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(57) ABSTRACT 

A machine learning architecture employs two machine 
learning networks that are joined by a statistical model 
allowing the imposition of a predetermined statistical model 
family into a learning process in which the networks trans
late between and data types. For example, the statistical 
model may enforce a Gaussian conditional probability 
between the latent variables in the translation process. In one 
application, MRI images may be translated into PET images 
with reduced mode collapse, blurring, or other "averaging" 
type behaviors. 
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DUAL FLOW GENERATIVE COMPUTER 
ARCHITECTURE 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

2 
learning, a process called "modality transfer." While the 
underlying mechanics of the MRI and PET imaging are 
radically different-MRis are obtained using strong mag
netic fields, magnetic field gradients, and radio waves to 
generate images of the organs in the body and do not involve 
the use of ionizing radiation/radionucleotide, which distin
guishes it from PET scans-the hope is that there are some 
other hidden or unknown linking variables between these 
image types that would allow this transfer in important 

This invention was made with government support under 
AG040396 awarded by the National Institutes of Health and 
1252725 awarded by the National Science Foundation. The 
government has certain rights in the invention. 10 diagnostic situations. 

CROSS REFERENCE TO RELATED 
APPLICATION 

Existing modality transfer methods for MRI to PET 
conversion have made use of CNNs (convolutional neural 
nets) or GANs (generative adversarial networks). A draw
back to the direct use of CNN s for this task is that they may 

BACKGROUND OF THE INVENTION 

The present invention relates to computer architectures 
for machine learning and in particular to an architecture 
providing an improved latent variable characterization in a 
machine learning architecture. 

15 produce blurry output images when compared to results 
obtained via modality transfer with a generative model such 
as GAN s which attempts to characterize (rather, estimate the 
parameters of) the probability distribution from which the 
set of training images are sampled. GAN s, on the other hand, 

Machine learning systems, for example, artificial neural 
networks, have been applied to a wide variety of image 
processing tasks including, importantly, problems of classi
fication where images are analyzed to classify their contents, 
for example, identifying cars and pedestrians for controlling 
autonomous vehicles, or cancerous lesions for medical diag-

20 produce sharper images but tend to suffer from a problem 
termed "mode collapse" that produces one of a limited set of 
output images for a much larger set of input images. GANs 
may also be computationally difficult to train. 

In both cases, the concern is that the machine learning 

nosis. 

25 system has essentially trained itself to produce a few "aver
age" or representational PET images, images that would be 
mathematically close to an image produced by an actual 
PET scan but at the expense of eliminating small underlying 
diagnostic differences intended to be revealed. 

Recent work has investigated the ability of machine 30 

learning to generate images (for example, using Generative 
Adversarial Networks) based on a seed variable or the like. 
These image generation techniques can be useful in so
called "modality transfer" where a medical image taken by 
a first imaging modality (for example, magnetic resonance 35 

imaging (MRI)) is used as a seed variable in machine 
learning to generate a comparable image as if acquired with 
a second imaging modality (for example, CT imaging). Such 
modality transfer to a second modality can provide novel 
information that was not apparent in the first modality data. 40 

This is in essence 'free' information that otherwise was not 
apparent in the first modality. 

PET (positron emission tomography) imaging offers the 
possibility of capturing diagnostic information beyond that 
which can be obtained from other image modalities (e.g. 45 

MRI or CT). This additional diagnostic information comes 
from the introduction of a radioactive tracer (e.g., FDG 
(fluorodeoxyglucose)) into the patient (e.g., FDG can pro
vide metabolic information of tissue and target and highlight 
differences in tissue metabolism that might otherwise be 50 

indistinguishable). PET imaging can be costly in terms of 
the equipment, the radioactive tracer, and imaging logistics 
as well as the needed high levels of skilled technical support. 
These costs, as well as medical guidelines that recommend 
limiting patient exposure to the necessary radioactive trac- 55 

ers, serve to limit the availability of PET in many cases 
clinically as well as in research. Some large-scale medical 
trials may provide PET images only to a small subset of 
participants who are otherwise imaged using MRI (magnetic 
resonance imaging) which, in contrast to PET, is relatively 60 

inexpensive and is considered quite safe. 
Overall, the ability to get novel information (obtaining 

data of both modalities using data acquired from one modal
ity), cost savings, limiting patient exposure to radiation, and 
availability of these different image modalities has moti- 65 

vated investigation into whether MRI images can be trans
lated into clinically significant PET images using machine 

SUMMARY OF THE INVENTION 

The present invention provides a machine learning archi
tecture that appears to overcome the problems ofCNNs and 
GAN s with respect to modality transfer and which may have 
important application in converting MRI images to PET 
images as well as other similar applications. Generally, the 
invention provides for two machine learning networks that 
are joined by a statistical model allowing the imposition of 
a predefined statistical model family. During training, train
ing information flows inward through each of the networks 
toward the statistical model and trains the model as well as 
generates errors for back-propagation training the networks. 
In one example, the statistical model may be a conditional 
probability between the output of the networks when they 
are trained with corresponding MRI and PET images. 
Through this architecture, the network learning process is 
constrained by the statistical model in a way that is believed 
to empirically help prevent mode collapse, blurring, and 
other "averaging" type behaviors. 

Specifically, in one embodiment, the invention provides a 
computer architecture having: ( 1) a first machine learning 
network receiving input data and propagating the input data 
in a first flow direction through the first machine learning 
network according to first weight values to produce first 
output data at a first network interface; (2) a statistical 
variable converter receiving the first output data and apply
ing it to a statistical model to provide second output data; 
and (3) a second machine learning network receiving the 
second output data at a second network interface and propa
gating the second output data in a first flow direction through 
the second machine learning network according to second 
weight values to provide output data. 

The first and second weights and the statistical model are 
trained values produced by: (a) applying training set data to 
the first machine network to propagate in the first flow 
direction to the statistical variable converter; and (b) apply-
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ing corresponding training set data to the second machine 
network to propagate in a second flow direction opposite the 
first flow direction to the statistical variable converter. Based 
on the propagation of the training set data the statistical 
variable converter: (a) modifies the statistical model; and (b) 
provides error values for backpropagation to the first 
machine learning network and second machine learning 
network based on the current state of the statistical model. 

It is thus a feature of at least one embodiment of the 
invention to provide an improved network architecture for 
tasks such as modality transfer between image modality 
types that can steer the training away from results that 
produce an overly generalized or averaged image. 

10 

The statistical variable converter may provide a function 15 
of lower dimension than the dimension of the first output 
data. For example, when the statistical variable converter 
provides a conditional probability function that conditional 
probability may be expressed as a set of probability 
moments for a given distribution type such as Gaussian 20 

mean and Gaussian variance. 
It is thus a feature of at least one embodiment of the 

invention to allow control over the dimensionality of the 
conversion process such as can improve training conver
gence and reduced computational burden while preserving 25 

data relevant to diagnostic distinctions. 
In one example, the statistical variable converter may 

provide conditional probabilities between the first output 
data and the second output data. 

It is thus a feature of at least one embodiment of the 30 

invention to allow the imposition of a mathematically well
understood concept of conditional probability into the 
modality transfer process. 

4 
side information-based weighting to only a given branch of 
the first machine learning network associated with the given 
statistical variable converter. 

It is thus a feature of at least one embodiment of the 
invention to provide for the integration of side information 
into the modality transfer process while minimizing training 
the system on the correlated features of the side information 
and the main data thereby preventing these correlated fea
tures from being overemphasized in the modality transfer 
process. 

The process of isolating the side information-based 
weighting may use side information machine learning net
works on branches of the first machine learning network 
other than the given branch having gradient reversal layers, 
the side information machine learning networks receiving 
the side information and operating in parallel with the 
statistical variable converters during training. 

It is thus a feature of at least one embodiment of the 
invention to provide a method of isolating training of 
weights in an architecture of this type. 

These particular objects and advantages may apply to 
only some embodiments falling within the claims and thus 
do not define the scope of the invention. 

BRIEF DESCRIPTION OF THE FIGURES 

FIG. 1 is a block diagram of the machine learning 
architecture according to the present invention configured in 
a training mode using a training set of MRI, PET, and side 
information data, showing two networks linked by an 
explicit variable converter, in this case, a conditional prob
ability model and showing the introduction of side informa-
tion on ancillary networks; The second output data may be produced from the con

ditional probability by randomly selecting a value on the 35 

conditional probability identified by the first output data 
according to the weighting of the conditional probability. 

FIG. 2 is a block diagram similar to that of FIG. 1 of the 
machine learning architecture configured for use in modality 
transfer after training to convert MRI data to PET data; and 

FIG. 3 is a block diagram of computer hardware providing 
for the implementation of the architectures of FIGS. 1 and 

40 2. 

It is thus a feature of at least one embodiment of the 
invention to provide a simple method of incorporating 
conditional probability into a machine learning network 
architecture. 

The first network may provide a set of branches dividing 
data passing in the first flow direction in the first machine 
learning network among the branches to provide a first 
output for each branch at the first network interface, and the 45 

statistical variable converter may provide separate statistical 
models for each branch in turn providing separate second 
output data for each branch, and the second network may 
provide a set of branches combining data in the first flow 
direction through the second machine learning network to 50 

produce the output data combining the separate second 
output data. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

Referring now to FIG. 1, a machine learning network 
architecture 10 per the present invention may provide a 
training mode to receive training set data 12 held in a 
memory 14 for the purpose of training the machine learning 
network architecture 10. In the example of modality transfer, 
the training set data 12 may include multiple training 
elements 15 (indicated diagrammatically by rows) each 
providing one MRI image 16a linked with respect to a given 
patient and diagnostic state with corresponding PET images 
16b of that same patient. Each element 15 of the training set 

It is thus a feature of at least one embodiment of the 
invention to provide a hierarchical structure to provide 
improved processing speed and easier integration of side 
information (e.g., age, gender) associated with a given MRI 
image into the modality transfer process. 

With respect to this side information, the first machine 
learning network may include a given statistical variable 
converter not associated with a branch of the first machine 
learning network but associated with the branch of the 
second machine learning network, and the given statistical 
variable converter may receive side information related to 
the input data. In this case, the given statistical converter 
may use a statistical model that is trained by training the first 
machine learning network and second machine learning 
network also with respect to side information but isolating 

55 data 12 may also be associated with side information 18, for 
example, describing other characteristics of the patient in the 
diagnostic state of the images 16, such as age, sex, disease 
status, genotype, etc. Linking this data by the diagnostic 
state should be understood simply as a requirement that the 

60 MRI image 16a, PET image 16b, and side information 18 of 
a given training element 15 be acquired within an interval in 
which the patient's medical condition remains substantially 
unchanged. 

The MRI image 16a of each element 15 will be provided 
65 to a first network 20 at a network input 22 and the corre

sponding PET image 16b of that element will be applied to 
a second network 24 at network input 27. 
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The networks 20 and 24 may be artificial neural networks 
having network components 26 of types well known in the 
art of convolutional network design. These components 26 
may, for example, include convolution layers, deconvolution 
layers, fully connected layers, and the like. Generally, the 
network 24 must be invertible meaning that it will operate in 
either of two directions in the processing of data. For 
simplicity, the networks 20 and 24 may be identical. 

The network components 26 of the networks 20 and 24 
may be arranged in a hierarchical form such that the outputs 10 

of a first network component 26a in each of networks 20 and 
24 directly receiving training set data 12 may be separated 
into different flow paths 28, one passing to branches 30a (via 
additional network components 26) and the other passing to 
later network components 26b. This separation process 15 

sends different data along each flow path 28, for example, by 
taking a data vector and sending the first half along one flow 
path 28 and the second half along a second flow path 28. 
While simple networks 20 and 24 are shown for clarity, the 
number of network components 26 and branches 30 may be 20 

arbitrarily scaled. 
In a similar marmer, the output from succeeding network 

components 26b may be separated into different flow paths 
28, one passing to branches 30b (via additional network 
components 26) and the other passing to later network 25 

component 26c. 
The output of network components 26 proceeds directly 

to downstream components 26 and whose output forms 
branch 30c. 

6 
received data. These error values will be propagated back
ward through the networks 20 and 24 to provide training of 
the weights of the network components 26 per standard 
network error propagation processes (sometimes termed 
back projection). In this way, both the conditional probabil
ity models 36 and the weights of the network components 26 
are trained together. 

This error value used for error propagation uses the 
current data points applied to a mapping of the current 
probability function, for example, an invertible mapping. 
The error value so deduced may be identical for the net
works 20 and 24. The error value in the objective function 
comes from maximizing the log-likelihood of these condi-
tional distributions, as typically understood in the art. 

The conditional probability models 36 operate to steer the 
training process by allowing the imposition of a particular 
statistical family (e.g., Gaussian) on the conditional prob
ability relationship. This is done, for example, by storing 
only moments ( e.g., mean, variance) of the conditional 
probabilities essentially forcing them into a Gaussian model. 
In one embodiment only two moments are stored for each 
dimension of the conditional probability being mean and 
variance. Although the inventors do not wish to be bound by 
a particular theory, it is believed that this a priori imposition 
of a conditional probability model helps prevent averaging 
or mode collapse discussed above. 

Referring still to FIG. 1, during the development of the 
conditional probabilities models 36, the weights of the 

For network 20, each of the branches 30 is connected to 
a corresponding splitter 32 which sends the associated data 
in an identical form to two locations, the first location being 
a side information network 34, as will be discussed further 
below, and the second location being a conditional prob
ability model 36. 

30 networks 20 and 24 in the network components 26 may also 
be affected by the side information 18. In particular, the side 
information 18 may be provided at the outputs of the side 
information networks 34a-34d which use this side informa-
tion 18 to create their own back-propagated errors which 

35 will be added to the errors from the conditional probability 
models 36 through the splitters 32 thus affecting the weights 
of the respective networks 20 and 26. Importantly, side 
information networks 34a and 34b include not only a 

For network 24, the first two branches 30 (30a and 30b) 
provide their data directly to a corresponding conditional 
probability model 36 without diversion by a splitter. Branch 
30c, however, provides its data to a splitter 32d sending the 
associated data in the identical form to two locations of a 40 

standard classifier network 40 (attempting to classify the 
given input images 16a and 16b, respectively, with respect 
to the given side information 18) but also a gradient reversal side information network 34d and a conditional probability 

model 36c. 
This branching reduces the computational expense of 

making all data pass through all network components 26 and 
incurs insubstantial loss in quality. 

It will be understood that the conditional probability 
models 36 receive values from both of the networks 20 and 
24 during the training process and these values serve to 
refine the separate conditional probability models 36 on an 
iterative basis to build a conditional probability model that 
best matches the training set. The conditional probability 
models 36 may be initialized to an arbitrary conditional 
probability to aid in this convergence process, for example, 
a spherical Gaussian conditional probability with dimen
sions equal to dimensions of the data of the training set along 
the particular flow path 28. 

As is understood in the art, a conditional probability will 
establish a probability distribution of an output value (values 
from network 24) based on a given input value (values from 
network 20). 

layer 42. Gradient reversal layers 42 suitable for use with the 
present invention are described in Ganin, Y., Lempitsky, V., 
2014 "Unsupervised domain adaptation by back projection", 

45 arXiv, preprint arXiv:1409.7495. 
The effect of the gradient reversal layer 42 is to essentially 

remove any "learning" in the weights of network compo
nents 26 (associated with branches 30a and 30b) that is 
predictive of the side information 18. In this way, these 

50 network components receive training focused on the data 
that can be derived from the MRI images 16a uncorrelated 
with the side information 18. 

This approach is switched with respect to branch 30c. The 
side information network 34c of this branch for both net-

55 work 20 and network 24 does not have the gradient reversal 
layer 42. As a result the conditional probability models 36c 
provide a conditional probability dependent in part on the 
side information 18c. 

During the training process of the conditional probability 
60 models 36, the training may be regularized to prevent trivial 

solutions such as mapping everything to zero by controlling 
the marginal distribution of the function or other similar 
techniques. In addition, additional side information 18 may 

The conditional probability models 36 will iteratively 
build a conditional probability model for the conditional 
probability of the training set data 12 by observing the 
values from the networks 20 and 24, for example, by a fitting 
process. For each given set of received data from the 65 

networks 20 and 24, however, an error value may be 
established between that existing model and that given set of 

be incorporated into the machine learning architecture 10 by 
adding additional branches 30 dedicated to that side infor
mation 18 (with side information networks 34 without 
gradient reversal layers 42) and adding comparable side 
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information networks 34 with gradient reversal layers 42 on 
the remaining branches 30 following this approach. 

8 

Referring now to FIG. 2, after training, the machine 
learning architecture 10 may receive a given MRI image 46 
and associated side information 18 for which there is no 
corresponding PET image. The MRI image 46 is provided to 
neural component 26a and the side information 18 is pro
vided directly to the conditional probability model 36c 
instead of information from the final branch 30c. Effectively, 
neural component 26c and the remainder of branch 30c are 10 

eliminated together with the splitters 32 and the side infor
mation networks 34 which are used only for training. 

example, terms such as "upper", "lower", "above", and 
"below" refer to directions in the drawings to which refer
ence is made. Terms such as "front", "back", "rear", "bot
tom" and "side", describe the orientation of portions of the 
component within a consistent but arbitrary frame of refer
ence which is made clear by reference to the text and the 
associated drawings describing the component under dis
cussion. Such terminology may include the words specifi-
cally mentioned above, derivatives thereof, and words of 
similar import. Similarly, the terms "first", "second" and 
other such numerical terms referring to structures do not 
imply a sequence or order unless clearly indicated by the 
context. Outputs from branches 30a and 30b of network 20 

proceed as before to their respective conditional probability 
models 36a and 36b. 

Data from branches 30a and 30b and the side information 
18 input to the models 36 provide outputs from the models 
36 in a sampling process that indexes a table describing the 
probability model to identify corresponding conditional 
probabilities and randomly selecting a value within the 
range of the identified conditional probabilities weighted 
according to those identified conditional probabilities. That 
is, output values of the sampling process tend to favor values 
associated with higher conditional probabilities. 

These sample-driven values are then provided to network 
24 where they pass "backward" through that network 24, 
being received by network components 26 associated with 
each branch 30, and then move upward through network 
components 26a-26c, respectively, combining at each flow 
path to ultimately produce an output value from network 
component 26a providing generated PET image 50. The 
combining follows the exact inverse of the splitting that was 
performed in the flow paths 28 of network 20 during the 
training. This generated PET image 50 will reflect the 
previous training of the networks 20 and 22 carried in the 
network weights and the values of the models in conditional 
probability models 36 captured in corresponding tables and 
the values of MRI image 16a and side information 18. 

Referring now to FIG. 3, the components of the machine 
learning network architecture 10 described above are 
demanding of computational resources and accordingly 
practically require the use of a special purpose computer 60 
suitable for machine learning tasks. Such a computer 60 may 
include a general processor 62 (CPU) working in tandem 
with an array of special purpose processors 64 for imple
menting machine learning systems, for example, comprised 
of one or more GPUs (graphic processor units). The indi
vidual GPUs may execute Tensorflow, an open-source pro
gram that is widely distributed and supported by Alphabet, 
Inc., a California company that is the parent of Google. 

These special purpose computers 60 may include memory 

When introducing elements or features of the present 
15 disclosure and the exemplary embodiments, the articles "a", 

"an", "the" and "said" are intended to mean that there are 
one or more of such elements or features. The terms "com
prising", "including" and "having" are intended to be inclu
sive and mean that there may be additional elements or 

20 features other than those specifically noted. It is further to be 
understood that the method steps, processes, and operations 
described herein are not to be construed as necessarily 
requiring their performance in the particular order discussed 
or illustrated, unless specifically identified as an order of 

25 performance. It is also to be understood that additional or 
alternative steps may be employed. 

References to "a microprocessor" and "a processor" or 
"the microprocessor" and "the processor," can be under
stood to include one or more microprocessors that can 

30 communicate in a stand-alone and/or a distributed environ
ment(s ), and can thus be configured to communicate via 
wired or wireless communications with other processors, 
where such one or more processor can be configured to 
operate on one or more processor-controlled devices that can 

35 be similar or different devices. Furthermore, references to 
memory, unless otherwise specified, can include one or more 
processor-readable and accessible memory elements and/or 
components that can be internal to the processor-controlled 
device, external to the processor-controlled device, and can 

40 be accessed via a wired or wireless network. 
It is specifically intended that the present invention not be 

limited to the embodiments and illustrations contained 
herein and the claims should be understood to include 
modified forms of those embodiments including portions of 

45 the embodiments and combinations of elements of different 

50 

embodiments as come within the scope of the following 
claims. All of the publications described herein, including 
patents and non-patent publications, are hereby incorporated 
herein by reference in their entireties 

14 holding training set data 12 (images 16a, 16b and side 
information 18) as well as input MRI images 46 and side 
information 48 where a mode transfer is desired and the 
resulting generated PET image 50. This latter generated PET 55 

image 50 may be displayed on a diagnostic quality terminal 

To aid the Patent Office and any readers of any patent 
issued on this application in interpreting the claims 
appended hereto, applicants wish to note that they do not 
intend any of the appended claims or claim elements to 
invoke 35 U.S.C. 112(f) unless the words "means for" or 
"step for" are explicitly used in the particular claim. 

What we claim is: 
74 communicating with the computer 60 which may also 
provide for receipt of operator commands and the provision 
of other operator data. 

The memory 14 may also include an operating program 60 

68 implementing the blocks of FIGS. 1 and 2 as described 
above. Standard computer components such as network 
communication circuits and the like may be provided for the 
purpose of receiving and outputting data to and from the 
computer 60. 65 

Certain terminology is used herein for purposes of refer
ence only, and thus is not intended to be limiting. For 

1. A computer architecture comprising: 
a first machine learning network receiving input data and 

propagating the input data in a first flow direction 
through the first machine learning network according to 
first weight values to produce first output data at a first 
network interface; 

a statistical variable converter receiving the first output 
data and applying it to a statistical model to provide 
second output data; and 

a second machine learning network receiving the second 
output data at a second network interface and propa-
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gating the second output data in a second flow direction 
through the second machine learning network accord
ing _to second weight values to provide output data; 

wherem the first and second weights and the statistical 
model are trained values produced by: 

(a) applying training set data to the first machine network 
to propagate in the first flow direction to the statistical 
variable converter; and 

10 
variable converter provides separate statistical models for 
each branch which provide separate second output data for 
each branch, and wherein the second network provides a set 
of branches combining data in the first third flow direction 
through the second machine learning network to produce the 
output data combining the separate second output data. 

(b) applying corresponding training set data to the second 
machine network to propagate in a third flow direction 10 

opposite the second flow direction to the statistical 
variable converter; 

8. The computer architecture of claim 7 wherein the first 
machine learning network further includes a given statistical 
variable converter not associated with a branch of the first 
machine learning network but associated with the branch of 
the second machine learning network, and wherein the given 
statistical variable converter receives side information 
related to the input data; 

wherein b~s~d on the propagation of the training set data, 
the stat1st1cal variable converter: 

(a) modifies the statistical model; and 
(b) provides error values for backpropagation to the first 

machine learning network and second machine learn
ing network based on a current state of the statistical 
model. 
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and wherein the given statistical converter uses a statis-

tical model that is trained by training the first machine 
learning network and second machine learning network 
also with respect to side information but isolating side 
information-based weighting to only a given branch of 

2. The computer architecture of claim 1 wherein the 20 

statistical variable converter provides a predetermined sta
tistical function and the modification of (a) modifies param
eters of the predetermined statistical function. 

the first machine learning network associated with the 
given statistical variable converter. 

9. The computer architecture of claim 8 wherein the 
process of isolation uses side information machine learning 
networks on branches of the first machine learning network 3. The computer architecture of claim 2 wherein the 

statistical variable converter provides a conditional prob
ability between the first output data and the second output 
data. 

4. The computer architecture of claim 3 wherein the 
second output data is produced by randomly selecting a 
value on a conditional probability identified by the first 
output data according to the weighting of the conditional 
probability. 

5. The computer architecture of claim 3 wherein the 
co1;1~itional probability function is stored as values of prob
ab1hty moments for a given distribution type. 

6. The computer architecture of claim 5 wherein the 
probability moments are Gaussian mean and Gaussian vari
ance. 

7. The computer architecture of claim 1 wherein the first 
network provides a set of branches dividing data passing in 
the first flow direction in the first machine learning network 
among the branches to provide a first output for each branch 
at the first network interface, and wherein the statistical 
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other than the given branch having gradient reversal layers, 
the si_de i1;1formati?n machine learning networks receiving 
the side mformat10n and operating in parallel with the 
statistical variable converters during training. 

10. The computer architecture of claim 9 wherein the 
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process ~f isolation uses side information machine learning 
on the given branch of the first machine learning network 
and second machine learning network during training with
out gradient reversal layers. 

11. The computer architecture of claim 8 wherein the 
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training set data includes corresponding MRI images and 
PET images of given patients and wherein the input data is 
an MRI image of a patient output data that is a simulated 
PET image of the patient. 

12. The computer architecture of claim 11 wherein the 
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training set data further includes side information associated 
with the patient selected from the group consisting of age 
and gender. 

* * * * * 


