaaact cacgttaagg gattttggtc atgagattat caaaaaggat cttcacctag 2820
atccttttaa attaaaaatg aagttttaaa tcaatctaaa gtatatatga gtaaacttgg 2880
tctgacagtt accaatgctt aatcagtgag gcacctatct cagcgatctg tctatttcgt 2940
tcatccatag ttgcatttaa atttccgaac tctccaaggc cotcgtcgga aaatcttcaa 3000
acctttcgtc cgatccatct tgcaggctac ctctcgaacg aactatcgca agtctcttgg 3060
ccggccttgc gccttggcta ttgcttggca gcgcctatcg ccaggtatta ctccaatccc 3120
gaatatccga gatcgggatc accogagaga agttcaacct acatcctcaa tccogatcta 3180
tccgagatcc gaggaatatc gaaatcgggg cgcgcetggt gtaccgagaa cgatcctctc 3240
agtgcgagtc tcgacgatcc atatcgttgc ttggcagtca gccagtcgga atccagcttg 3300
ggacccagga agtccaatcg tcagatattg tactcaagce tggtcacggc agcgtaccga 3360
tctgtttaaa cctagatatt gatagtctga tcggtcaacg tataatcgag tcctagcttt 3420
tgcaaacatc tatcaagaga caggatcagc aggaggcttt cgcatgagta ttcaacattt 3480
cegtgtcgec cttattccet ttttgcggc attttgcett cetgttttg ctcacceaga 3540
aacgctggtg aaagtaaaag atgctgaaga tcagttgggt gcgegagtgg gttacatcga 3600
actggatctc aacagcggta agatccttga gagttttcge cecgaagaac getttccaat 3660
gatgagcact tttaaagttc tgctatgtgg cgcggtatta tcccgtattg acgccgggca 3720
agagcaactc ggtcgccgca tacactattc tcagaatgac ttggttgagt attcaccagt 3780
-continued

cacagaaaag catcttacgg atggcatgac agtaagagaa ttatgcagtg ctgccataac	3840
catgagtgat aacactgcgg ccaacttact tetgacaacg attggaggac egaaggagct	3900
aaccgctttt ttgcacaaca tgggggatca tgtaactcge cttgatcgtt gggaaccgga	3960
gctgaatgaa gccataccaa acgacgagcg tgacaccacg atgcetgtag caatggcaac	4020
aaccttgcgt aaactattaa ctggcgaact acttactcta gcttccoggc aacagttgat	4080
agactggatg gaggcggata aagttgcagg accacttctg cgctcggccc ttccggctgg	4140
ctggtttatt gctgataat etggagcegg tgagcgtggg tctcgcggta tcattgcagc	4200
actggggcea gatggtaagc cotcccgtat cgtagttatc tacacgacgg ggagtcaggc	4260
aactatggat gaacgaaata gacagatcge tgagataggt gcctcactga ttaagcattg	4320
gtaaccgatt ctaggtgcat tggcgcagaa aaaatgcet gatgcgacge tgcgcgtctt	4380
atactcccac atatgccaga ttcagcaacg gatacggctt ccccaacttg cocacttcca	4440
tacgtgtcct cettaccaga aatttatcct taagatccog aatcgtttaa actcgactct	4500
ggctctatcg aatctccgtc gtttcgagct tacgcgaaca gccgtggegc tcatttgctc	4560
gtcgggcatc gaatctcgtc agctatcgtc agcttacctt tttggcagcg atcgcggctc	4620
ccgacatctt ggaccattag ctccacaggt atcttcttcc ctctagtggt cataacagca	4680
gcttcagcta cetctcaatt caaaaaacce ctcaagacec gtttagaggc cccaaggggt	4740
tatgctatca atcgttgcgt tacacacaca aaaaccaac acacatccat cttcgatgga	4800
tagcgatttt attatctaac tgctgatcga gtgtagceag atctagtaat caattacggg	4860
gtcattagtt catagcecat atatggagtt cogcgttaca taacttacgg taaatggcec	4920
gcctggctga cogcceaacg accoccgcec attgacgtca ataatgacgt atgttcccat	4980
agtaacgcea atagggactt tccattgacg tcaatgggtg gagtatttac ggtaaactgc	5040
ccacttggca gtacatcaag tgtatcatat gccaagtacg ceccetattg acgtcaatga	5100
cggtaaatgg cocgectggc attatgccea gtacatgace ttatgggact ttcetacttg	5160
gcagtacatc tacgtattag tcatcgctat taccatgctg atgcggtttt ggcagtacat	5220
caatgggcgt ggatagcggt ttgactcacg gggatttcca agtctccacc ccattgacgt	5280
caatgggagt ttgttttggc accaaaatca acgggacttt ccaaaatgtc gtaacaactc	5340
cgccccattg acgcaatgg gcggtaggeg tgtacggtgg gaggtctata taagcagagc	5400
tggtttagtg aaccgtcaga tcagatcttt gtcgatccta ccatccactc gacacaccog	5460
ccagcggecg c	5471
<210> SEQ ID NO 4	
<211> LENGTH: 7850	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic	
<400 > SEQUENCE: 4	
accatgtttg tgttcctggt actcctaccg ctggtgagct cccaatgcgt caatctcacg	60
actaggacac aactcccacc cgcctacacg aactctttta caaggggtgt atactaccct	120
gacaaggtgt tccgcagcag cgtgctacat agcactcaag atttgtttct gccettcttc	180
tctaacgtaa catggttcca tgcgatacat gtatctggta ccaatggaac aaaacggttt	240
gataacccag ttctcccgtt taatgatgga gtttactttg catccactga aagtctaat	300
ataatacgcg gatggatttt cggcacaaca ctggatagta agaccoagag tctgcttatt	360

-continued
gtcaataacg ccactaacgt ggtgattaag gtgtgtgagt ttcaattctg taatgaccca 420
tttctcgggg tttactacca taagaacaat aagagctgga tggaatcaga atttagagtt 480
tatagcagcg caaacaattg cacatttgaa tacgtttctc aaccctttct gatggatctc 540
gaaggaaaac aagggaactt taagaacctc agggaatttg tcttcaagaa catagatggg 600
tacttcaaaa tttacagcaa gcatacacca attaacttgg ttagagacct gccccaggga 660
ttttctgcac ttgaaccctt ggttgacttg cctatcggca ttaatattac tcgatttcaa 720
actctgctcg ctttgcaccg cagctacctg acaccgggag actcctctag tggctggacc 780
gcaggagcag ctgcatatta tgtgggttat ctccaaccca gaacatttct gctaaagtac 840
aacgaaaatg ggacaatcac cgatgcggtc gactgcgcat tggatcccct atccgagact 900
aagtgtactt tgaagagctt taccgtggaa aaggggatct atcaaacttc caactttcgg 960
gtgcaaccga ccgaaagcat cgttagattt cccaatatca ccaacttgtg tccetttggc 1020
gaagttttca acgctactcg ctttgcaagt gtctatgctt ggaatagaaa gaggataagc 1080
aactgcgtcg ctgactattc tgttctgtat aactctgcga gcttttcaac tttcaaatgc 1140
tatggggtct ccccaaccaa gcttaatgac ttgtgcttca ctaacqttta tqcagatagc 1200
ttcgtcatac ggggcgatga agtgcggcaa atcgcgccag gacaaacagg taagatcgcc 1260
gactacaact ataaactgcc agacgatttt acaggctgcg tgatcgcttg gaactctaac 1320
aatcttgatt ctaaagttgg tgggaattat aactatctat atcgtctctt cagaaaatct 1380
aacctcaage cetttgageg ggatataage acagaaatct atcaggctgg gtctactcct 1440
tgcaatggtg tcgaaggttt caattgctac tttccactgc aatcctacgg ctttcaacct 1500
acaaatggtg tcggttatca accgtataga gttgttgtgc tctcctttga gttgctacac 560
gctcctgcca cggtttgtgg acccaagaag tcaacgaatc tggtgaagaa taaatgcgtc 162
aattttaatt ttaacggact tacggggact ggcgttctca ccgaatccaa taagaagttc 1680
cttccattcc agcaattlgg cegcgatatc gccgatacaa cagacgetgt cagagatcca 1740
caaaccttgg agatcttgga tattacacca tgctctttcg gcggggtatc agtaatcacg 1800
ccggggacaa atacatccaa tcaggttgcc gtattgtatc aggatgtgaa ctgcaccgag 1860
gtccctgttg ccatacatgc cgatcagttg actccgactt ggcgggtgta ttctacaggg 1920
tctaatgtat ttcaaaccag agcaggatgc ctcatcggtg cogaacatgt taataattca 198
tatgagtgtg atatccccat aggagcaggc atttgtgcat cctaccaaac tcagaccaac 204
tcaccaagac gggcceggtc tgtggcgtcc cagtccataa ttgcetacac aatgagtctt 2100
ggagccgaaa actcagttgc ctattccaac aactccatcg ctatccccac gaattttaca 2160
atctcagtta ccactgaaat cctgcccgta tctatgacaa agacaagtgt tgattgcaca 2220
atgtatatct gcggggactc tactgagtgc tcaaatctgc tgctacagta cggtagcttt 2280
tgtactcagc taaatcgcgc actcaccggg attgctgtag aacaagacaa gaatacacaa 2340
gaggttttcg cccaagtgaa acaaatatac aaaacgcccc ctataaaaga cttcggtggt 2400
tttaacttta gccagatttt gccggatcca tccaaaccat ctaagcgctc tttcattgaa 2460
gatctcctgt tcaacaaagt tacattggcg gacgcaggtt tcattaagca atatggggat 2520
tgcettgggg atatcgcagc gcgggatctg atttgtgcec agaagttcaa tggtctgacg 2580
gttctgccac ccctactcac cgatgaaatg atcgcgcaat ataccagcgc tcttctggca 264
ggtaccatca cttccggctg gaccttcgga gccggcgccg cacttcaaat ccetttcgce 2700
-continued

-continued
gatcctttga tcttttctac ggggtctgac gctcagtgga acgaaaactc acgttaaggg 5160
attttggtca tgagattatc aaaaaggatc ttcacctaga tccttttaaa ttaaaaatga 5220
agttttaat caatctaag tatatatgag taaacttggt ctgacagtta ccaatgctta 5280
atcagtgagg cacctatctc agcgatctgt ctatttcgtt catccatagt tgcatttaaa 5340
tttccgaact ctccaaggec ctcgtcggaa aatcttcaaa cctttcgtcc gatccatctt 5400
gcaggctacc tctcgaacga actatcgcaa gtctcttggc cggccttgcg ccttggctat 5460
tgcttggcag cgcctatcgc caggtattac tccaatcccg aatatccgag atcgggatca 5520
cccgagagaa gttcaaccta catcctcaat cccgatctat cogagatccg aggaatatcg 558
aatcggggc gcgcctggtg taccgagaac gatcctctca gtgcgagtct cgacgatcca 564
tatcgttgct tggcagtcag ccagtcggaa tccagcttgg gacccaggaa gtccaatcgt 5700
cagatattgt actcaagcct ggtcacggca gcgtaccgat ctgtttaaac ctagatattg 5760
atagtctgat cggtcaacgt ataatcgagt cctagctttt gcaaacatct atcaagagac 5820
aggatcagca ggaggetttc gcatgagtat tcaacatttc egtgtcgccc ttattccett 588
ttttgcggca ttttgccttc ctgtttttgc tcacccagaa acgctggtga aagtaaaaga 5940
tgctgaagat cagttgggtg cgcgagtggg ttacatcgaa ctggatctca acagcggtaa 5000
gatccttgag agttttcgcc cegaagaacg ctttccaatg atgagcactt ttaaagttct 6060
gctatgtggc gcggtattat cccgtattga cgccgggcaa gagcaactcg gtcgccgcat 6120
acactattct cagaatgact tggttgagta ttcaccagtc acagaaaagc atcttacgga 6180
tggcatgaca gtaagagaat tatgcagtgc tgccataacc atgagtgata acactgcggc 6240
caacttactt ctgacaacga ttggaggace gaaggagcta accgcttttt tgcacaacat 6300
gggggatcat gtaactcgcc ttgatcgttg ggaaccggag ctgaatgaag ccataccaaa 636
cgacgagcgt gacaccacga tgcetgtagc aatggcaaca accttgcgta aactattaac 6420
tggcgaacta cttactctag cttcccggca acagttgata gactggatgg aggcggataa 6480
agttgcagga ccacttctgc gctcggccet tccggctggc tggtttattg ctgataaatc 6540
tggagceggt gagcgtgggt ctcgcggtat cattgcagca ctggggccag atggtaagce 6600
ctcccgtatc gtagttatct acacgacggg gagtcaggca actatggatg aacgaaatag 6660
acagatcgct gagataggtg cctcactgat taagcattgg taaccgattc taggtgcatt 672
ggcgcagaaa aaaatgcctg atgcgacgct gcgcgtctta tactcccaca tatgccagat 6780
tcagcaacgg atacggcttc cccaacttgc ccacttccat acgtgtcctc cttaccagaa 6840
atttatcctt aagatcccga atcgtttaaa ctcgactctg gctctatcga atctccgtcg 6900
tttcgagctt acgcgaacag cogtggcgct catttgctcg tcgggcatcg aatctcgtca 6960
gctatcgtca gcttaccttt ttggcagcga tcgcggctcc cgacatcttg gaccattagc 7020
tccacaggta tcttcttccc tctagtggtc ataacagcag cttcagctac ctctcaattc 7080
aaaaaacccc tcaagacceg tttagaggce ccaaggggtt atgctatcaa tcgttgegtt 7140
acacacacaa aaaaccaaca cacatccatc ttcgatggat agcgatttta ttatctaact 7200
gctgatcgag tgtagccaga tctagtaatc aattacgggg tcattagttc atagcccata 7260
tatggagttc cgcgttacat aacttacggt aatggcecg cetggctgac cgeccaacga 7320
cccccgccca ttgacgtcaa taatgacgta tgttcccata gtaacgccaa tagggacttt 7380
ccattgacgt caatgggtgg agtatttacg gtaaactgcc cacttggcag tacatcaagt 7440
-continued

$<210>$ SEQ ID NO 5
$<211>$ LENGTH: 412
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Infectious Bronchitis Virus
$<400>$ SEQUENCE: 5

-continued

[^1]

$<210>$ SEQ ID NO 8
$<211>$ LENGTH: 3296
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION : synthetic
$<400>$ SEQUENCE: 8
-continued

| tttatacaag ttaatggtag thactacatc actgcacgtg atatgtatat gccaagagat | 3000 |
| :--- | :--- | :--- |
| attactgcag gagatatagt tacgcttact tcttgtcaag caattatgt aagtgtaaac | 3060 |
| aagaccgtca ttactacatt tgtagacaat gatgattttg attttgatga cgagttatca | 3120 |
| aatggtgga atgaaactaa gcacgagttg ccagactttg accagtttaa ttacaccatt | 3180 |
| cccgttttaa atataactta tgatattgac aagattgagg aagttattaa gggacttaat | 3240 |
| gattccttga ttgacctcga aacattgtca attctcaaaa cttatattaa gtggcc | 3296 |

<210	$>$ SEQ ID NO 9
$<211>$ LENGTH: 422	
$<212>$ TYPE : PRT	
$<213>$ ORGANISM: SARS-COV-2	
$<400>$ SEQUENCE : 9	

-continued

$<211>$ LENGTH: 1215
$<212>$ TYPE: PRT
$<213>$ ORGANISM: SARS-COV-2
$<400>$ SEQUENCE: 11

<210> SEQ ID NO 12
<211> LENGTH: 3666$<212>$ TYPE: DNA
<213> ORGANISM:<220 > FEATURE:$<223>$ OTHER INFORMATION: synthetic
<400> SEQUENCE 12
atgtttgtgt tcctggtact cctaccgctg gtgagctcce aatgcgtcaa tctcacgact 60
aggacacaac tcccaccogc ctacacgaac tcttttacaa ggggtgtata ctaccctgac 120
aaggtgttcc gcagcagcgt gctacatagc actcaagatt tgtttctgcc cttcttctct 180
aacgtaacat ggttccatgc gatacatgta tctggtacca atggaacaaa acggtttgat 240
aacccagttc tcccgtttaa tgatggagtt tactttgcat ccactgaaaa gtctaatata 300
atacgcggat ggattttcgg cacaacactg gatagtaaga cecagagtct gcttattgtc 360
aataacgcca ctaacgtggt gattaaggtg tgtgagtttc aattctgtaa tgacccattt 420
ctcggggttt actaccataa gaacaataag agctggatgg aatcagaatt tagagtttat 480
agcagcgcaa acaattgcac atttgaatac gtttctcaac cctttctgat ggatctcgaa 540
ggaaaacaag ggaactttaa gaacctcagg gaatttgtct tcaagaacat agatgggtac 600
ttcaaaattt acagcaagca tacaccaatt aacttggtta gagacctgcc ccagggattt 660
tctgcacttg aacccttggt tgacttgcct atcggcatta atattactcg atttcaaact 720
ctgctcgctt tgcaccgcag ctacctgaca cegggagact cetctagtgg etggacegca 780
ggagcagctg catattatgt gggttatctc caacccagaa catttctgct aaagtacaac 840
gaaaatggga caatcaccga tgcggtcgac tgcgcattgg atccectatc cgagactaag 900
tgtactttga agagctttac cgtggaaaag gggatctatc aaacttccaa ctttcgggtg 960
caaccgaccg aaagcatcgt tagatttccc aatatcacca acttgtgtcc ctttggcgaa 1020
gttttcaacg ctactcgctt tgcaagtgtc tatgcttgga atagaaagag gataagcaac 1080
tgcgtcgctg actattctgt tctgtataac tctgcgagct tttcaacttt caaatgctat 1140
ggggtctccc caaccaagct taatgacttg tgcttcacta acgtttatgc agatagcttc 1200
gtcatacggg gcgatgaagt gcggcaaatc gcgccaggac aaacaggtaa gatcgccgac 1260
tacaactata aactgccaga cgattttaca ggctgcgtga tcgcttggaa ctctaacaat 1320
cttgattcta aagttggtgg gaattataac tatctatatc gtctcttcag aaaatctaac 1380
ctcaagccet ttgagcggga tataagcaca gaaatctatc aggctgggtc tactccttgc 1440
aatggtgtcg aaggtttcaa ttgctacttt ccactgcaat cctacggctt tcaacctaca 1500
aatggtgtcg gttatcaacc gtatagagtt gttgtgctct cctttgagtt gctacacgct 1560
cctgccacgg tttgtggacc caagaagtca acgaatctgg tgaagaataa atgcgtcaat 1620
tttaatttta acggacttac ggggactggc gttctcaccg aatccaataa gaagttcctt 1680
ccattccagc aatttggccg cgatatcgcc gatacaacag acgetgtcag agatccacaa 1740
accttggaga tcttggatat tacaccatgc tctttcggcg gggtatcagt aatcacgccg 1800
gggacaaata catccaatca ggttgccgta ttgtatcagg atgtgaactg caccgaggtc 1860
cctgttgcca tacatgccga tcagttgact ccgacttggc gggtgtattc tacagggtct 1920
aatgtatttc aaaccagagc aggatgcctc atcggtgccg aacatgttaa taattcatat 1980
gagtgtgata tccccatagg agcaggcatt tgtgcatcct accaaactca gaccaactca 2040
ccaagacggg cccggtctgt ggcgtcccag tccataattg cctacacaat gagtcttgga 2100
-continued
gccgaaaact cagttgccta ttccaacaac tccatcgcta tccecacgaa ttttacaatc 2160
tcagttacca ctgaaatcct gcccgtatct atgacaaaga caagtgttga ttgcacaatg 2220
tatatctgcg gggactctac tgagtgctca aatctgctgc tacagtacgg tagcttttgt 2280
actcagctaa atcgcgcact caccgggatt gctgtagaac aagacaagaa tacacaagag 2340
gttttcgccc aagtgaaaca aatatacaaa acgcccccta taaaagactt cggtggtttt 2400
aactttagcc agattttgcc ggatccatcc aaaccatcta agcgctcttt cattgaagat 2460
ctcctgttca acaaagttac attggcggac gcaggtttca ttaagcaata tggggattgc 2520
cttggggata tcgcagcgeg ggatctgatt tgtgcccaga agttcaatgg tctgacggtt 2580
ctgccacccc tactcaccga tgaaatgatc gcgcaatata ccagcgctct tctggcaggt 2640
accatcactt coggctggac cttcggagce ggcgcegcac ttcaaatccc tttcgccatg 2700
caaatggcat atagatttaa tggcatcggt gtcacccaaa acgtattgta tgagaaccaa 2760
aagctgattg ccaatcaatt taatagcgca attggtaaaa tacaagacag cctgagcagt 2820
acggcaagcg cactcgggaa gcttcaagat gtagttaatc agaatgctca ggctttgaat 288
actcttgtga aacaactctc ttccaatttt ggcgccatct catctgtgct caacgacatt 2940
ctttcccgac tcgataaggt ggaagctgaa gttcaaatcg atcggctcat tacaggcaga 3000
ctgcagtctc tccaaaccta cgtcacccag caactgatta gggcggcaga aattcgcget 3060
tctgcaaatc ttgcagccac aaagatgagc gagtgtgtcc tgggccaatc aaagcgegtc 3120
gacttttgcg gaaaggggta tcatctcatg agctttccac aatcagcccc acatggagtt 3180
gtctttctcc atgtaacgta cgtccetgct caggaaaaga atttcaccac agceccagct 3240
atttgceatg acggaaaggc tcacttccca cgtgaaggeg tatttgtatc aaatggcacc 3300
cactggttcg tcacccaacg taacttttac gagcctcaga ttatcaccac ggataacacg 336
ttcgtcagcg ggaattgtga tgtagtcatt ggtattgtca ataataccgt gtatgatccc 3420
cttcaacccg aattggactc ctttaaagaa gaactcgaca aatactttaa gaaccatacg 3480
tcccctgacg tggacctcgg tgacatttca ggcataaatg cctcagtggt gaacattcaa 3540
aaggaaatcg ataggctgaa cgaagtggce aagaatttga acgaaagttt gattgatctc 3600
caagaactgg ggaaatacga acaatatata aaatggggtg gcggacacca tcatcatcac 3660
cattaa 3666
$<210>$ SEQ ID NO 13
<211> LENGTH: 34
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence <220 > FEATURE

<223> OTHER INFORMATION: Synthetic - forward primer N6xHis

<400> SEQUENCE: 13atcactgaat tcaccatggc aagcggtaaa gcag34
$<210>$ SEQ ID NO 14
$<211>$ LENGTH: 68
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic- reverse primer N6xHis
$<400>$ SEQUENCE: 14
$<210>$ SEQ ID NO 15
$<211>$ LENGTH: 42
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic- forward primer S1 6xHis
$<400>$ SEQUENCE: 15

```
<210> SEQ ID NO 16
<211> LENGTH: }8
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic -reverse primer S1 6xHis
<400> SEQUENCE: 16
```

atcactgcgg ccgctcagtg gtgatggtga tgatgccctc cgccggagga tccagttcca 60
ttagtgatct taatgtaaaa ctggtttc 89
$<210>$ SEQ ID NO 17
$<211>$ LENGTH: 22
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic- forward primer IBV N gene
$<400>$ SEQUENCE: 17
atgctcaacc tagtccctag ca 22
$<210>$ SEQ ID NO 18
$<211>$ LENGTH: 21
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic- reverse primer IBV N gene
$<400>$ SEQUENCE: 18
tcaaactgcg gatcatcacg t 21
$<210>$ SEQ ID NO 19
$<211>$ LENGTH: 8
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: SYnthetic- OVA I
$<400>$ SEQUENCE: 19
Ser Ile Ile Asn Phe Glu Lys Leu
1
$<210>$ SEQ ID NO 20
$<211>$ LENGTH: 17
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic- OVA II
-continued
<400> SEQUENCE: 20
Ile Ser Gln Ala Val His Ala Ala His Ala Glu Ile Asn Glu Ala Gly
1
5
A.rg

We claim:

1. A composition comprising disaggregated spherical nanostructures comprising Quil-A and chitosan, wherein the Quil-A and chitosan are present at a ratio between $1: 15$ weight:weight, and $1: 100$ weight:weight.
2. The composition of claim 1 , additionally comprising a payload molecule.
3. The composition of claim 2 , wherein the payload molecule is selected from the group consisting of a DNA molecule, an RNA molecule, a polynucleotide.
4. The composition of claim 2, wherein the payload molecule is negatively charged.
5. The composition of claim 2, wherein the payload is functionalized.
6. The composition of claim 1 , wherein the chitosan is functionalized by treatment with 5 -formyl-2-furan sulfonic acid and sodium borohydride such that the chitosan surface is negatively charged.
7. The composition of claim 1 , wherein the spherical nanostructures are between about 5 nm and about 100 nm in diameter in the absence of a payload molecule.
8. A vaccine formulation comprising an antigen, the composition of claim 1 as an adjuvant, and a pharmaceutically acceptable carrier.
9. A vaccine formulation comprising the composition of claim 1 .
10. A method of immunizing a subject against an antigen 20 comprising the step of administering to the subject a vaccine formulation comprising the composition of claim 1.
11. The method of claim 10 , wherein the subject is selected from the group consisting of a human, a mouse, a rat, a cow, a horse, a pig, a goat, a sheep, a cat, a dog, or a 5 bird.

[^0]: * cited by examiner

[^1]: $<210>$ SEQ ID NO 7
 <211> LENGTH: 1098
 <212> TYPE: PRT
 <213 > ORGANISM: Infectious Bronchitis Virus

