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1 

SYSTEMS AND METHODS FOR FULLY 
AUTOMATED PROTEIN ENGINEERING 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

This invention was made with government support under 
GMl 19854 awarded by the National Institutes of Health. 
The government has certain rights in the invention. 

BACKGROUND 

Conventional protein engineering is a difficult, laborious 
endeavor. Protein engineering typically involves designing a 
proposed protein for testing and then functionally testing the 
proposed protein. The protein design process typically 
involves either random sampling or guesswork, neither of 
which carries a high probability of success. The protein 
testing process typically involves DNA assembly, transfor­
mation, plating/culturing, miniprepping, DNA sequencing, 
protein expression, purification, and functional assays, 
which are collectively laborious and time consuming. 

Machine learning and artificial intelligence (AI) are trans­
forming marketing, finance, healthcare, security, manufac­
turing, transportation, and nearly every aspect of daily life. 
These approaches leverage vast amounts of data to find 
patterns and quickly make optimal decisions. 

Systems and methods for protein engineering that harness 
the computational power of machine learning and AI while 
streamlining the protein testing process are needed. 

SUMMARY OF THE INVENTION 

In a particular embodiment, the present invention pro­
vides an AI-driven robotic system that can automatically 
engineer proteins with new or enhanced properties. This 
robotic system can use reinforcement learning (the program 
takes actions to maximize some sort of cumulative reward) 
and upper confidence bound algorithms to optimize the 
genotype-phenotype pairing of interest. The system tests the 
hypothetical sequences designed by the program using a 
robotic unit that automates liquid handling and detection. 
The results of these experiments are fed back into the 
program, the algorithms run with the new input, and another 
set of experiments is designed and implemented. 

With minimal human input at the beginning of the pro­
cess, the system provided herein can automatically create 
genetic sequences for optimizing any phenotype, design 
experiments, carry out those experiments, and learn from the 
output of those experiments. While a lab tech can only work 
a set amount of time, this system can run around the clock, 
and there would be no human error in the data analysis or 
performance of the experiments. 

Exemplary aspects of the invention are provided in FIGS. 
1-3. 

One aspect of the invention is directed to protein engi­
neering systems. 

One exemplary system comprises a sequence testing 
subsystem and a machine learning subsystem. 

An exemplary sequence testing subsystem comprises 
nucleic acid fragments capable of being combined in dif­
ferent combinations to generate nucleic acids encoding a set 
of different possible proteins. The sequence testing subsys­
tem further comprises a nucleic acid assembly subsystem 
configured to assemble the nucleic acids from the nucleic 
acid fragments. The sequence testing subsystem further 
comprises a protein expression subsystem configured to 

2 
express proteins from the nucleic acids and thereby generate 
expressed proteins. The sequence testing subsystem further 
comprises a property detector subsystem configured to 
detect property values of the expressed proteins for a given 
property and thereby generate detected property values 
corresponding to the expressed proteins. 

An exemplary machine learning subsystem comprises a 
server. The machine learning subsystem is configured to 
receive the detected property values from the sequence 

10 testing subsystem. The machine learning subsystem is fur­
ther configured to predict, from the detected property values 
received from the sequence testing subsystem, predicted 
property values for untested proteins. The untested proteins 
comprise possible proteins in the set that do not have 

15 corresponding detected property values. The machine learn­
ing subsystem is further configured to select one or more of 
the untested proteins based on the predicted property values 
to thereby generate one or more selected proteins. The 
machine learning subsystem is further configured to instruct 

20 the sequence testing subsystem to test the one or more 
selected proteins to obtain a detected property value therefor. 

In some versions, the sequence testing subsystem further 
comprises a robot configured to combine the nucleic acid 
fragments in the nucleic acid assembly subsystem, introduce 

25 the nucleic acids to the protein expression subsystem, and 
introduce the expressed proteins to the property detector 
subsystem. 

In some versions, the sequence testing subsystem further 
comprises an amplification subsystem configured to amplify 

30 the nucleic acids. In some versions, the sequence testing 
subsystem further comprises an amplification subsystem 
configured to amplify the nucleic acids and a robot config­
ured to combine the nucleic acid fragments in the nucleic 
acid assembly subsystem, introduce the nucleic acids to the 

35 amplification subsystem, introduce the nucleic acids to the 
protein expression subsystem, and introduce the expressed 
proteins to the property detector subsystem. In some ver­
sions, the sequence testing subsystem is configured to 
express the proteins from the nucleic acids in the protein 

40 expression subsystem after amplifying the nucleic acids in 
the amplification subsystem without purifying the nucleic 
acids. In some versions, the sequence testing subsystem is 
configured to dilute the nucleic acids by a dilution factor of 
6-60 without purifying the nucleic acids after amplifying the 

45 nucleic acids in the amplification subsystem and before 
expressing the proteins from the nucleic acids in the protein 
expression subsystem. 

In some versions, the sequence testing subsystem further 
comprises a control capable of being combined with a 

50 sample of each of the expressed proteins, is configured to 
split each sample of the expressed proteins combined with 
the control into corresponding first and second samples prior 
to detecting the property values of the expressed proteins, 
and is configured to detect the property value from the 

55 expressed protein in each of the first samples, detect a 
control value in each of the second samples, and normalize 
the detected property value from each first sample to the 
detected control value in each corresponding second sample. 

In some versions, at least one of the machine learning 
60 subsystem being configured to predict the predicted property 

values and the machine learning subsystem being configured 
to select the one or more of the untested proteins comprises 
modeling at least a subset of the detected property values 
and the untested proteins in a Gaussian process regression 

65 model. 
In some versions, at least one of the machine learning 

subsystem being configured to predict the predicted property 
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values and the machine learning subsystem being configured 
to select the one or more of the untested proteins comprises 
employing a multi-armed bandit algorithm. In some ver­
sions, the multi-armed bandit algorithm comprises at least 
one of an upper confidence bound algorithm and a Thomp­
son sampling algorithm. 

In some versions, at least one of the machine learning 
subsystem being configured to predict the predicted property 
values and the machine learning subsystem being configured 

4 
multiple sequence testing subsystems comprises its own 
independent nucleic acid assembly subsystem, protein 
expression subsystem, and property detector subsystem. In 
some versions, the multiple sequence testing subsystems are 
each independently connected to the server via a wireless 
network. 

Another aspect of the invention is directed to methods of 
protein engineering. Any of such methods can be employed 
on a system of the invention. 

to select the one or more of the untested proteins comprises: 10 

ignoring any detected property values equaling zero when 
predicting the predicted property values for the untested 
proteins; assigning a property value of a predefined non-zero 
constant to each of the expressed proteins corresponding to 

One exemplary method comprises conducting a number 
of steps in a sequence testing subsystem. These steps include 
assembling, in a nucleic acid assembly subsystem, nucleic 
acids from nucleic acid fragments to generate nucleic acids 
encoding a set of different possible proteins; expressing, in 
a protein expression subsystem, proteins from the nucleic 
acids to thereby generate expressed proteins; detecting, in a 

a detected property value of zero when predicting the 15 

predicted property values for the untested proteins; restrict-
ing the selected proteins to a set of the untested proteins 
having a predicted property value greater than a predefined 
threshold; or predicting a predicted property likelihood for 
each of the possible proteins in the set, minimum-subtract- 20 

ing an upper confidence bound in an upper confidence bound 
algorithm or a predicted property value in a Thompson 
sampling algorithm to generate a minimum-subtracted value 

property detector subsystem, property values of the 
expressed proteins; and determining, in a machine learning 
subsystem, all possible nucleic acid sequences of the nucleic 
acids capable of being assembled from the nucleic acid 
fragments, thereby generating detected property values cor-
responding to the expressed proteins. Further steps can be 
conducted in a machine learning subsystem. These steps 
include receiving the detected property values from the 
sequence testing subsystem; predicting, from the detected 
property values received from the sequence testing subsys-

for each of the possible proteins in the set, multiplying each 
minimum-subtracted value by each predicted property like- 25 

lihood to generate a product for each of the possible proteins 
in the set, and employing the product as an upper confidence 
bound or distribution mean for selecting the one or more of 
the untested proteins. 

In some versions, the number of the different possible 30 

proteins in the set is greater than 200. In some versions, all 

tem, predicted property values for untested proteins, wherein 
the untested proteins comprise possible proteins in the set 
that do not have corresponding detected property values; 
selecting one or more of the untested proteins based on the 
predicted property values to thereby generate one or more 

of the possible proteins in the set comprise amino acid 
sequences that have at least 60% sequence identity to each 
other. 

In some versions, the system comprises separately con­
tained sets of the nucleic acid fragments, wherein each 
nucleic acid fragment in each set of nucleic acid fragments 
encodes an identical amino acid sequence. In some versions, 
the nucleic acid fragments within each set of nucleic acid 
fragments are configured not to be mutually assembled 
together with the nucleic acid assembly subsystem. In some 
versions, the nucleic acid fragments in each set of nucleic 
acid fragments are configured to assemble with the nucleic 
acid fragments in each of at least two other of the sets of 
nucleic acid fragments. In some versions, the nucleic acid 
fragments in each set of nucleic acid fragments are config­
ured not to assemble with the nucleic acid fragments in each 
of at least two other of the sets of nucleic acid fragments. 

In some versions, the nucleic acid fragments are config­
ured to assemble in different ordered combinations. In some 
versions, the nucleic acid fragments are configured to 
assemble the nucleic acids using from 3 to 30 nucleic acid 
fragments per nucleic acid. In some versions, each nucleic 
acid fragment is from 10 to 600 bases in length. In some 
versions, the nucleic acid fragments are configured to 
assemble the nucleic acids using from 2 to 30 assembly 
points. In some versions, at least one of the nucleic acid 
fragments overlaps an assembly point of at least one other of 
the nucleic acid fragments. In some versions, at least some 
of the nucleic acid fragments consist of natural nucleic acid 
sequences. In some versions, at least some of the nucleic 
acid fragments have unnatural nucleic acid sequences. 

In some versions, the property of the expressed proteins 
comprises one or more of binding activity, enzymatic activ­
ity, fluorescence, thermostability, and solubility. 

In some versions, the sequence testing subsystem com­
prises multiple sequence testing subsystems, and each of the 

selected proteins; and instructing the sequence testing sub­
system to test the one or more selected proteins to obtain a 
detected property value therefor. Each of the assembling, the 

35 expressing, the detecting, the determining, the receiving, the 
predicting, the selecting, and the instructing can be per­
formed in an automated, computer-controlled system. 

In some methods, a robot combines the nucleic acid 
fragments in the nucleic acid assembly subsystem, intro-

40 duces the nucleic acids to the protein expression subsystem, 
and introduces the expressed proteins to the property detec­
tor subsystem. 

Some methods further comprise, after the assembling and 
prior to the expressing, amplifying the nucleic acids. The 

45 nucleic acids can be amplified in an amplification subsys­
tem. In some methods, a robot combines the nucleic acid 
fragments in the nucleic acid assembly subsystem, intro­
duces the nucleic acids to the amplification subsystem, 
introduces the nucleic acids to the protein expression sub-

50 system, and introduces the expressed proteins to the prop­
erty detector subsystem. In some methods, expressing the 
proteins is performed after amplifying the nucleic acids in 
the amplification subsystem without purifying the nucleic 
acids. In some versions, the nucleic acids are diluted by a 

55 dilution factor of 6-60 without purifying the nucleic acids 
after amplifying the nucleic acids and before expressing the 
proteins from the nucleic acids. 

Some methods comprise combining a control with a 
sample of each of the expressed proteins, splitting each 

60 sample of the expressed proteins combined with the control 
into corresponding first and second samples prior to detect­
ing the property values of the expressed proteins, detecting 
the property value from the expressed protein in each of the 
first samples, detecting a control value in each of the second 

65 samples, and normalizing the detected property value from 
each first sample to the detected control value in each 
corresponding second sample. 
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In some methods, at least one of the predicting and the 
selecting comprises modeling at least a subset of the 
detected property values and the untested proteins in a 
Gaussian process regression model. 

In some methods, at least one of the predicting and the 
selecting comprises employing a multi-armed bandit algo­
rithm. In some methods, the multi-armed bandit algorithm 
comprises at least one of an upper confidence bound algo­
rithm and a Thompson sampling algorithm. 

In some methods, at least one of the at least one of the 10 

predicting and the selecting comprises ignoring any detected 
property values equaling zero when predicting the predicted 
property values for the untested proteins; assigning a prop­
erty value of a predefined non-zero constant to each of the 15 
expressed proteins corresponding to a detected property 
value of zero when predicting the predicted property values 
for the untested proteins; restricting the selected proteins to 
a set of the untested proteins having a predicted property 
value greater than a predefined threshold; or predicting a 20 

predicted property likelihood for each of the possible pro­
teins in the set, minimum-subtracting an upper confidence 
bound in an upper confidence bound algorithm or a pre­
dicted property value in a Thompson sampling algorithm to 
generate a minimum-subtracted value for each of the pos- 25 

sible proteins in the set, multiplying each minimum-sub­
tracted value by each predicted property likelihood to gen­
erate a product for each of the possible proteins in the set, 
and employing the product as an upper confidence bound or 
distribution mean for selecting the one or more of the 30 

untested proteins. 
In some methods, the number of the different possible 

proteins in the set is greater than 200. In some methods, all 
of the possible proteins in the set comprise amino acid 
sequences that have at least 60% sequence identity to each 35 

other. 

6 
In some methods, the sequence testing subsystem com­

prises multiple sequence testing subsystems, and each of the 
multiple sequence testing subsystems comprises its own 
independent nucleic acid assembly subsystem, protein 
expression subsystem, and property detector subsystem. In 
some methods, the multiple sequence testing subsystems are 
each independently connected to the server via a wireless 
network. 

The systems and methods provided herein drastically 
reduce the number of steps going from sequence to data. A 
number of steps in the traditional characterization pipeline 
can be streamlined or eliminated. Such steps might include 
transformation, plating/culturing, mm1prepping, DNA 
sequencing, and protein purification. It is surprising that 
such steps can be eliminated and still generate high quality 
data. 

An important aspect of the invention is automating the 
design-test-learn cycle. This involves more than just sim­
plifying the experimental aspects, as it integrates the design­
test-leam cycle in an automated process. 

The objects and advantages of the invention will appear 
more fully from the following detailed description of the 
preferred embodiment of the invention made in conjunction 
with the accompanying drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The patent or application file contains at least one drawing 
executed in color. Copies of this patent or patent application 
publication with color drawing(s) will be provided by the 
Office upon request and payment of the necessary fee. 

FIG. 1 shows an exemplary fully automated sequence 
testing system of the invention. 

FIG. 2 shows a schema of interactions between an exem­
plary machine learning subsystem (component) (shown as 
"agent") of the invention and an exemplary sequence testing 
system of the invention (shown as "environment"). In some methods, the nucleic acid fragments are sepa­

rately contained in sets of nucleic acid fragments prior the 
assembling, wherein each nucleic acid fragment in each set 
of nucleic acid fragments encodes an identical amino acid 
sequence. In some methods, the nucleic acid fragments 
within each set of nucleic acid fragments are configured not 
to be mutually assembled together. In some methods, the 
nucleic acid fragments in each set of nucleic acid fragments 
are configured to assemble with the nucleic acid fragments 
in each of at least two other of the sets of nucleic acid 
fragments. In some methods, the nucleic acid fragments in 
each set of nucleic acid fragments are configured not to 
assemble with the nucleic acid fragments in each of at least 
two other of the sets of nucleic acid fragments. 

FIG. 3 shows a schema of an exemplary embodiment of 
the invention, wherein the machine learning subsystem 

40 (component) is shown as "agent." 

In some methods, the nucleic acid fragments are config­
ured to assemble in different ordered combinations. In some 
methods, the nucleic acid fragments are configured to 
assemble the nucleic acids using from 3 to 30 nucleic acid 
fragments per nucleic acid. In some methods, each nucleic 
acid fragment is from 10 to 600 bases in length. In some 
methods, the nucleic acid fragments are configured to 
assemble the nucleic acids using from 2 to 30 assembly 
points. In some methods, at least one of the nucleic acid 
fragments overlaps an assembly point of at least one other of 
the nucleic acid fragments. In some methods, at least some 
of the nucleic acid fragments consist of natural nucleic acid 
sequences. In some methods, at least some of the nucleic 
acid fragments have unnatural nucleic acid sequences. 

In some methods, the property of the expressed proteins 
comprises one or more of binding activity, enzymatic activ­
ity, fluorescence, thermostability, and solubility. 

FIG. 4 shows a schema of the nucleic acid fragments and 
their possible connectivities for assembling complete read­
ing frames. 

FIG. 5 shows amount of active protein expressed from 
45 diluted PCR-generated DNA templates without purification. 

FIGS. 6A-6J show temperature-dependent activity curves 
(top panels) and TSO distributions (bottom panels) for a 
number of natural, non-chimeric ~-glucosidase proteins 
generated in an automated system configured to assemble 

50 complete reading frame DNA from separate fragments, 
amplify the DNA, express protein, and test for thermal 
stability. In each of FIGS. 6A-6J, "n" indicates the number 
of replicates that were fit to a curve, "fluorescein" indicates 
whether fluorescein normalization was used, "normalized" 

55 indicates whether the upper magnitude was compressed to 1 
for easy comparison between curves, and "double" indicates 
whether the curve fit is a double logistic (if false, the fit is 
a single logistic). Each replicate sequence is identified with 
four numerical digits and a letter indicator. Each numerical 

60 digit refers to one of the four separate fragments derived 
from a parent sequence. The value of the digit identifies the 
parent sequence from which the fragment was derived. The 
letter indicators identify separate replicates. Thus, 11 lla 
refers to a first replicate of a protein made from each of the 

65 four fragments derived from parent sequence 1, 1111 b refers 
to a second replicate of a protein made from each of the four 
fragments derived from parent sequence 1, 2222a refers to 
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a first replicate of a protein made from each of the four 
fragments derived from parent sequence 2, 2222b refers to 
a second replicate of a protein made from each of the four 
fragments derived from parent sequence 2, and 1212a, for 
example, would refer to first replicate of a chimeric protein 
made from two fragments derived from parent sequence 1 
and two fragments derived from parent sequence 2. 

FIG. 7 shows simulations of the machine learning com­
ponent of the platform performed on previously collected 
Cytochrome P450 data to test the performance of six strat- 10 

egies multi-armed bandit (MAB) strategies. Each simulation 
trial consisted of 50 design-test-learn cycle iterations. In 
each iteration the platform selected a sequence to test based 
on the specified strategy, observed the thermostability of the 
selected sequence, then updated the model. 1000 trials were 15 

performed for each strategy. At each iteration, the proportion 
of trials for a given strategy that had previously observed the 
sequence with maximum thermostability on the current or 
any previous iteration was calculated. This value was 
inferred to be the probability that the given strategy would 20 

observe the maximum sequence within a specific number of 
observations, and is located on they axis of the figure. 

FIGS. SA and SB show plots ofrepresentative trials from 
the simulation described in FIG. 7, with FIG. SA showing 
trials from the predicted positive UCB strategy and FIG. SB 25 

showing trials from the random selection. The x axis shows 
the number of sequences observed at each time, proceeding 
left to right. Each datapoint shows the thermostability or 
inactivity of the selected sequence at a given iteration. The 
lines display the maximum thermostability value observed 30 

on or before the current iteration. In general, the modified 
MAB strategies were able to find more thermostable 
sequences faster than random selection. 

FIG. 9 shows simulations identical to those for the 
expected UCB in FIG. 7, with the exception that the number 35 

of sequences observed at each design-test-learn cycle itera­
tion could vary. Batches were assembled by assuming the 
predicted value for the selected sequence was accurate and 
repeating the expected UCB with that assumed data, repeat-
ing this process until the desired number of sequences had 40 

been selected, then testing all selected sequences simulta­
neously. 

FIGS. lOAand lOB show results from unassisted learning 
runs with an exemplary fully autonomous protein engineer-
ing system. FIG. lOA shows results from a first run in which 45 

a robot ran continuously for 10 days with no given initial 
data. Active sequence 6111 was discovered on day 5 of the 
experiment. FIG. lOB shows results from a second run in 
which the robot ran six experiments in pairs. Of the six 
experiments, two were the result of failed expression and 50 

were excluded. 

8 
sequences. The term "fragment" is meant to be understood 
insofar as each fragment has a portion of the pre-determined 
sequences of one of the nucleic acids. The nucleic acid 
fragments may be provided in linear or circular form and 
may have additional nucleic acids appended thereto. The 
nucleic acid fragments can be single or double-stranded. If 
double stranded, the nucleic acid fragments can have two 
sticky ends, one sticky end and one blunt end, or two blunt 
ends. If additional nucleic acids are appended to a given 
nucleic acid fragment, only those nucleic acids that are 
assembled into the nucleic acid itself are considered to be 
part of the nucleic acid fragment. 

The nucleic acid fragments may have any length suitable 
for assembling into a nucleic acid. Such lengths include 
from 1 to 6,000 or more bases. In some versions of the 
invention, the nucleic acid fragments have a length of at 
least 1, at least 5, at least 10, at least 25, at least 50, at least 
100, at least 200, at least 300 at least 400, at least 500, at 
least 600, at least 700, at least 800, at least 900, or at least 
1,000 bases. In some versions of the invention, the nucleic 
acid fragments have a length up to 5, up to 10, up to 25, up 
to 50, up to 100, up to 200, up to 300 up to 400, up to 500, 
up to 600, up to 700, up to 800, up to 900, up to 1,000, up 
to 1,500, up to 2,000, up to 2,500, up to 3,000, up to 3,500, 
up to 4,000, up to 4,500, up to 5,000, up to 5,500, up to 6,000 
bases or more. 

The nucleic acid fragments are configured to assemble the 
nucleic acids using any number of nucleic acid fragments 
per nucleic acid. The number of nucleic acid fragments is 
limited in part, on the size of the nucleic acids and the sizes 
of the nucleic acid fragments capable of assembling to form 
the nucleic acids. Suitable numbers of nucleic acid frag­
ments include from 2 to 6,000 or more nucleic acid frag­
ments per nucleic acid. In some versions of the invention, 
the nucleic acid fragments are configured for at least 2, at 
least 3, at least 4, at least 5, at least 10, at least 25, at least 
50, at least 100, at least 200, at least 300 at least 400, at least 
500, at least 600, at least 700, at least 800, at least 900, or 
at least 1,000 nucleic acid fragments to assemble to form 
each nucleic acid. In some versions of the invention, the 
nucleic acid fragments are configured for up to 5, up to 10, 
up to 25, up to 50, up to 100, up to 200, up to 300 up to 400, 
up to 500, up to 600, up to 700, up to 800, up to 900, up to 
1,000, up to 1,500, up to 2,000, up to 2,500, up to 3,000, up 
to 3,500, up to 4,000, up to 4,500, up to 5,000, up to 5,500, 
up to 6,000, or more nucleic acid fragments to assemble to 
form each nucleic acid. 

The nucleic acid fragments are configured to assemble the 
nucleic acids using any number of assembly points. An 
assembly point is the position in the final nucleic acid in 
which one nucleic acid fragment assembles with another. 
The assembly points can correspond with the breakpoints 
used in designing the nucleic acid fragments from parent 
nucleic acids (see, e.g., the following examples). The num-

FIG. 11 shows a comparison of expression before and 
after increasing Golden Gate product usage and separating 
PCR mix and primers prior to use. 1111 and 5515 used 25x 
diluted Golden Gate product and pre-mixed PCR mix and 
primers. lllla and 5515b used l0x diluted Golden Gate 
product in primers kept separate from PCR mix. 

FIG. 12 shows an exemplary general schema and work­
flow of a decentralized fully automated protein engineering 
system. 

55 ber of assembly points used to assemble the nucleic acids 
from the nucleic acid fragments is limited in part, on the size 
of the nucleic acids and the sizes of the nucleic acid 
fragments capable of assembling to form the nucleic acids. 
Suitable numbers of assembly points used to form a nucleic 

DETAILED DESCRIPTION OF THE 
INVENTION 

60 acid include from 1 to 6,000 or more assembly points per 
nucleic acid. In some versions of the invention, the nucleic 
acid fragments are configured to form the nucleic acids with 
at least 2, at least 3, at least 4, at least 5, at least 10, at least 

The nucleic acid fragments of the invention are fragments 65 

of nucleic acids such as DNA that are capable of assembling 
into nucleic acids having different pre-determined 

25, at least 50, at least 100, at least 200, at least 300 at least 
400, at least 500, at least 600, at least 700, at least 800, at 
least 900, or at least 1,000 assembly points per nucleic acid. 
In some versions of the invention, the nucleic acid fragments 
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are configured to form the nucleic acids with up to 5, up to 
10, up to 25, up to 50, up to 100, up to 200, up to 300 up to 
400, up to 500, up to 600, up to 700, up to 800, up to 900, 
up to 1,000, up to 1,500, up to 2,000, up to 2,500, up to 
3,000, up to 3,500, up to 4,000, up to 4,500, up to 5,000, up 
to 5,500, up to 6,000, or more assembly points per nucleic 
acid. 

In some versions of the invention, one or more nucleic 
acid fragments overlap one or more assembly points of one 
or more other nucleic acid fragments. Examples of such 
overlap are shown in FIG. 4, wherein each Rosetta and 
evolutionary nucleic acid fragment overlaps the assembly 
points of a number of natural nucleic acid fragments and 
each natural sequence nucleic acid fragment overlaps the 
assembly points of a number of Rosetta and evolutionary 
nucleic acid fragments. In some versions of the invention, 
one, some, or all of the nucleic acid fragments overlap an 
assembly point of at least 1, at least 2, at least 3, at least 4, 
at least 5, at least 6, at least 7, at least 8, at least 9, at least 
10, at least 15, at least 20, at least 25 or more other nucleic 
acid fragments. In some versions of the invention, one, 
some, or all of the nucleic acid fragments overlap an 
assembly point ofup to 2, up to 3, up to 4, up to 5, up to 6, 
up to 7, up to 8, up to 9, up to 10, up to 15, up to, up to 25, 
up to 50, or more other nucleic acid fragments. 

The nucleic acid fragments are preferably configured to 
be capable of generating nucleic acids encoding a large 
number of different possible proteins. "Different" in this 
context refers to having a different amino acid sequence 
(e.g., having one or more substitutions, indels, truncations, 
etc.) "Possible" in this context refers to a protein that can be 
generated from various combinations of the given nucleic 
acid fragments present in a particular system. The number of 
different possible proteins will be a function, in part, of the 
number of unique nucleic acid fragments that can assemble 
to form the nucleic acids, the number of assembly points, the 
connectivities of the nucleic acid fragments, and other 
factors. In some versions of the invention, the number of 
different possible proteins capable of being generated from 
the nucleic acid fragments is at least 10, at least 50, at least 
100, at least 200, at least 500, at least 750, at least 1,000, at 
least 1,250, at least 1,500, at least 2,000, at least 3,000, at 
least 4,000, at least 5,000, or more. In some versions of the 
invention, the number of different possible proteins capable 
of being generated from the nucleic acid fragments is up to 
50, up to 100, up to 200, up to 500, up to 750, up to 1,000, 
up to 1,250, up to 1,500, up to 2,000, up to 3,000, up to 
4,000, up to 5,000, up to 6,000, up to 7,000, up to 8,000, up 
to 9000, up to 10,000, or more. 

In various versions of the invention, all of the possible 
proteins in the set of possible proteins comprise amino acid 
sequences that have at least 5% sequence identity, at least 
10% sequence identity, at least 15% sequence identity, at 
least 20% sequence identity, at least 25% sequence identity, 
at least 30% sequence identity, at least 35% sequence 
identity, at least 40% sequence identity, at least 45% 
sequence identity, at least 50% sequence identity, at least 
55% sequence identity, at least 60% sequence identity, at 
least 65% sequence identity, at least 70% sequence identity, 

10 
fragments before being assembled into the nucleic acids. 
The separately contained nucleic acid fragments can be 
contained in separate well, separate tubes, or any other 
container that prevents mixing of the different sets. Each 
nucleic acid fragment in each set of nucleic acid fragments 
are preferably identical to each other or at least encode an 
identical amino acid sequence. This facilitates the ability to 
generate proteins with a known amino acid sequence from 
the nucleic acids, and ultimately, the nucleic acid fragments. 

10 "Identical" in this context refers to sequences that have 
100% sequence identity to each other. 

The nucleic acid fragments can be configured with a 
number of connectivities. "Connectivity" refers to the ability 
of a particular nucleic acid fragment to assemble with 

15 another particular nucleic acid fragment at a given assembly 
point. In some versions, the nucleic acid fragments within 
each of the sets are configured not to be mutually assembled 
together with the nucleic acid assembly subsystem. In some 
versions, the nucleic acid fragments in each of the sets are 

20 configured to assemble with the nucleic acid fragments in at 
least 2 other of the sets, at least 3 other of the sets, at least 
4 other of the sets, at least 5 other of the sets, at least 10 other 
of the sets, at least 15 other of the sets, at least 20 other of 
the sets, at least 50 other of the sets, or more. In some 

25 versions, the nucleic acid fragments in each of the sets are 
configured not to assemble with the nucleic acid fragments 
in at least 2 other of the sets, at least 3 other of the sets, at 
least 4 other of the sets, at least 5 other of the sets, at least 
10 other of the sets, at least 15 other of the sets, at least 20 

30 other of the sets, at least 50 other of the sets, or more. 
Nucleic acid fragments can be configured to assemble, in at 
least some versions of the invention, by having or being 
configured to form complementary sticky ends. Nucleic acid 
fragments can be configured not to assemble, in at least 

35 some versions of the invention, by having or being config­
ured to form non-complementary sticky ends. 

The total number of sets of nucleic acid fragments in some 
versions of the invention can be at least at least 2, at least 3, 
at least 4, at least 5, at least 10, at least 25, at least 50, at least 

40 100, at least 200, at least 300 at least 400, at least 500, at 
least 600, at least 700, at least 800, at least 900, or at least 
1,000 sets. The total number of sets of nucleic acid frag­
ments in some versions of the invention can be up to 5, up 
to 10, up to 25, up to 50, up to 100, up to 200, up to 300 up 

45 to 400, up to 500, up to 600, up to 700, up to 800, up to 900, 
up to 1,000, up to 1,500, up to 2,000, up to 2,500, up to 
3,000, up to 3,500, up to 4,000, up to 4,500, up to 5,000, up 
to 5,500, up to 6,000, or more. 

The nucleic acid fragments can be configured to assemble 
50 in different particular ordered combinations. In other words, 

each nucleic acid fragment can be configured to assemble 
with only a subset of other nucleic acid fragments in 
particular pre-determined orders. This can be accomplished, 
at least one some versions of the invention, by configuring 

55 the nucleic acid fragments to have or be capable of forming 
sticky ends that are complementary with the sticky ends 
(whether present or capable of being formed) of some but 
not other nucleic acid fragments. See, e.g., the permissible 
connectivities indicated by the thin black lines in FIG. 4. 

In some versions of the invention, the nucleic acid frag-
ments comprise nucleic acid fragments consisting of natural 
nucleic acid sequences. "Natural nucleic acid sequences" in 
this context refers to nucleic acid sequences that encode a 
sequence comprised by a protein as found in nature. In some 

at least 75% sequence identity, at least 80% sequence 60 

identity, at least 85% sequence identity, at least 90% 
sequence identity, or at least 95% sequence identity to each 
other. See US 2019/0284588 for an applicable definition of 
percent sequence identity and methods for determining 
same. 65 versions of the invention, the nucleic acid fragments com­

prise nucleic acid fragments consisting of unnatural nucleic 
acid sequences. "Unnatural nucleic acid sequences" in this 

In some versions of the invention, the nucleic acid frag­
ments are separately contained in sets of the nucleic acid 
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context refers to nucleic acid sequences that encode a 
sequence that is not comprised by a protein as found in 
nature. In some versions of the invention, the nucleic acid 
fragments comprise nucleic acid fragments consisting of 
natural nucleic acid sequences as well as nucleic acid 
fragments consisting of unnatural nucleic acid sequences. 

The nucleic acids generated by the nucleic acid fragments 
preferably comprise a protein coding sequence. The proteins 
encoded by the coding sequence can be or be based on any 
protein having any type of function. Exemplary types of 
proteins that can be encoded by the nucleic acids include 
enzymes, ligands, transcription factors, receptors, and trans­
port proteins, among others. 

12 
The property detector subsystem of the invention can 

comprise any combination of components suitable for 
detecting a property of a protein. Exemplary properties of 
proteins that can be detected include binding activity, enzy­
matic activity, fluorescence, thermostability, and solubility, 
among others. The components of a particular property 
detector subsystem will depend on the type of property 
being detected. A property detector subsystem configured to 
detect binding activity, for example, may comprise a binding 

10 partner of the protein (e.g., a small molecule ligand, a 
protein ligand, etc.) and a component suitable for detecting 
the binding. A property detector subsystem configured to 
detect enzyme activity may comprise a substrate for the 
enzyme and a component suitable for detecting the product 

The nucleic acid assembly subsystem of the invention can 
comprise any combination of components suitable for 
assembling a nucleic acid from nucleic acid fragments. 
"Assembly" in this context refers at least to the ionic 
interaction of the nucleic acid fragments to each other via 
base pairing and/or, preferably, the covalent bonding of the 
nucleic acid fragments to each other. The assembly can be 
performed by any method known in the art. Exemplary 
methods include enzymatic ligation and chemical synthesis. 
Methods of enzymatic ligation are provided in the examples 
and are otherwise known in the art. Methods of chemical 25 

15 of the reaction. A property detector subsystem configured to 
detect fluorescence may comprise a light source capable of 
irradiating the protein at a wavelength suitable for emitting 
the fluorescence. A property detector subsystem configured 
to detect thermostability can comprise any of the foregoing 

20 components in addition to heating elements capable of 
heating different samples of the protein to different tempera-
tures. 

In various versions of the invention, it may be necessary 
or advantageous to split a sample of expressed protein into 
separate samples for detecting a property. It was found that 
variance in automated pipetting can lead to inconsistent synthesis of nucleic acids, such as DNA, are well known in 

the art. Exemplary components for a nucleic acid assembly 
subsystem for performing enzymatic ligation include DNA 
ligase, a DNA ligase buffer, and, if needed, any other 
reagents suitable for preparing the nucleic acid fragments for 
ligation. 

The amplification subsystem of the invention can com­
prise any combination of components suitable for amplify-
ing nucleic acids. Methods of nucleic acid amplification 
include PCR and isothermal amplification. A preferred 
method of nucleic acid amplification is PCR. Exemplary 
components of an amplification subsystem configured for 
PCR include primers, DNA polymerase, dNTPs, and a 
suitable PCR buffer. Isothermal methods of amplification 
can also be used. 

The protein expression subsystem of the invention can 
comprise any combination of components suitable for 
expressing proteins from nucleic acids. The protein expres­
sion subsystem will typically comprise reagents for trans­
lation, such as ribosomes, amino acids, and tRNA, and, 
depending on the form of the assembled nucleic acids, 
reagents for transcription such as nucleotides and RNA 
polymerases. A preferred method of protein expression is 
cell-free protein expression. A number of cell-free protein 
expression kits are available and can be included in the 
protein expression subsystem of the invention. 

It has been surprisingly found that the nucleic acids can be 
expressed after amplification without purifying the nucleic 
acids merely by diluting the amplified nucleic acids in the 
protein expression subsystem. The nucleic acids can be 
diluted by a factor of from about 2 to about 100 or more. In 
some versions, the nucleic acids are diluted by a factor of at 
least about 2, at least about 3, at least about 4, at least about 

amounts of protein in the various separate samples that can 
lead to artifactual results. It was further found that including 
a control in the sample of expressed protein, detecting the 

30 amount of control in the split, separate samples, and nor­
malizing the detected value of the property ("property 
value") by the detected amount of control can resolve this 
issue. Accordingly, the systems and methods of the inven­
tion can comprise a control capable of being combined with 

35 a sample of each of the expressed proteins. The samples with 
the control can be split into corresponding first and second 
samples prior to detecting the property values of the 
expressed proteins. The property value from the expressed 
protein in each of the first samples can be detected, a control 

40 value in each of the second samples can be detected, and the 
detected property value from each first sample can be 
normalized to the detected control value in each correspond­
ing second sample. The control can include any component 
or reagent that can be included with the expressed proteins, 

45 evenly divided when dividing the expressed proteins, and 
subsequently detected. Examples of preferred controls 
include luminescent, fluorescent, and/or radioactive mol­
ecules. 

Automation of the steps performed by the subsystems 
50 outlined above can be performed by a programmable robot. 

The robot, for example, can be configured to combine the 
nucleic acid fragments in the nucleic acid assembly subsys­
tem, introduce the nucleic acids to the amplification subsys­
tem, introduce the nucleic acids to the protein expression 

55 subsystem, and/or introduce the expressed proteins to the 
property detector subsystem. The robot can include pipettors 
that can be directed to conduct each of the above-referenced 
combination and introducing steps by moving solutions or 

5, at least about 6, at least about 7, at least about 8, at least 
about 9, at least about 10, at least about 11, at least about 12, 60 

at least about 13, at least about 14, at least about 15, or at 
least about 16. In some versions, the nucleic acids are diluted 

components from certain wells to others. The robot can also 
include other elements, such as heating elements, light 
elements, or other components for carrying out the addi-
tional steps described herein. 

by a factor up to about 8, up to about 9, up to about 10, up 
to about 15, up to about 20, up to about 30, up to about 40, 
up to about 50, up to about 60, up to about 70, up to about 65 

80, up to about 90, up to about 100, or more. The diluent 
preferably is or comprises water. 

The machine learning subsystem can comprise any com­
bination of components suitable for receiving detected prop­
erty values from the sequence testing subsystem, predicting 
predicted property values for untested proteins, selecting 
one or more of the untested proteins based on the predicted 
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property values to thereby generate one or more selected 
proteins, and/or instructing the sequence testing subsystem 

14 
All patents, patent publications, and peer-reviewed pub­

lications (i.e., "references") cited herein are expressly incor­
porated by reference to the same extent as if each individual 
reference were specifically and individually indicated as 
being incorporated by reference. In case of conflict between 
the present disclosure and the incorporated references, the 
present disclosure controls. 

It is understood that the invention is not confined to the 

to test the one or more selected proteins to obtain a detected 
property value therefor. A suitable component for these 
purposes includes a computer or server. As used herein 
"server" refers to a piece of computer hardware or software 
that provides functionality for other programs or devices, 
such as any one or more the various subsystems described 
herein. The server may be included with the other programs 
or devices on the same device or may be connected to the 
other programs or devices over a wireless network. 

particular construction and arrangement of parts herein 
10 illustrated and described, but embraces such modified forms 

thereof as come within the scope of the claims. 
Suitable algorithms for carrying out the predicting and 

selecting steps include reinforcement learning algorithms. 
Suitable reinforcement learning algorithms include multi­
armed bandit algorithms. Suitable multi-armed bandit alga- 15 

rithms include upper confidence bound and Thompson sam­
pling algorithms. The multi-armed bandit algorithms are 
optionally employed with a strategy to account for tested 
nucleic acid sequences that do not have a detected property 
value and untested sequences that may or may not have a 20 

detectable property value. The strategy may be chosen from 
the group consisting of a constant-inactive strategy, a pre­
dicted positive strategy, and an expected strategy. With the 
constant-inactive strategy, the multi-armed bandit algo­
rithms are configured to assign a property value of a pre- 25 

defined non-zero constant to each of the expressed proteins 
corresponding to a detected property value of zero when 
predicting the predicted property values for the untested 
proteins. With the predicted positive strategy, the multi­
armed bandit algorithms are configured to select at least one 30 

of the possible nucleic acid sequences from the possible 
nucleic acid restrict the selected proteins to a set of the 
untested proteins having a predicted property value greater 
than a predefined threshold. With the expected strategy, the 
multi-armed bandit algorithms are configured to predict a 35 

predicted property likelihood for each of the possible pro­
teins in the set, minimum-subtract an upper confidence 
bound in an upper confidence bound algorithm or a pre­
dicted property value in a Thompson sampling algorithm to 
generate a minimum-subtracted value for each of the pos- 40 

sible proteins in the set, multiply each minimum-subtracted 
value by each predicted property likelihood to generate a 
product for each of the possible proteins in the set, and 
employ the product as an upper confidence bound or distri­
bution mean for selecting the one or more of the untested 45 

proteins. We define minimum-subtraction here as subtract-
ing the minimum value in a set of values from each value in 
that set. Examples of such strategies are provided in the 
examples. 

The elements and method steps described herein can be 50 

used in any combination whether explicitly described or not. 

Examples 

Sequence Fragment Design 
DNA fragments capable of being assembled in different 

combinations to result in different full-length coding 
sequences were designed. The DNA fragments included 
natural sequence fragments, Rosetta fragments, and evolu­
tionary fragments. 

The natural sequence fragments were designed as follows. 
A set of candidate sequences was made by parsing Uni­
ReP90 for sequences that had near 70% identity with native 
Streptomyces sp. QM-B184 ~-glucosidase (PDB code 
1 GNX). From these candidate sequences, a subset of six 
parent sequences, including 1 GNX, was identified based on 
the criterion that each combinatorial pair of sequences had 
roughly 70% identity. A multiple sequence alignment 
(MSA) was then constructed and fed into the SCHEMA­
RASPP algorithm (Voigt et al. 2002), which was imple­
mented in Python. SCHEMA-RASPP generates recombi-
nant libraries by splitting the aligned parent sequences in a 
specified number of breakpoints located randomly along the 
alignment. In this case, three breakpoints were used to make 
four fragments in each parent sequence. For each library, the 
algorithm outputs metrics for the likelihood of recombinant 
functionality and the expected average number of mutations 
that recombinants will have. The libraries generated were 
filtered by likelihood of success in Golden Gate Cloning 
(Engler et al. 2008), based on an in-house heuristic that uses 
ligation data to evaluate a library's set of DNA overhangs 
(Potapov et al. 2018). A library with a good balance between 
high mutation rate and recombinant functionality was 
selected. Fragments were constructed by splitting each par­
ent sequence at the chosen library's breakpoints, then adding 
to each split site a Golden Gate overhang, which consists of 
a bsaI restriction enzyme recognition site and an overhang 
region of DNA that will connect fragments. The resulting 24 
fragments were ordered from Twist Bioscience as plasmids 
in the pTwist Amp High Copy vectors. The Golden Gate 
reaction cuts the fragments out of the plasmids to allow for 
recombinant DNA assembly. 

Two additional breakpoints for the Rosetta and evolution­
ary fragments were found using the Golden Gate Cloning 

All combinations of method steps as used herein can be 
performed in any order, unless otherwise specified or clearly 
implied to the contrary by the context in which the refer­
enced combination is made. 

As used herein, the singular forms "a," "an," and "the" 
include plural referents unless the content clearly dictates 
otherwise. 

55 success heuristic with the existing breakpoints. Five frag­
ment regions using the new breakpoints were identified and 
each was used to create a Rosetta fragment and an evolu­
tionary fragment. 

Numerical ranges as used herein are intended to include 
every number and subset of numbers contained within that 
range, whether specifically disclosed or not. Further, these 
numerical ranges should be construed as providing support 
for a claim directed to any number or subset of numbers in 
that range. For example, a disclosure of from 1 to 10 should 
be construed as supporting a range of from 2 to 8, from 3 to 
7, from 5 to 6, from 1 to 9, from 3.6 to 4.6, from 3.5 to 9.9, 
and so forth. 

Each Rosetta fragment was generated by running Rosetta 
60 Relax (Conway P, Tyka M D, DiMaio F, Konerding D E, 

Baker D. Relaxation of backbone bond geometry improves 
protein energy landscape modeling. Protein Sci. 2014 Janu­
ary; 23(1):47-55) with the lGNX structure, allowing each 
residue position within the fragment region to vary to the 

65 residues present in the six natural sequences at the given 
position. The non-fragment regions were restricted to the 
1 GNX residues. The program output a locally optimal 
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sequence and its associated Rosetta energy value. This 
process was repeated 100 times, and the sequence with the 
lowest energy value was selected. The five resulting frag­
ments were then converted to plasmids in the same manner 
as the natural sequence fragments. 

To generate the evolutionary fragments, the UniRef90 
database was aligned to the natural sequence MSA. 
Sequences that aligned with less than 70% of MSA positions 
were discarded. From the remaining sequences, the frequen­
cies of amino acids were calculated for each position in the 
natural sequence MSA. Frequencies of amino acids not 
present in the MSA at the given position were discarded. The 
most frequent remaining amino acid at each MSA position 
was added to a consensus sequence. The five fragment 
regions of the consensus sequence were used to construct 
plasmids in the same manner as the natural sequence frag­
ments. 

A schema of the generated fragments and their possible 
connectivities is shown in FIG. 4. 
PCR Product Dilution for Cell-Free Protein Expression 

The ability to express functional protein directly from 
PCR-generated DNA templates without purification was 
tested at different dilution factors. This experiment was 
performed using the method described below with the 
modification of varying the amount of water added to the 
PCR product at the beginning of the In Vitro Protein 
Expression step to vary the dilution factor. Results are 
shown in FIG. 5. This experiment suggests any dilution at or 
above eightfold is sufficient to maintain the majority of 
protein expression activity. 
Fully Automated Sequence Testing System 

16 
five times. The mixture was held at 37° C. for 1 h and the 
enzymes were inactivated at 55° C. for 5 min. 
PCR 

10 µL from the Golden Gate reaction well were trans-
5 ferred to a new well on the Mix Plate. To this was added 90 

µL of 2 µM primer mix (2 µM each of ATCCCGCGAAAT­
TAATACG (SEQ ID NO:1) and GGA­
TATAGTTCCTCCTTTCAG (SEQ ID NO:2)) and the mix­
ture was mixed by pipetting 45 µL five times. 10 µL of this 

10 dilution was added to a new well on the PCR Plate, and 10 
µL Phusion® High-Fidelity PCR Master Mix with HF 
Buffer was added and mixed by pipetting 5 µL five times. 
The DNA was melted at 98° C. for 30 s, followed by 25 
cycles of melting at 98° C. for 10 s, annealing at 56° C. for 

15 30 s, and extending at 72° C. for 60 s. After the final cycle, 
the reaction was held at 72° C. for an additional 5 min to 
complete extension. 
SYBR Green Checkpoint 

10 µL from the PCR reaction was transferred to a new 
20 well on the mix plate. To this we added 90 µL water and 

mixed by pipetting 45 µL five times. From this diluted PCR 
product, we took 50 µL to a well on the assay plate. To this 
we added 40 µL water and 10 µL l0xSYBR Green. We read 
the fluorescence of this mixture by exciting at 485 nm and 

25 reading emission at 535 nm. If the fluorescence at this step 
exceeded a predetermined threshold, the Golden Gate and 
PCR steps were considered successful and the process 
continued. If not, the sequence was removed from the set of 
proteins currently being tested. If no proteins remained in 

30 that set, the robot returned to the Golden Gate step and tried 
again. 

A fully automated system for assembling full DNA tem­
plates from DNA fragments, amplifying the DNA templates, 
expressing protein from the DNA templates, and function­
ally characterizing the expressed protein was generated and 35 

tested. An exemplary sequence testing system is shown in 
FIG. 1. 

In Vitro Protein Expression 
15 µL from the PCR product dilution from the previous 

step was transferred to a new well on the PCR Plate, 20 µL 
Bioneer AccuRapid™ Cell-Free Protein Expression Kit E. 
coli Extract supplemented with 40 µM fluorescein was 
added, 40 µL Bioneer AccuRapid™ Cell-Free Protein 
Expression Kit Master Mix was added, and the mixture was 
mixed by pipetting 40 µL five times. The plate was held at 

All procedures were performed on a Tecan Freedom EVO 
robot (Tecan Group Ltd., Mannedorf, Switzerland) con­
trolled via a custom Python (www.python.org) interface 
built for this project. This interface tracks wells used and 
solutions available, ensuring the robot always uses the first 
available clean well for new steps of execution. If a solution 

40 30° C. for 3 h. 
Thermal Stability Assay 

For the following, temperatures were preset at program 
start as a fixed list of numbers in Celsius. 

is low or there are insufficient wells available on a given 
plate, the interface is capable of sending alerts via Slack to 45 

request a refill. This robot/interface system has some capac-

600 µL water was added to a 2-mL deep well plate, 70 µL 
of the in vitro protein expression crude product was added, 
and the mixture was mixed five times by pipetting 150 µL 
from the bottom of the dilution well and dispensing it again 
at the top. For each temperature tested, 50 µL protein was 
transferred to a PCR well, heated for 10 min at the chosen 

ity to replace its own plates from on-deck stockpiles, reduc-
ing the frequency ofrefill requests. Important components to 
the interface are three 96-well Bio-Rad microplates, labeled 
"Solution Plate," "Mix Plate," and "PCR Plate," as well as 50 

a BRAND 96-well flat bottom black microplate labeled 
temperature, and 30 µL of the product was transferred to a 
new well on the Mix Plate for storage. When all tempera-

"Assay Plate." 
Stock Solutions 

GGMM: Golden Gate Master Mix. Per 10 composed of 7 
µL water, 2 µL New England BioLabs T4 DNA Ligase 
Reaction Buffer, and 1 µL NEB Golden Gate Enzyme Mix 
(BsaI-HFv2). 

AAMM: Activity Assay Master Mix. Per 90 µL, com­
posed of30 µL water, 50 µL 2x assay buffer (100 mM NaCl, 
20 mM phosphate, pH 7), 104, 4 mM 4-methylumbelliferyl 
~-D-glucopyranoside. 
Golden Gate Assembly 

5 µL of each fragment needed for a chosen chimera was 
combined in a single well on the Mix Plate and was mixed 
by pipetting 10 µL five times. 10 µL of this mixture was 
transferred to a new well on the PCR Plate. 10 µL of GGMM 
was added to the same well and mixed by pipetting 10 µL 

tures were used, 90 µLAAMM was loaded into a well on the 
Assay Plate for each temperature. 10 µL heated protein from 
each temperature-labeled sample was added to a correspond-

55 ing well of assay reagent, and the mixture was mixed by 
pipetting 20 µL five times in all cases. The plate was moved 
to the plate reader and fluorescein was measured by exciting 
at 494 nm and reading fluorescence at 512 nm. After this, 
protein activity was measured by monitoring product for-

60 mation by exciting at 3 72 nm and reading fluorescence at 
445 nm every 120 s for an hour. 

Residual activity for each temperature was calculated by 
simple linear regression (scipy.stats.linregress (Jones et al. 
2001 (Jones E, Oliphant E, Peterson P, et al. SciPy: Open 

65 Source Scientific Tools for Python, 2001, www.scipy.org/))) 
with respect to the 445 nm fluorescence over time. To 
control for variation in pipetting, all fluorescein measure-
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ments were divided by the greatest value observed, and the 
activity values were divided by the corresponding fluores­
cein quotient. The normalized slopes were then fit to a 
double logistic function (with the second logistic heavily 
restricted to represent background) by gradient descent 
(using scipy.optimize.curve fit (Jones et al. 2001)), and the 
TSO value (midpoint of the curve), slope coefficient, and 
magnitude from the parameters of the first logistic function 
were taken, along with an uncertainty value for each calcu­
lated from the covariance matrix of fit parameters. All this 
information was passed back to the learning module which 
saved it to a file 
Results 

The above-described steps were tested on a number of 
proteins having parent sequences from the UniRef90 data­
base to confirm the reproducibility of outcomes. Fragments 
derived from a single parent sequence were assembled, the 
assembled DNA was amplified and expressed, and the 
expressed protein was tested for thermal stability. 

As shown in FIGS. 6A and 6C, the system was reproduc­
ible to the extent that any obtained value could be assumed 
to be accurate to within -1 ° C. This is sufficiently precise for 
effective learning as per simulations. 

The data for parent sequence 1 shown in FIGS. 6A and 6C 
was analyzed without normalizing to fluorescein. See FIGS. 
6B and 6D. The reproducibility shown in FIGS. 6A and 6C 
was lost. Without fluorescein normalization, sequence 1111 d 
failed to fit to a logistic curve and therefore did not end up 
on the plots. 

The data for parent sequence 1 was analyzed with (FIGS. 
3A and 3B) and without (FIGS. 6C and 6D) normalizing the 
curves to a relative magnitude of 1 for easy comparison. 
These data show that absolute magnitude of activity is not a 
concern for reproducibility. 

FIGS. 6E-6H show effects of single logistic fit (FIGS. 6E 
and 6G) versus double logistic fit (two logistic curves added 
together) (FIGS. 6F and 6H) for proteins having parent 
sequences 2 (FIGS. 6E and 6F) and 5 (FIGS. 6G and 6H). 
In FIGS. 6E and 6G, we observed with single logistic fit a 
plateau in melting (-45-60 degrees) representing back­
ground enzymatic activity from the expression medium. We 
fit a double logistic with the lower of the two fixed at 
parameters of that background calculated from blank experi­
ments (T50=59.1, k=0.466) and capped at 5 magnitude 
maximum. As shown in FIGS. 6F and 6H, the double logic 
fit allowed us to represent only the melting curve of the 
protein of interest. 

When the curve is already a good fit and there is no visible 
plateau, the second logistic has no effect on the overall 
curve. Looking at data from parent sequence 1 in FIGS. 61 
and 6J, for example, only 111 lf and 1111 e had any change 
as a result of the double logistic. All others had a magnitude 
for the lower logistic of <l E-12, as would be expected when 
a single logistic fully describes the data. 
Machine Leaming Subsystem 

The machine learning component of the system is respon­
sible for instructing the robot to test informative sequences, 
updating the model based on the results, and determining 
when the sequence space has been explored well enough to 
decide the best sequence has been found. This task falls 
under the multi-armed bandit (MAB) set of machine learn­
ing problems. A number of strategies based on Gaussian 
process models were designed to perform these tasks and are 
described below. These strategies were tested on existing 
protein engineering datasets, then integrated into the robot's 
program. 

18 
Gaussian process regression is a Bayesian kernel regres­

sion technique that has a number of advantages over more 
standard regression techniques, the most relevant of which 
is an estimate of prediction accuracy. Gaussian process 
solutions to the MAB capitalize on this advantage by 
preferring to test options that are possibly better than any 
previously tested options, a principle known as the optimism 
in the face of uncertainty. Two such solutions formed the 
basis of strategies developed for the platform. The first, the 

10 upper confidence bound (UCB) algorithm, uses the pre­
dicted response value and estimated prediction accuracy for 
a given testing option to determine the maximum value 
possible within some confidence interval. The value is 
known as the upper confidence bound and is generally taken 

15 to be the predicted mean plus two standard deviations. By 
repeatedly choosing to test the option with the largest upper 
confidence bound at each timepoint, UCB algorithms use 
optimism to find the optimal option. The second, Thompson 
sampling (TS), uses the predicted response value and esti-

20 mated prediction accuracy for each option to construct a 
probability distribution for each option. The distributions are 
then sampled, and the option that gives the largest sample is 
selected for testing. Similar to UCB, TS optimistically gives 
uncertain and large predictions preference, but with an 

25 additional element of randomness that can help prevent 
confinement to local optima. 

MABs can be used to model the protein engineering 
scenario by considering sequences as options and each 
sequence's function value as the option's response value. 

30 While the MAB model is mostly sufficient, the protein 
engineering scenario has a caveat that is unique, namely the 
presence of inactive sequences. Depending on the function 
being optimized, inactive sequences may not have a defined 
function value. The simplest treatment is to leave the MAB 

35 model unmodified and simply ignore undefined values in 
training. Three modifications to UCB and TS were also 
designed to explicitly handle inactive sequences. The first 
and simplest modification was to define the function value of 
inactive sequences as some predefined constant. The second 

40 and third modifications used a Gaussian process classifier to 
explicitly predict the likelihood of activity for each sequence 
based on previous observations of activity. The second 
modification, for example, was to restrict the set of possible 
options to sequences that are predicted to be active. The third 

45 modification was to minimum-subtract either the upper 
confidence bound (for UCB) or predicted function value (for 
TS) for each sequence, then multiply the resulting value by 
the activity likelihood. The resulting value was then taken as 
the new upper confidence bound or distribution mean for 

50 sequence selection. By applying each modification or no 
modification to both UCB and TS, eight strategies resulted. 
These strategies were denoted by x_unmodified, x_const_i­
nactive, x_predicted_positive, and x_expected, in respective 
order of modification, with x being either ucb (for UCB) or 

55 is (for TS). Detailed methods for implementing the strategies 
is found in in the section below entitled "Multi-Armed 
Bandit Strategies." 

The eight strategies were implemented in Python with the 
Gaussian process module from scikit-leam and evaluated 

60 with simulations. A preexisting protein engineering dataset 
containing sequences for Cytochrome P450 was used in the 
simulations (Li et al. 2007). The dataset contained chimeric 
sequences that were each active with an associated thermo­
stability value or were inactive. Trials were run by first 

65 assuming that all sequences were unobserved, then sequen­
tially building the model by choosing to observe the ther­
mostabilities of certain sequences. 1000 trials for each 
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strategy were performed on the dataset. The results of these 
trials are shown in FIGS. 7, SA, and SB. Additional simu­
lations were run to determine the effect of testing multiple 
sequences per round. As shown in FIG. 9, batch sizes under 
ten did not significantly affect performance. 

Minimum subtraction of a given value for a set of 
datapoints is the subtraction of the smallest value in the set 
from all values. 

"Observed" datapoints is the set of datapoints that have 
previously been observed, which consequently have defined 
activity and TSO. "Hidden sequences" is the set of sequences 
that have previously have not yet been observed, and there­
fore have undefined activity and TSO. "Positive" refers to 

Based on the results of the simulations, it was determined 
that ucb_expected was the best strategy, and thus was 
incorporated into the robotic platform. 

Overall, the machine learning component of the platform 
includes a list of all possible protein sequences with asso- 10 

ciated activity and function values determined for any 
previously tested sequences, a Gaussian process model that 

detectable activity (activity=!). "Negative" refers to a lack 
of detectable activity (activity=0). "Observed positive data­
points" is the subset of observed datapoints with activity=!. 
"Observed negative datapoints" is the subset of observed 
datapoints with activity=0. "Budget" refers to a preset 

is updated every cycle, and an MAB algorithm, such as the 
ucb_expected strategy, for selecting one or more of the 
possible sequences for testing in each subsequent cycle. 
Multi-Armed Bandit Strategies 

15 
number of sequences for testing. "Probability active" refers 
to the probability that a given sequence with have a pre­
dicted activity. "Threshold" refers to a preset probability, 
which is typically 0.5. DEFINITIONS 

"Data" is a list of datapoints of the form (sequence, 
activity, TSO). "Sequence" is an aligned binary sequence. 
"Activity" is a 1 or 0 representing whether the sequence is 
active or inactive, respectively. TSO is null if activity=0 and 
is the sequence's TSO otherwise. The response variables for 
classification and regression are activity and TSO, respec­
tively. Each datapoint has a true activity and TSO, but these 
values may not be known. 

When a sequence is observed, it is removed from hidden 
20 sequences and the associated datapoint is put in observed 

datapoints. 
Helper Functions 

The following functions contain Python 3 code that use 
the skleam package for Gaussian Process regression and 

25 classification, which implements the Gaussian Process algo­
rithms described in Rasmussen and Williams 2006 (Ras­
mussen C E and Williams C K I, Gaussian Processes for 
Machine Leaming, the MIT Press, 2006, ISBN 026218253X 
(www.GaussianProcess.org)), particularly Chapters 2 and 3. 

Observing a sequence reveals the true activity and TSO. 
Standard deviation is abbreviated to std. 

"Kernel" can be any kernel created with sklearn.gaussian_process. 
gp_regression(training_datapoints, testing_sequences): 

let train_X and train_ Y be tbe sequence and T50 for each datapoint, 
respectively, with order preserved 

sklearn code: 
from sklearn.gaussian_process import GaussianProcessRegressor 
gpr - GaussianProcessRegressor(kernel - kernel) 
gpr.fit(train_X, train_ Y) 
means, stds - gpr.predict(testing_sequences, return_std-True) 
return means, stds 

gp _ classification(training_datapo ints, testing_sequences): 
let train_X and train_ Y be tbe sequence and activity for each datapoint, 

respectively, with order preserved 
sklearn code: 
from sklearn.gaussian_process import GaussianProcessClassifier 
gpc - GaussianProcessClassifier(kernel-kernel) 
gpc.fit(train_X, train_ Y) 
probs - gpc.predict_proba(testing_sequences) 
probs_positive - [p[l] for p in probs] 
return probs_positive 

Strategies 
ucb_unmodified(data): 

while # sequences observed < budget: 
if observed positive datapoints is empty: 

observe a random hidden sequence 
else: 

get mean and std for each hidden sequence from 
gp_regression( observed positive datapoints, 

hidden sequences) 
let upper confidence bound value for each hidden sequence be 

mean + 2 *std for that hidden sequence 
observe hidden sequence witb largest upper confidence bound value 

ucb_const_inactive(data, inactive_T50): 
set TSO of every observed negative datapoint to inactive_T50 
while # sequences observed < budget: 

if observed positive datapoints is empty: 
observe a random hidden sequence 

else: 
get mean and std for each hidden sequence from 

gp_regression( observed datapoints, hidden sequences) 
let upper confidence bound value for each hidden sequence be 

mean + 2 *std for that hidden sequence 
observe hidden sequence witb largest upper confidence bound value 

ucb_predicted_positive(data, tbreshold): 
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-continued 

while # sequences observed < budget: 
if observed positive datapoints is empty: 

observe a random hidden sequence 
else: 

if observed negative datapoints is not empty: 

US 12,518,850 B2 

get probability active for each hidden sequence from 
gp _ classification( observed_ datapo ints, 

hidden sequences) 
else: 

probability active - 1 for all hidden sequences 
let possible be the set of sequences with probability active 

greater than threshold 
get mean and std for each possible sequence from 

gp_regression(observed positive datapoints, 
possible sequences) 

let upper confidence bound value for each hidden sequence be 
mean+ 2*std for that hidden sequence 

observe possible sequence with largest upper confidence bound value 
ucb_expected(data): 

while # sequences observed < budget: 
if observed positive datapoints is empty: 

observe a random hidden sequence 
else: 

if observed negative datapoints is not empty: 

else: 

get probability active for each hidden sequence from 
gp _ classification( observed_ datapo ints, 

hidden sequences) 

probability active - 1 for all hidden sequences 
get mean and std for each hidden sequence from 

gp_regression( observed positive datapoints, 
hidden sequences) 

let upper confidence bound value for each hidden sequence be 
mean+ 2*std for that hidden sequence 

minimwn-subtract ucb for all hidden sequences 
update upper confidence bound value for each hidden sequence to 

upper confidence bound value*probability 
active 

observe hidden sequence with largest upper confidence bound value 
ts_unmodified( data): 

while # sequences observed < budget: 
if observed positive datapoints is empty: 

observe a random hidden sequence 
else: 

get mean and std for each hidden sequence from 
gp_regression( observed positive datapoints, 

hidden sequences) 
let sample value for each positive hidden sequence be a sample from 

normal distribution N(mean, std) 
observe hidden positive sequence with largest sample value 

ts_const_inactive(data, inactive_T50): 
set TSO of every observed negative datapoint to inactive_T50 
while # sequences observed < budget: 

if observed positive datapoints is empty: 
observe a random hidden sequence 

else: 
get mean and std for each hidden sequence from 

gp_regression( observed datapoints, hidden sequences) 
let sample value for each positive hidden sequence be a sample from 

normal distribution N(mean, std) 
observe hidden sequence with largest sample value 

ts_predict_positive(data, threshold): 
while # sequences observed < budget: 

if observed positive datapoints is empty: 
observe a random hidden sequence 

else: 
if observed negative datapoints is not empty: 

else: 

get probability active for each hidden sequence from 
gp _ classification( observed_ datapo ints, 

hidden sequences) 

probability active - 1 for all hidden sequences 
let possible be the set of sequences with probability active 

greater than threshold 
get mean and std for each possible sequence from 

gp_regression( observed positive datapoints, 
possible sequences) 

let sample value for each positive hidden sequence be a sample from 
normal distribution N(mean, std) 

22 
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-continued 

observe possible sequence with largest sample value 
ts_expected( data): 

while # sequences observed < budget: 
if observed positive datapoints is empty: 

observe a random hidden sequence 
else: 

if observed negative datapoints is not empty: 
get probability active for each hidden sequence from 

gp _ classification( observed_ datapo ints, 
hidden sequences) 

else: 
probability active - 1 for all hidden sequences 

get mean and std for each hidden sequence from 
gp_regression( observed positive datapoints, 

hidden sequences) 
minimwn-subtract mean for all hidden sequences 

24 

update mean for all hidden sequences with mean*probability active 
let sample value for each positive hidden sequence be a sample from 

normal distribution N(mean, std) 
observe hidden sequence with largest sample value 

Fully Autonomous Protein Engineering System 

20 

but we already saw a higher fraction of functional sequences 
than the previous trial. Based on the results shown in FIG. 
lOB from the four successful expressions, sequences 1334 

The automated sequence testing system and machine 
learning component were combined to form a fully autono­
mous protein engineering system. 

25 
and 3341 are active though not easily separable from back­
ground, 1561 is uncertain, and rrr is inactive. The magnitude 
of the curves relative to background is much lower than it 
otherwise would be due to the condition of the reagents 

The sequence testing component of the system was con­
figured as outlined above except for the added capability of 
choosing among any combination of the natural sequence 
fragments, the Rosetta sequence fragments, and the evolu­
tionary sequence fragments for designing and generating 30 
full-length sequences for functional testing. The machine 
learning component of the system was configured to classify 

employed in this particular experiment. 
FIG. 11 shows that increasing Golden Gate product usage 

and separating PCR mix and primers prior to use results in 
higher and more consistent positive activity from both 
parental and chimeric sequences. 
Decentralized System 

The fully autonomous protein engineering system 
described above (centralized system) can be configured as a 
decentralized system. The decentralized system operates as 
in the centralized system, except that the machine learning 
portion takes place on a server and the biochemical steps 

all observed proteins as either active or inactive, with the 
active proteins having associated TSO values. Gaussian 
process classification was first trained on all observed 35 

sequences to predict active/inactive for unseen sequences. 
Gaussian process regression was then trained on all 
observed active sequences to predict TSO and variance 
values for unseen predicted active sequences using the 
ucb_expected MAB strategy. The sequence with the greatest 
T50+95% confidence interval (2 standard deviations) after 
multiplication with the probability of activity was selected to 
test in each subsequent round of testing. Repeating this 
process should result in rapid convergence to the best 
sequence available. 

40 take place on a robot connected to the server via a network. 
As in the centralized system, the robotic biochemical portion 
accepts sequences and outputs desired biochemical proper­
ties, and the machine learning portion accepts data, updates 
its model, and sends sequences according to the updated 

45 model. 
Two learning experiments were performed with the fully 

autonomous protein engineering system. The first was per­
formed with absolutely no starting information and was 
performed prior to the introduction of SYBR to confirm 
success from the first two steps. In the absence of the SYBR 50 

check, we were not able to determine how many inactive 
results were truly inactive versus those that simply failed the 
Golden Gate or PCR step. Because we did not load any 
information prior to beginning, the learning was a random 
search until a live sequence was discovered. A confirmed 55 

active sequence was found. This sequence was number 6111 
in our chimera labeling system. Sequence 6111 is the 
high-activity variant seen FIG. lOA. At a TSO of 59.1, it was 
the most thermostable protein we have yet observed. 

The second learning experiment had two key differences. 60 

First, we started the learning with data for all parental 
sequences already present, so the robot was learning rather 
than guessing from the start. Second, tests with insufficient 
SYBR fluorescence were removed from the data set as the 
robot ran in a primitive version of the now-automated 65 

SYBR-based checkpoint system. The experiment only ran 
for 6 cycles, of which two were repeated due to low SYBR, 

Key differences between the centralized and decentralized 
systems are as follows: 

1) Instead of the machine learning portion requesting 
some number of sequences and waiting for the result 
for those sequences all at once, the decentralized sys­
tem allows for multiple robots rumiing in a desynchro­
nized manner such that an arbitrary number of 
sequences may be tested in parallel, with each robot 
having a number it is capable of testing at once. 

2) Multiple robots of different types participate in the 
same learning process. The network-based steps can 
employ a universal format so that the server does not 
need to know how a given robot implements the 
experimental process. 

3) The machine learning portion no longer requires a 
robot connected to it to function. If no robots are 
connected, it can wait until a robot logs on to continue, 
making the system more stable and consistent while 
allowing robots to disconnect for repairs. 

An exemplary general schema and workflow of a decen­
tralized system is shown in FIG. 12 and is described as 
follows. 
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The server models all sequences and selects the next to 
test. Then, assuming its prediction is correct, it updates a 
temporary hypothetical model and picks the next to test 
again. Continuing this way, the server generates a ranked list 
up to a predetermined number of sequences that can be 
tested at once without additional data. 

A robot connects to the server and requests some number 
n of sequences. For those sequences, the robot will perform 
the biochemical portion of the cycle as described above. 
Once complete, the robot will package the data into a format 10 

defined by the server rules before sending that packaged data 
to the server. At this time, the robot may log off or request 
additional sequences. 

The server receives the result(s) from the robot and 
updates the data set used in generating its model. After the 15 

new data are incorporated, it repeats the prediction step 
described previously and the cycle continues. The specifics 
of the modeling process are described above. 
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<160> NUMBER OF SEQ ID NOS, 2 

<210> SEQ ID NO 1 
<211> LENGTH, 19 
<212> TYPE, DNA 

SEQUENCE LISTING 

<213> ORGANISM, Artificial Sequence 
<220> FEATURE, 

<223> OTHER INFORMATION, Primer 

<400> SEQUENCE, 1 

atcccgcgaa attaatacg 

<210> SEQ ID NO 2 
<211> LENGTH, 21 
<212> TYPE, DNA 

<213> ORGANISM, Artificial Sequence 
<220> FEATURE, 

<223> OTHER INFORMATION, Primer 

<400> SEQUENCE, 2 

ggatatagtt cctcctttca g 
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What is claimed is: 
1. A protein engineering system comprising: 
a sequence testing subsystem comprising: 

nucleic acid fragments capable of being combined in 
different combinations to generate nucleic acids 
encoding a set of different possible proteins; 

a nucleic acid assembly subsystem that assembles the 
nucleic acids from the nucleic acid fragments; 

a protein expression subsystem that expresses proteins 
from the nucleic acids and thereby generates 
expressed proteins; and 

a property detector subsystem that detects property 
values of the expressed proteins for a given property 
and thereby generates detected property values cor­
responding to the expressed proteins; and 

a machine learning subsystem comprising a server that: 
receives the detected property values from the sequence 

testing subsystem; 
predicts, from the detected property values received 

from the sequence testing subsystem, predicted prop­
erty values for untested proteins, wherein the 
untested proteins comprise possible proteins in the 
set that do not have corresponding detected property 
values; 

selects one or more of the untested proteins based on 
the predicted property values to thereby generate one 
or more selected proteins; and 

instructs the sequence testing subsystem to test the one 
or more selected proteins to obtain a detected prop­
erty value therefor. 

2. The system of claim 1, wherein the sequence testing 
subsystem further comprises an amplification subsystem 
that amplifies the nucleic acids. 

3. The system of claim 2, wherein the sequence testing 
subsystem further comprises a robot that: 

combines the nucleic acid fragments in the nucleic acid 
assembly subsystem; 

19 
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introduces the nucleic acids to the amplification subsys­
tem; 

introduces the nucleic acids to the protein expression 
subsystem; and 

introduces the expressed proteins to the property detector 
subsystem. 

4. The system of claim 2, wherein the sequence testing 
subsystem expresses the proteins from the nucleic acids in 
the protein expression subsystem after amplifying the 
nucleic acids in the amplification subsystem without puri- 10 

fying the nucleic acids. 

28 
10. The system of claim 9, wherein: 
the nucleic acid fragments within each set of nucleic acid 

fragments are configured not to be mutually assembled 
together with the nucleic acid assembly subsystem; 

the nucleic acid fragments in each set of nucleic acid 
fragments are configured to assemble with the nucleic 
acid fragments in each of at least a first two other of the 
sets of nucleic acid fragments; and 

the nucleic acid fragments in each set of nucleic acid 
fragments are configured not to assemble with the 
nucleic acid fragments in each of at least a second two 
other of the sets of nucleic acid fragments. 5. The system of claim 1, wherein the sequence testing 

subsystem: 
further comprises a control capable of being combined 

with a sample of each of the expressed proteins; 

11. The system of claim 1, wherein the nucleic acid 

15 fragments are configured to assemble in different ordered 
combinations. 

splits each sample of the expressed proteins combined 
with the control into corresponding first and second 
samples prior to detecting the property values of the 
expressed proteins; and 

detects the property value from the expressed protein in 
each of the first samples, detects a control value in each 
of the second samples, and normalizes the detected 
property value from each first sample to the detected 
control value in each corresponding second sample. 

20 
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12. The system of claim 1, wherein the nucleic acid 
fragments are configured to assemble the nucleic acids using 
from 3 to 30 nucleic acid fragments per nucleic acid. 

13. The system of claim 1, wherein each nucleic acid 
fragment is from 10 to 600 bases in length. 

14. The system of claim 1, wherein the nucleic acid 
fragments are configured to assemble the nucleic acids using 
from 2 to 30 assembly points. 

15. The system of claim 1, wherein at least one of the 
nucleic acid fragments overlaps an assembly point of at least 
one other of the nucleic acid fragments. 

6. The system of claim 1, wherein at least one of the 
machine learning subsystem predicting the predicted prop­
erty values and selecting the one or more of the untested 
proteins comprises modeling at least a subset of the detected 
property values and the untested proteins in a Gaussian 
process regression model or employing a multi-armed bandit 
algorithm. 

16. The system of claim 1, wherein the sequence testing 
subsystem comprises multiple sequence testing subsystems, 

30 each of the multiple sequence testing subsystems comprising 
its own independent nucleic acid assembly subsystem, pro­
tein expression subsystem, and property detector subsystem. 

17. The system of claim 1, wherein: 7. The system of claim 1, wherein at least one of the 
machine learning subsystem predicting the predicted prop­
erty values and selecting select the one or more of the 35 

untested proteins comprises: 
ignoring any detected property values equaling zero when 

predicting the predicted property values for the 
untested proteins; 

assigning a property value of a predefined non-zero 40 

constant to each of the expressed proteins correspond-
ing to a detected property value of zero when predicting 
the predicted property values for the untested proteins; 

restricting the selected proteins to a set of the untested 
proteins having a predicted property value greater than 45 

a predefined threshold; or 
predicting a predicted property likelihood for each of the 

possible proteins in the set, minimum-subtracting an 
upper confidence bound in an upper confidence bound 
algorithm or a predicted property value in a Thompson 50 

sampling algorithm to generate a minimum-subtracted 
value for each of the possible proteins in the set, 
multiplying each minimum-subtracted value by each 
predicted property likelihood to generate a product for 
each of the possible proteins in the set, and employing 55 

the product as an upper confidence bound or distribu­
tion mean for selecting the one or more of the untested 
proteins. 

8. The system of claim 1, wherein the number of the 
different possible proteins in the set is greater than 200, and 60 

all of the possible proteins in the set comprise amino acid 
sequences that have at least 60% sequence identity to each 
other. 

9. The system of claim 1, further comprising separately 
contained sets of the nucleic acid fragments, wherein each 65 

nucleic acid fragment in each set of nucleic acid fragments 
is identical or encodes an identical amino acid sequence. 

the number of the different possible proteins in the set is 
greater than 200, and all of the possible proteins in the 
set comprise amino acid sequences that have at least 
60% sequence identity to each other; 

the system further comprises separately contained sets of 
the nucleic acid fragments, wherein each nucleic acid 
fragment in each set of nucleic acid fragments is 
identical or encodes an identical amino acid sequence; 

the nucleic acid fragments within each set of nucleic acid 
fragments are configured not to be mutually assembled 
together with the nucleic acid assembly subsystem, the 
nucleic acid fragments in each set of nucleic acid 
fragments are configured to assemble with the nucleic 
acid fragments in each of at least a first two other of the 
sets of nucleic acid fragments, and the nucleic acid 
fragments in each set of nucleic acid fragments are 
configured not to assemble with the nucleic acid frag­
ments in each of at least a second two other of the sets 
of nucleic acid fragments; 

the nucleic acid fragments are configured to assemble in 
different ordered combinations; 

the nucleic acid fragments are configured to assemble the 
nucleic acids using from 3 to 30 nucleic acid fragments 
per nucleic acid; 

each nucleic acid fragment is from 10 to 600 bases in 
length; 

the nucleic acid fragments are configured to assemble the 
nucleic acids using from 2 to 30 assembly points; and 

at least one of the nucleic acid fragments overlaps an 
assembly point of at least one other of the nucleic acid 
fragments. 

18. The system of claim 1, wherein the sequence testing 
subsystem tests the one or more selected proteins to obtain 
a detected property value therefor. 
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19. A method of protein engineering, comprising: 
in a sequence testing subsystem: 

assembling, in a nucleic acid assembly subsystem, 
nucleic acids from nucleic acid fragments to generate 
nucleic acids encoding a set of different possible 
proteins; 

expressing, in a protein expression subsystem, proteins 
from the nucleic acids to thereby generate expressed 
proteins; 

detecting, in a property detector subsystem, property 
10 

values of the expressed proteins; and 
determining, in a machine learning subsystem, all pos­

sible nucleic acid sequences of the nucleic acids 
capable of being assembled from the nucleic acid 
fragments, thereby generating detected property val-
ues corresponding to the expressed proteins; and 15 

in a machine learning subsystem: 
receiving the detected property values from the 

sequence testing subsystem; 
predicting, from the detected property values received 

from the sequence testing subsystem, predicted prop-

30 
erty values for untested proteins, wherein the 
untested proteins comprise possible proteins in the 
set that do not have corresponding detected property 
values; 

selecting one or more of the untested proteins based on 
the predicted property values to thereby generate one 
or more selected proteins; and 

instructing the sequence testing subsystem to test the 
one or more selected proteins to obtain a detected 
property value therefor, 

wherein each of the assembling, the expressing, the 
detecting, the determining, the receiving, the predict­
ing, the selecting, and the instructing are performed in 
an automated, computer-controlled system. 

20. The method of claim 19, further comprising testing in 
the sequence testing subsystem the one or more selected 
proteins instructed by the machine learning subsystem to 
obtain a detected property value therefor. 

* * * * * 


