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(57) ABSTRACT 

A system and method is provided for creating motion­
adjusted or motion-compensated images of a patient to guide 
an interventional medical procedure. The method includes 
displaying a static roadmap and a plurality of dynamic 
images to show the interventional medical device aligned on 
the static roadmap using a motion transformation. Align­
ment of the interventional medical device on the static 
roadmap is based on a user selection of one of motion 
compensation of the interventional medical device relative 
to the static roadmap to produce a plurality of images that do 
not show patient motion or motion adjustment of the static 
roadmap relative to the interventional medical device to 
produce a plurality of images that show patient motion. 
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SYSTEM AND METHOD FOR 
MOTION-ADJUSTED DEVICE GUIDANCE 

USING VASCULAR ROADMAPS 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

This invention was made with government support under 
EB024553 awarded by the National Institutes of Health. The 
government has certain rights in the invention. 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

Not applicable. 

BACKGROUND 

The present disclosure relates to interventional radiologi­
cal systems and methods. More particularly, the invention 
relates to systems and methods for guidance of interven­
tional device deployment in the presence of patient motion. 

2 
ments (e.g., catheters, guidewires, etc.), images of the 
region, along with the instrument need to be displayed. 
However, some anatomical structures, including the vascu­
lature, are nearly impossible to discern from the fluoroscopic 

5 image. Thus, typically, a reference of the vascular system is 
created by injecting contrast agent to the vasculature region, 
acquiring a fluoroscopic image of the contrast enhanced 
vasculature, and displaying a static 2D digital subtraction 
angiography ("DSA") on the contrast enhanced vasculature, 

10 prior to placing or manipulating the instruments. 
The DSA vascular image can be overlaid or shown side by 

side with real-time fluoroscopic images, while the instru­
ments are manipulated until the shape of the instrument 
coincides with the path of the desired vascular branch. 

15 Unfortunately, this approach can be difficult, and time con­
suming, as the instruments often have to be repositioned. 
More importantly, this approach fails to consider the nature 
of this particular anatomical region, specifically that the true 
shape of the vasculature constantly moves and changes 

20 shape due to movement of the patient ( e.g., respiratory 
motion, cardiac motion, etc.). Thus, subtraction artifacts are 
inherently introduced, even when instructing the patient to 
perform a breath hold during acquisition of the vascular 
image to be digitally subtracted. Still further, inaccurate 

Interventional radiology is a key component in modern 
healthcare, decreasing risks and allowing faster recovery 
times for patients. However, these procedures can be costly, 
and more importantly, require the complete unison between 
many complex systems in order to be successful. Generally, 
interventional radiologists who orchestrate these procedures 
have to overcome many and often different problems. For 
example, during the procedure, the radiologist must be able 30 

to effectively maneuver not only themselves, but also their 
instruments around relatively tight spaces. This can be 
especially difficult because typical imaging systems only 
permit tight clearances to access the patient ( e.g., the bore), 
and unfortunately the instruments required during a proce- 35 

dure tend to be cumbersome in these tight clearances. 

25 image guidance can stem from failure to consider patient 
movement, as the DSA image only displays a static image of 
the vasculature at a specific point in time. 

Thus, it would be desirable to have improved systems and 
methods for interventional device guidance. 

SUMMARY 

The present disclosure provides systems and methods that 
overcome the aforementioned drawbacks by providing a 
system and method for creating motion-adjusted or motion­
compensated images of a patient to guide an interventional 

Difficulties also stem from deviations from idealities that 
originate from the patient, which can include artifacts from 
patient movement (e.g., breathing), different sized and 
shaped anatomical structures, and the like. Further, other 
difficulties stem from accurately acquiring the images 
needed and in the time permitted, to complete a procedure. 
For example, some anatomical structures, instruments, and 
the like, may not appear clear or bright enough in an image. 
Other examples, stem from the imaging system, where the 
images have to be acquired, processed, and displayed in a 
specific amount of time. These issues can become especially 
difficult if they appear simultaneously, such as acquiring an 
image of an anatomical region that is difficult to view, while 
the patient is moving. Thus, the field of interventional 
radiology has relied heavily on the skill and knowledge of 
the interventional radiologists to overcome these problems 
and make decisions to complete a procedure effectively. 

An example of a typical and widely used interventional 
radiology procedure is fluoroscopic image guidance for 
minimally invasive procedures. This procedure, in particu­
lar, trans-arterial embolization, currently plays a pivotal role 
in managing patients with primary and metastatic tumors in 
the liver. During a liver embolization procedure, a catheter 
is guided, via fluoroscopy, to specific branches of the vis­
ceral or hepatic arteries, where particles or microspheres are 
delivered directly into the feeding arteries of tumors ( e.g., to 
prevent further growth of the tumor, reduce blood supply to 
the tumor, provide localized treatment, etc.). Due to the 
targeting region, accurate and quick placement of catheters 
is crucial to minimize procedure time and to achieve favor­
able oncologic outcomes. In order to effectively place instru-

medical procedure. The method includes displaying a static 
roadmap and a plurality of dynamic images to show the 
interventional medical device aligned on the static roadmap 

40 using motion compensation. Aligmnent of the interventional 
medical device on the static roadmap is based on a user 
selection of one of motion compensation of the interven­
tional medical device relative to the static roadmap to 
produce a plurality of images that do not show patient 

45 motion or motion adjustment of the static roadmap relative 
to the interventional medical device to produce a plurality of 
images that show patient motion. 

In accordance with another non-limiting example of the 
disclosure, a method is provided for creating motion-ad-

50 justed images of a patient to guide an interventional medical 
procedure. The method includes acquiring a first plurality of 
images of a patient having non-contrast enhanced vascula­
ture, acquiring a second plurality of images of the patient 
having contrast enhanced vasculature, and generating a 

55 static roadmap of vasculature of the patient using the first 
plurality of images and the second plurality of images. The 
method also includes generating a motion model of the 
patient using the first plurality of images and the second 
plurality of images, acquiring a third plurality of images of 

60 the patient with an interventional medical device deployed 
within the patient, and generating motion tracking data of 
one of the patient or the interventional medical device using 
the third plurality of images. The method also includes 
generating a motion transformation using the motion track-

65 ing data and the motion model and displaying the static 
roadmap and the third plurality of images to show the 
interventional medical device aligned on the static roadmap 
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using the motion transformation. Alignment of the interven­
tional medical device on the static roadmap is based on a 
user selection of one of motion compensation of the inter­
ventional medical device relative to the static roadmap to 
produce a plurality of images that do not show patient 5 

motion or motion adjustment of the static roadmap relative 

FIG. 5 is an image of the vasculature, with a superim­
posed spline grid and image blocks used in the generation of 
the dynamic vasculature model in accordance with the 
present disclosure. 

FIG. 6 is a chart of Euler-numbers and corresponding 
binarization images, used in the generation of the dynamic 
vasculature model in accordance with the present disclosure. to the interventional medical device to produce a plurality of 

images that show patient motion 
In accordance with another non-limiting example of the 

disclosure, a fluoroscopy imaging system is provided that 
includes an x-ray source assembly coupled at one end and a 
x-ray detector array assembly coupled at an opposing end 
and a computer system. The computer system is configured 

FIG. 7 is a flowchart setting forth one, non-limiting 
example for generating a respiratory model, within the 

10 dynamic vasculature model in accordance with the present 
disclosure. 

FIG. 8 is fluoroscopy image having superimposed and 
colorized edges, used in the generation of the dynamic 
vasculature model in accordance with the present disclosure. 

FIG. 9 is a flowchart setting forth one, non-limiting 
example for generating the real-time tracking system, within 
the dynamic vasculature model in accordance with the 
present disclosure. 

to control the x-ray source assembly and the x-ray detector 
15 

array assembly to acquire a first plurality of images of a 
patient having non-contrast enhanced vasculature and con­
trol the x-ray source assembly and the x-ray detector array 
assembly to acquire a second plurality of images of the 
patient having contrast enhanced vasculature. The computer 
system is further programmed to generate a static roadmap 

FIG. 10 is a set of correlated graphs illustrating quanti-
20 tative evaluation of the dynamic vessel model in accordance 

with the present disclosure. 
of vasculature of the patient using the first plurality of 
images and the second plurality of images, generate a 
motion model of the patient using the first plurality of 
images and the second plurality of images, and control the 25 

x-ray source assembly and the x-ray detector array assembly 

FIG. 11 is a set of correlated images showing a compari­
son between ground-truth and estimated vasculature images 
generated from the dynamic vasculature model. 

FIG. 12 is a schematic diagram of an architecture for one, 
non-limiting example of a neural network for the automatic 
segmentation of medical instruments within a fluoroscopy 
image in accordance with the present disclosure. 

to acquire a third plurality of images of the patient with an 
interventional medical device deployed within the patient. 
The computer system is further configured to generate 
motion tracking data of one of the patient or the interven­
tional medical device using the third plurality of images, 
generate a motion transformation using the motion tracking 
data and the motion model, and display the static roadmap 
and the third plurality of images to show the interventional 
medical device aligned on the static roadmap using the 
motion transformation. Alignment of the interventional 
medical device on the static roadmap is based on a user 
selection of one of motion compensation of the interven­
tional medical device relative to the static roadmap to 
produce a plurality of images that do not show patient 
motion or motion adjustment of the static roadmap relative 
to the interventional medical device to produce a plurality of 
images that show patient motion. 

The foregoing and other aspects and advantages of the 
invention will appear from the following description. In the 
description, reference is made to the accompanying draw­
ings, which form a part hereof, and in which there is shown 
by way of illustration a preferred embodiment of the inven­
tion. Such embodiment does not necessarily represent the 
full scope of the invention, however, and reference is made 
therefore to the claims and herein for interpreting the scope 
of the invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram of an exemplary "C-arm" x-ray 
imaging system, according to some non-limiting examples 
of the present disclosure. 

FIG. 13 is a set of images providing a visual representa-
30 tion comparing results between a typical DSA procedure, the 

output of the neural network of FIG. 12, and a ground-truth 
image, over four examples. 

FIG. 14 is a block diagram illustrating an example for 
implementing a two-dimensional ("2D") fluoroscopy guid-

35 ance system in accordance with the present disclosure. 
FIG. 15 is another block diagram illustrating an example 

for implementing another 2D fluoroscopy guidance system 
in accordance with the present disclosure. 

FIG. 16 an image showing simplified movement of the 
40 vasculature, for example, limited to only bulk motion caused 

by respiration. 
FIG. 17 is a set of two fluoroscopy images generated in 

accordance with the present disclosure. 
FIG. 18 is a set of two more fluoroscopy images generated 

45 in accordance with the present disclosure. 
FIG. 19 is an example of a display illustrating user 

selection between motion compensation and motion adjust­
ment. 

FIG. 20 a block diagram illustrating one, non-limiting 
50 example for implementing a three-dimensional ("3D") fluo­

roscopy guidance system in accordance with the present 
disclosure. 

FIG. 21 is a graph of the respiratory state vs. the relative 
motion of the vasculature in the Z-dimension in accordance 

55 with the present disclosure. 

DETAILED DESCRIPTION 

FIG. 2 is an example of a schematic illustration a pro­
cessing architecture according to some non-limiting 60 

examples of the present disclosure. 

Before any non-limiting examples of the invention are 
explained in detail, it is to be understood that the invention 
is not limited in its application to the details of construction 
and the arrangement of components set forth in the follow­
ing description or illustrated in the following drawings. The 
invention is capable of other non-limiting examples and of 
being practiced or of being carried out in various ways. Also, 
it is to be understood that the use the phraseology and 
terminology used herein is for the purpose of description and 

FIG. 3 is a specific process for flow according to one, 
non-limiting example of a system in accordance with the 
present disclosure. 

FIG. 4 is a flowchart setting forth one, non-limiting 65 

example of a process for creating a vasculature model in 
accordance with the present disclosure. 
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of images that do not show patient motion or (ii) motion 
adjustment of the static roadmap relative to the interven­
tional medical device to produce a plurality of images that 
show patient motion. 

In one non-limiting example, the systems and methods 
can track respiratory motion by extracting curvilinear fea­
tures in fluoroscopic image sequences, rather than relying on 
additional imaging modalities or external sensors to track 
the respiratory motion. Additionally, this approach does not 

should not be regarded as limiting. Furthermore, the use of 
"right", "left", "front", "back", "upper", "lower", "above", 
"below", "top", or "bottom" and variations thereof herein is 
for the purpose of description and should not be regarded as 
limiting. The use of "including," "comprising," or "having" 5 

and variations thereof herein is meant to encompass the 
items listed thereafter and equivalents thereof as well as 
additional items. Unless specified or limited otherwise, the 
terms "mounted," "connected," "supported," and "coupled" 
and variations thereof are used broadly and encompass both 
direct and indirect mountings, connections, supports, and 
couplings. Further, "connected" and "coupled" are not 
restricted to physical or mechanical connections or cou­
plings. 

10 require specific structures to be present in the field of view 
to determine a respiratory state, and is thus suitable for a 
wider variety of procedures. Further, this approach allows 
for tracking local deformations of the vasculature, based on 
respiratory motion, by utilizing a contrast enhanced image 

Unless otherwise specified or limited, phrases similar to 
"at least one of A, B, and C," "one or more of A, B, and C," 
and the like, are meant to indicate A, or B, or C, or any 
combination of A, B, and/or C, including combinations with 
multiple or single instances of A, B, and/or C. 

As used herein, the term, "controller" includes any device 
capable of executing a computer program, or any device that 
includes logic gates configured to execute the described 
functionality. For example, this may include a processor, a 
microcontroller, a field-programmable gate array, a pro­
grammable logic controller, etc. 

As described above, current fluoroscopy guidance sys­
tems fail to address problems with patient movements (e.g., 
movement due to respiration, cardiac movement, etc.). 
These problems include artifacts introduced from the DSA 
procedure, where the vasculature constantly moves and, 
thus, the DSA image is only a snapshot of the vasculature at 
a particular moment in time. This can lead to guidance 
inaccuracies as the target region is static, even though the 
vasculature and the instrument ( e.g., due to the moving 
vasculature) are constantly in motion. Additionally, the static 
DSA image, without motion compensation, may require the 
interventional radiologist to reposition, remove, or reinsert 
the instrument to complete the procedure. This increase in 
procedure time increases radiation exposure for the patient, 
and may require additional doses of contrast agents to 
effectively see the instrument. 

Prior attempts have been made to address and compensate 
for the motion of the patient. For example, external sensors 
( e.g., electrocardiogram ("ECG") electrodes, ultrasonic sen­
sors) have been used on individuals to select and display a 
particular fluoroscopy image, from a series of previously 
taken images, which is based on sensor data corresponding 
to a specific point in time of a respiratory cycle. These 
sensor-based attempts rely heavily on these external sensors, 
which often fail to effectively correlate with a specific 
vasculature representation, and which can impede the use of 
procedural images. Other prior imaging-based systems for 
motion compensation either require the use of external 
sensors to be in the field of view, or make inaccurate 
assumptions for applications ( e.g., assuming the surrounding 
soft tissue corresponds with the vasculature, when in fact, 
high contrast objects visible in the fluoroscopic images 
move with different speeds or directions compared to the 
vasculature). 

The present disclosure overcomes these challenges to 
provide systems and methods that display a static roadmap 
and the plurality of images to show an interventional medi­
cal device aligned on the static roadmap using a motion 
transformation. Alignment of the interventional medical 
device on the static roadmap is based on a user selection of 
one of (i) motion compensation of the interventional medical 
device relative to the static roadmap to produce a plurality 

15 sequence under free breathing conditions. 
In some non-limiting examples of the present disclosure, 

the motion-compensating system for fluoroscopy device 
guidance overcomes the drawbacks associated with prior 
systems while providing clear advantages. These advantages 

20 include decreases in procedure time, increases in procedure 
accuracy, decreases in the amount of contrast agent required, 
and decreases in radiation exposure time (e.g., via faster 
procedures). In some non-limiting examples, the present 
disclosure includes techniques for respiratory motion track-

25 ing and estimation of vasculature deformation in native 
fluoroscopic images. The motion tracking and estimation 
can simplify workflows for minimally invasive procedures, 
such as liver embolization, by allowing for increases in 
accuracy, and speed (e.g., by decreases in repositioning of 

30 instruments) of procedures. Specifically, the systems and 
method can create a motion model utilizing contrast-en­
hanced vasculature fluoroscopy images, and extracting cur­
vilinear background features from native ( e.g., non-contrast) 
fluoroscopy image sequences. Importantly, these fluoros-

35 copy images do not require the patient to perform a breath 
hold, and thus these fluoroscopy images can be acquired 
during free breathing conditions. The two models, which are 
used to effectuate motion adjustments, establish the rela­
tionship between the respiratory state ( e.g., inferred from 

40 curvilinear background features), and the vascular morphol­
ogy during that same respiratory state. As such, after acquir­
ing the vascular morphology, as described above, and during 
a real-time imaging procedure, the curvilinear feature detec­
tion is applied to the real-time fluoroscopy image to deter-

45 mine the vessel mask to display. This creates a dynamic 
motion-adjusted vessel mask, which can be superimposed 
on the real-time fluoroscopic images that include the inter­
ventional medical device. 

Turning now to FIG. 1, an example of one imaging system 
50 that may be used with the systems and methods of the 

present disclosure is illustrated. In this non-limiting 
example, a so-called "C-arm" x-ray imaging system 100 is 
illustrated. However, this is just one example and fixed­
position, single-source, bi-plane, and other architectures 

55 may also be readily used with the systems and methods of 
the present disclosure. 

In the non-limiting example of FIG. 1, the C-arm x-ray 
imaging system 100 includes a gantry 102 having a C-arm 
to which an x-ray source assembly 104 is coupled on one 

60 end and an x-ray detector array assembly 106 is coupled at 
its other end. The gantry 102 enables the x-ray source 
assembly 104 and detector array assembly 106 to be oriented 
in different positions and angles around a subject 108, such 
as a medical patient or an object undergoing examination 

65 that is positioned on a table 110. When the subject 108 is a 
medical patient, this configuration enables a physician 
access to the subject 108. 
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The x-ray source assembly 104 includes at least one x-ray 
source that projects an x-ray beam, which may be a fan­
beam or cone-beam of x-rays, towards the x-ray detector 
array assembly 106 on the opposite side of the gantry 102. 
The x-ray detector array assembly 106 includes at least one 5 

x-ray detector, which may include a number ofx-ray detec-
tor elements. Examples of x-ray detectors that may be 
included in the x-ray detector array assembly 106 include 
flat panel detectors, such as so-called "small flat panel" 
detectors, in which the detector array panel may be around 10 

centimeters in size. Such a detector panel allows the cov­
erage of a field-of-view of approximately twelve centime-
ters. 

8 
communication system 134 may include both proprietary or 
dedicated networks, as well as open networks, such as the 
internet. 

The operator workstation 122 is also in communication 
with a control system 136 that controls operation of the 
C-arm x-ray imaging system 100. The control system 136 
generally includes a C-axis controller 138, a pivot axis 
controller 140, an x-ray controller 142, a data acquisition 
system ("DAS") 144, and a table controller 146. The x-ray 
controller 142 provides power and timing signals to the 
x-ray source assembly 104, and the table controller 146 is 
operable to move the table 110 to different positions and 
orientations within the C-arm x-ray imaging system 100. 

The rotation of the gantry 102 to which the x-ray source 
assembly 104 and the x-ray detector array assembly 106 are 
coupled is controlled by the C-axis controller 138 and the 
pivot axis controller 140, which respectively control the 
rotation of the gantry 102 about the C-axis and the pivot axis 

Together, the x-ray detector elements in the one or more 
15 

x-ray detectors housed in the x-ray detector array assembly 
106 sense the projected x-rays that pass through a subject 
108. Each x-ray detector element produces an electrical 
signal that may represent the intensity of an impinging x-ray 
beam and, thus, the attenuation of the x-ray beam as it passes 
through the subject 108. In some configurations, each x-ray 
detector element is capable of counting the number ofx-ray 
photons that impinge upon the detector. During a scan to 
acquire x-ray projection data, the gantry 102 and the com­
ponents mounted thereon rotate about an isocenter of the 
C-arm x-ray imaging system 100. 

20 116. In response to motion commands from the operator 
workstation 122, the C-axis controller 138 and the pivot axis 
controller 140 provide power to motors in the C-arm x-ray 
imaging system 100 that produce the rotations about the 
C-axis and the pivot axis 116, respectively. For example, a 

The gantry 102 includes a support base 112. A support 
arm 114 is rotatably fastened to the support base 112 for 
rotation about a horizontal pivot axis 116. The pivot axis 116 

25 program executed by the operator workstation 122 generates 
motion commands to the C-axis controller 138 and pivot 
axis controller 140 to move the gantry 102, and thereby the 
x-ray source assembly 104 and x-ray detector array assem-
bly 106, in a prescribed scan path. 

The DAS 144 samples data from the one or more x-ray 
detectors in the x-ray detector array assembly 106 and 
converts the data to digital signals for subsequent process­
ing. For instance, digitized x-ray data is communicated from 
the DAS 144 to the data store server 130. The image 

is aligned with the centerline of the table 110 and the support 30 

arm 114 extends radially outward from the pivot axis 116 to 
support a C-arm drive assembly 118 on its outer end. The 
C-arm gantry 102 is slidably fastened to the drive assembly 
118 and is coupled to a drive motor (not shown) that slides 
the C-arm gantry 102 to revolve it about a C-axis, as 
indicated by arrows 120. The pivot axis 116 and C-axis are 
orthogonal and intersect each other at the isocenter of the 
C-arm x-ray imaging system 100, which is indicated by the 
black circle and is located above the table 110. 

35 reconstruction system 132 then retrieves the x-ray data from 
the data store server 130 and reconstructs an image there­
from. The image reconstruction system 130 may include a 
commercially available computer processor, or may be a 
highly parallel computer architecture, such as a system that 

The x-ray source assembly 104 and x-ray detector array 
assembly 106 extend radially inward to the pivot axis 116 
such that the center ray of this x-ray beam passes through the 
system isocenter. The center ray of the x-ray beam can thus 
be rotated about the system isocenter around either the pivot 
axis 116, the C-axis, or both during the acquisition ofx-ray 
attenuation data from a subject 108 placed on the table 110. 
During a scan, the x-ray source and detector array are rotated 
about the system isocenter to acquire x-ray attenuation 
projection data from different angles. By way of example, 
the detector array is able to acquire thirty projections, or 
views, per second. 

40 includes multiple-core processors and massively parallel, 
high-density computing devices. Optionally, image recon­
struction can also be performed on the processor 128 in the 
operator workstation 122. Reconstructed images can then be 
communicated back to the data store server 130 for storage 

45 or to the operator workstation 122 to be displayed to the 
operator or clinician. 

The C-arm x-ray imaging system 100 may also include 
one or more networked workstations 148. By way of 
example, a networked workstation 148 may include a dis-

50 play 150; one or more input devices 152, such as a keyboard 
and mouse; and a processor 154. The networked workstation 
148 may be located within the same facility as the operator 
workstation 122, or in a different facility, such as a different 
healthcare institution or clinic. 

The C-arm x-ray imaging system 100 also includes an 
operator workstation 122, which typically includes a display 
124; one or more input devices 126, such as a keyboard and 
mouse; and a computer processor 128. The computer pro- 55 

cessor 128 may include a commercially available program­
mable machine running a commercially available operating 
system. The operator workstation 122 provides the operator 
interface that enables scanning control parameters to be 
entered into the C-arm x-ray imaging system 100. In gen- 60 

era!, the operator workstation 122 is in communication with 
a data store server 130 and an image reconstruction system 
132. By way of example, the operator workstation 122, data 
store sever 130, and image reconstruction system 132 may 
be connected via a communication system 134, which may 65 

include any suitable network connection, whether wired, 
wireless, or a combination of both. As an example, the 

The networked workstation 148, whether within the same 
facility or in a different facility as the operator workstation 
122, may gain remote access to the data store server 130, the 
image reconstruction system 132, or both via the commu­
nication system 134. Accordingly, multiple networked 
workstations 148 may have access to the data store server 
130, the image reconstruction system 132, or both. In this 
manner, x-ray data, reconstructed images, or other data may 
be exchanged between the data store server 130, the image 
reconstruction system 132, and the networked workstations 
148, such that the data or images may be remotely processed 
by the networked workstation 148. This data may be 
exchanged in any suitable format, such as in accordance 
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with the transmission control protocol ("TCP"), the Internet 
protocol ("IP"), or other known or suitable protocols. 

Although the disclosure below will described in reference 
to the use of a biplane fluoroscopy imaging system ( e.g., the 
"C-arm" x-ray imaging system 100), in other non-limiting 
examples other imaging systems can be utilized ( e.g., a 
single-plane fluoroscopy imaging system). 

FIG. 2 is a schematic illustration of a process flow 200 for 
creating motion-adjusted images of a patient to guide an 
interventional medical procedure. The process 200 includes 
acquiring (e.g., via the x-ray imaging system 100) a plurality 
of images 202 having non-contrast enhanced vasculature, 
and acquiring a second plurality of images 204 from the 
patient having contrast enhanced vasculature. Both of these 
plurality of images can be acquired throughout a full breath­
ing cycle ( e.g., beginning during inhalation and completing 
after exhalation). The process 200 includes generating a 
static roadmap 206 of the vasculature of the patient and 
generating a motion model 208 of the patient, where each 
uses both the first plurality and the second plurality of the 
images 202, 204. The process 200 further includes acquiring 
a third plurality of images 210 where an interventional 
medical device is deployed in the patient (e.g., inserted 
during the procedure). 

10 
and reaches a turning point towards the end of the arterial 
phase, which can be used to determine and thus utilize only 
the arterial phase contrast images (e.g., the images between 
the events when the contrast arrives and the arterial phase 

5 has ended). Subsequently, the center of mass moves up 
during the perfusion phase and down again during the 
venous phase. 

Once the non-contrast images 222 and the contrast images 
224 have been acquired and selected ( e.g., utilizing only 

10 contrast images during the arterial phase), the process 220 
generates subtracted images, which are formed by the sub­
traction of the contrast images 224 from the non-contrast 
images 222. These subtracted images can be used to gener­
ate a static roadmap 228 of the vasculature of the patient. For 

15 example, the static roadmap 228 can be generated by aver­
aging the subtracted images when the respiratory state is 
consistent, for example, averaging some or all of the sub­
tracted images at the end of expiration (e.g., A,=O). The 
non-contrast images 222 and the contrast images 224 are 

20 also used to generate the vasculature motion model 230, 
which is a specific implementation of the motion model 208. 
The process 220 also includes tracking features 232 from the 
non-contrast images. As discussed in more detail below, 
tracking features 232 can include the identification and 

25 tracking of curvilinear features. Additionally or alterna­
tively, the tracking features 232 can include the identifica­
tion and tracking of the center of mass within non-contrast 
images, as discussed below (e.g., with regard to the 3D 

The process 200 can also include the generation of motion 
tracking data 212 for either the patient or the interventional 
medical device by using the third plurality of images. The 
process 200 can further include generating a motion trans­
formation 214 using the motion model 208 and the motion 
tracking data 212. The process 200 then includes the dis- 30 

playing 216 of the static roadmap and the third plurality of 
images 210 showing the interventional medical device 
aligned on the static roadmap using the motion transforma­
tion 214. The aligmnent of the interventional medical device 

guidance system). 
The process 220 further includes acquiring a plurality of 

live images 234 that include an interventional medical 
instrument in the images, and which are used to track the 
respiratory state 236, which is a specific form of motion 
tracking data (e.g., with regard to the process 200). The 

35 plurality of live images 234 are also used to extract the 
interventional medical instrument form the plurality of live 
images 234. Once extracted, the image of the medical 
instrument can be enhanced ( e.g., compressed, elongated, 

is based on a user selection of: (1) motion compensation of 
the interventional medical device relative to the static road­
map to produce a plurality of images that do not show 
patient motion ( e.g., vasculature motion due to respiratory 
motion), and (2) motion adjustment of the static roadmap 
relative to the interventional medical device to produce a 40 

plurality of images that show patient motion. 

changed in color, etc.) as indicated at step 240. 
As will be further described, the process 220 also includes 

using the tracking of the respiratory state 236 and the 
vasculature motion model 230 to generate a transformed 
roadmap 238. In one case, the transformed roadmap 238 can 
be motion compensation of the image of the medical instru-

FIG. 3 shows a further-detailed process 220, which is a 
more specific implementation of the process 200 for creating 
motion-adjusted images of a patient. Specifically, the pro­
cess 220 includes first acquiring non-contrast images 222 
( e.g., mask images) and contrast enhanced images 224 of the 
patient during a full respiratory cycle ( e.g., starting at 
inhalation and completing at exhalation). In some non­
limiting examples, the contrast enhanced images 224 can be 
acquired using a specific procedure, which ensures that the 
contrast enhanced images 224 are only acquired during the 
arterial phase, such that the vasculature of interest is filled 
with contrast and is well visible in all captured frames. In 
particular, process 220 includes a step, which automatically 
detects the arrival of contrast agent in the vasculature to 
determine the arterial, tissue, and venous phases of the 
injection. Then, only the arterial phase contrast enhanced 
images can be utilized. For example, the contrast arrival is 
estimated by calculating the mean intensity of each frame. 
Additionally the average intensity over the past frames 
including the current frame is also calculated. When the 
current mean intensity is higher than the average intensity 
for two frames in a row, the algorithm signals that the 
contrast has arrived. The phases can then be determined by 
calculating the center of mass in the Y-dimension. Since the 
contrast is commonly injected in the bottom of the image 
( e.g., for liver procedures), the center of mass moves down 

45 ment relative to the static roadmap 238. Alternatively, in 
another case, the transformed roadmap 238 can be a motion 
adjustment of the static roadmap relative to the image of the 
medical instrument ( e.g., extracted from the live images 
234). The process 220 can generate a real-time display 242 

50 of the live images 234, along with the transformed roadmap 
238 in either of at least two configurations. In the first 
configuration, the live images 234 and the static roadmap 
228 are displayed and the transformed roadmap 238 is the 
motion compensation of the image of the medical device, 

55 which is overlaid on the roadmap 238. In the second display, 
the live images 234 and the image of the medical device are 
displayed, and the transformed roadmap 238 is the motion 
compensation applied to the static roadmap 228 to show 
patient movement. The interventional radiologist can switch 

60 between each of the first display and the second display to 
change which image is motion compensated (e.g., the medi­
cal instrument or the static roadmap), based on the inter­
ventional radiologist user selection. 

FIG. 4 shows an example for specific processes to gen-
65 erate the vasculature motion model 230. The vasculature 

motion model 230 utilizes subtracted images, which are 
generated by subtracting the contrast fluoroscopy images 
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sented by the binarization step 256. This threshold is based 
on the Euler-number, which is determined by the number of 
connected components in a binary image minus the number 
of holes within these objects. For example, given any image, 

5 the Euler-number for a threshold smaller than the smallest 

224 from the non-contrast fluoroscopy images 222. How­
ever, prior to subtraction, the non-contrast fluoroscopy 
images 222 and the contrast fluoroscopy images 224 are 
matched and registered at step 252, which ensures that each 
image within the non-contrast fluoroscopy images 222 effec­
tively corresponds in time with each image within the 
contrast fluoroscopy images 224. At step 252, the non­
contrast image sequence can be defined as It(x), and the 
contrast image sequence can be defined as It(x). In both 
image sequence identifiers, t represents the acquisition time 10 

for a given image. Then, each contrast image is matched to 
a non-contrast image, such that the mean squared error 
between respective images is minimized. For example, the 
image I'J!c,((x) represents the non-contrast frame that cor­
responds to the contrast frame acquired at time t, and can be 15 

determined by equation 1. For example, equation 1 deter­
mines for a given contrast image acquired at time t, the time 
point tm of the corresponding non-contrast image. Thus, 
equation 1 returns a value that is the index of the non­
contrast frame that corresponds to the given contrast frame. 20 

In some non-limiting examples, if more than one non­
contrast image ( e.g., 5) correspond to a given contrast 
image, the non-contrast images can be averaged to generate 
an average non-contrast image to be subtracted with the 
corresponding contrast image, as will be discussed below. 25 

i/J(t) = argmin ~ (I; (x) - 1;:,, (x)J2 
tm Vx 

(1) 

gray value in the image is one, as all pixels are considered 
part of the same object. 

When the threshold is increased ( e.g., just after the 
denoted "1" in the graph of FIG. 6), holes start to appear 
within the object, which causes the Euler-number to become 
negative. Further increase of the threshold causes the seg-
mentation to break up into multiple objects, which increases 
the Euler-number again ( e.g., just after the denoted "2" in the 
graph FIG. 6). After a second positive peak is reached (e.g., 
denoted "3" in the graph in FIG. 6), the Euler-number starts 
to decrease. This local minima (e.g., denoted "4" in the 
graph in FIG. 6) after the second positive peak ( e.g., denoted 
"3" in the graph in FIG. 6) is used as the threshold within 
this disclosure. In other words, the threshold values used are 
those that are higher than those at the second positive peak 
(e.g., denoted "3" in the graph in FIG. 6). An example of the 
output of the image after the binarization procedure 256 is 
shown in FIG. 6, where the four output images are repre­
sented, and where each has a specific thresholding value and 
corresponding Euler number. Typically, the thresholding 
values used are those that occur after the second maxima 
(e.g., x>20 thresholding). 

Although the procedure to generate vascular motion 
model 230 involves the binarization step 256, in some 

Although image pairs may correspond to each other in 
time, it is not guaranteed that the breathing state of both 
images are exact. For example, slight differences in the 
location of organs or other anatomic structures might cause 
subtraction artifacts. To avoid this issue, a block matching 
registration technique may be used to register the non­
contrast images to the corresponding contrast images. Thus, 
I'J!c,( can be divided into distinct blocks B, and a translation 
vector 11, can be estimated for each block by minimizing the 
variance of the gray valve difference according to equation 
2. As shown in equation 2, n represents the number of pixel 
per block and E[ x] represents the expected value of x. 

30 non-limiting examples, the binarization step 256 can be 
omitted or bypassed. This way, for example, the subtracted 
images are denoised at step 254 and are used directly to 
estimate motion of the vasculature at step 258, discussed 
below. In some cases, the avoidance of the binarization step 

35 256 can be desirable for radiologists that are not comfortable 
viewing binarized images. 

The output images from the binarization procedure 256, 
which represent the segmented vasculature for each frame 
are denoted as I/(x). After the binarization procedure 256 is 

40 completed to yield the segmented images, the motion of the 
vasculature is estimated at step 258. For example, the 
deformation of the vasculature due to respiratory motion can 
be estimated by tracking the pixel motion between adjacent 
frames using the diffeomorphic demons approach. This 

.1~ F N 2 F N 2 Ll.; = nnn- (I, (x + Ll.;) - lwi(x)) - E[/, (x + Ll.;) - lwi(x)] 
~· n 1 VxEBj 

(2) 

45 approach estimates a translation vector for each pixel, ensur­
ing that the image deformation as well as its inverse are both 
smooth. The transformation can be described according to 
equation 3. 

The final image transformation is then calculated using a 50 

cubic spline interpolation. An example of the output from 
the procedure is shown in FIG. 5. The dotted lines 250 
represent the parsed blocks, whereas the solid line 251 
represents the calculated cubic spline overlaid on the image. 
As illustrated in FIG. 5, the light grey regions represent the 55 

difference between the fixed image and the registered mov­
ing image. 

After the corresponding frames have been matched and 
registered (e.g., step 252), the images are subtracted and 
denoised at step 254 to generate the subtracted images. For 60 

example, the registered image pair is subtracted yielding the 
difference image It(x). Since the subtraction increases the 
noise variance, a Wiener filter is applied to reduce the noise 
and simplify the segmentation. 

Once the corresponding images have been subtracted, and 65 

the noise has been mitigated at step 254, a global threshold 
algorithm can be applied to segment the vasculature, repre-

(3) 

Once the transformation is calculated, the respiratory 
motion of each individual vessel pixel can be parameterized 
using a single parameter A,, which represents the respiratory 
state at time t ( e.g., at step 230). Thus, the position p, of each 
vessel pixel for a given respiratory state can be approxi­
mated by the linear function ( or other parameterization), 
according to equation 4. 

(4) 

In equation 4, p,(0) denotes the pixel position at the most 
exhaled respiratory state (i.e., A,=0) in the initial contrast 
enhanced sequence. Conversely, p,(1) represents the trans­
lation vector pointing to its position in the most inhaled state 
(i.e., A,=1). In some non-limiting examples, A, can assume 
values outside the range [0, 1] during live tracking, if the 
patient's respiratory motion exceeds the motion of the initial 
contrast image sequence. However, due to the parameter-
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ization (e.g., linear function according to equation 4), the 
motion of the vasculature can be extrapolated for values 
outside of the range [O, 1]. 

14 
motion model 260 begins with generating an average image 
over all non-contrast images (e.g., the image set defined 
previously as It(x)). This average image blurs out moving 
edges, but retains static edges (e.g., edges near the ribs). In an alternative example of the motion estimation step 

258, equation 5 (below), which is a cost function can be used 
to generate a translation vector for each pixel, that tracks the 
motion between adjacent mask frames, but which is based 
on multiple respiratory variables for a given respiratory 
state, rather than a single respiratory variable for a given 
respiratory state (e.g., similar to equation 3). 

5 Then the respiratory motion model 260 proceed to detect 
edges at step 262 for each of the non-contrast fluoroscopy 
images (e.g., within the image set defined previously as It 
(x)), as well as the average image above. In some non­
limiting examples, and as implemented, detecting edges 262 

10 can include utilizing a Canny edge detector. For example, 
the Canny edge detector is applied to the first native image 
frame (i.e., I0 N(x)) to extract contours along anatomical 
structures. In other non-limiting examples, rather than uti-(5) c(to, tc. td) = - ~ h (p; +to+ r,(k)t, + rd(k)td)2 

Vi,Vk 
15 lizing a Canny edge detector, edges can be detected at step 

262 by using convolution along with a derivative of a 
Gaussian kernel. For example, with regard to equation 5, t0 is a constant 

offset, te is the motion vector associated with the chest 
breathing, and td is the motion vector associated with dia­
phragm breathing. This cost function can also be utilized to 20 

generate a single respiratory variable for a given respiratory 
state by setting re equal to 0. The translation vectors te and 

Once the edges are detected, the average image that has 
been outputted from the detecting edges step 262 ( e.g., the 
edge filtered average image) is subtracted from each of the 
non-contrast images outputted from the detecting edges 262 
step (e.g., the edge filtered non-contrast images) to generate 
edge filtered subtracted images. In some non-limiting 
examples, the utilization of the average image subtracted 
form the non-contrast images can eliminate non-moving 
edges, which can cause issues when tracking features. The 
edge filtered subtracted images are used to extract center­
lines at step 264 by using a topology preserving thinning 
algorithm, which reduces all contours to a one-pixel thin 
centerline. Then, a set of curvilinear features can be 
extracted from the centerlines as a list of connected 2D 
coordinates by following each contour pixel from endpoint 
to endpoint. An endpoint is defined as a contour pixel which 
is connected to only one other contour pixel or a branch 

td can be separately parameterized using corresponding 
respiratory parameters (variables) re and rd, respectively to 
generate corresponding parameterizations ( e.g., linear func- 25 

tions) for each translation vector and the corresponding 
respiratory parameter (e.g., similar to equation 4). Thus, as 
will be discussed below, if the respiratory variable(s) is 
known, the vasculature motion model 230 can generate the 
corresponding translation vector(s). In the case of the mu!- 30 

tiple translation vectors configuration, if the two extracted 
respiratory parameters (variables) are used to extract the two 
corresponding translation vectors, then the two correspond­
ing translation vectors can be added to generate a combined 
translation vector. 35 point, which is connected to more than two contour pixels. 

In some non-limiting examples, the motion of the vascu­
lature can be estimated at step 258 by using a two-dimen­
sional ("2D") affine image registration with a regular step 
gradient descent optimization approach, alternatively to the 
diffeomorphic demons approach. This generates transforma­
tion matrices, which describe the deformation of the vascu­
lature and are parameterized using a single parameter "-,, 
which represents the respiratory state at time t (using step 
230) or alternatively, the multi-parameter approach that 
represents multiple respiratory variables for the respiratory 
state at time t. Specifically, the parameterization is com­
pleted for each matrix element, rather than each pixel for the 
diffeomorphic demons approach. This generates a param­
eterized matrix, which can be calculated for each respiratory 
state A,-

The position of each feature f from the first non-contrast 
image frame, is tracked over the remaining non-contrast 
image frames, as indicated by step 266 to generate tracking 
data at step 268. This can be accomplished, for example, by 

40 creating a cost image C (It, x), which is formed by first 
applying a Canny edge detector followed by a Gaussian 
smoothing filter ( or in some cases, convolution along with a 
derivative of a Gaussian kernel) to a given non-contrast 
image, and subtracting this from the previously determined 

45 average image that has been outputted from the detecting 
edges step 262. The cost function can then be optimized by 
utilizing the Nelder-Mead algorithm. An example of a cost 
image, along with its highlighted curvilinear features super-

Once the motion of the vasculature is estimated at step 
258, the vasculature motion model 230 is created, and can be 
stored, for example, in the operator workstation 122, or the 
networked workstation 148. 

50 

FIG. 7 shows an example process for generating a respi- 55 

ratory motion model 260, which is configured to extract a 
respiratory state(s) from an image, which is to be inputted 
into the vasculature motion model 230 to generate respira­
tory motion tracking data (e.g., the translation vector(s)) 
from the patient ( e.g., a specific form of motion tracking 60 

data). 
As discussed previously, the respiratory motion model 

260 generally determines the current respiratory state of the 
patient ( e.g., a specific implementation of 236), by utilizing 
only native fluoroscopy images, and thus does not need 65 

external sensors to determine a breathing state, which has 
plagued prior systems. The generation of the respiratory 

imposed on the cost image, is shown in FIG. 8. 
The translation vector d,(t), which determines how the 

features move spatially, can be estimated by maximizing the 
average gray value along the curvilinear feature using equa­
tion 6. 

d;(t) = argmax ~ C(/~, X + d). 
d VXEfi 

(6) 

The feature motion can then be approximated by a linear 
function based on the respiratory state(s ). The coordinates of 
each point fif of the feature f, at time t can be described by 
equation 7. In other words, the movement of the selected 
feature(s) can be used to generate a linear function that 
relates the movement of the feature to the respiratory state.) 

(7) 
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In the multiple respiratory parameter implementation for 
a given respiratory state ( e.g., using re and rd), separate linear 
functions can be generated (similar to equation 7) which 
relate the movement of the chest (e.g., the chest features) to 
the respiratory parameter re, and which relate the movement 5 

of the diaphragm (e.g., the diaphragm features) to the 
respiratory parameter rd. Using this information, at step 269, 
parameterization can be completed to form the respiratory 
model 260. 

respiratory state A,, using equation 9 ( e.g., which utilizes the 
respiratory motion model 260). 

J., = argmax ~ ~ C(/;, fu(J.)). 
A Vi Vj 

(9) 

After the current respiratory state A, has been found, as 
indicated by step 286, the current state A, can be the input 
into the previously generated vasculature motion model 230. 

For the linear function that relates the features with a 10 

single respiratory state ( e.g., equation 7), some of the 
features are not suitable for tracking respiratory motion, and 
are thus not used in equation 7. Thus, a subset is determined, 
which contains only the reliably tracked features ( e.g., the 
diaphragm and the chest) that contribute to the respiratory 
state estimation, as indicated by step 268. This subset of 
features can be created by first letting lf,I be the number of 
points in a given feature f,. Then, all features with lf,1<25 are 
excluded from the subset. In other words, the initially 
captured features having less than 25 points are omitted. 
Similarly, only the features with lld,(l)ll;;,;2.5 mm are used. 
This means that only the features that have movement 
lengths greater than 2.5 mm, over the entire respiratory 
cycle, are used. Thus, the remaining features having gener­
ally small movement lengths are omitted. Having a particu­
lar required movement length (e.g., translation length) for a 
given features helps to avoid static features, or those with 
only little movement. Finally, in order to remove features 
that were not successfully tracked in all frames, the criterion 
ca is calculated and used. The criteria ca is calculated from 
the average gray value along each feature over time in the 
cost image, according to equation 8. 

(8) 

With regard to equation 8, the variable n, denotes the 
number of time frames in the contrast enhanced image 
sequence. The features with cjf,)<-ca are excluded from the 
set of features. In some non-limiting examples, -ca can be any 
number, although according to the present embodiment, the 
threshold value of -ca =0.3 was used, which was empirically 
determined. The remaining features, which have passed the 
three criteria above are utilized to determine the respiratory 
state (e.g., are used in the calculation of equation 7). 

This input A, generates the corresponding translation 
vector(s) for each vessel pixel. Then, depending on the 
display choice (e.g., implemented via a user selection), the 

15 translation vector(s) for each pixel can be applied to a static 
roadmap of the vasculature to generate a dynamic vessel 
mask 288 to motion compensate the vasculature. Alterna­
tively, the translation vector(s) can be inverted and can then 
be applied to an image of a medical instrument to motion 

20 compensate the medical instrument. Either of these imple­
mentations can be displayed, as indicated by step 290. Once 
displayed, the real-time system 280 repeats the steps by first 
utilizing another live fluoroscopy image ( e.g., within the live 

25 
images 282). Thus, the real-time system 280 performs a 
real-time display of an accurate representation of the vas­
culature, which factors in the respiratory state of an indi­
vidual at any point in time. 

The vasculature motion model 230, as discussed above, 

30 
was evaluated to determine how well the model performed. 
A quantitative evaluation of the model was performed using 
a digital 4D CT-phantom (XCAT, Duke University, Durham, 
N.C., USA), which provides realistic human anatomy 
including sophisticated respiratory and cardiac motion mod-

35 els. The respiratory motion can be modified by changing the 
respiratory cycle length, the maximum diaphragm motion 
and the maximum chest expansion in anteroposterior direc­
tion. Each of these parameters can be changed separately. 
For each time frame, a CT-volume was generated with an 

40 
isotropic spatial resolution of 0.25 mm. The volume was 
then projected in the anteroposterior direction using ortho­
graphic projection with a field of view of 28.95x21.00 cm. 
Contrast enhanced images were simulated by setting the 
attenuation of the vessels in the hepatic artery system to 120 

45 
Hounsfield units ("HU"). Additional Poisson noise was 
added to the images to simulate realistic image quality. In 
total, four groups of test datasets were generated. Each data 
set contains 4 sub-datasets and each sub-dataset contains a 
contrast enhanced and a native image sequence over one 

Once the vasculature motion model 230 and the respira- 50 

tory motion model 260 have been generated, the real-time 
system 280 can be utilized (e.g., a specific implementation 

respiratory cycle, as well as tracking sequence over four 
respiratory cycles. A temporal resolution of 5 frames per 
second was used for all sequences. The respiratory motion 
parameters were modified during each image sequence to 
simulate non-regular breathing as shown in table 1, below. 

of steps 234, 236, 238, 240, 242), which is illustrated in FIG. 
9. The real-time system 280 starts with the acquiring of live 
images 282 (e.g., similar to live images 234). Then, a given 55 

live image within the live images 282 is optimized within the 
respiratory motion model 260 to analyze and extract curvi­
linear features to determine the respiratory state, as indicated 
by step 284. For example, the respiratory state can be 
estimated for a given fluoroscopic image frame It(x) 
derived from the live fluoroscopy image acquisition. As 
detailed above, the respiratory state is determined based on 
the extracted set of curvilinear features. Thus, the cost image 
C (It, x) is calculated for the given fluoroscopic image 
frame It(x), which is the same as the procedure to calculate 
C (It, x). Once calculated, a linear search over the entire 
range of respiratory states is performed to find the current 

60 

65 

Specifically, table 1 shows the four groups of data sets, each 
having modified respiratory parameters, which include: 
cycle length, diaphragm motion, chest motion, and contrast 
to noise ratio ("CNR"). 

TABLE 1 

Group 1 Group 2 Group 3 Group 4 

Cycle length 4-7 s 5 s 5 s 4-7 s 
Diaphragm motion 2.5 cm 1.5-3 cm 2.0 cm 1.5-3 cm 
Chest Motion 1.8 cm 1.2 cm 0.6-2.4 cm 0.6-2.4 cm 
CNR 50 50 50 15, 50 
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To evaluate the accuracy of the respiratory motion track­
ing by itself, the absolute error e"" between the estimated 
breathing state i-., and the true state A, was calculated accord­
ing to equation 10. 

(10) 

Along with the absolute error calculation, the estimated 
dynamic vessel mask for each frame was also compared to 
the ground-truth vessel position and shape. The accuracy 
was measured in terms of the well-known SorensenDice 
coefficient, as well as the 99th percentile of the perimeter 
error. Given the ground truth and the estimated vessel 
segmentation, the perimeter error is calculated for each point 
along the contour of the estimated vessel segmentation as 
the distance to the closest contour point in the ground truth 
segmentation. 

The quantitative evaluation results from the four groups 
above, of the respiratory state tracking are shown in FIG. 10. 
The histograms in FIG. 10 show distribution of absolute 
errors in percent, where the lines 270 represent the 50th 
percentile, whereas the bars 272 represent the 90th percen­
tile. The plot on the bottom right of FIG. 10 shows the 
ground truth (i.e., denoted as the solid line 274) and the 
estimated respiratory state (i.e., denoted as the dotted line 
with points 276) of all sequences of group 4. The dashed 
black vertical lines show the boundary between the different 
sequences. 

For group 1, where only the respiratory cycle length was 
varied within each image sequence, the absolute error was 
1.03+1.22%. For group 2, which varied only the maximum 
diaphragm motion within each sequence an error of 1.03+ 
1.37% was observed. The error for varying maximum 
anteroposterior motion in group 3 was 1.03+1.22%. For 
group 4, where all parameters were dynamically modified, 
the absolute error was 1.01 + 1.21 % for a CNR of 15, and 
1.09±1.25% for a CNR of 50. The accuracy of the estimated 
dynamic vessel masks yielded similar dice values for all 
sequences, between 0.94±0.01 and 0.96±0.01. The 99th 

percentile errors of the contour of the estimated vessel 
masks were 0.92±0.21 mm", 0.86±0.29 mm, and 0.64±0.09 
mm, for groups 1 to 3 respectively. The errors for group 4 
were 0.96±0.19 mm for a CNR of 15 and 0.86±0.23 mm 
using a CNR of 50. An overview of all results is shown in 
table 2, below. 

TABLE 2 

Respiratory 
State Error S0rensen-Dice 99th percentile 

Group 1 1.03 ± 1.22% 0.95 ± 0.01 0.92 ± 0.21 nun 
(CNR- 50) 

Group 2 1.03 ± 1.37% 0.95 ± 0.01 0.86 ± 0.29 nun 
(CNR- 50) 

Group 3 1.00 ± 1.22% 0.96 ± 0.01 0.64 ± 0.09 nun 
(CNR- 50) 

Group 4 1.01 ± 1.21% 0.94 ± 0.01 0.94 ± 0.19 nun 
(CNR- 15) 

Group 4 1.09 ± 1.25% 0.95 ± 0.01 0.89 ± 0.23 nun 
(CNR- 50) 

FIG. 11 shows overlays of the ground-truth and estimated 
vessel masks for different respiratory states. Specifically, the 
first row of images within FIG. 11, are native image frames 
used to estimate breathing states for three different time 
frames. The second row shows the dynamic roadmap (red) 
overlaid with the native images. The third row shows 
overlaps of the estimated and ground truth dynamic vessel 
overlaps. Regions of agreement are shown in white, while 

18 
the ground truth mask by itself is shown in green. The 
estimated mask alone is shown in magenta, in the last row. 

As discussed above, a vascular roadmap (e.g., the vascu­
lature motion model 230) can be created to provide an 

5 accurate representation of the current state of the vascula­
ture, which allows for an accurate reference for an instru­
ment during an interventional radiology procedure. How­
ever, during a fluoroscopy procedure the instrument, 
especially guidewires, may be difficult to discern from the 

10 surrounding tissue. Thus, in some non-limiting examples, it 
is contemplated to provide a clear representation of the 
instrument by utilizing a neural network to segment an 
instrument from the fluoroscopy images, and subsequently 
superimpose the instrument onto the vascular roadmap ( e.g., 

15 the vasculature motion model 230). In this scenario, a clear 
representation of the instrument can be displayed on a 
separate screen, alongside the image of the dynamic vessel 
mask 288 or the static roadmap 228. Alternatively, rather 
than being displayed alongside the dynamic vessel mask 288 

20 or the static roadmap 228, the continuous and connected 
representation of the medical instrument can be overlaid and 
superimposed with either the static or dynamic image. 

Previous systems have attempted to provide a clear rep­
resentation of the instrument ( e.g., a guidewire ), but have 

25 been unsuccessful. For example one previous approach for 
guidewire segmentation is to subtract a previously acquired 
non-contrast image (e.g., mask image) followed by global 
thresholding. This technique, however, is not suitable for 
applications with respiratory motion since subtraction arti-

30 facts would make it difficult to segment the guidewire 
reliably. Other techniques for guidewire segmentation in 
fluoroscopic images involve, for example, the use of line 
enhancement filters based on Hessian filters, or steerable 
filters. Unfortunately these attempts do not ensure that the 

35 instrument is represented as a single connected path. 
Attempts to remedy this problem seen by line enhancement 
filters, include the combined use of path search approaches 
such as Dijkstra's algorithm, or automatically driven vec­
tors. Similarly, a different approach proposed by Vincent et 

40 al. and Bismuth et al. used a local minimal path search based 
on an intensity-weighted distance transform to detect cur­
vilinear structures. The exponential complexity of a brute 
force approach can be reduced by evaluating the minimal 
paths for increasing path lengths. Conversely, optimization 

45 based techniques have been proposed using non-rigid reg­
istration between adjacent frames or by optimizing a spline 
using phase congruency to detect curvilinear features. 

50 

55 

Finally, machine learning based approaches have been 
proposed, which use classification approaches to identify 
small segments which are then combined using linear pro­
gramming, or hierarchical shape models based on principle 
component analysis. Many of the proposed approaches 
require computationally expensive iterative methods, and 
their robustness of all approaches is dependent on manually 
defined line detection features. 

The deep learning approach proposed in the present 
disclosure overcomes the problems associated with prior 
attempts. Due to the curved nature, inconsistent shapes, and 
unbalanced class frequencies of an instrument including 

60 guidewires, previous systems have had difficulty extracting 
a continuous and connected shape. Rather, prior attempts 
have extracted disconnected and non-continuous shapes of 
the instrument. Similarly, with previous attempts including 
subtraction, patient motion (e.g., respiratory motion) can 

65 create unwanted artifacts. The systems and methods accord­
ing to the present disclosure overcomes the aforementioned 
drawbacks of previous systems, for example, by segmenting 
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the entire instrument from a given fluoroscopic image, such 
that a continuous and connected image of the medical 
instrument is extracted from the fluoroscopy image. Spe­
cifically, the extracted continuous and connected image of 
the medical instrument does not require the use of alga- 5 

rithms or hierarchical shape models. For example, the pre­
vious machine learning approaches inputted a fluoroscopic 
image containing a medical instrument and outputted a 
disconnected and non-continuous image of the medical 
instrument. Thus, these previous approaches required other 10 

algorithms or hierarchical shape models to join the discon­
nected segments or portions of the medical instrument to 
create a continuous representation of the medical instru­
ment. Notably, the systems and methods according to the 

15 
present disclosure can output a continuous and connected 
image of the medical instrument for a given fluoroscopy 
image containing the medical instrument. 

Specifically, the neural network 300, as shown in FIG. 12, 
was based on the SegNet architecture, using the VGG-16 20 

network with pre-trained weights from the "ImageNet Large 
Scale Visual Recognition Challenge" dataset. The neural 
network 300 includes a total of 91 layers, of which are 
grouped in either an encoder stage 302, or a decoder stage 
304. The encoder stage 302 functions generally to reduce 25 

information, and is comprised of specific layers. The 
encoder stage 302 includes a first input layer 306 which is 
configured to receive a given image. The encoder 302 is 
followed generally by thirteen layers 308, where each layer 
308 includes a convolutional layer, a batch normalization 30 

layer, and a rectifier linear unit ("ReLU"). The layers 308 are 
designated as a solid box in FIG. 12. The encoder 302 also 
includes five maximum pooling layers 310, which reduce 
the size of the input image from 1024x1024 pixels to 32x32 

35 
pixels. The maximum pooling layers 310 are designated as 
a dashed-dotted box in FIG. 12. The decoder 304 has 
generally the same stages as the encoder 302, but are in a 
reversed order. Additionally, the decoder 304 has replaced 
the pooling layers 310 with unpooling layers 312, which are 40 

designated as a dashed box in FIG. 12. The unpooling layers 
312 upsample the reduced information and localize the 
object. The solid lines that connect a given pooling layer 310 
to the corresponding unpooling layer 312, indicate the 
forwarding of the indices of the maximum values within the 45 

pooling window. The decoder 304 further includes a softmax 
layer 314, which is designated as a dashed dotted-dotted line 
in FIG. 12, and functions to normalize the output. The last 
layer of the decoder 304 and of the neural network 300, is 
a classification layer (not shown) using a weighted cross- 50 

entropy loss function for two classes (e.g., guidewire and 
background). 

In order to train the neural network 300, the image data 
was divided randomly into training ( 60% ), validation (20%) 
and test (20%) datasets. The training was performed utiliz- 55 

ing a single graphics processing unit ("GPU") (e.g., a 
NVIDIA Geforce GTX 1080 Ti, Santa Clara, Calif., USA). 
The training was performed using a stochastic gradient 
descent technique with momentum with an initial learning 
rate of 0.001, a momentum of 0.9, an L2 regularization of 60 

0.0005, and the batch size set to 1 image. Since the prior 
probabilities for the two classes are very different (approxi­
mately 99.6% of all pixels were background pixels) the class 
weights were adjusted to avoid biasing the network towards 
the background class. Therefore, the relative frequencies of 65 

each class were determined based on the training data. The 
class weights were then set to the inverse of the relative 

20 
frequencies. The neural network 300 was trained for 56,768 
iterations (1 epoch), and received a validation accuracy of 
99.91 %. 

In order to improve image quality, the neural network 300 
can be trained by providing the current image, and the past 
two frames, as an input to the neural network 300. Advan­
tageously, this allows the neural network 300 to learn to 
track moving parts in the image, which are often easier to 
detect then a static object due to noise. In other non-limiting 
examples, the neural network 300 can be trained by provid­
ing the current image, along with the past four frames. 

After training based on the dataset above, the neural 
network 300 was evaluated by comparing the segmentation 
results over the test dataset to a mask-subtraction-based 
segmentation algorithm. A corresponding mask image was 
created for each test image containing only the anatomic 
background, assuming no motion occurred between the 
acquisitions of mask and test image. The same amount of 
Poisson noise used for the guidewire image was added to the 
mask image, simulating an actual clinical acquisition. The 
mask image was then subtracted from the test image, filtered 
using a directional line enhancement filter, and globally 
thresholded to extract the guidewire pixels. The intensity 
threshold was chosen based on the training dataset. The 
accuracy of the segmentations for both algorithms was 
measured in terms of the false-positive and false-negative 
rates, the Hausdorff distance as well as the Sorenson-Dice 
coefficient. These results are shown below in table 3, which 
compares the Sorenson-Dice coefficient ("SDC"), false posi­
tive rate ("FPR"), false negative rate ("FNR"), and 
Hausdorff distance ("HSDF") for deep learning and mask­
subtraction-based segmentation. 

Deep Learning 
Mask Subtraction 

TABLE 3 

SDC 

58.1% 
23.7% 

FPR 

0.1% 
2.0% 

FNR 

9.6% 
40.8% 

HSDF 

16.3 px 
90.6 px 

FIG. 13 visually represents the results from the compari­
son between the different methods. For example, the first 
colurmi of images show the starting images, the second 
colurmi of images are the resulting images outputted from 
the neural network 300, the third column of images represent 
the results from the mask subtraction segmentation algo­
rithm, and the last colunm is the ground truth colunm (e.g., 
images of an example of the instrument superimposed on the 
fluoroscopy images). 

In some non-limiting examples, the deep learning 
approach to segment an instrument (e.g., a guidewire) can be 
advantageous over prior attempts, in situations where the 
acquired fluoroscopy images have large intensity variations, 
include image noise, and have a small device signal relative 
to the entire image ( e.g., in thorax/abdomen procedures). For 
example, although, the previous subtraction-based method 
removed large background intensity variations and enabled 
the use of threshold-based segmentation, accurate segmen­
tation in the presence of noise was still challenging. In fact, 
the subtraction-based segmentations were often discontinu­
ous or incomplete despite the use of an optimized threshold 
derived from the training dataset. Additionally, the subtrac­
tion-based results were obtained without simulating the 
respiratory motion that would normally take place between 
the mask and guidewire images. Thus, the already present 
subtraction artifacts would be made worse if acquired during 
respiratory motion, as this can introduce additional, and 
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typically worse subtraction artifacts. As such, the deep 
learning approach allows an instrument that has a curvilinear 
shape ( e.g., a guidewire) to be accurately segmented. 

In some non-limiting examples, components within the 
vasculature motion model 230 (and the corresponding sys­
tems or processes) and the instrument deep learning seg­
mentation approach can be combined. For example, com­
ponents within the respective systems can be formed to 
create guidance systems 320, 340. 

FIG. 14 shows a block diagram of the guidance system 
320. As shown, the guidance system 320 has similar com­
ponents that have already been introduced. Thus, the previ­
ous description of these components also pertain to the 
components within the guidance system 320. The guidance 
system 320 includes the acquisition of a non-contrast fluo­
roscopy image set 322 and a contrast fluoroscopy image set 
324. Each of these image sets, are similar to the previously 
discussed image sets, and are used to generate both the 
vasculature motion model 230 and the respiratory motion 
model 260, as discussed above. Each of the image sets 316, 
318 can be acquired prior to the interventional procedure, 
and the vasculature motion model 230 and the respiratory 
motion model 260 can be generated prior to the interven­
tional procedure. 

While, the vasculature motion model 230 and the respi­
ratory motion model 260 are being generated, or in some 
cases, prior to the acquisition of the image sets 316, 318 the 
neural network 300 can be trained. The neural network 300 
can be trained using training images 316, which can be, for 
example, previously acquired fluoroscopy images that 
include the instrument intended to be used during the 
procedure. Although this discussion below will be described 

22 
dynamic vessel mask 334 can be displayed on a display 336 
(e.g., similar to the display 150, the display 124, etc.). 

The displays 331, 330, 336, within the guidance system 
320 allow an interventional radiologist to view key features 

5 separately. For example, during the procedure, the display 
336 shows a motion compensated representation of the 
vasculature, which factors in the compression, and changes 
in spatial position of the vasculature during a respiratory 
cycle. This is advantageous as the vasculature is difficult to 

10 view in native, unprocessed fluoroscopy images, and previ­
ous segmentation of the vasculature techniques do not show 
an accurate moving representation of the vasculature, and 
rather show a static representation of the vasculature. During 
the procedure, the interventional radiologist can also view a 

15 clear representation of a guidewire (or other instrument) on 
the display 330. In some non-limiting examples, the con­
tinuous and connected image of the medical instrument 328 
can be adjusted ( e.g., increased in size, changed in color, 
etc.), prior to the display on the display 330. This is 

20 advantageous because similarly to the vasculature, some 
instruments including guidewires are difficult, if not impos­
sible, to view in a native, unprocessed fluoroscopy images. 
Lastly, the interventional radiologist can view the real-time 
fluoroscopy images 326 on the display 326. Thus, the 

25 interventional radiologist can view whichever screen is 
desired to effectively guide the guidewire to the target. 

In some cases, it may be desired to combine images prior 
to display, such that the interventional radiologist can view 
a single display, rather than constantly shifting their focus 

30 between the displays (e.g., displays 331, 330, 336). Thus, in 
some non-limiting examples, a guidance system 340 is 
provided that allows for a single display, such that the 
interventional radiologist only needs to view the single in reference to a guidewire, other instruments can be used. 

For example, other curvilineal instruments such as catheters, 
could be used. However, the neural network 300 would need 35 

to be trained for the particular instrument to be used. 
Alternatively, in some cases, if the neural network 300 has 
been previously trained to extract a continuous and con­
nected guidewire, in the subsequent procedure, the neutral 
network 300 need not be trained again prior to the proce­
dure. 

display to effectively complete the interventional procedure. 
FIG. 15 shows a block diagram of the guidance system 

340. The guidance system 340 has similar components 
which have already been introduced, especially in view of 
the guidance system 320. Thus, the previous description of 
these components also pertain to the components within the 

40 guidance system 340. For example, the given image within 
the real-time fluoroscopy images 326 is directed to the 
respiratory motion model 260, which analyzes and subse­
quently extracts curvilinear features from the given image to 
be compared within the respiratory motion model 260 to 

Once the neural network 300 is prepared, real-time fluo­
roscopy images 326 are acquired ( e.g., via the x-ray imaging 
system 100) as the guidewire is inserted into the patient (i.e., 
the procedure has begun). In some cases, and as illustrated, 
the real-time fluoroscopy images 322 can be displayed on a 
display 331 ( e.g., similar to the display 150, the display 124, 
etc.), if the interventional radiologist desires. Correspond­
ingly, a given image within the real-time fluoroscopy images 
326 is directed to both the neural network 300 and the 
respiratory motion model 260. As discussed previously, the 
given image within the real-time fluoroscopy images 326 
that is inputted into the neural network 300, will output a 
continuous and connected image of the guidewire 328, 
which can be displayed on a display 330 ( e.g., similar to the 
display 150, the display 124, etc.). Additionally, the given 
image within the real-time fluoroscopy images 326 is 
directed to the respiratory motion model 260, which ana­
lyzes and subsequently extracts curvilinear features from the 
given image to be used within the respiratory motion model 
260 to determine the respiratory state 332 (e.g., °A,). The 
respiratory state 332 is inputted into the vasculature motion 
model 230 to determine the corresponding translation vector 
(s) for each pixel for the respiratory state 332. The transla­
tion vector(s) for each pixel is applied to a previously 
generated static roadmap within the vasculature motion 
model 230 to generate a dynamic vessel mask 334. The 

45 determine the respiratory state 332 (e.g., °A,). Also, the given 
image within the real-time fluoroscopy images 326 that is 
inputted into the neural network 300, will output a continu­
ous and connected image of the guidewire 328. However, 
the continuous and connected image of the instrument 328 

50 is combined in a specific way with the static vasculature 
roadmap and the translation vector(s) for each pixel for the 
respiratory state 332 within the align instrument step 339. 
The way these are combined, for example, how the motion 
compensation will be applied, depends on a user selection 

55 338 (e.g., an actuated button, a user interface, etc.). 
For example, the user selection 338 can select a first state, 

which applies the inverse of the translation vector(s) for 
each pixel for the respiratory state 332 to the continuous and 
connected image of the instrument 328. This motion com-

60 pensated image of the medical instrument is overlaid with 
the static vasculature roadmap (e.g., also outputted from the 
vasculature motion model 230). This output from the first 
state is displayed on the display 346 ( e.g., similar to the 
display 150, the display 124, etc.). This first state applies the 

65 motion compensation to the guidewire, while keeping the 
vasculature image static (e.g., the static vasculature road­
map). Thus, this first state can be advantageous for the 
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translates, rotates, compresses, extends, and the like. Even 
beyond all these biological structures, the interventional 
medical device must be tracked and adjusted relative to the 
changes in the anatomical structures. Thus, the obscured 

5 information caused by vascular movement in live images 
between two respiratory states, as illustrated in FIG. 16, is 
only one layer of complexity that the present disclosure 
addresses. 

interventional radiologists as the target ( e.g., a portion of the 
vasculature) is stationary. However, the guidewire is com­
pensated for respiratory movement, being moved ( e.g., 
translated, compressed) depending on the particular respi­
ratory state. Thus, the position of the guidewire can be 
corrected, such that the guidewire is aligned on the static 
vasculature roadmap. This allows for the interventional 
radiologist to guide the guidewire to the target location, 
which is stationary ( e.g., the static roadmap) and manipulate 
the guidewire, such that apparent movement of the 10 

guidewire (e.g., on the display) can be only caused by the 
interventional radiologist. 

Again, the above-described systems and methods are able 
to perform motion compensation or motion adjustment 
across a full range of movement that occurs during time in 
a patient, including compression, expansion, deformation, 
translation, rotation, and the like. FIG. 17 shows fluoroscopy 
images outputted from the first implementation of the guid-

The user selection 338 can also select a second state of the 
align instrument step 339. As discussed above, the align 
instrument step 339 receives the continuous and connected 
image of the instrument 328, the static vasculature roadmap, 
and the translation vector( s) for each pixel for the respiratory 
state 332. However, in the second state, the translation 
vector(s) for each pixel are applied to the static vasculature 
roadmap to generate a dynamic vessel mask ( e.g., the 
dynamic vessel mask 334) and the continuous and connected 
image of the instrument 328 is overlaid with the dynamic 
vessel mask. This second state applies motion compensation 

15 ance system 320 (e.g., with no static vasculature roadmap). 
The top fluoroscopy image within FIG. 17 shows the vas­
culature in a more compressed/retracted (e.g., during exha­
lation), whereas the bottom fluoroscopy image within FIG. 
17 shows the vasculature in a decompressed/expanded state 

20 (e.g., during inhalation). 
FIG. 18 shows fluoroscopy images outputted from the 

second implementation of the guidance system 340 (e.g., 
with the static vasculature image). As shown, the vasculature 
does not move from the top fluoroscopy image to the bottom to the image of the vasculature to generate, with subsequent 

images a "video" of the moving vasculature. This allows the 
interventional radiologist to clearly view the guidewire 
relative to an accurate representation of the target vascula­
ture. For example, the desired target point for the guidewire, 
which is a portion of the vasculature, moves and deforms 
throughout the respiratory cycle, and ideally coincides with 
the guidewire ( e.g., the guidewire aligns with the dynamic 
vessel mask 334). Thus, specifically, the vasculature, forms 

25 fluoroscopy image, which were acquired in different points 
in time. Rather, each fluoroscopy image shows that only the 
guidewire moves. 

As shown in FIG. 19, a display in accordance with the 
present disclosure is designed to allow a user to select 

a real-time video, such that the interventional radiologist can 
accurately guide the guidewire to the target location. 

30 between (1) motion compensation and (2) motion adjust­
ment. That is, a user may use the systems and method 
described above to display images using motion compensa­
tion of the interventional medical device relative to the static 

In some non-limiting examples, the guidance systems 35 

320, 340, can be implemented on the x-ray imaging system 
100. In some cases, the x-ray imaging system 100 can be 
modified to effectively run the neural network 300 (e.g., 
including GPUs, parallel processors, etc.). 

FIG. 16 shows an illustration for displaying the static 40 

roadmap and the dynamic, "moving" vasculature to show 
the interventional medical device aligned on the static 
roadmap using the motion transformation. That is, as will be 
described, alignment of the interventional medical device on 
the static roadmap can be based on a user selection. The 45 

motion adjustment achieves alignment in at least two dif­
ferent display options for the user. For example, motion 
adjustment can include a motion compensation of the inter­
ventional medical device relative to the static roadmap to 
produce a plurality of images that do not show patient 50 

motion. Alternatively, the motion adjustment can be of the 
static roadmap relative to the interventional medical device 
to produce a plurality of images that show patient motion. 

FIG. 16 shows the vasculature in two different respiratory 
states. In the illustrated example, the same vasculature is 55 

shown in a first position in a first respiratory state 350 and 
a second position in a second respiratory state 352. As can 
be seen when overlapping just these two positions of same 
vasculature during two respiratory states 350, 352, failing to 
adjust for patient motion obscures information that would, 60 

otherwise, be clear. To add further complexity, the above­
described systems and methods are not just compensating or 
adjusting for patient motion during the acquisition of live 
images 234 of FIG. 3, but must also compensate or adjust the 
moving, live images 234 relative to the static roadmap 228. 65 

Further still, the vasculature is not a rigid structure that 
simply moves during patient motion. Rather, the vasculature 

roadmap to produce a plurality of images that do not show 
patient motion. Alternatively, the user may use the system 
and methods described above to display images using 
motion adjustment of the static roadmap relative to the 
interventional medical device to produce a plurality of 
images that show patient motion. 

In particular, referring to FIG. 19, a display 380 in 
accordance with the present disclosure. The display 380 
shows a static vascular roadmap 382 (shown in solid lines). 
The display 380 also shows an interventional medical device 
384. The display 380 is for illustration purposes to show that 
a user can select between (1) motion compensation of the 
interventional medical device relative to the static roadmap 
to produce a plurality of images that do not show patient 
motion and (2) motion adjustment of the static roadmap 
relative to the interventional medical device to produce a 
plurality of images that show patient motion. 

If motion compensation is selected, the static vascular 
roadmap 382 will be shown in a persistent display and the 
display of interventional medical device 384, which moves 
in the live images 234 of FIG. 3, is presented as consistently 
aligned with the static vascular roadmap 382. Thus, this is 
referred to as "motion compensation" because compensation 
is applied to remove the appearance of motion for the user. 
That is, from the fixed external perspective of the user when 
viewing the display 380 of the images, the static vascular 
roadmap 382 and interventional medical device 384 do not 
move with patient motion, such as respiratory motion. 
Instead, the static vascular roadmap 382 is displayed as a 
stationary structure and the interventional medical device 
384 is aligned therein as it advances through the static 
vascular roadmap 382. 

Alternatively, if motion adjustment is selected, the static 
vascular roadmap 382 is adjusted to track the motion of the 
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x-ray image set 406, are acquired at different pivoting angles 
of the x-ray source assembly 104 and the x-ray detector 
array assembly 106 about the horizontal pivoting axis 116. 
Thus, images within the image set 406 are acquired at 

interventional medical device 384 in the live images 234 of 
FIG. 3. In this way, the static vascular roadmap 382 is 
motion adjusted between the static position illustrated by the 
solid lines and tracks with movement of the interventional 
medical device 384, as it moves to a second position 386. 
That is, the static vascular roadmap 382 likewise moves to 
a second position 388 to stay aligned with the interventional 
medical device 384, as it moves to a second position 386. In 
this way, patient motion, such as respiratory motion, is 
shown in the display 380. That is, from the fixed external 
perspective of the user when viewing the display 380 of the 
images, the static vascular roadmap 382 and interventional 
medical device 384 do move with patient motion, such as 
respiratory motion, such that the static vascular roadmap 
382 is displayed as a moving and aligned with the interven­
tional medical device 384 as it advances through the static 
vascular roadmap 382 and moves to the second position 386. 

5 multiple planes. In some non-limiting examples, the pivot­
ing angles can be from 0° to 360°, with any step size in 
between. In other non-limiting examples, only two fluoros­
copy images within the image set 406 need to be from 
separate planes to extrapolate the 3D volume of the vascu-

10 lature. In still further non-limiting examples, to avoid the 
additional radiation and contrast injection from the acquisi­
tion of both contrast image sets 402, 406, the 3D contrast 
fluoroscopy image set 406 can be obtained during the 
acquisition of the contrast 2D fluoroscopy image set 402. 

15 For example, a specific target location can be chosen and if 
fluoroscopy images from two different planes are acquired, 
the 3D location can be determined by the intersection of the 
back-projection of the 2D points in the 3D volume space, 
which will be discussed in more detail below. 

Although the guidance systems 320, 340 have been 
described for a two-dimensional implementation of fluoros­
copy guidance, in some non-limiting examples, it is desired 20 

to have a guidance system that enables three-dimensional 
guidance. A three-dimensional guidance system 400 utilizes 
some previously disclosed components. Thus, components 
already discussed above, also pertain to the three-dimen­
sional guidance system 400. 

Once the 3D contrast x-ray image set 406 is acquired, a 
3D volume can be generated. Then, the 3D volume of the 
vasculature 408 (e.g., the portal venous system) can be 
extracted, or removed from the 3D volume (e.g., from other 
anatomical portions in the 3D volume). This can be accom-

25 plished, for example, by first applying a Gaussian filter ( e.g., 
standard deviation of 1.5) to reduce noise. Then, a global 
thresholding approach can also be used ( e.g., threshold=-
250), to extract just the 3D volume of the vasculature 408, 

FIG. 20 is a block diagram of the three-dimensional 
guidance system 400, which can be implemented on the 
x-ray imaging system 100 (or modified variants discussed 
above) and can include the acquisition of a contrast 2D 
fluoroscopy image set 402, a non-contrast 2D fluoroscopy 30 

image set 404, and a 3D contrast x-ray image set 406. The 
contrast 2D fluoroscopy image set 402 and the non-contrast 
2D fluoroscopy image set 404 can be identical to the image 
sets 324, 322, respectively (e.g., both image sets contain 
fluoroscopy images throughout the entire respiratory cycle). 35 

Alternatively, the images sets 402, 404 can be acquired by 
using the procedure below. 

In some non-limiting examples, the desired fluoroscopy 
imaging vasculature can be the portal venous system, and 
can be acquired by performing a superior mesenteric arte- 40 

riogram. In order to inject the contrast agent, an angio­
graphic catheter (e.g., sized 5Fr) can be placed in the 
superior mesenteric artery under fluoroscopic image guid­
ance, and the contrast agent ( e.g., iodine) can be injected 
followed by a saline injection. As the injected contrast agent 45 

is draining from the superior mesenteric artery to the portal 
veins, fluoroscopy images are acquired ( e.g., via the single 
mode, or biplane mode of the imaging system 100). For 
example, the contrast 2D fluoroscopy image set 402 can be 
obtained at a specific sampling rate (e.g., 15 frames per 50 

second), and includes fluoroscopy images throughout the 
patient's entire respiratory cycle. After the contrast agent has 
drained (e.g., no renmant of the contrast agent remains in the 
vasculature), or conversely, prior to injecting the contrast 
agent, the non-contrast 2D fluoroscopy image set 404 can be 55 

acquired, such that the image set includes fluoroscopy 
images throughout the patient's entire respiratory cycle. 

Once the image sets 402, 404 are acquired, or prior to the 
acquisition of both, the 3D contrast x-ray image set 406 can 
be acquired. The 3D image set can be acquired by first using 60 

an intra-arterial injection (e.g., in the superior mesenteric 
artery), followed by a saline injection. Subsequent to the 
injection, a breath hold is performed by the patient during 
acquisition of the image set 406. Specifically, the image set 
406 includes x-ray images that are acquired at two different 65 

spatial positions of the x-ray detector array assembly 106. 
For example, multiplex-ray images, within the 3D contrast 

similar to the procedure used to generate the vasculature 
motion model 230. Additionally, a connected component 
analysis can be performed to find all connected regions in 
the binarized volume. In some cases, only the largest region 
can be used to represent the vasculature. For example, 
smaller regions can be manually parsed out and deleted, as 
they are typically noise and artifacts. The output from these 
yields the 3D volume of the vasculature 408. 

Although the respiratory motion tracking utilizes a dif­
ferent process to track the respiratory state, the extraction of 
the curvilinear features could be substituted to determine the 
respiratory state (e.g., substituted for the respiratory motion 
calculation 414). The guidance system 400 includes gener­
ating a respiratory motion model 414, which utilizes the 
difference in brightness between regions within fluoroscopy 
images, where the regions can include locations above and 
below the diaphragm. Specifically, to generate the respira­
tory motion model 414, the mean brightness in the x-di-
mension can be calculated for a given fluoroscopic image 
within the image set 404. For example, calculating the mean 
brightness in the x-dimension can help to reduce informa­
tion, which is represented by ~F/xI,Cx,y) in equation 11. 
Essentially, the output from using either the mean or the sum 
in the x-dimension, is identical because the mean-normal­
ization cancels out in equation 11. In some non-limiting 
examples, alternatively to calculating the mean brightness in 
the x-dimension, the sum, maximum, median, minimum, 
etc., could also be used to reduce information. The x-di-
mension calculation can be used to determine the center of 
mass in they-dimension, which is used as an indicator of the 
respiratory state. Specifically, the center of mass in the 
y-dimension relates to the point (in the y-direction), where 
the sum of all pixel values above the center of mass is the 
same as the sum of all pixel values below the center of mass. 
The center of mass in they-direction is calculated the same 
as r(t) is calculated. Once the center of mass in the y-di­
mension is calculated for a given image, the respiratory state 
r(t) is related to the center of mass in the y-direction 
according to equation 11. This procedure is used to calculate 
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the respiratory state for all the given images within the 
non-contrast 2D fluoroscopy image set 404. With regard to 
equation 11, the variable t denotes the time and I,(x,y) is the 
fluoroscopic image acquired at time t. This approach can be 
used for either single or biplane acquisitions. For biplane 
data, the respiratory state calculated for each image is 
averaged. 

28 
subtracted image frames. In some non-limiting examples, 
the result of the previous frame, or next frame is used as 
initialization. 

After generating a transformation matrix for each sub-
5 tracted 2D frame, a linear function, or in some cases a 

parametrization discussed above, is estimated for each 
parameter of the transformation matrix, which maps or 
relates the respiratory state to the respective parameter. 

(11) 10 

Thus, the respiratory state for each subtracted 2D frame is 
used as x, and the parameter of each subtracted 2D frame is 
used as y. A robust regression approach using a bisquare cost 

FIG. 21 shows a graph of the output of equation 11 (e.g., 
the respiratory state), vs. the estimated motion of the vas­
culature in the Z-dimension. As shown, the respiratory state 
corresponds closely to the relative motion of the vasculature 
in the Z-dimension. 

Referring again to FIG. 20, to create the vasculature 
motion model 416, the contrast image set 402 and the 
non-contrast image set 404 are subtracted. More specifically, 
for each frame within the contrast image set 402, there are 
far more corresponding frames within the native 2D image 
set 404. Thus, for each frame within the contrast image set 
402 at an acquisition time, five of the best corresponding 
frames within the non-contrast image set 404 that corre­
spond with that acquisition time are chosen. For example, to 
identify image pairs the mean squared error can be calcu­
lated and minimized to generate pairs of contrast and 
non-contrast frames. This is similar to the procedure regard­
ing equation 1. However, typically, as discussed above, there 
are more non-contrast images than contrast images. Thus, 
for each contrast image there are a number of matched 
non-contrast images (e.g., 5, 10, etc.). The best matches 
from the number of matched non-contrast images can be 
selected, for example 5 best matches, or alternatively the 
single best match can be used. If more than one best match 
is used, the images are averaged. Then, the corresponding 
contrast image is subtracted from the average image based 
on the best matches from the non-contrast images, or sub­
tracted from the best matched non-contrast image. This 
subtraction is completed for all contrast images. The sub­
traction removes any anatomical background. 

Then, to create the vasculature motion model 416, a cost 
function CF is defined, which projects all points from the 3D 
volume of the vasculature 408 into the 2D image space. 
Once the 3D volume 408 is projected into the 2D image 
space, the average squared brightness is calculated for all 
projected points in the subtracted image, where the output is 
defined as the cost. 

15 

function is then used to estimate, and generate a linear 
relationship between the respiratory state and the parameter 
within the transformation matrix. 

In some non-limiting examples, as discussed above, the 
3D volume of the vasculature 408 is generated only via two 
different planes of fluoroscopy images. Thus, in some cases, 
the contrast fluoroscopy image set 402 can be used to 
generate the 3D volume of the vasculature 408, and the 

20 generation of the vasculature motion model 416 will be 
slightly different. For example, this alternative approach 
does not use the acquired 3D DSA, rather a target is defined 
in both frames of the 2D projection images. This target 
position is tracked over time using the surrounding neigh-

25 borhood of the target position. For all subsequent frames, a 
cost function is minimized, which calculates the mean 
squared error between the patch around the target in the 
original image and around the transformed target in the 
current image. After tracking the target in both image 

30 sequences, the respective 3D positions can be calculated for 
each 2D subtracted frame by determining the projection ray 
into the 3D volume for both planes and calculating the 
intersection ( or the closest point to both lines if there is not 
exact intersection) to generate the 3D volume 408. Then, a 

35 linear relationship between the 3D target position and the 
respiratory state is estimated using a 3-element translation 
vector to create the vasculature motion model 416, rather 
than using the affine transformation matrix discussed above. 

Once the respiratory motion model 414 and the vascula-
40 ture motion model 416 have been generated, a 3D volume of 

the instrument at 420 can be generated. First, real-time 
fluoroscopy images 418 are acquired via the x-ray imaging 
system 100, which include the instrument acquired from 
different planes. Then, these images within the real-time 

45 fluoroscopy images 418 are processed to segment the instru­
ment, and create a 3D volume of the instrument ( e.g., at 
420). In order to segment the instrument, the mean squared 
error of the current image relative to every non-contrast 
image frame is calculated and the best non-contrast image 

50 frame (e.g., the one having the lowest error) is subtracted 
from the given/current image. A line detection filter is then 
applied, and subsequently a dynamic threshold is applied, 
which changes with the average intensity of each image row 

Then, the cost function above is used to evaluate all 
subtracted image frames. Once evaluated, the subtracted 2D 55 

frame with the lowest cost is identified and chosen as start 

to binarize the image. In some non-limiting examples, rather 
than this process, the instrument segmentation can be per­
formed by using a neural network ( e.g., the neural network 

frame. This subtracted 2D frame is used to perform a 3D to 
2D registration by minimizing the cost function to estimate 
an affine transformation matrix. The minimization is per­
formed using a regular step gradient descent algorithm. The 
algorithm is applied to blurred versions of the subtracted 
image with different blurring kernels, starting with a large 
kernel to allow larger translations. In the first steps only rigid 
motion is taken into account and later affine parameters are 
included. A regularization term can be added to the cost 
function to avoid large deformations of the vasculature. 
After, the 3D to 2D registration is applied to the remaining 

300 as previously described). 
After the segmented 2D images are binarized, the seg­

mented binarized 2D images are thinned using topology 
60 preserving thinning and all possible curvilinear segments are 

extracted. Then, a 2D path search is applied, which finds a 
single connected path that represents the centerline of the 
instrument. The set of curvilinear segments represents a 
directed graph, where each segment represents a node and 

65 the connection weights are defined by the Euclidean distance 
between the endpoints of the two segments and the angle 
between the segments. Additionally, the number of points of 



US 11,087,464 B2 
29 

all unused segments are added to the final cost of each path. 
Dijkstra's approach is used to find the path which minimizes 
the overall costs through the segments. After the 2D device 
path was segmented ( or outputted from the neural network 
300) for two real time images that were acquired from two 5 

different planes, pairs of corresponding points from the two 
planes are identified, which represent the same 3D point. 
This can be done by constructing a 2D image, where each 
pixel represents a potential point pair, all pixels from left to 
right represent the points on the device path from the first 10 

plane (starting at the tip), and the pixels from top to bottom 
represent points on the second plane (starting at the tip). The 
value of each pixel is the distance between the projection 3D 
rays from the focal point to the respective point on the 2D 
plane. The monotonic function then identifies the point 15 

correspondences that can be determined by finding the path 
that minimizes the costs through the image starting from the 
top, left pixel to either the bottom or right border. Every 
pixel on the path represents one point correspondence. The 
3D device path is then calculated by reconstructing each pair 20 

of corresponding points separately, where the points are 
back-projected into the volume space and the intersection 
( or the closest point to both lines) represents the 3D position. 
This procedure generates a 3D centerline of the instrument 
at step 420. Then, if the 3D centerline is determined, a 3D 25 

volume of the instrument can also be generated at step 420. 
For example, the cross-section of the instrument (or any 
desired cross-section) and diameter of the instrument ( or any 
desired diameter) is used to extrude along the 3D centerline 
to generate a 3D volume of the instrument. Alternatively, the 30 

3D centerline approach may only be used for initialization. 
For example, for all subsequent frames (e.g., within the 
real-time fluoroscopy images 418), the instrument can be 
tracked using 3D to 2D registration. This allows reconstruc­
tion without segmenting the device first and may be more 35 

robust in some cases. Thus, a point cloud representing the 
3D device centerline from the previous frame is forward 
projected into the 2D image space and a cost function based 
on the average squared brightness is calculated. Then, an 
affine transform is estimated by minimizing the cost function 40 

(e.g. using Nelder-Mead Simplex approach) to determine 
changes in the instrument position and orientation compared 
to the previous time frame. If P represents the set of points 
representing the device centerline from the previous frame, 
the transform can be determined based on the current live 45 

image I by equation 12. 

(12) 

30 
estimated linear relationship between the transformation 
matrix/3-element translation vector and the respiratory 
state). 

The align instrument step 428 can be implemented on the 
operator workstation 122, the networked workstation 148, 
and the like, and can apply motion compensation to either 
the 3D volume of the instrument or the 3D volume of the 
vasculature 408. In a first implementation, the align instru­
ment step 428 receives the transformation matrix/3-element 
translation vector, which corresponds to the respiratory state 
422, inverses the transformation matrix/3-element transla-
tion vector and applies this to the 3D volume of the 
instrument, spatially manipulating the instrument. Alterna­
tively, however, in some non-limiting examples, the inverses 
of the transformation matrix/3-element translation vector 
can be applied to the 3D centerline of the instrument and, 
subsequently, the spatially manipulated 3D centerline can be 
extruded to generate a 3D volume of the instrument that is 
spatially manipulated. Then, the 3D volume of the vascula­
ture 408 can be superimposed with the motion compensated 
3D volume of the instrument and can be displayed on the 
display 430 ( e.g., similar to the display 150, the display 124, 
etc.). This allows for a relatively static representation of the 
vasculature (e.g., the 3D volume of the vasculature) to be 
aligned with the motion compensated 3D volume of the 
instrument, such that apparent motion of the instrument can 
be only caused by the manipulation by the interventional 
radiologist. 

The align instrument step 428 can also apply motion 
compensation to the 3D volume of the vasculature 408. For 
example, the align instrument step 428 receives the trans­
formation matrix/3-element translation vector ( e.g., from the 
vasculature motion model 416), which corresponds to the 
respiratory state 422 and applies this to the 3D volume of the 
vasculature 408. Then, this spatially manipulated 3D volume 
of the vasculature can be superimposed with the 3D volume 
of the instrument at step 420 to display it on the display 430. 
This allows for the medical instrument to be aligned on a 
spatially moving 3D representation of the vasculature. In 
some non-limiting examples, the interventional radiologist 
can easily switch/toggle between either implementation 
scheme ( e.g., the align instrument step 428). 

The movement data ( e.g., a translation matrix/3-element 
translation vector above) that relates to the spatial manipu­
lation of the different portions of the vasculature from one 
respiratory state to another, can be used to generate a 3D 
motion compensated representation of the vasculature, or 
alternatively, a 3D motion compensated representation of 
the medical instrument. For example, if the respiratory state 

Tf = argmax'v l(T·xJ2 
T L....JvxEP 

The new device position can then be described by equa­
tion 13 the set of points being P n· 

50 is known, then the movement data indicating how the 
vasculature should move is also known for that respiratory 
state. This movement data can then be applied to a 3D 
volume of the vasculature (e.g., at r(t) for a fully inhaled or 
exhaled state) to manipulate the 3D volume of the vascula-

Pn={T·x0,T·x1, ... T·xn}. (13) 

Once the respiratory motion model 414, the vasculature 
motion model 416, and the 3D volume of the instrument are 
generated, the interventional radiology procedure can pro­
ceed. As discussed above, the real-time fluoroscopy images 
418 can be directed to the respiratory motion model 414 to 
determine the respiratory state r(t), indicated by reference 
numeral 422. After the respiratory state r(t) 422 has been 
determined, the respiratory state is inputted into the vascu­
lature motion model 416 to generate the corresponding 
transformation matrix (or the 3-element translation vector), 
from the previously calculated linear relationship (e.g., the 

55 ture within the viewing plane, such that the 3D volume 
represents the realistic orientation of the vasculature at that 
respiratory state. Alternatively, this movement data can also 
be applied to the medical instrument to move the medical 
instrument based on the movement of particular locations of 

60 the 3D volume of the vasculature. For example, if a medical 
instrument 460 resides in a portion of the vasculature that 
translates, rotates, compresses, extends, etc., then the inverse 
of this movement of the vasculature will be applied to the 
medical instrument. This can be advantageous for example, 

65 as the target ( e.g., the vasculature) can be a static 3D volume, 
while the instrument can be moved ( e.g., compressed, 
extended, rotated, translated), based on the movement of the 
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5. The method of claim 1 further comprising determining 
a respiratory state of the patient using the third plurality of 
images and using the motion model and the respiratory state 
to determine motion adjustments reflected in the motion 
transformation. 

6. The method of claim 5 wherein determining the respi­
ratory state of the patient includes calculating a mean 
brightness in one dimension using the third plurality of 

vasculature for that particular respiratory state. As noted 
above, the interventional radiologist can toggle between a 
first state of the guidance system 400, where the movement 
data is applied to the 3D volume of the vasculature to move 
the 3D volume of the vasculature within the viewing plane 5 

( e.g., to compensate for respiratory motion of the vascula­
ture ), and a second state of the guidance system 400, where 
the movement data is applied to a 3D volume of the medical 
instrument to move the 3D volume of the medical instru­
ment within the viewing plane ( e.g., to compensate for 
respiratory motion of the vasculature ), based on a user 
selection. 

images. 
10 

7. The method of claim 6 wherein the respiratory state of 

The above-described system may be configured or other­
wise used to carry out processes in accordance with the 
present disclosure. In particular, as will be described in 15 

further detail, The present invention has been described in 
terms of one or more preferred non-limiting examples, and 

the patient is determined using a transformation configured 
to generate a translation vector for one or more pixels within 
the third plurality of images. 

8. The method of claim 1 wherein at least one of the first 
plurality of images, the second plurality of images, and the 
third plurality of images includes three-dimensional images. 

9. The method of claim 1 wherein motion compensation 
of the interventional medical device relative to the static 

it should be appreciated that many equivalents, alternatives, 
variations, and modifications, aside from those expressly 
stated, are possible and within the scope of the invention. 

The invention claimed is: 
1. A method of creating motion-adjusted images of a 

patient to guide an interventional medical procedure, the 
method comprising: 

20 roadmap to produce a plurality of images that do not show 
patient motion presents a static display relative to the user 
illustrating only movement of the interventional medical 
device due to advancement by the user. 

acquiring a first plurality of images of a patient having 25 

non-contrast enhanced vasculature; 
acquiring a second plurality of images of the patient 

having contrast enhanced vasculature; 
generating a static roadmap of vasculature of the patient 

using the first plurality of images and the second 30 

plurality of images; 
generating a motion model of the patient using the first 

plurality of images and the second plurality of images; 
acquiring a third plurality of images of the patient with an 

interventional medical device deployed within the 35 

patient, the third plurality of images being different 
than the first plurality of images; 

generating motion tracking data of one of the patient or 
the interventional medical device using the third plu­
rality of images; 

generating a motion transformation using the motion 
tracking data and the motion model; 

40 

displaying the static roadmap and the third plurality of 
images to show the interventional medical device 
aligned on the static roadmap using the motion trans- 45 

formation, and 
wherein alignment of the interventional medical device on 

the static roadmap is based on a user selection of one 
of: 
motion compensation of the interventional medical 50 

device relative to the static roadmap to produce a 
plurality of images that do not show patient motion; 
and 

motion adjustment of the static roadmap relative to the 
interventional medical device to produce a plurality 55 

of images that show patient motion. 
2. The method of claim 1 further comprising extracting 

the interventional medical device from the third plurality of 
images using a neural network to generate, for each image 
of the third plurality of images, a continuous and connected 60 

image of the medical device. 
3. The method of claim 1 further comprising generating 

the motion model by determining curvilinear features using 
the first plurality of images. 

4. The method of claim 1 further comprising determining 65 

the motion model by determining curvilinear features within 
third plurality of images. 

10. The method of claim 1 wherein motion adjustment of 
the static roadmap relative to the interventional medical 
device to produce a plurality of images that show patient 
motion presents a dynamic display relative to the user 
illustrating movement of patient and the interventional 
medical device due to physiological motion and advance-
ment of the interventional medical device by the user. 

11. The method of claim 1, wherein alignment of the 
interventional medical device on the static roadmap in a first 
display shows motion compensation of the interventional 
medical device relative to the static roadmap to produce a 
plurality of images that do not show patient motion, 

alignment of the interventional medical device on the 
static roadmap in a second display shows motion 
adjustment of the static roadmap relative to the inter­
ventional medical device to produce a plurality of 
images that show patient motion, and 

a user selection can switch between the first display and 
the second display. 

12. A fluoroscopy imaging system comprising: 
an x-ray source assembly coupled at one end and ax-ray 

detector array assembly coupled at an opposing end; 
a computer system configured to: 

control the x-ray source assembly and the x-ray detec­
tor array assembly to acquire a first plurality of 
images of a patient having non-contrast enhanced 
vasculature; 

control the x-ray source assembly and the x-ray detec­
tor array assembly to acquire a second plurality of 
images of the patient having contrast enhanced vas­
culature; 

generate a static roadmap of vasculature of the patient 
using the first plurality of images and the second 
plurality of images; 

generate a motion model of the patient using the first 
plurality of images and the second plurality of 
images; 

control the x-ray source assembly and the x-ray detec-
tor array assembly to acquire a third plurality of 
images of the patient with an interventional medical 
device deployed within the patient, the third plurality 
of images being different than the first plurality of 
images; 
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generate motion tracking data of one of the patient or 
the interventional medical device using the third 
plurality of images; 

34 
21. T~e system of claim 12 wherein motion adjustment of 

the static roadmap relative to the interventional medical 
devi_ce to produce a plurality of images that show patient 
mot10n presents a dynamic display relative to the user generate a motion transformation using the motion 

tracking data and the motion model; 5 illustrating movement of the patient and the interventional 
medical device due to physiological motion and advance­
ment of the interventional medical device by the user. 

dis_play the static roadmap and the third plurality of 
images to show the interventional medical device 
aligned on the static roadmap using the motion 
transformation and, wherein alignment of the inter­
ventional medical device on the static roadmap is 10 

based on a user selection of one of: 
motion compensation of the interventional medical 

device relative to the static roadmap to produce a 
plurality of images that do not show patient 
motion; and 

motion adjustment of the static roadmap relative to 
the interventional medical device to produce a 
plurality of images that show patient motion. 

15 

. 13. The system of claim 12 wherein the computer system 
1s further configured to extract the interventional medical 20 

device from the third plurality of images using a neural 
network. 
. 14. The system of claim 12 wherein the computer system 
1s further configured to generate the motion model by 
~etermining curvilinear features using the first plurality of 25 

images. 
. 15. The system of claim 12 wherein the computer system 
1s further configured to generate the motion transformation 
?Y determining curvilinear features within third plurality of 
images. 
. 16. The system of claim 12 wherein the computer system 
1s further configured to determine a respiratory state of the 
patient using the third plurality of images and use the motion 
model and the respiratory state to determine motion adjust­
ments reflected in the motion transformation. 
. 17. The system of claim 16 wherein the computer system 
1s further configured to calculate a mean brightness in one 
dimension using the third plurality of images to determine 
the respiratory state of the patient includes. 

30 

35 

. 18. The system of claim 17 wherein the computer system 40 

1s further configured to use a transformation configured to 
generate a translation vector for one or more pixels within 
the third plurality of images to determine the respiratory 
state of the patient. 

19. The system of claim 12 wherein at least one of the first 45 

plurality of images, the second plurality of images, and the 
third plurality of images includes three-dimensional images. 

20. The system of claim 12 wherein motion compensation 
of the interventional medical device relative to the static 
roadmap to produce a plurality of images that do not show 50 

patient motion presents a static display relative to the user 
illustrating only movement of the interventional medical 
device due to advancement by the user. 

22. The system of claim 12, wherein alignment of the 
i~terventional medical device on the static roadmap in a first 
display shows motion compensation of the interventional 
medical device relative to the static roadmap to produce a 
plurality of images that do not show patient motion 

alignment of the interventional medical device 'on the 
static roadmap in a second display shows motion 
adjustment of the static roadmap relative to the inter­
~entional medical device to produce a plurality of 
images that show patient motion, and 

a user selection can switch between the first display and 
the second display. 

23. A method of creating motion-adjusted images of a 
patient to guide an interventional medical procedure, the 
method comprising: 

acquiring a plurality of images of the patient having 
contrast enhanced vasculature; 

generating a static roadmap of vasculature of the patient 
using the plurality of images; 

generating a motion model of the patient using the plu-
rality of images; 

acquiring another plurality of images of the patient with 
an interventional medical device deployed within the 
patient; 

generating motion tracking data of one of the patient or 
the interventional medical device using the another 
plurality of images; 

generating a motion transformation using the motion 
tracking data and the motion model; 

dis_playing the static roadmap and the another plurality of 
images to show the interventional medical device 
aligned on the static roadmap using the motion trans­
formation, 

alignment of the interventional medical device on the 
static roadmap in a first display shows motion com­
pensation of the interventional medical device relative 
to the static roadmap to produce a plurality of images 
that do not show patient motion, 

alignment of the interventional medical device on the 
static roadmap in a second display shows motion 
adjustment of the static roadmap relative to the inter­
~entional medical device to produce a plurality of 
images that show patient motion, and 

a user selection can switch between the first display and 
the second display. 

* * * * * 




