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1
SYSTEMS AND METHODS FOR FULLY
AUTOMATED PROTEIN ENGINEERING

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This invention was made with government support under
GM119854 awarded by the National Institutes of Health.
The government has certain rights in the invention.

BACKGROUND

Conventional protein engineering is a difficult, laborious
endeavor. Protein engineering typically involves designing a
proposed protein for testing and then functionally testing the
proposed protein. The protein design process typically
involves either random sampling or guesswork, neither of
which carries a high probability of success. The protein
testing process typically involves DNA assembly, transfor-
mation, plating/culturing, miniprepping, DNA sequencing,
protein expression, purification, and functional assays,
which are collectively laborious and time consuming.

Machine learning and artificial intelligence (Al) are trans-
forming marketing, finance, healthcare, security, manufac-
turing, transportation, and nearly every aspect of daily life.
These approaches leverage vast amounts of data to find
patterns and quickly make optimal decisions.

Systems and methods for protein engineering that harness
the computational power of machine learning and Al while
streamlining the protein testing process are needed.

SUMMARY OF THE INVENTION

In a particular embodiment, the present invention pro-
vides an Al-driven robotic system that can automatically
engineer proteins with new or enhanced properties. This
robotic system can use reinforcement learning (the program
takes actions to maximize some sort of cumulative reward)
and upper confidence bound algorithms to optimize the
genotype-phenotype pairing of interest. The system tests the
hypothetical sequences designed by the program using a
robotic unit that automates liquid handling and detection.
The results of these experiments are fed back into the
program, the algorithms run with the new input, and another
set of experiments is designed and implemented.

With minimal human input at the beginning of the pro-
cess, the system provided herein can automatically create
genetic sequences for optimizing any phenotype, design
experiments, carry out those experiments, and learn from the
output of those experiments. While a lab tech can only work
a set amount of time, this system can run around the clock,
and there would be no human error in the data analysis or
performance of the experiments.

Exemplary aspects of the invention are provided in FIGS.
1-3.

One aspect of the invention is directed to protein engi-
neering systems.

One exemplary system comprises a sequence testing
subsystem and a machine learning subsystem.

An exemplary sequence testing subsystem comprises
nucleic acid fragments capable of being combined in dif-
ferent combinations to generate nucleic acids encoding a set
of different possible proteins. The sequence testing subsys-
tem further comprises a nucleic acid assembly subsystem
configured to assemble the nucleic acids from the nucleic
acid fragments. The sequence testing subsystem further
comprises a protein expression subsystem configured to
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express proteins from the nucleic acids and thereby generate
expressed proteins. The sequence testing subsystem further
comprises a property detector subsystem configured to
detect property values of the expressed proteins for a given
property and thereby generate detected property values
corresponding to the expressed proteins.

An exemplary machine learning subsystem comprises a
server. The machine learning subsystem is configured to
receive the detected property values from the sequence
testing subsystem. The machine learning subsystem is fur-
ther configured to predict, from the detected property values
received from the sequence testing subsystem, predicted
property values for untested proteins. The untested proteins
comprise possible proteins in the set that do not have
corresponding detected property values. The machine learn-
ing subsystem is further configured to select one or more of
the untested proteins based on the predicted property values
to thereby generate one or more selected proteins. The
machine learning subsystem is further configured to instruct
the sequence testing subsystem to test the one or more
selected proteins to obtain a detected property value therefor.

In some versions, the sequence testing subsystem further
comprises a robot configured to combine the nucleic acid
fragments in the nucleic acid assembly subsystem, introduce
the nucleic acids to the protein expression subsystem, and
introduce the expressed proteins to the property detector
subsystem.

In some versions, the sequence testing subsystem further
comprises an amplification subsystem configured to amplify
the nucleic acids. In some versions, the sequence testing
subsystem further comprises an amplification subsystem
configured to amplify the nucleic acids and a robot config-
ured to combine the nucleic acid fragments in the nucleic
acid assembly subsystem, introduce the nucleic acids to the
amplification subsystem, introduce the nucleic acids to the
protein expression subsystem, and introduce the expressed
proteins to the property detector subsystem. In some ver-
sions, the sequence testing subsystem is configured to
express the proteins from the nucleic acids in the protein
expression subsystem after amplifying the nucleic acids in
the amplification subsystem without purifying the nucleic
acids. In some versions, the sequence testing subsystem is
configured to dilute the nucleic acids by a dilution factor of
6-60 without purifying the nucleic acids after amplifying the
nucleic acids in the amplification subsystem and before
expressing the proteins from the nucleic acids in the protein
expression subsystem.

In some versions, the sequence testing subsystem further
comprises a control capable of being combined with a
sample of each of the expressed proteins, is configured to
split each sample of the expressed proteins combined with
the control into corresponding first and second samples prior
to detecting the property values of the expressed proteins,
and is configured to detect the property value from the
expressed protein in each of the first samples, detect a
control value in each of the second samples, and normalize
the detected property value from each first sample to the
detected control value in each corresponding second sample.

In some versions, at least one of the machine learning
subsystem being configured to predict the predicted property
values and the machine learning subsystem being configured
to select the one or more of the untested proteins comprises
modeling at least a subset of the detected property values
and the untested proteins in a Gaussian process regression
model.

In some versions, at least one of the machine learning
subsystem being configured to predict the predicted property
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values and the machine learning subsystem being configured
to select the one or more of the untested proteins comprises
employing a multi-armed bandit algorithm. In some ver-
sions, the multi-armed bandit algorithm comprises at least
one of an upper confidence bound algorithm and a Thomp-
son sampling algorithm.

In some versions, at least one of the machine learning
subsystem being configured to predict the predicted property
values and the machine learning subsystem being configured
to select the one or more of the untested proteins comprises:
ignoring any detected property values equaling zero when
predicting the predicted property values for the untested
proteins; assigning a property value of a predefined non-zero
constant to each of the expressed proteins corresponding to
a detected property value of zero when predicting the
predicted property values for the untested proteins; restrict-
ing the selected proteins to a set of the untested proteins
having a predicted property value greater than a predefined
threshold; or predicting a predicted property likelihood for
each of the possible proteins in the set, minimum-subtract-
ing an upper confidence bound in an upper confidence bound
algorithm or a predicted property value in a Thompson
sampling algorithm to generate a minimum-subtracted value
for each of the possible proteins in the set, multiplying each
minimum-subtracted value by each predicted property like-
lihood to generate a product for each of the possible proteins
in the set, and employing the product as an upper confidence
bound or distribution mean for selecting the one or more of
the untested proteins.

In some versions, the number of the different possible
proteins in the set is greater than 200. In some versions, all
of the possible proteins in the set comprise amino acid
sequences that have at least 60% sequence identity to each
other.

In some versions, the system comprises separately con-
tained sets of the nucleic acid fragments, wherein each
nucleic acid fragment in each set of nucleic acid fragments
encodes an identical amino acid sequence. In some versions,
the nucleic acid fragments within each set of nucleic acid
fragments are configured not to be mutually assembled
together with the nucleic acid assembly subsystem. In some
versions, the nucleic acid fragments in each set of nucleic
acid fragments are configured to assemble with the nucleic
acid fragments in each of at least two other of the sets of
nucleic acid fragments. In some versions, the nucleic acid
fragments in each set of nucleic acid fragments are config-
ured not to assemble with the nucleic acid fragments in each
of at least two other of the sets of nucleic acid fragments.

In some versions, the nucleic acid fragments are config-
ured to assemble in different ordered combinations. In some
versions, the nucleic acid fragments are configured to
assemble the nucleic acids using from 3 to 30 nucleic acid
fragments per nucleic acid. In some versions, each nucleic
acid fragment is from 10 to 600 bases in length. In some
versions, the nucleic acid fragments are configured to
assemble the nucleic acids using from 2 to 30 assembly
points. In some versions, at least one of the nucleic acid
fragments overlaps an assembly point of at least one other of
the nucleic acid fragments. In some versions, at least some
of the nucleic acid fragments consist of natural nucleic acid
sequences. In some versions, at least some of the nucleic
acid fragments have unnatural nucleic acid sequences.

In some versions, the property of the expressed proteins
comprises one or more of binding activity, enzymatic activ-
ity, fluorescence, thermostability, and solubility.

In some versions, the sequence testing subsystem com-
prises multiple sequence testing subsystems, and each of the
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multiple sequence testing subsystems comprises its own
independent nucleic acid assembly subsystem, protein
expression subsystem, and property detector subsystem. In
some versions, the multiple sequence testing subsystems are
each independently connected to the server via a wireless
network.

Another aspect of the invention is directed to methods of
protein engineering. Any of such methods can be employed
on a system of the invention.

One exemplary method comprises conducting a number
of'steps in a sequence testing subsystem. These steps include
assembling, in a nucleic acid assembly subsystem, nucleic
acids from nucleic acid fragments to generate nucleic acids
encoding a set of different possible proteins; expressing, in
a protein expression subsystem, proteins from the nucleic
acids to thereby generate expressed proteins; detecting, in a
property detector subsystem, property values of the
expressed proteins; and determining, in a machine learning
subsystem, all possible nucleic acid sequences of the nucleic
acids capable of being assembled from the nucleic acid
fragments, thereby generating detected property values cor-
responding to the expressed proteins. Further steps can be
conducted in a machine learning subsystem. These steps
include receiving the detected property values from the
sequence testing subsystem; predicting, from the detected
property values received from the sequence testing subsys-
tem, predicted property values for untested proteins, wherein
the untested proteins comprise possible proteins in the set
that do not have corresponding detected property values;
selecting one or more of the untested proteins based on the
predicted property values to thereby generate one or more
selected proteins; and instructing the sequence testing sub-
system to test the one or more selected proteins to obtain a
detected property value therefor. Each of the assembling, the
expressing, the detecting, the determining, the receiving, the
predicting, the selecting, and the instructing can be per-
formed in an automated, computer-controlled system.

In some methods, a robot combines the nucleic acid
fragments in the nucleic acid assembly subsystem, intro-
duces the nucleic acids to the protein expression subsystem,
and introduces the expressed proteins to the property detec-
tor subsystem.

Some methods further comprise, after the assembling and
prior to the expressing, amplifying the nucleic acids. The
nucleic acids can be amplified in an amplification subsys-
tem. In some methods, a robot combines the nucleic acid
fragments in the nucleic acid assembly subsystem, intro-
duces the nucleic acids to the amplification subsystem,
introduces the nucleic acids to the protein expression sub-
system, and introduces the expressed proteins to the prop-
erty detector subsystem. In some methods, expressing the
proteins is performed after amplifying the nucleic acids in
the amplification subsystem without purifying the nucleic
acids. In some versions, the nucleic acids are diluted by a
dilution factor of 6-60 without purifying the nucleic acids
after amplifying the nucleic acids and before expressing the
proteins from the nucleic acids.

Some methods comprise combining a control with a
sample of each of the expressed proteins, splitting each
sample of the expressed proteins combined with the control
into corresponding first and second samples prior to detect-
ing the property values of the expressed proteins, detecting
the property value from the expressed protein in each of the
first samples, detecting a control value in each of the second
samples, and normalizing the detected property value from
each first sample to the detected control value in each
corresponding second sample.
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In some methods, at least one of the predicting and the
selecting comprises modeling at least a subset of the
detected property values and the untested proteins in a
Gaussian process regression model.

In some methods, at least one of the predicting and the
selecting comprises employing a multi-armed bandit algo-
rithm. In some methods, the multi-armed bandit algorithm
comprises at least one of an upper confidence bound algo-
rithm and a Thompson sampling algorithm.

In some methods, at least one of the at least one of the
predicting and the selecting comprises ignoring any detected
property values equaling zero when predicting the predicted
property values for the untested proteins; assigning a prop-
erty value of a predefined non-zero constant to each of the
expressed proteins corresponding to a detected property
value of zero when predicting the predicted property values
for the untested proteins; restricting the selected proteins to
a set of the untested proteins having a predicted property
value greater than a predefined threshold; or predicting a
predicted property likelihood for each of the possible pro-
teins in the set, minimum-subtracting an upper confidence
bound in an upper confidence bound algorithm or a pre-
dicted property value in a Thompson sampling algorithm to
generate a minimum-subtracted value for each of the pos-
sible proteins in the set, multiplying each minimum-sub-
tracted value by each predicted property likelihood to gen-
erate a product for each of the possible proteins in the set,
and employing the product as an upper confidence bound or
distribution mean for selecting the one or more of the
untested proteins.

In some methods, the number of the different possible
proteins in the set is greater than 200. In some methods, all
of the possible proteins in the set comprise amino acid
sequences that have at least 60% sequence identity to each
other.

In some methods, the nucleic acid fragments are sepa-
rately contained in sets of nucleic acid fragments prior the
assembling, wherein each nucleic acid fragment in each set
of nucleic acid fragments encodes an identical amino acid
sequence. In some methods, the nucleic acid fragments
within each set of nucleic acid fragments are configured not
to be mutually assembled together. In some methods, the
nucleic acid fragments in each set of nucleic acid fragments
are configured to assemble with the nucleic acid fragments
in each of at least two other of the sets of nucleic acid
fragments. In some methods, the nucleic acid fragments in
each set of nucleic acid fragments are configured not to
assemble with the nucleic acid fragments in each of at least
two other of the sets of nucleic acid fragments.

In some methods, the nucleic acid fragments are config-
ured to assemble in different ordered combinations. In some
methods, the nucleic acid fragments are configured to
assemble the nucleic acids using from 3 to 30 nucleic acid
fragments per nucleic acid. In some methods, each nucleic
acid fragment is from 10 to 600 bases in length. In some
methods, the nucleic acid fragments are configured to
assemble the nucleic acids using from 2 to 30 assembly
points. In some methods, at least one of the nucleic acid
fragments overlaps an assembly point of at least one other of
the nucleic acid fragments. In some methods, at least some
of the nucleic acid fragments consist of natural nucleic acid
sequences. In some methods, at least some of the nucleic
acid fragments have unnatural nucleic acid sequences.

In some methods, the property of the expressed proteins
comprises one or more of binding activity, enzymatic activ-
ity, fluorescence, thermostability, and solubility.
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In some methods, the sequence testing subsystem com-
prises multiple sequence testing subsystems, and each of the
multiple sequence testing subsystems comprises its own
independent nucleic acid assembly subsystem, protein
expression subsystem, and property detector subsystem. In
some methods, the multiple sequence testing subsystems are
each independently connected to the server via a wireless
network.

The systems and methods provided herein drastically
reduce the number of steps going from sequence to data. A
number of steps in the traditional characterization pipeline
can be streamlined or eliminated. Such steps might include
transformation, plating/culturing, miniprepping, DNA
sequencing, and protein purification. It is surprising that
such steps can be eliminated and still generate high quality
data.

An important aspect of the invention is automating the
design-test-learn cycle. This involves more than just sim-
plifying the experimental aspects, as it integrates the design-
test-learn cycle in an automated process.

The objects and advantages of the invention will appear
more fully from the following detailed description of the
preferred embodiment of the invention made in conjunction
with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
publication with color drawing(s) will be provided by the
Office upon request and payment of the necessary fee.

FIG. 1 shows an exemplary fully automated sequence
testing system of the invention.

FIG. 2 shows a schema of interactions between an exem-
plary machine learning subsystem (component) (shown as
“agent”) of the invention and an exemplary sequence testing
system of the invention (shown as “environment”).

FIG. 3 shows a schema of an exemplary embodiment of
the invention, wherein the machine learning subsystem
(component) is shown as “agent.”

FIG. 4 shows a schema of the nucleic acid fragments and
their possible connectivities for assembling complete read-
ing frames.

FIG. 5 shows amount of active protein expressed from
diluted PCR-generated DNA templates without purification.

FIGS. 6A-6] show temperature-dependent activity curves
(top panels) and T50 distributions (bottom panels) for a
number of natural, non-chimeric f-glucosidase proteins
generated in an automated system configured to assemble
complete reading frame DNA from separate fragments,
amplify the DNA, express protein, and test for thermal
stability. In each of FIGS. 6A-6J, “n” indicates the number
of replicates that were fit to a curve, “fluorescein” indicates
whether fluorescein normalization was used, “normalized”
indicates whether the upper magnitude was compressed to 1
for easy comparison between curves, and “double” indicates
whether the curve fit is a double logistic (if false, the fit is
a single logistic). Each replicate sequence is identified with
four numerical digits and a letter indicator. Each numerical
digit refers to one of the four separate fragments derived
from a parent sequence. The value of the digit identifies the
parent sequence from which the fragment was derived. The
letter indicators identify separate replicates. Thus, 1111a
refers to a first replicate of a protein made from each of the
four fragments derived from parent sequence 1, 1111b refers
to a second replicate of a protein made from each of the four
fragments derived from parent sequence 1, 2222a refers to
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a first replicate of a protein made from each of the four
fragments derived from parent sequence 2, 2222b refers to
a second replicate of a protein made from each of the four
fragments derived from parent sequence 2, and 1212a, for
example, would refer to first replicate of a chimeric protein
made from two fragments derived from parent sequence 1
and two fragments derived from parent sequence 2.

FIG. 7 shows simulations of the machine learning com-
ponent of the platform performed on previously collected
Cytochrome P450 data to test the performance of six strat-
egies multi-armed bandit (MAB) strategies. Each simulation
trial consisted of 50 design-test-learn cycle iterations. In
each iteration the platform selected a sequence to test based
on the specified strategy, observed the thermostability of the
selected sequence, then updated the model. 1000 trials were
performed for each strategy. At each iteration, the proportion
of'trials for a given strategy that had previously observed the
sequence with maximum thermostability on the current or
any previous iteration was calculated. This value was
inferred to be the probability that the given strategy would
observe the maximum sequence within a specific number of
observations, and is located on they axis of the figure.

FIGS. 8A and 8B show plots of representative trials from
the simulation described in FIG. 7, with FIG. 8A showing
trials from the predicted positive UCB strategy and FIG. 8B
showing trials from the random selection. The x axis shows
the number of sequences observed at each time, proceeding
left to right. Each datapoint shows the thermostability or
inactivity of the selected sequence at a given iteration. The
lines display the maximum thermostability value observed
on or before the current iteration. In general, the modified
MAB strategies were able to find more thermostable
sequences faster than random selection.

FIG. 9 shows simulations identical to those for the
expected UCB in FIG. 7, with the exception that the number
of sequences observed at each design-test-learn cycle itera-
tion could vary. Batches were assembled by assuming the
predicted value for the selected sequence was accurate and
repeating the expected UCB with that assumed data, repeat-
ing this process until the desired number of sequences had
been selected, then testing all selected sequences simulta-
neously.

FIGS. 10A and 10B show results from unassisted learning
runs with an exemplary fully autonomous protein engineer-
ing system. FIG. 10A shows results from a first run in which
a robot ran continuously for 10 days with no given initial
data. Active sequence 6111 was discovered on day 5 of the
experiment. FIG. 10B shows results from a second run in
which the robot ran six experiments in pairs. Of the six
experiments, two were the result of failed expression and
were excluded.

FIG. 11 shows a comparison of expression before and
after increasing Golden Gate product usage and separating
PCR mix and primers prior to use. 1111 and 5515 used 25x
diluted Golden Gate product and pre-mixed PCR mix and
primers. 1111a and 5515b used 10x diluted Golden Gate
product in primers kept separate from PCR mix.

FIG. 12 shows an exemplary general schema and work-
flow of a decentralized fully automated protein engineering
system.

DETAILED DESCRIPTION OF THE
INVENTION

The nucleic acid fragments of the invention are fragments
of nucleic acids such as DNA that are capable of assembling
into nucleic acids having different pre-determined

20

25

40

45

60

65

8

sequences. The term “fragment” is meant to be understood
insofar as each fragment has a portion of the pre-determined
sequences of one of the nucleic acids. The nucleic acid
fragments may be provided in linear or circular form and
may have additional nucleic acids appended thereto. The
nucleic acid fragments can be single or double-stranded. If
double stranded, the nucleic acid fragments can have two
sticky ends, one sticky end and one blunt end, or two blunt
ends. If additional nucleic acids are appended to a given
nucleic acid fragment, only those nucleic acids that are
assembled into the nucleic acid itself are considered to be
part of the nucleic acid fragment.

The nucleic acid fragments may have any length suitable
for assembling into a nucleic acid. Such lengths include
from 1 to 6,000 or more bases. In some versions of the
invention, the nucleic acid fragments have a length of at
least 1, at least 5, at least 10, at least 25, at least 50, at least
100, at least 200, at least 300 at least 400, at least 500, at
least 600, at least 700, at least 800, at least 900, or at least
1,000 bases. In some versions of the invention, the nucleic
acid fragments have a length up to 5, up to 10, up to 25, up
to 50, up to 100, up to 200, up to 300 up to 400, up to 500,
up to 600, up to 700, up to 800, up to 900, up to 1,000, up
to 1,500, up to 2,000, up to 2,500, up to 3,000, up to 3,500,
up to 4,000, up to 4,500, up to 5,000, up to 5,500, up to 6,000
bases or more.

The nucleic acid fragments are configured to assemble the
nucleic acids using any number of nucleic acid fragments
per nucleic acid. The number of nucleic acid fragments is
limited in part, on the size of the nucleic acids and the sizes
of the nucleic acid fragments capable of assembling to form
the nucleic acids. Suitable numbers of nucleic acid frag-
ments include from 2 to 6,000 or more nucleic acid frag-
ments per nucleic acid. In some versions of the invention,
the nucleic acid fragments are configured for at least 2, at
least 3, at least 4, at least 5, at least 10, at least 25, at least
50, at least 100, at least 200, at least 300 at least 400, at least
500, at least 600, at least 700, at least 800, at least 900, or
at least 1,000 nucleic acid fragments to assemble to form
each nucleic acid. In some versions of the invention, the
nucleic acid fragments are configured for up to 5, up to 10,
up to 25, up to 50, up to 100, up to 200, up to 300 up to 400,
up to 500, up to 600, up to 700, up to 800, up to 900, up to
1,000, up to 1,500, up to 2,000, up to 2,500, up to 3,000, up
to 3,500, up to 4,000, up to 4,500, up to 5,000, up to 5,500,
up to 6,000, or more nucleic acid fragments to assemble to
form each nucleic acid.

The nucleic acid fragments are configured to assemble the
nucleic acids using any number of assembly points. An
assembly point is the position in the final nucleic acid in
which one nucleic acid fragment assembles with another.
The assembly points can correspond with the breakpoints
used in designing the nucleic acid fragments from parent
nucleic acids (see, e.g., the following examples). The num-
ber of assembly points used to assemble the nucleic acids
from the nucleic acid fragments is limited in part, on the size
of the nucleic acids and the sizes of the nucleic acid
fragments capable of assembling to form the nucleic acids.
Suitable numbers of assembly points used to form a nucleic
acid include from 1 to 6,000 or more assembly points per
nucleic acid. In some versions of the invention, the nucleic
acid fragments are configured to form the nucleic acids with
at least 2, at least 3, at least 4, at least 5, at least 10, at least
25, at least 50, at least 100, at least 200, at least 300 at least
400, at least 500, at least 600, at least 700, at least 800, at
least 900, or at least 1,000 assembly points per nucleic acid.
In some versions of the invention, the nucleic acid fragments
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are configured to form the nucleic acids with up to 5, up to
10, up to 25, up to 50, up to 100, up to 200, up to 300 up to
400, up to 500, up to 600, up to 700, up to 800, up to 900,
up to 1,000, up to 1,500, up to 2,000, up to 2,500, up to
3,000, up to 3,500, up to 4,000, up to 4,500, up to 5,000, up
to 5,500, up to 6,000, or more assembly points per nucleic
acid.

In some versions of the invention, one or more nucleic
acid fragments overlap one or more assembly points of one
or more other nucleic acid fragments. Examples of such
overlap are shown in FIG. 4, wherein each Rosetta and
evolutionary nucleic acid fragment overlaps the assembly
points of a number of natural nucleic acid fragments and
each natural sequence nucleic acid fragment overlaps the
assembly points of a number of Rosetta and evolutionary
nucleic acid fragments. In some versions of the invention,
one, some, or all of the nucleic acid fragments overlap an
assembly point of at least 1, at least 2, at least 3, at least 4,
at least 5, at least 6, at least 7, at least 8, at least 9, at least
10, at least 15, at least 20, at least 25 or more other nucleic
acid fragments. In some versions of the invention, one,
some, or all of the nucleic acid fragments overlap an
assembly point of up to 2, up to 3, up to 4, up to 5, up to 6,
up to 7, up to 8, up to 9, up to 10, up to 15, up to, up to 25,
up to 50, or more other nucleic acid fragments.

The nucleic acid fragments are preferably configured to
be capable of generating nucleic acids encoding a large
number of different possible proteins. “Different” in this
context refers to having a different amino acid sequence
(e.g., having one or more substitutions, indels, truncations,
etc.) “Possible” in this context refers to a protein that can be
generated from various combinations of the given nucleic
acid fragments present in a particular system. The number of
different possible proteins will be a function, in part, of the
number of unique nucleic acid fragments that can assemble
to form the nucleic acids, the number of assembly points, the
connectivities of the nucleic acid fragments, and other
factors. In some versions of the invention, the number of
different possible proteins capable of being generated from
the nucleic acid fragments is at least 10, at least 50, at least
100, at least 200, at least 500, at least 750, at least 1,000, at
least 1,250, at least 1,500, at least 2,000, at least 3,000, at
least 4,000, at least 5,000, or more. In some versions of the
invention, the number of different possible proteins capable
of being generated from the nucleic acid fragments is up to
50, up to 100, up to 200, up to 500, up to 750, up to 1,000,
up to 1,250, up to 1,500, up to 2,000, up to 3,000, up to
4,000, up to 5,000, up to 6,000, up to 7,000, up to 8,000, up
to 9000, up to 10,000, or more.

In various versions of the invention, all of the possible
proteins in the set of possible proteins comprise amino acid
sequences that have at least 5% sequence identity, at least
10% sequence identity, at least 15% sequence identity, at
least 20% sequence identity, at least 25% sequence identity,
at least 30% sequence identity, at least 35% sequence
identity, at least 40% sequence identity, at least 45%
sequence identity, at least 50% sequence identity, at least
55% sequence identity, at least 60% sequence identity, at
least 65% sequence identity, at least 70% sequence identity,
at least 75% sequence identity, at least 80% sequence
identity, at least 85% sequence identity, at least 90%
sequence identity, or at least 95% sequence identity to each
other. See US 2019/0284588 for an applicable definition of
percent sequence identity and methods for determining
same.

In some versions of the invention, the nucleic acid frag-
ments are separately contained in sets of the nucleic acid
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fragments before being assembled into the nucleic acids.
The separately contained nucleic acid fragments can be
contained in separate well, separate tubes, or any other
container that prevents mixing of the different sets. Each
nucleic acid fragment in each set of nucleic acid fragments
are preferably identical to each other or at least encode an
identical amino acid sequence. This facilitates the ability to
generate proteins with a known amino acid sequence from
the nucleic acids, and ultimately, the nucleic acid fragments.
“Identical” in this context refers to sequences that have
100% sequence identity to each other.

The nucleic acid fragments can be configured with a
number of connectivities. “Connectivity” refers to the ability
of a particular nucleic acid fragment to assemble with
another particular nucleic acid fragment at a given assembly
point. In some versions, the nucleic acid fragments within
each of the sets are configured not to be mutually assembled
together with the nucleic acid assembly subsystem. In some
versions, the nucleic acid fragments in each of the sets are
configured to assemble with the nucleic acid fragments in at
least 2 other of the sets, at least 3 other of the sets, at least
4 other of the sets, at least 5 other of the sets, at least 10 other
of the sets, at least 15 other of the sets, at least 20 other of
the sets, at least 50 other of the sets, or more. In some
versions, the nucleic acid fragments in each of the sets are
configured not to assemble with the nucleic acid fragments
in at least 2 other of the sets, at least 3 other of the sets, at
least 4 other of the sets, at least 5 other of the sets, at least
10 other of the sets, at least 15 other of the sets, at least 20
other of the sets, at least 50 other of the sets, or more.
Nucleic acid fragments can be configured to assemble, in at
least some versions of the invention, by having or being
configured to form complementary sticky ends. Nucleic acid
fragments can be configured not to assemble, in at least
some versions of the invention, by having or being config-
ured to form non-complementary sticky ends.

The total number of sets of nucleic acid fragments in some
versions of the invention can be at least at least 2, at least 3,
at least 4, at least 5, at least 10, at least 25, at least 50, at least
100, at least 200, at least 300 at least 400, at least 500, at
least 600, at least 700, at least 800, at least 900, or at least
1,000 sets. The total number of sets of nucleic acid frag-
ments in some versions of the invention can be up to 5, up
to 10, up to 25, up to 50, up to 100, up to 200, up to 300 up
to 400, up to 500, up to 600, up to 700, up to 800, up to 900,
up to 1,000, up to 1,500, up to 2,000, up to 2,500, up to
3,000, up to 3,500, up to 4,000, up to 4,500, up to 5,000, up
to 5,500, up to 6,000, or more.

The nucleic acid fragments can be configured to assemble
in different particular ordered combinations. In other words,
each nucleic acid fragment can be configured to assemble
with only a subset of other nucleic acid fragments in
particular pre-determined orders. This can be accomplished,
at least one some versions of the invention, by configuring
the nucleic acid fragments to have or be capable of forming
sticky ends that are complementary with the sticky ends
(whether present or capable of being formed) of some but
not other nucleic acid fragments. See, e.g., the permissible
connectivities indicated by the thin black lines in FIG. 4.

In some versions of the invention, the nucleic acid frag-
ments comprise nucleic acid fragments consisting of natural
nucleic acid sequences. “Natural nucleic acid sequences” in
this context refers to nucleic acid sequences that encode a
sequence comprised by a protein as found in nature. In some
versions of the invention, the nucleic acid fragments com-
prise nucleic acid fragments consisting of unnatural nucleic
acid sequences. “Unnatural nucleic acid sequences” in this



US 12,518,850 B2

11

context refers to nucleic acid sequences that encode a
sequence that is not comprised by a protein as found in
nature. In some versions of the invention, the nucleic acid
fragments comprise nucleic acid fragments consisting of
natural nucleic acid sequences as well as nucleic acid
fragments consisting of unnatural nucleic acid sequences.

The nucleic acids generated by the nucleic acid fragments
preferably comprise a protein coding sequence. The proteins
encoded by the coding sequence can be or be based on any
protein having any type of function. Exemplary types of
proteins that can be encoded by the nucleic acids include
enzymes, ligands, transcription factors, receptors, and trans-
port proteins, among others.

The nucleic acid assembly subsystem of the invention can
comprise any combination of components suitable for
assembling a nucleic acid from nucleic acid fragments.
“Assembly” in this context refers at least to the ionic
interaction of the nucleic acid fragments to each other via
base pairing and/or, preferably, the covalent bonding of the
nucleic acid fragments to each other. The assembly can be
performed by any method known in the art. Exemplary
methods include enzymatic ligation and chemical synthesis.
Methods of enzymatic ligation are provided in the examples
and are otherwise known in the art. Methods of chemical
synthesis of nucleic acids, such as DNA, are well known in
the art. Exemplary components for a nucleic acid assembly
subsystem for performing enzymatic ligation include DNA
ligase, a DNA ligase buffer, and, if needed, any other
reagents suitable for preparing the nucleic acid fragments for
ligation.

The amplification subsystem of the invention can com-
prise any combination of components suitable for amplify-
ing nucleic acids. Methods of nucleic acid amplification
include PCR and isothermal amplification. A preferred
method of nucleic acid amplification is PCR. Exemplary
components of an amplification subsystem configured for
PCR include primers, DNA polymerase, dNTPs, and a
suitable PCR buffer. Isothermal methods of amplification
can also be used.

The protein expression subsystem of the invention can
comprise any combination of components suitable for
expressing proteins from nucleic acids. The protein expres-
sion subsystem will typically comprise reagents for trans-
lation, such as ribosomes, amino acids, and tRNA, and,
depending on the form of the assembled nucleic acids,
reagents for transcription such as nucleotides and RNA
polymerases. A preferred method of protein expression is
cell-free protein expression. A number of cell-free protein
expression kits are available and can be included in the
protein expression subsystem of the invention.

It has been surprisingly found that the nucleic acids can be
expressed after amplification without purifying the nucleic
acids merely by diluting the amplified nucleic acids in the
protein expression subsystem. The nucleic acids can be
diluted by a factor of from about 2 to about 100 or more. In
some versions, the nucleic acids are diluted by a factor of at
least about 2, at least about 3, at least about 4, at least about
5, at least about 6, at least about 7, at least about 8, at least
about 9, at least about 10, at least about 11, at least about 12,
at least about 13, at least about 14, at least about 15, or at
least about 16. In some versions, the nucleic acids are diluted
by a factor up to about 8, up to about 9, up to about 10, up
to about 15, up to about 20, up to about 30, up to about 40,
up to about 50, up to about 60, up to about 70, up to about
80, up to about 90, up to about 100, or more. The diluent
preferably is or comprises water.
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The property detector subsystem of the invention can
comprise any combination of components suitable for
detecting a property of a protein. Exemplary properties of
proteins that can be detected include binding activity, enzy-
matic activity, fluorescence, thermostability, and solubility,
among others. The components of a particular property
detector subsystem will depend on the type of property
being detected. A property detector subsystem configured to
detect binding activity, for example, may comprise a binding
partner of the protein (e.g., a small molecule ligand, a
protein ligand, etc.) and a component suitable for detecting
the binding. A property detector subsystem configured to
detect enzyme activity may comprise a substrate for the
enzyme and a component suitable for detecting the product
of the reaction. A property detector subsystem configured to
detect fluorescence may comprise a light source capable of
irradiating the protein at a wavelength suitable for emitting
the fluorescence. A property detector subsystem configured
to detect thermostability can comprise any of the foregoing
components in addition to heating elements capable of
heating different samples of the protein to different tempera-
tures.

In various versions of the invention, it may be necessary
or advantageous to split a sample of expressed protein into
separate samples for detecting a property. It was found that
variance in automated pipetting can lead to inconsistent
amounts of protein in the various separate samples that can
lead to artifactual results. It was further found that including
a control in the sample of expressed protein, detecting the
amount of control in the split, separate samples, and nor-
malizing the detected value of the property (“property
value”) by the detected amount of control can resolve this
issue. Accordingly, the systems and methods of the inven-
tion can comprise a control capable of being combined with
a sample of each of the expressed proteins. The samples with
the control can be split into corresponding first and second
samples prior to detecting the property values of the
expressed proteins. The property value from the expressed
protein in each of the first samples can be detected, a control
value in each of the second samples can be detected, and the
detected property value from each first sample can be
normalized to the detected control value in each correspond-
ing second sample. The control can include any component
or reagent that can be included with the expressed proteins,
evenly divided when dividing the expressed proteins, and
subsequently detected. Examples of preferred controls
include luminescent, fluorescent, and/or radioactive mol-
ecules.

Automation of the steps performed by the subsystems
outlined above can be performed by a programmable robot.
The robot, for example, can be configured to combine the
nucleic acid fragments in the nucleic acid assembly subsys-
tem, introduce the nucleic acids to the amplification subsys-
tem, introduce the nucleic acids to the protein expression
subsystem, and/or introduce the expressed proteins to the
property detector subsystem. The robot can include pipettors
that can be directed to conduct each of the above-referenced
combination and introducing steps by moving solutions or
components from certain wells to others. The robot can also
include other elements, such as heating elements, light
elements, or other components for carrying out the addi-
tional steps described herein.

The machine learning subsystem can comprise any com-
bination of components suitable for receiving detected prop-
erty values from the sequence testing subsystem, predicting
predicted property values for untested proteins, selecting
one or more of the untested proteins based on the predicted
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property values to thereby generate one or more selected
proteins, and/or instructing the sequence testing subsystem
to test the one or more selected proteins to obtain a detected
property value therefor. A suitable component for these
purposes includes a computer or server. As used herein
“server” refers to a piece of computer hardware or software
that provides functionality for other programs or devices,
such as any one or more the various subsystems described
herein. The server may be included with the other programs
or devices on the same device or may be connected to the
other programs or devices over a wireless network.

Suitable algorithms for carrying out the predicting and
selecting steps include reinforcement learning algorithms.
Suitable reinforcement learning algorithms include multi-
armed bandit algorithms. Suitable multi-armed bandit algo-
rithms include upper confidence bound and Thompson sam-
pling algorithms. The multi-armed bandit algorithms are
optionally employed with a strategy to account for tested
nucleic acid sequences that do not have a detected property
value and untested sequences that may or may not have a
detectable property value. The strategy may be chosen from
the group consisting of a constant-inactive strategy, a pre-
dicted positive strategy, and an expected strategy. With the
constant-inactive strategy, the multi-armed bandit algo-
rithms are configured to assign a property value of a pre-
defined non-zero constant to each of the expressed proteins
corresponding to a detected property value of zero when
predicting the predicted property values for the untested
proteins. With the predicted positive strategy, the multi-
armed bandit algorithms are configured to select at least one
of the possible nucleic acid sequences from the possible
nucleic acid restrict the selected proteins to a set of the
untested proteins having a predicted property value greater
than a predefined threshold. With the expected strategy, the
multi-armed bandit algorithms are configured to predict a
predicted property likelihood for each of the possible pro-
teins in the set, minimum-subtract an upper confidence
bound in an upper confidence bound algorithm or a pre-
dicted property value in a Thompson sampling algorithm to
generate a minimum-subtracted value for each of the pos-
sible proteins in the set, multiply each minimum-subtracted
value by each predicted property likelihood to generate a
product for each of the possible proteins in the set, and
employ the product as an upper confidence bound or distri-
bution mean for selecting the one or more of the untested
proteins. We define minimum-subtraction here as subtract-
ing the minimum value in a set of values from each value in
that set. Examples of such strategies are provided in the
examples.

The elements and method steps described herein can be
used in any combination whether explicitly described or not.

All combinations of method steps as used herein can be
performed in any order, unless otherwise specified or clearly
implied to the contrary by the context in which the refer-
enced combination is made.

As used herein, the singular forms “a,” “an,” and “the”
include plural referents unless the content clearly dictates
otherwise.

Numerical ranges as used herein are intended to include
every number and subset of numbers contained within that
range, whether specifically disclosed or not. Further, these
numerical ranges should be construed as providing support
for a claim directed to any number or subset of numbers in
that range. For example, a disclosure of from 1 to 10 should
be construed as supporting a range of from 2 to 8, from 3 to
7, from 5 to 6, from 1 to 9, from 3.6 to 4.6, from 3.5 t0 9.9,
and so forth.
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All patents, patent publications, and peer-reviewed pub-
lications (i.e., “references”) cited herein are expressly incor-
porated by reference to the same extent as if each individual
reference were specifically and individually indicated as
being incorporated by reference. In case of conflict between
the present disclosure and the incorporated references, the
present disclosure controls.

It is understood that the invention is not confined to the
particular construction and arrangement of parts herein
illustrated and described, but embraces such modified forms
thereof as come within the scope of the claims.

Examples

Sequence Fragment Design

DNA fragments capable of being assembled in different
combinations to result in different full-length coding
sequences were designed. The DNA fragments included
natural sequence fragments, Rosetta fragments, and evolu-
tionary fragments.

The natural sequence fragments were designed as follows.
A set of candidate sequences was made by parsing Uni-
ReP90 for sequences that had near 70% identity with native
Streptomyces sp. QM-B184 f-glucosidase (PDB code
1GNX). From these candidate sequences, a subset of six
parent sequences, including 1GNX, was identified based on
the criterion that each combinatorial pair of sequences had
roughly 70% identity. A multiple sequence alignment
(MSA) was then constructed and fed into the SCHEMA-
RASPP algorithm (Voigt et al. 2002), which was imple-
mented in Python. SCHEMA-RASPP generates recombi-
nant libraries by splitting the aligned parent sequences in a
specified number of breakpoints located randomly along the
alignment. In this case, three breakpoints were used to make
four fragments in each parent sequence. For each library, the
algorithm outputs metrics for the likelihood of recombinant
functionality and the expected average number of mutations
that recombinants will have. The libraries generated were
filtered by likelihood of success in Golden Gate Cloning
(Engler et al. 2008), based on an in-house heuristic that uses
ligation data to evaluate a library’s set of DNA overhangs
(Potapov et al. 2018). A library with a good balance between
high mutation rate and recombinant functionality was
selected. Fragments were constructed by splitting each par-
ent sequence at the chosen library’s breakpoints, then adding
to each split site a Golden Gate overhang, which consists of
a bsal restriction enzyme recognition site and an overhang
region of DNA that will connect fragments. The resulting 24
fragments were ordered from Twist Bioscience as plasmids
in the pTwist Amp High Copy vectors. The Golden Gate
reaction cuts the fragments out of the plasmids to allow for
recombinant DNA assembly.

Two additional breakpoints for the Rosetta and evolution-
ary fragments were found using the Golden Gate Cloning
success heuristic with the existing breakpoints. Five frag-
ment regions using the new breakpoints were identified and
each was used to create a Rosetta fragment and an evolu-
tionary fragment.

Each Rosetta fragment was generated by running Rosetta
Relax (Conway P, Tyka M D, DiMaio F, Konerding D E,
Baker D. Relaxation of backbone bond geometry improves
protein energy landscape modeling. Protein Sci. 2014 Janu-
ary; 23(1):47-55) with the 1GNX structure, allowing each
residue position within the fragment region to vary to the
residues present in the six natural sequences at the given
position. The non-fragment regions were restricted to the
1GNX residues. The program output a locally optimal
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sequence and its associated Rosetta energy value. This
process was repeated 100 times, and the sequence with the
lowest energy value was selected. The five resulting frag-
ments were then converted to plasmids in the same manner
as the natural sequence fragments.

To generate the evolutionary fragments, the UniRef90
database was aligned to the natural sequence MSA.
Sequences that aligned with less than 70% of MSA positions
were discarded. From the remaining sequences, the frequen-
cies of amino acids were calculated for each position in the
natural sequence MSA. Frequencies of amino acids not
present in the MSA at the given position were discarded. The
most frequent remaining amino acid at each MSA position
was added to a consensus sequence. The five fragment
regions of the consensus sequence were used to construct
plasmids in the same manner as the natural sequence frag-
ments.

A schema of the generated fragments and their possible
connectivities is shown in FIG. 4.

PCR Product Dilution for Cell-Free Protein Expression

The ability to express functional protein directly from
PCR-generated DNA templates without purification was
tested at different dilution factors. This experiment was
performed using the method described below with the
modification of varying the amount of water added to the
PCR product at the beginning of the In Vitro Protein
Expression step to vary the dilution factor. Results are
shown in FIG. 5. This experiment suggests any dilution at or
above eightfold is sufficient to maintain the majority of
protein expression activity.

Fully Automated Sequence Testing System

A fully automated system for assembling full DNA tem-
plates from DNA fragments, amplifying the DNA templates,
expressing protein from the DNA templates, and function-
ally characterizing the expressed protein was generated and
tested. An exemplary sequence testing system is shown in
FIG. 1.

All procedures were performed on a Tecan Freedom EVO
robot (Tecan Group Ltd., Méannedorf, Switzerland) con-
trolled via a custom Python (www.python.org) interface
built for this project. This interface tracks wells used and
solutions available, ensuring the robot always uses the first
available clean well for new steps of execution. If a solution
is low or there are insufficient wells available on a given
plate, the interface is capable of sending alerts via Slack to
request a refill. This robot/interface system has some capac-
ity to replace its own plates from on-deck stockpiles, reduc-
ing the frequency of refill requests. Important components to
the interface are three 96-well Bio-Rad microplates, labeled
“Solution Plate,” “Mix Plate,” and “PCR Plate,” as well as
a BRAND 96-well flat bottom black microplate labeled
“Assay Plate.”

Stock Solutions

GGMM: Golden Gate Master Mix. Per 10 composed of 7
ul water, 2 ul New England BioLabs T4 DNA Ligase
Reaction Buffer, and 1 ul. NEB Golden Gate Enzyme Mix
(Bsal-HFv2).

AAMM: Activity Assay Master Mix. Per 90 pl., com-
posed of 30 uL. water, 50 uL. 2x assay buffer (100 mM NaCl,
20 mM phosphate, pH 7), 104, 4 mM 4-methylumbelliferyl
B-D-glucopyranoside.

Golden Gate Assembly

5 uL of each fragment needed for a chosen chimera was
combined in a single well on the Mix Plate and was mixed
by pipetting 10 pL. five times. 10 pL. of this mixture was
transferred to a new well on the PCR Plate. 10 uL. of GGMM
was added to the same well and mixed by pipetting 10 pL
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five times. The mixture was held at 37° C. for 1 h and the
enzymes were inactivated at 55° C. for 5 min.
PCR

10 uL from the Golden Gate reaction well were trans-
ferred to a new well on the Mix Plate. To this was added 90
uL of 2 uM primer mix (2 pM each of ATCCCGCGAAAT-
TAATACG (SEQ 1D NO:1) and GGA-
TATAGTTCCTCCTTTCAG (SEQ ID NO:2)) and the mix-
ture was mixed by pipetting 45 pL five times. 10 pL of this
dilution was added to a new well on the PCR Plate, and 10
ul, Phusion® High-Fidelity PCR Master Mix with HF
Buffer was added and mixed by pipetting 5 pL five times.
The DNA was melted at 98° C. for 30 s, followed by 25
cycles of melting at 98° C. for 10 s, annealing at 56° C. for
30 s, and extending at 72° C. for 60 s. After the final cycle,
the reaction was held at 72° C. for an additional 5 min to
complete extension.

SYBR Green Checkpoint

10 pL. from the PCR reaction was transferred to a new
well on the mix plate. To this we added 90 pl. water and
mixed by pipetting 45 pL five times. From this diluted PCR
product, we took 50 pL to a well on the assay plate. To this
we added 40 plL water and 10 ulL 10xSYBR Green. We read
the fluorescence of this mixture by exciting at 485 nm and
reading emission at 535 nm. If the fluorescence at this step
exceeded a predetermined threshold, the Golden Gate and
PCR steps were considered successful and the process
continued. If not, the sequence was removed from the set of
proteins currently being tested. If no proteins remained in
that set, the robot returned to the Golden Gate step and tried
again.

In Vitro Protein Expression

15 pL. from the PCR product dilution from the previous
step was transferred to a new well on the PCR Plate, 20 nl
Bioneer AccuRapid™ Cell-Free Protein Expression Kit Z.
coli Extract supplemented with 40 uM fluorescein was
added, 40 pl. Bioneer AccuRapid™ Cell-Free Protein
Expression Kit Master Mix was added, and the mixture was
mixed by pipetting 40 pL five times. The plate was held at
30° C. for 3 h.

Thermal Stability Assay

For the following, temperatures were preset at program
start as a fixed list of numbers in Celsius.

600 uL. water was added to a 2-mL deep well plate, 70 uL
of the in vitro protein expression crude product was added,
and the mixture was mixed five times by pipetting 150 pl
from the bottom of the dilution well and dispensing it again
at the top. For each temperature tested, 50 pL. protein was
transferred to a PCR well, heated for 10 min at the chosen
temperature, and 30 pL of the product was transferred to a
new well on the Mix Plate for storage. When all tempera-
tures were used, 90 uL, AAMM was loaded into a well on the
Assay Plate for each temperature. 10 uL heated protein from
each temperature-labeled sample was added to a correspond-
ing well of assay reagent, and the mixture was mixed by
pipetting 20 pL five times in all cases. The plate was moved
to the plate reader and fluorescein was measured by exciting
at 494 nm and reading fluorescence at 512 nm. After this,
protein activity was measured by monitoring product for-
mation by exciting at 372 nm and reading fluorescence at
445 nm every 120 s for an hour.

Residual activity for each temperature was calculated by
simple linear regression (scipy.stats.linregress (Jones et al.
2001 (Jones E, Oliphant E, Peterson P, et al. SciPy: Open
Source Scientific Tools for Python, 2001, www.scipy.org/)))
with respect to the 445 nm fluorescence over time. To
control for variation in pipetting, all fluorescein measure-
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ments were divided by the greatest value observed, and the
activity values were divided by the corresponding fluores-
cein quotient. The normalized slopes were then fit to a
double logistic function (with the second logistic heavily
restricted to represent background) by gradient descent
(using scipy.optimize.curve fit (Jones et al. 2001)), and the
T50 value (midpoint of the curve), slope coeflicient, and
magnitude from the parameters of the first logistic function
were taken, along with an uncertainty value for each calcu-
lated from the covariance matrix of fit parameters. All this
information was passed back to the learning module which
saved it to a file

Results

The above-described steps were tested on a number of
proteins having parent sequences from the UniRef90 data-
base to confirm the reproducibility of outcomes. Fragments
derived from a single parent sequence were assembled, the
assembled DNA was amplified and expressed, and the
expressed protein was tested for thermal stability.

As shown in FIGS. 6A and 6C, the system was reproduc-
ible to the extent that any obtained value could be assumed
to be accurate to within ~1° C. This is sufficiently precise for
effective learning as per simulations.

The data for parent sequence 1 shown in FIGS. 6A and 6C
was analyzed without normalizing to fluorescein. See FIGS.
6B and 6D. The reproducibility shown in FIGS. 6 A and 6C
was lost. Without fluorescein normalization, sequence 1111d
failed to fit to a logistic curve and therefore did not end up
on the plots.

The data for parent sequence 1 was analyzed with (FIGS.
3A and 3B) and without (FIGS. 6C and 6D) normalizing the
curves to a relative magnitude of 1 for easy comparison.
These data show that absolute magnitude of activity is not a
concern for reproducibility.

FIGS. 6E-6H show effects of single logistic fit (FIGS. 6E
and 6G) versus double logistic fit (two logistic curves added
together) (FIGS. 6F and 6H) for proteins having parent
sequences 2 (FIGS. 6E and 6F) and 5 (FIGS. 6G and 6H).
In FIGS. 6E and 6G, we observed with single logistic fit a
plateau in melting (~45-60 degrees) representing back-
ground enzymatic activity from the expression medium. We
fit a double logistic with the lower of the two fixed at
parameters of that background calculated from blank experi-
ments (T50=59.1, k=0.466) and capped at 5 magnitude
maximum. As shown in FIGS. 6F and 6H, the double logic
fit allowed us to represent only the melting curve of the
protein of interest.

When the curve is already a good fit and there is no visible
plateau, the second logistic has no effect on the overall
curve. Looking at data from parent sequence 1 in FIGS. 61
and 6J, for example, only 1111f and 1111e had any change
as a result of the double logistic. All others had a magnitude
for the lower logistic of <1E-12, as would be expected when
a single logistic fully describes the data.

Machine Learning Subsystem

The machine learning component of the system is respon-
sible for instructing the robot to test informative sequences,
updating the model based on the results, and determining
when the sequence space has been explored well enough to
decide the best sequence has been found. This task falls
under the multi-armed bandit (MAB) set of machine learn-
ing problems. A number of strategies based on Gaussian
process models were designed to perform these tasks and are
described below. These strategies were tested on existing
protein engineering datasets, then integrated into the robot’s
program.

20

25

30

35

40

45

55

60

65

18

Gaussian process regression is a Bayesian kernel regres-
sion technique that has a number of advantages over more
standard regression techniques, the most relevant of which
is an estimate of prediction accuracy. Gaussian process
solutions to the MAB capitalize on this advantage by
preferring to test options that are possibly better than any
previously tested options, a principle known as the optimism
in the face of uncertainty. Two such solutions formed the
basis of strategies developed for the platform. The first, the
upper confidence bound (UCB) algorithm, uses the pre-
dicted response value and estimated prediction accuracy for
a given testing option to determine the maximum value
possible within some confidence interval. The value is
known as the upper confidence bound and is generally taken
to be the predicted mean plus two standard deviations. By
repeatedly choosing to test the option with the largest upper
confidence bound at each timepoint, UCB algorithms use
optimism to find the optimal option. The second, Thompson
sampling (TS), uses the predicted response value and esti-
mated prediction accuracy for each option to construct a
probability distribution for each option. The distributions are
then sampled, and the option that gives the largest sample is
selected for testing. Similar to UCB, TS optimistically gives
uncertain and large predictions preference, but with an
additional element of randomness that can help prevent
confinement to local optima.

MABs can be used to model the protein engineering
scenario by considering sequences as options and each
sequence’s function value as the option’s response value.
While the MAB model is mostly sufficient, the protein
engineering scenario has a caveat that is unique, namely the
presence of inactive sequences. Depending on the function
being optimized, inactive sequences may not have a defined
function value. The simplest treatment is to leave the MAB
model unmodified and simply ignore undefined values in
training. Three modifications to UCB and TS were also
designed to explicitly handle inactive sequences. The first
and simplest modification was to define the function value of
inactive sequences as some predefined constant. The second
and third modifications used a Gaussian process classifier to
explicitly predict the likelihood of activity for each sequence
based on previous observations of activity. The second
modification, for example, was to restrict the set of possible
options to sequences that are predicted to be active. The third
modification was to minimum-subtract either the upper
confidence bound (for UCB) or predicted function value (for
TS) for each sequence, then multiply the resulting value by
the activity likelihood. The resulting value was then taken as
the new upper confidence bound or distribution mean for
sequence selection. By applying each modification or no
modification to both UCB and TS, eight strategies resulted.
These strategies were denoted by x_unmodified, x_const_i-
nactive, x_predicted_positive, and x_expected, in respective
order of modification, with x being either ucb (for UCB) or
is (for TS). Detailed methods for implementing the strategies
is found in in the section below entitled “Multi-Armed
Bandit Strategies.”

The eight strategies were implemented in Python with the
Gaussian process module from scikit-learn and evaluated
with simulations. A preexisting protein engineering dataset
containing sequences for Cytochrome P450 was used in the
simulations (Li et al. 2007). The dataset contained chimeric
sequences that were each active with an associated thermo-
stability value or were inactive. Trials were run by first
assuming that all sequences were unobserved, then sequen-
tially building the model by choosing to observe the ther-
mostabilities of certain sequences. 1000 trials for each
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strategy were performed on the dataset. The results of these
trials are shown in FIGS. 7, 8A, and 8B. Additional simu-
lations were run to determine the effect of testing multiple
sequences per round. As shown in FIG. 9, batch sizes under
ten did not significantly affect performance.

Based on the results of the simulations, it was determined
that ucb_expected was the best strategy, and thus was
incorporated into the robotic platform.

Overall, the machine learning component of the platform
includes a list of all possible protein sequences with asso-
ciated activity and function values determined for any
previously tested sequences, a Gaussian process model that
is updated every cycle, and an MAB algorithm, such as the
ucb_expected strategy, for selecting one or more of the
possible sequences for testing in each subsequent cycle.
Multi-Armed Bandit Strategies

DEFINITIONS

“Data” is a list of datapoints of the form (sequence,
activity, T50). “Sequence” is an aligned binary sequence.
“Activity” is a 1 or O representing whether the sequence is
active or inactive, respectively. T50 is null if activity=0 and
is the sequence’s T50 otherwise. The response variables for
classification and regression are activity and T50, respec-
tively. Each datapoint has a true activity and TS50, but these
values may not be known.

Observing a sequence reveals the true activity and T50.

Standard deviation is abbreviated to std.
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Minimum subtraction of a given value for a set of
datapoints is the subtraction of the smallest value in the set
from all values.

“Observed” datapoints is the set of datapoints that have
previously been observed, which consequently have defined
activity and T50. “Hidden sequences” is the set of sequences
that have previously have not yet been observed, and there-
fore have undefined activity and T50. “Positive” refers to
detectable activity (activity=1). “Negative” refers to a lack
of detectable activity (activity=0). “Observed positive data-
points” is the subset of observed datapoints with activity=1.
“Observed negative datapoints” is the subset of observed
datapoints with activity=0. “Budget” refers to a preset
number of sequences for testing. “Probability active” refers
to the probability that a given sequence with have a pre-
dicted activity. “Threshold” refers to a preset probability,
which is typically 0.5.

When a sequence is observed, it is removed from hidden
sequences and the associated datapoint is put in observed
datapoints.

Helper Functions

The following functions contain Python 3 code that use
the sklearn package for Gaussian Process regression and
classification, which implements the Gaussian Process algo-
rithms described in Rasmussen and Williams 2006 (Ras-
mussen C E and Williams C K I, Gaussian Processes for
Machine Learning, the MIT Press, 2006, ISBN 026218253X
(www.GaussianProcess.org)), particularly Chapters 2 and 3.

“Kernel” can be any kernel created with sklearn.gaussian_process.
gp_regression(training_datapoints, testing_sequences):
let train_X and train_Y be the sequence and T50 for each datapoint,
respectively, with order preserved

sklearn code:

from sklearn.gaussian_process import GaussianProcessRegressor

gpr = GaussianProcessRegressor(kernel = kernel)

gpr.fit(train_X, train_Y)

means, stds = gpr.predict(testing_sequences, return_std=True)

return means, stds

gp_classification(training_datapoints, testing_sequences):

let train_X and train_Y be the sequence and activity for each datapoint,
respectively, with order preserved
sklearn code:
from sklearn.gaussian_process import GaussianProcessClassifier
gpc = GaussianProcessClassifier(kernel=kernel)
gpe.fit(train_X, train_Y)
probs = gpc.predict_proba(testing_sequences)
probs_positive = [p[1] for p in probs]
return probs_positive

Strategies

ucb_unmodified(data):
while # sequences observed < budget:
if observed positive datapoints is empty:
observe a random hidden sequence

else:

get mean and std for each hidden sequence from
gp_regression(observed positive datapoints,

hidden sequences)

let upper confidence bound value for each hidden sequence be

mean + 2*std for that hidden sequence

observe hidden sequence with largest upper confidence bound value
ucb_const_inactive(data, inactive_T50):
set T50 of every observed negative datapoint to inactive_T50
while # sequences observed < budget:
if observed positive datapoints is empty:
observe a random hidden sequence

else:

get mean and std for each hidden sequence from
gp_regression(observed datapoints, hidden sequences)
let upper confidence bound value for each hidden sequence be

mean + 2*std for that hidden sequence

observe hidden sequence with largest upper confidence bound value
ucb_predicted_positive(data, threshold):
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-continued

while # sequences observed < budget:
if observed positive datapoints is empty:
observe a random hidden sequence
else:
if observed negative datapoints is not empty:
get probability active for each hidden sequence from
gp_classification(observed_datapoints,
hidden sequences)
else:
probability active = 1 for all hidden sequences
let possible be the set of sequences with probability active
greater than threshold
get mean and std for each possible sequence from
gp_regression(observed positive datapoints,
possible sequences)
let upper confidence bound value for each hidden sequence be
mean + 2*std for that hidden sequence
observe possible sequence with largest upper confidence bound value
ucb_expected(data):
while # sequences observed < budget:
if observed positive datapoints is empty:
observe a random hidden sequence
else:
if observed negative datapoints is not empty:
get probability active for each hidden sequence from
gp_classification(observed_datapoints,
hidden sequences)
else:
probability active = 1 for all hidden sequences
get mean and std for each hidden sequence from
gp_regression{observed positive datapoints,
hidden sequences)
let upper confidence bound value for each hidden sequence be
mean + 2*std for that hidden sequence
minimum-subtract ucb for all hidden sequences
update upper confidence bound value for each hidden sequence to
upper confidence bound value*probability
active
observe hidden sequence with largest upper confidence bound value
ts_unmodified(data):
while # sequences observed < budget:
if observed positive datapoints is empty:
observe a random hidden sequence
else:
get mean and std for each hidden sequence from
gp_regression(observed positive datapoints,
hidden sequences)
let sample value for each positive hidden sequence be a sample from
normal distribution N(mean, std)
observe hidden positive sequence with largest sample value
ts_const_inactive(data, inactive_T50):
set T50 of every observed negative datapoint to inactive_T50
while # sequences observed < budget:
if observed positive datapoints is empty:
observe a random hidden sequence
else:
get mean and std for each hidden sequence from
gp_regression(observed datapoints, hidden sequences)
let sample value for each positive hidden sequence be a sample from
normal distribution N(mean, std)
observe hidden sequence with largest sample value
ts_predict_positive(data, threshold):
while # sequences observed < budget:
if observed positive datapoints is empty:
observe a random hidden sequence
else:
if observed negative datapoints is not empty:
get probability active for each hidden sequence from
gp_classification(observed_datapoints,
hidden sequences)
else:
probability active = 1 for all hidden sequences
let possible be the set of sequences with probability active
greater than threshold
get mean and std for each possible sequence from
gp_regression(observed positive datapoints,
possible sequences)
let sample value for each positive hidden sequence be a sample from
normal distribution N(mean, std)
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observe possible sequence with largest sample value
ts_expected(data):
while # sequences observed < budget:
if observed positive datapoints is empty:
observe a random hidden sequence
else:
if observed negative datapoints is not empty:
get probability active for each hidden sequence from
gp_classification(observed_datapoints,
hidden sequences)
else:
probability active = 1 for all hidden sequences
get mean and std for each hidden sequence from
gp_regression(observed positive datapoints,
hidden sequences)
minimum-subtract mean for all hidden sequences

update mean for all hidden sequences with mean*probability active
let sample value for each positive hidden sequence be a sample from

normal distribution N(mean, std)
observe hidden sequence with largest sample value

Fully Autonomous Protein Engineering System

The automated sequence testing system and machine
learning component were combined to form a fully autono-
mous protein engineering system.

The sequence testing component of the system was con-
figured as outlined above except for the added capability of
choosing among any combination of the natural sequence
fragments, the Rosetta sequence fragments, and the evolu-
tionary sequence fragments for designing and generating
full-length sequences for functional testing. The machine
learning component of the system was configured to classify
all observed proteins as either active or inactive, with the
active proteins having associated T50 values. Gaussian
process classification was first trained on all observed
sequences to predict active/inactive for unseen sequences.
Gaussian process regression was then trained on all
observed active sequences to predict T50 and variance
values for unseen predicted active sequences using the
ucb_expected MAB strategy. The sequence with the greatest
T50+95% confidence interval (2 standard deviations) after
multiplication with the probability of activity was selected to
test in each subsequent round of testing. Repeating this
process should result in rapid convergence to the best
sequence available.

Two learning experiments were performed with the fully
autonomous protein engineering system. The first was per-
formed with absolutely no starting information and was
performed prior to the introduction of SYBR to confirm
success from the first two steps. In the absence of the SYBR
check, we were not able to determine how many inactive
results were truly inactive versus those that simply failed the
Golden Gate or PCR step. Because we did not load any
information prior to beginning, the learning was a random
search until a live sequence was discovered. A confirmed
active sequence was found. This sequence was number 6111
in our chimera labeling system. Sequence 6111 is the
high-activity variant seen FIG. 10A. At a T50 of 59.1, it was
the most thermostable protein we have yet observed.

The second learning experiment had two key differences.
First, we started the learning with data for all parental
sequences already present, so the robot was learning rather
than guessing from the start. Second, tests with insufficient
SYBR fluorescence were removed from the data set as the
robot ran in a primitive version of the now-automated
SYBR-based checkpoint system. The experiment only ran
for 6 cycles, of which two were repeated due to low SYBR,
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but we already saw a higher fraction of functional sequences
than the previous trial. Based on the results shown in FIG.
10B from the four successful expressions, sequences 1334
and 3341 are active though not easily separable from back-
ground, 1561 is uncertain, and rrr is inactive. The magnitude
of the curves relative to background is much lower than it
otherwise would be due to the condition of the reagents
employed in this particular experiment.

FIG. 11 shows that increasing Golden Gate product usage
and separating PCR mix and primers prior to use results in
higher and more consistent positive activity from both
parental and chimeric sequences.

Decentralized System

The fully autonomous protein engineering system
described above (centralized system) can be configured as a
decentralized system. The decentralized system operates as
in the centralized system, except that the machine learning
portion takes place on a server and the biochemical steps
take place on a robot connected to the server via a network.
As in the centralized system, the robotic biochemical portion
accepts sequences and outputs desired biochemical proper-
ties, and the machine learning portion accepts data, updates
its model, and sends sequences according to the updated
model.

Key differences between the centralized and decentralized
systems are as follows:

1) Instead of the machine learning portion requesting
some number of sequences and waiting for the result
for those sequences all at once, the decentralized sys-
tem allows for multiple robots running in a desynchro-
nized manner such that an arbitrary number of
sequences may be tested in parallel, with each robot
having a number it is capable of testing at once.

2) Multiple robots of different types participate in the
same learning process. The network-based steps can
employ a universal format so that the server does not
need to know how a given robot implements the
experimental process.

3) The machine learning portion no longer requires a
robot connected to it to function. If no robots are
connected, it can wait until a robot logs on to continue,
making the system more stable and consistent while
allowing robots to disconnect for repairs.

An exemplary general schema and workflow of a decen-

tralized system is shown in FIG. 12 and is described as
follows.
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The server models all sequences and selects the next to
test. Then, assuming its prediction is correct, it updates a
temporary hypothetical model and picks the next to test
again. Continuing this way, the server generates a ranked list
up to a predetermined number of sequences that can be
tested at once without additional data.

A robot connects to the server and requests some number
n of sequences. For those sequences, the robot will perform
the biochemical portion of the cycle as described above.
Once complete, the robot will package the data into a format
defined by the server rules before sending that packaged data
to the server. At this time, the robot may log off or request
additional sequences.

The server receives the result(s) from the robot and
updates the data set used in generating its model. After the
new data are incorporated, it repeats the prediction step
described previously and the cycle continues. The specifics
of the modeling process are described above.
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What is claimed is:

1. A protein engineering system comprising:

a sequence testing subsystem comprising:

nucleic acid fragments capable of being combined in
different combinations to generate nucleic acids
encoding a set of different possible proteins;

a nucleic acid assembly subsystem that assembles the
nucleic acids from the nucleic acid fragments;

a protein expression subsystem that expresses proteins
from the nucleic acids and thereby generates
expressed proteins; and

a property detector subsystem that detects property
values of the expressed proteins for a given property
and thereby generates detected property values cor-
responding to the expressed proteins; and

a machine learning subsystem comprising a server that:

receives the detected property values from the sequence
testing subsystem;

predicts, from the detected property values received
from the sequence testing subsystem, predicted prop-
erty values for untested proteins, wherein the
untested proteins comprise possible proteins in the
set that do not have corresponding detected property
values;

selects one or more of the untested proteins based on
the predicted property values to thereby generate one
or more selected proteins; and

instructs the sequence testing subsystem to test the one
or more selected proteins to obtain a detected prop-
erty value therefor.

2. The system of claim 1, wherein the sequence testing
subsystem further comprises an amplification subsystem
that amplifies the nucleic acids.

3. The system of claim 2, wherein the sequence testing
subsystem further comprises a robot that:

combines the nucleic acid fragments in the nucleic acid

assembly subsystem;

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 2
<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 1

LENGTH: 19

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Primer

<400> SEQUENCE: 1

atccegegaa attaatacg

<210>
<211>
<212>
<213 >
<220>
<223>

SEQ ID NO 2

LENGTH: 21

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Primer

<400> SEQUENCE: 2

ggatatagtt cctcctttca g

19

21
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introduces the nucleic acids to the amplification subsys-

tem;

introduces the nucleic acids to the protein expression

subsystem; and

introduces the expressed proteins to the property detector

subsystem.
4. The system of claim 2, wherein the sequence testing
subsystem expresses the proteins from the nucleic acids in
the protein expression subsystem after amplifying the
nucleic acids in the amplification subsystem without puri-
fying the nucleic acids.
5. The system of claim 1, wherein the sequence testing
subsystem:
further comprises a control capable of being combined
with a sample of each of the expressed proteins;

splits each sample of the expressed proteins combined
with the control into corresponding first and second
samples prior to detecting the property values of the
expressed proteins; and

detects the property value from the expressed protein in

each of the first samples, detects a control value in each
of the second samples, and normalizes the detected
property value from each first sample to the detected
control value in each corresponding second sample.

6. The system of claim 1, wherein at least one of the
machine learning subsystem predicting the predicted prop-
erty values and selecting the one or more of the untested
proteins comprises modeling at least a subset of the detected
property values and the untested proteins in a Gaussian
process regression model or employing a multi-armed bandit
algorithm.

7. The system of claim 1, wherein at least one of the
machine learning subsystem predicting the predicted prop-
erty values and selecting select the one or more of the
untested proteins comprises:

ignoring any detected property values equaling zero when

predicting the predicted property values for the
untested proteins;
assigning a property value of a predefined non-zero
constant to each of the expressed proteins correspond-
ing to a detected property value of zero when predicting
the predicted property values for the untested proteins;

restricting the selected proteins to a set of the untested
proteins having a predicted property value greater than
a predefined threshold; or

predicting a predicted property likelihood for each of the
possible proteins in the set, minimum-subtracting an
upper confidence bound in an upper confidence bound
algorithm or a predicted property value in a Thompson
sampling algorithm to generate a minimum-subtracted
value for each of the possible proteins in the set,
multiplying each minimum-subtracted value by each
predicted property likelihood to generate a product for
each of the possible proteins in the set, and employing
the product as an upper confidence bound or distribu-
tion mean for selecting the one or more of the untested
proteins.

8. The system of claim 1, wherein the number of the
different possible proteins in the set is greater than 200, and
all of the possible proteins in the set comprise amino acid
sequences that have at least 60% sequence identity to each
other.

9. The system of claim 1, further comprising separately
contained sets of the nucleic acid fragments, wherein each
nucleic acid fragment in each set of nucleic acid fragments
is identical or encodes an identical amino acid sequence.
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10. The system of claim 9, wherein:

the nucleic acid fragments within each set of nucleic acid
fragments are configured not to be mutually assembled
together with the nucleic acid assembly subsystem;

the nucleic acid fragments in each set of nucleic acid
fragments are configured to assemble with the nucleic
acid fragments in each of at least a first two other of the
sets of nucleic acid fragments; and

the nucleic acid fragments in each set of nucleic acid

fragments are configured not to assemble with the
nucleic acid fragments in each of at least a second two
other of the sets of nucleic acid fragments.
11. The system of claim 1, wherein the nucleic acid
fragments are configured to assemble in different ordered
combinations.
12. The system of claim 1, wherein the nucleic acid
fragments are configured to assemble the nucleic acids using
from 3 to 30 nucleic acid fragments per nucleic acid.
13. The system of claim 1, wherein each nucleic acid
fragment is from 10 to 600 bases in length.
14. The system of claim 1, wherein the nucleic acid
fragments are configured to assemble the nucleic acids using
from 2 to 30 assembly points.
15. The system of claim 1, wherein at least one of the
nucleic acid fragments overlaps an assembly point of at least
one other of the nucleic acid fragments.
16. The system of claim 1, wherein the sequence testing
subsystem comprises multiple sequence testing subsystems,
each of the multiple sequence testing subsystems comprising
its own independent nucleic acid assembly subsystem, pro-
tein expression subsystem, and property detector subsystem.
17. The system of claim 1, wherein:
the number of the different possible proteins in the set is
greater than 200, and all of the possible proteins in the
set comprise amino acid sequences that have at least
60% sequence identity to each other;

the system further comprises separately contained sets of
the nucleic acid fragments, wherein each nucleic acid
fragment in each set of nucleic acid fragments is
identical or encodes an identical amino acid sequence;

the nucleic acid fragments within each set of nucleic acid
fragments are configured not to be mutually assembled
together with the nucleic acid assembly subsystem, the
nucleic acid fragments in each set of nucleic acid
fragments are configured to assemble with the nucleic
acid fragments in each of at least a first two other of the
sets of nucleic acid fragments, and the nucleic acid
fragments in each set of nucleic acid fragments are
configured not to assemble with the nucleic acid frag-
ments in each of at least a second two other of the sets
of nucleic acid fragments;

the nucleic acid fragments are configured to assemble in

different ordered combinations;

the nucleic acid fragments are configured to assemble the

nucleic acids using from 3 to 30 nucleic acid fragments
per nucleic acid,;

each nucleic acid fragment is from 10 to 600 bases in

length;
the nucleic acid fragments are configured to assemble the
nucleic acids using from 2 to 30 assembly points; and

at least one of the nucleic acid fragments overlaps an
assembly point of at least one other of the nucleic acid
fragments.

18. The system of claim 1, wherein the sequence testing
subsystem tests the one or more selected proteins to obtain
a detected property value therefor.
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19. A method of protein engineering, comprising:
in a sequence testing subsystem:
assembling, in a nucleic acid assembly subsystem,
nucleic acids from nucleic acid fragments to generate
nucleic acids encoding a set of different possible
proteins;
expressing, in a protein expression subsystem, proteins
from the nucleic acids to thereby generate expressed
proteins;
detecting, in a property detector subsystem, property
values of the expressed proteins; and
determining, in a machine learning subsystem, all pos-
sible nucleic acid sequences of the nucleic acids
capable of being assembled from the nucleic acid
fragments, thereby generating detected property val-
ues corresponding to the expressed proteins; and
in a machine learning subsystem:
receiving the detected property values from the
sequence testing subsystem;
predicting, from the detected property values received
from the sequence testing subsystem, predicted prop-
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erty values for untested proteins, wherein the
untested proteins comprise possible proteins in the
set that do not have corresponding detected property
values;

selecting one or more of the untested proteins based on
the predicted property values to thereby generate one
or more selected proteins; and

instructing the sequence testing subsystem to test the
one or more selected proteins to obtain a detected
property value therefor,
wherein each of the assembling, the expressing, the
detecting, the determining, the receiving, the predict-
ing, the selecting, and the instructing are performed in
an automated, computer-controlled system.

20. The method of claim 19, further comprising testing in

the sequence testing subsystem the one or more selected
proteins instructed by the machine learning subsystem to
obtain a detected property value therefor.

* * * * *



