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SYSTEM AND METHOD FOR SPECTRAL 
COMPUTED TOMOGRAPHY USING SINGLE 

POLYCHROMATIC X-RAY SPECTRUM 
ACQUISITION 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

This invention was made with government support under 
EB021183 awarded by the National Institutes of Health. The 
government has certain rights in the invention. 

NIA 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

BACKGROUND 

The present disclosure relates to systems and methods for 
medical image data preparation, acquisition, and/or recon­
struction. More particularly, systems and method are pro­
vided for generating spectrally-resolved images from single 
polychromatic x-ray spectrum computed tomography (CT) 
data. 

In traditional computed tomography systems, an x-ray 
source projects a beam that is collimated to lie within an 
X-Y plane of a Cartesian coordinate system, termed the 
"imaging plane." The x-ray beam passes through the object 
being imaged, such as a medical patient, and impinges upon 
an array of radiation detectors. The intensity of the radiation 
received by each detector element is dependent upon the 
attenuation of the x-ray beam by the object and each detector 
element produces a separate electrical signal that relates to 
the attenuation of the beam. The linear attenuation coeffi­
cient is the parameter that describes how the intensity of the 
x-rays changes when passing through an object. Often, the 
"mass attenuation coefficient" is utilized because it factors 
out the dependence of x-ray attenuations on the density of 
the material. The attenuation measurements from all the 
detectors are acquired to produce the transmission map of 
the object. 

The source and detector array in a conventional CT 
system are rotated on a gantry within the imaging plane and 
around the object so that the projection angle at which the 
x-ray beam intersects the object constantly changes. A group 
ofx-ray attenuation measurements from the detector array at 
a given angle is referred to as a "view" and a "scan" of the 
object. These views are collected to form a set of views 
made at different angular orientations during one or several 
revolutions of the x-ray source and detector. In a two 
dimensional (2D) scan, data are processed to construct an 
image that corresponds to a 2D slice taken through the 
object. The prevailing method for reconstructing an image 
from 2D data is referred to in the art as the filtered back­
projection (FBP) technique. This process converts the 
attenuation measurements from a scan into integers called 
"CT numbers" or "Hounsfield units", which are used to 
control the brightness of a corresponding pixel on a display. 

The term "generation" is used in CT to describe succes­
sively commercially available types of CT systems utilizing 
different modes of scanning motion and x-ray detection. 
More specifically, each generation is characterized by a 
particular geometry of scanning motion, scanning time, 
shape of the x-ray beam, and detector system. 

2 
The first generation utilized a single pencil x-ray beam 

and a single scintillation crystal-photomultiplier tube detec­
tor for each tomographic slice. The second generation of CT 
systems was developed to shorten the scanning times by 

5 gathering data more quickly. In these units a fan beam is 
utilized, which may include anywhere from three to 52 
individual collimated x-ray beams and an equal number of 
detectors. 

To obtain even faster scanning times it is necessary to 
10 eliminate the complex translational-rotational motion of the 

first two generations. Third generation scanners therefore 
use a much wider, "divergent" fan beam. In fact, the angle 
of the beam may be wide enough to encompass most or all 

15 
of an entire patient section without the need for a linear 
translation of the x-ray tube and detectors. As in the first two 
generations, the detectors, now in the form of a large array, 
are rigidly aligned relative to the x-ray beam, and there are 
no translational motions at all. The tube and detector array 

20 are synchronously rotated about the patient through an angle 
of 180-360 degrees. Thus, there is only one type of motion, 
allowing a much faster scanning time to be achieved. After 
one rotation, a single tomographic section is obtained. 

Fourth generation scanners also feature a divergent fan 
25 beam similar to the third generation CT system. However, 

unlike in the other scanners, the detectors are not aligned 
rigidly relative to the x-ray beam. In this system only the 
x-ray tube rotates. A large ring of detectors are fixed in an 
outer circle in the scanning plane. The necessity of rotating 

30 only the tube, but not the detectors, allows faster scan time. 
Each x-ray projection view becomes a cone-beam shape 
instead of a fan-beam shape. 

In addition to this "generational" evolution, dual-energy 

35 
x-ray imaging systems have been created to acquire images 
of the subject at two different x-ray energy spectra. This can 
be achieved with a conventional third or fourth generation 
CT system by alternately acquiring views using two differ­
ent x-ray tube anode voltages. Alternatively, two separate 

40 x-ray sources with associated detector arrays may be oper­
ated simultaneously during a scan at two different x-ray 
energy spectra. In either case, two registered images of the 
subject are acquired at two prescribed energy spectra. As 
will be described, multi-energy acquisitions are clinically 

45 advantageous because it allows for resolution of spectral 
information and material decomposition. Unfortunately, it 
also subjects the patient to an appreciably increased radia­
tion dose, which is clinically undesirable and substantially 
limits the viability of acquiring the information, even 

50 beyond the substantial cost of the hardware needed to 
acquire such data. 

The measurement of an x-ray transmission map attenu­
ated by a subject at two distinct energy bands is often used 
to determine material-specific information of an imaged 

55 subject. This is based upon that fact that, in general, attenu­
ation is a function of x-ray energy according to two attenu­
ation mechanisms: photoelectric absorption and Compton 
scattering. These two mechanisms differ among materials of 
different atomic numbers. For this reason, measurements at 

60 two energies can be used to distinguish between two differ­
ent basis materials. Dual energy x-ray techniques can be 
used, for example, to separate bony tissue from soft tissue in 
medical imaging, to quantitatively measure bone density, to 
remove plaque from vascular images, and to distinguish 

65 between different types of kidney stones. 
To determine the effective atomic number and density of 

a material, the linear attenuation coefficient of the material, 
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µ(r,E), can be expressed as a linear combination of the mass 
attenuation coefficients of two so-called basis materials, as 
follows: 

(1) 

where r is the spatial location at which a measurement is 
made, Eis the energy at which a measurement is made, p,(r) 
is the decomposition coefficient of the i th basis material, and 

4 
single spectrum x-ray dataset. The system includes a mate­
rial basis generator configured to decompose the single 
spectrum CT dataset into at least two material basis images, 
an en-chroma generator configured to regularize the material 

5 basis generator by enforcing an effective energy constraint, 
and a sinogram generator configured to generate projection 
data for the at least two material basis images. 

In accordance with another aspect of the disclosure, a 
method is provided for performing a material decomposition 

10 using a single polychromatic spectrum x-ray CT dataset. The 
method includes accessing the single spectrum x-ray dataset 
and decomposing the single spectrum x-ray dataset into a 
linear combination of energy dependence function, biE), 

15 and corresponding expansion coefficients, aix'), wherein x' 
is a selected spatial location in the single-energy x-ray 
dataset, E is an x-ray energy in the single spectrum x-ray 
dataset at the selected spatial location, and k=l, 2, ... , K, 
to an index that labels material basis that is selected for 

is the mass attenuation coefficient of the i th basis material. 
Thus, this method is commonly referred to as the basis­
material method. In this method, CT measurements must be 20 

acquired using at least two energy levels (high and low) to 
solve the two unknowns pi(r) and pir). However, in prac­
tice, the detected signals comprised of a weighted summa­
tion over a wide range of x-ray energies due to the use of 
polychromatic x-ray sources in data acquisitions. The 25 

detected signals can be expressed as: 

decomposition and wherein aix')=~1akJe/x'), e/x') is an 
expanded image voxel basis function, where jE[l,N] and 
N=NxNyNz is a total number of image voxels in an image 
formed from the single-energy x-ray dataset. 

In accordance with one other aspect of the disclosure, a 
method is provided for performing a material decomposition 
of a single energy spectrum x-ray dataset. The method 
includes accessing the single energy spectrum x-ray dataset, 
receiving a user-selection of a desired energy for decompo­
sition, and decomposing the single energy spectrum x-ray 

(2) 30 dataset into a linear combination of energy dependence 
function using the desired energy for decomposition. 

where Sk (E) is the x-ray spectrum which accounts for the 
number ofx-ray photons for the kth x-ray energy, D(E) is the 
detector energy response, L 1 =Jdl·p 1 (r), and L 2 =Jdl·pir), 
which represent the line integral of the densities of the two 
basis materials, respectively. 

Accordingly, the basis-material method is a practical 
method to employ in a clinical setting when using dual­
energy spectral CT. The decomposition coefficients, p,(r), 
can be interpreted as components in a two-dimensional 
vector space, with the basis materials defining the basis 
vectors. Fundamentally, decomposition and the creation of 
spectral information requires at least two data sets acquired 
using at least two distinct energies. This constraint severely 
limits clinical availability of spectrally-resolved CT data 
because one must have access to the specialized hardware 
and software required to acquire the multiple, registered 
datasets and because the patient must be subjected to addi­
tional radiation doses. 

Thus, it would be desirable to have systems and methods 
that provide the ability to perform material decomposition 
without the drawbacks of needing to purchase specialized 
hardware and subjecting the patient to extra doses of radia­
tion. 

SUMMARY 

In accordance with still another aspect of the disclosure, 
a medical imaging system is provided that includes an x-ray 
source configured to deliver x-rays to an imaging patient at 

35 a single, selected x-ray energy spectrum. The medical imag­
ing system also includes a controller configured to control 
the x-ray source to acquire a single energy spectrum x-ray 
dataset from the imaging patient at the single, selected x-ray 
energy spectrum and a material decomposition image recon-

40 struction system. The material decomposition image recon­
struction system includes a material basis generator config­
ured to decompose the single energy spectrum x-ray dataset 
into at least two material basis images, an en-chroma gen­
erator configured to regularize the material basis generator 

45 by enforcing an effective energy constraint, and a sinogram 
generator configured to generate projection data for the at 
least two material basis images. 

The foregoing and other aspects and advantages of the 
invention will appear from the following description. In the 

50 description, reference is made to the accompanying draw­
ings which form a part hereof, and in which there is shown 
by way of illustration a preferred embodiment of the inven­
tion. Such embodiment does not necessarily represent the 
full scope of the invention, however, and reference is made 

55 therefore to the claims and herein for interpreting the scope 
of the invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a schematic diagram of an example computer 
system that can be configured to implement the methods 
described herein. 

The present disclosure provides systems and methods that 
allow material decomposition using one, single polychro- 60 

matic x-ray spectrum CT acquisition, thereby avoiding addi­
tional radiation doses for the patient or the need for special­
ized hardware. In particular, the systems and methods 
provided herein allow for basis material analysis from a 
single polychromatic x-ray spectral CT dataset. 

FIG. 2A is a schematic diagram of a C-arm x-ray com­
puted tomography (CT) imaging system configured in accor-

65 dance with the present disclosure. 
In accordance with one aspect of the disclosure, system is 

provided for performing material decomposition using a 
FIG. 2B is a perspective view of an example of an x-ray 

computed tomography (CT) system. 



US 11,350,895 B2 
5 

FIG. 2C is a block diagram of CT system, such as 
illustrated in FIG. 2B. 

6 

FIG. 3 is a block diagram of an image processing and/or 
reconstruction architecture in accordance with the present 
disclosure that may be utilized with or within the systems of 5 

FIGS. l-2C and/or other imaging systems. 

may include a display controller 34. The display 32 may be 
a monitor connected to the computer system 14 or may be 
integrated with the computer system 14, such as in portable 
computers or mobile devices. 

Referring to FIG. 2A, one, non-limiting example of the 
imaging system 12 of FIG. 1 is provided. Specifically, in this 
example, a so-called "C-arm" x-ray imaging system 100 is 
illustrated for use in accordance with some aspects of the 
present disclosure. Such an imaging system is generally 

FIG. 4 is a schematic diagram of one non-limiting 
example of a material basis generator system in accordance 
with the present disclosure. 

FIG. 5 is a schematic diagram of one non-limiting 
example of an En-Chroma generator system in accordance 
with the present disclosure. 

FIG. 6 is a schematic diagram of one non-limiting 
example of a sinogram generator system in accordance with 
the present disclosure. 

DETAILED DESCRIPTION 

Referring now to FIG. 1, a block diagram of an example 
system 10 is provided that can be configured to carry out 
techniques, methods, and processes accordance with the 
present disclosure. The system may include an imaging 
system 12 that is coupled to a computer system 14. The 
coupling of the imaging system 12 to the computer system 
14 may be a direct or dedicated network connection, or may 
be through a broad network 16, such as an intranet or the 
Internet. 

The computer system 14 may be a workstation integrated 
with or separate from the medical imaging systems 12 or a 
variety of other medical imaging systems, including, as 
non-limiting examples, computed tomography (CT) system, 
magnetic resonance imaging (MRI) systems, positron emis­
sion tomography (PET) systems, single photon emission 
computed tomography (SPECT) systems, and the like. Fur­
thermore, the computer system 14 may be a workstation 
integrated within the medical imaging system 12 or may be 
a separate workstation or mobile device or computing sys­
tem. To this end, the following description of particular 
hardware and configurations of the hardware of the example 
computer system 14 is for illustrative purposes. Some com­
puter systems may have varied, combined, or different 
hardware configurations. 

Medical imaging data acquired by the medical imaging 
system 12 or other imaging system can be provided to the 
computer system 14, such as over the network 16 or from a 
storage device. To this end, the computer system 14 may 
include a communications port or other input port 18 for 
communication with the network 16 and system coupled 
thereto. Also, the computer system 14 may include memory 
and storage capacity 20 to store and access data or images. 

In some configuration, computer system 14 may include 
one or more processing systems or subsystems. That is, the 
computer system 14 may include one or more physical or 
virtual processors. As an example, the computer system 14 
may include one or more of a digital signal processor (DSP) 
22, a microprocessor unit (MPU) 24, and a graphics pro­
cessing unit (GPU) 26. If the computer system 14 is inte­
grated into the medical imaging system, a data acquisition 
unit 28 may be connected directly to the above-described 
processor(s) 22, 24, 26 over a communications bus 30, 
instead of communicating acquired data or images via the 
network 16. As an example, the communication bus 30 can 
be a group of wires, or a hardwire used for switching data 
between the peripherals or between any component, such as 
the communication buses described above. 

The computer system 14 may also include or be con­
nected to a display 32. To this end, the computer system 14 

10 designed for use in connection with interventional proce­
dures. Such systems stand in contrast to, for example, 
traditional computed tomography (CT) systems 200, such as 
illustrated in FIG. 2B, which may also serve as an example 

15 

of the imaging system 12 of FIG. 1. 
Referring again to FIG. 2A, the C-arm x-ray imaging 

system 100 includes a gantry 102 having a C-arm to which 
an x-ray source assembly 104 is coupled on one end and an 
x-ray detector array assembly 106 is coupled at its other end. 
The gantry 102 enables the x-ray source assembly 104 and 

20 detector array assembly 106 to be oriented in different 
positions and angles around a subject 108, such as a medical 
patient or an object undergoing examination, which is posi­
tioned on a table 110. When the subject 108 is a medical 
patient, this configuration enables a physician access to the 

25 subject 108. 
The x-ray source assembly 104 includes at least one x-ray 

source that projects an x-ray beam, which may be a fan­
beam or cone-beam of x-rays, towards the x-ray detector 
array assembly 106 on the opposite side of the gantry 102. 

30 The x-ray detector array assembly 106 includes at least one 
x-ray detector, which may include a number ofx-ray detec­
tor elements. Examples of x-ray detectors that may be 
included in the x-ray detector array assembly 106 include 
flat panel detectors, such as so-called "small flat panel" 

35 detectors. Such a detector panel allows the coverage of a 
field-of-view of approximately twelve centimeters. 

Together, the x-ray detector elements in the one or more 
x-ray detectors housed in the x-ray detector array assembly 
106 sense the projected x-rays that pass through a subject 

40 108. Each x-ray detector element produces an electrical 
signal that may represent the intensity of an impinging x-ray 
beam and, thus, the attenuation of the x-ray beam as it passes 
through the subject 108. In some configurations, each x-ray 
detector element is capable of counting the number ofx-ray 

45 photons that impinge upon the detector. During a scan to 
acquire x-ray projection data, the gantry 102 and the com­
ponents mounted thereon rotate about an isocenter of the 
C-arm x-ray imaging system 100. 

The gantry 102 includes a support base 112. A support 
50 arm 114 is rotatably fastened to the support base 112 for 

rotation about a horizontal pivot axis 116. The pivot axis 116 
is aligned with the centerline of the table 110 and the support 
arm 114 extends radially outward from the pivot axis 116 to 
support a C-arm drive assembly 118 on its outer end. The 

55 C-arm gantry 102 is slidably fastened to the drive assembly 
118 and is coupled to a drive motor (not shown) that slides 
the C-arm gantry 102 to revolve it about a C-axis, as 
indicated by arrows 120. The pivot axis 116 and C-axis are 
orthogonal and intersect each other at the isocenter of the 

60 C-arm x-ray imaging system 100, which is indicated by the 
black circle and is located above the table 110. 

The x-ray source assembly 104 and x-ray detector array 
assembly 106 extend radially inward to the pivot axis 116 
such that the center ray of this x-ray beam passes through the 

65 system isocenter. The center ray of the x-ray beam can thus 
be rotated about the system isocenter around either the pivot 
axis 116, the C-axis, or both during the acquisition ofx-ray 
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attenuation data from a subject 108 placed on the table 110. 
During a scan, the x-ray source and detector array are rotated 
about the system isocenter to acquire x-ray attenuation 
projection data from different angles. By way of example, 
the detector array is able to acquire thirty projections, or 5 

views, per second. 
The C-arm x-ray imaging system 100 also includes an 

operator workstation 122, which typically includes a display 
124; one or more input devices 126, such as a keyboard and 
mouse; and a computer processor 128. The computer pro- 10 

cessor 128 may include a commercially available program­
mable machine running a commercially available operating 
system. The operator workstation 122 provides the operator 
interface that enables scarming control parameters to be 
entered into the C-arm x-ray imaging system 100. In gen- 15 

era!, the operator workstation 122 is in communication with 
a data store server 130 and an image reconstruction system 
132. By way of example, the operator workstation 122, data 
store sever 130, and image reconstruction system 132 may 

8 
The C-arm x-ray imaging system 100 may also include 

one or more networked workstations 148. By way of 
example, a networked workstation 148 may include a dis­
play 150; one or more input devices 152, such as a keyboard 
and mouse; and a processor 154. The networked workstation 
148 may be located within the same facility as the operator 
workstation 122, or in a different facility, such as a different 
healthcare institution or clinic. 

The networked workstation 148, whether within the same 
facility or in a different facility as the operator workstation 
122, may gain remote access to the data store server 130, the 
image reconstruction system 132, or both via the commu­
nication system 134. Accordingly, multiple networked 
workstations 148 may have access to the data store server 
130, the image reconstruction system 132, or both. In this 
manner, x-ray data, reconstructed images, or other data may 
be exchanged between the data store server 130, the image 
reconstruction system 132, and the networked workstations 
148, such that the data or images may be remotely processed 
by the networked workstation 148. This data may be 
exchanged in any suitable format, such as in accordance 
with the transmission control protocol (TCP), the Internet 
protocol (IP), or other known or suitable protocols. 

Similarly, referring to FIGS. 2B and 2C, the imaging 

be connected via a communication system 134, which may 20 

include any suitable network connection, whether wired, 
wireless, or a combination of both. As an example, the 
communication system 134 may include both proprietary or 
dedicated networks, as well as open networks, such as the 
Internet. 25 system 12 may include a traditional CT system 200, which 

includes a gantry 202 that forms a bore 204 extending 
therethrough. In particular, the gantry 202 has an x-ray 
source 206 mounted thereon that projects a fan-beam, or 
cone-beam, of x-rays toward a detector array 208 mounted 

The operator workstation 122 is also in communication 
with a control system 136 that controls operation of the 
C-arm x-ray imaging system 100. The control system 136 
generally includes a C-axis controller 138, a pivot axis 
controller 140, an x-ray controller 142, a data acquisition 
system (DAS) 144, and a table controller 146. The x-ray 
controller 142 provides power and timing signals to the 
x-ray source assembly 104, and the table controller 146 is 
operable to move the table 110 to different positions and 
orientations within the C-arm x-ray imaging system 100. 

The rotation of the gantry 102 to which the x-ray source 
assembly 104 and the x-ray detector array assembly 106 are 
coupled is controlled by the C-axis controller 138 and the 
pivot axis controller 140, which respectively control the 
rotation of the gantry 102 about the C-axis and the pivot axis 
116. In response to motion commands from the operator 
workstation 122, the C-axis controller 138 and the pivot axis 
controller 140 provide power to motors in the C-arm x-ray 
imaging system 100 that produce the rotations about the 
C-axis and the pivot axis 116, respectively. For example, a 
program executed by the operator workstation 122 generates 
motion commands to the C-axis controller 138 and pivot 
axis controller 140 to move the gantry 102, and thereby the 
x-ray source assembly 104 and x-ray detector array assem­
bly 106, in a prescribed scan path. 

30 on the opposite side of the bore 204 through the gantry 202 
to image the subject 210. 

The CT system 200 also includes an operator workstation 
212, which typically includes a display 214; one or more 
input devices 216, such as a keyboard and mouse; and a 

35 computer processor 218. The computer processor 218 may 
include a commercially available programmable machine 
running a commercially available operating system. The 
operator workstation 212 provides the operator interface that 
enables scanning control parameters to be entered into the 

40 CT system 200. In general, the operator workstation 212 is 
in communication with a data store server 220 and an image 
reconstruction system 222 through a communication system 
or network 224. By way of example, the operator worksta­
tion 212, data store sever 220, and image reconstruction 

45 system 222 may be connected via a communication system 
224, which may include any suitable network connection, 
whether wired, wireless, or a combination of both. As an 
example, the communication system 224 may include both 
proprietary or dedicated networks, as well as open networks, 

50 such as the Internet. 
The DAS 144 samples data from the one or more x-ray 

detectors in the x-ray detector array assembly 106 and 
converts the data to digital signals for subsequent process­
ing. For instance, digitized x-ray data is communicated from 
the DAS 144 to the data store server 130. The image 55 

reconstruction system 132 then retrieves the x-ray data from 
the data store server 130 and reconstructs an image there­
from. The image reconstruction system 130 may include a 
commercially available computer processor, or may be a 
highly parallel computer architecture, such as a system that 60 

includes multiple-core processors and massively parallel, 
high-density computing devices. Optionally, image recon­
struction can also be performed on the processor 128 in the 
operator workstation 122. Reconstructed images can then be 
communicated back to the data store server 130 for storage 65 

or to the operator workstation 122 to be displayed to the 
operator or clinician. 

The operator workstation 212 is also in communication 
with a control system 226 that controls operation of the CT 
system 200. The control system 226 generally includes an 
x-ray controller 228, a table controller 230, a gantry con­
troller 231, and a data acquisition system (DAS) 232. The 
x-ray controller 228 provides power and timing signals to 
the x-ray module(s) 234 to effectuate delivery of the x-ray 
beam 236. The table controller 230 controls a table or 
platform 238 to position the subject 210 with respect to the 
CT system 200. 

The DAS 232 samples data from the detector 208 and 
converts the data to digital signals for subsequent process­
ing. For instance, digitized x-ray data is communicated from 
the DAS 232 to the data store server 220. The image 
reconstruction system 222 then retrieves the x-ray data from 
the data store server 220 and reconstructs an image there­
from. The image reconstruction system 222 may include a 
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In conventional single energy spectrum CT acquisitions, 
an x-ray source emits a polychromatic spectrum of x-ray 
photons. When polychromatic x-rays pass through an image 
object, the value ofx-ray attenuation coefficients depends on 

commercially available computer processor, or may be a 
highly parallel computer architecture, such as a system that 
includes multiple-core processors and massively parallel, 
high-density computing devices. Optionally, image recon­
struction can also be performed on the processor 218 in the 
operator workstation 212. Reconstructed images can then be 
communicated back to the data store server 220 for storage 

5 material composition and the photon energy. This physical 
process can be modeled by the polychromatic Beer-Lambert 
law: 

or to the operator workstation 212 to be displayed to the 
operator or clinician. 

The CT system 200 may also include one or more 10 

networked workstations 240. By way of example, a net­
worked workstation 240 may include a display 242; one or 
more input devices 244, such as a keyboard and mouse; and 
a processor 246. The networked workstation 240 may be 

15 
located within the same facility as the operator workstation 
212, or in a different facility, such as a different healthcare 
institution or clinic. 

The networked workstation 240, whether within the same 
facility or in a different facility as the operator workstation 20 

212, may gain remote access to the data store server 220 
and/or the image reconstruction system 222 via the com­
munication system 224. Accordingly, multiple networked 
workstations 240 may have access to the data store server 
220 and/or image reconstruction system 222. In this manner, 25 

x-ray data, reconstructed images, or other data may be 
exchanged between the data store server 220, the image 
reconstruction system 222, and the networked workstations 
212, such that the data or images may be remotely processed 
by a networked workstation 240. This data may be 30 

exchanged in any suitable format, such as in accordance 
with the transmission control protocol (TCP), the Internet 
protocol (IP), or other known or suitable protocols. 

Using the above-described systems, the structural infor­
mation of an image object is encoded into the x-ray beam 35 

when the x-ray photons penetrate through the image object 
and are attenuated via physical interaction processes. The 
value of the x-ray attenuation coefficients is dependent on 
both the material's elemental composition and the energy of 
the x-ray beam. The present disclosure recognizes that, due 40 

to the use of polychromatic x-ray sources in current medical 
CT imaging, x-ray photons with a wide range of energies are 
actually used to encode structural information of the image 
object into the measured data. In other words, the spectral 
information for a given image object is already encoded in 45 

the measured sinogram data even if the measurements are 
performed with a single polychromatic x-ray spectrum. 

Even when the polychromatic nature of so-called "single 
energy spectrum" or "non-dual energy spectra" system was 
recognized, there was no mechanism to extract this spectral 50 

information for any use. To the contrary, the polychromatic 
nature of x-ray sources has generally been viewed as unde­
sirable. As such, methods have been devised to suppress the 
spectral effects, for example, including algorithms to reduce 
beam hardening artifacts, which is one of the most pro- 55 

nounced spectral effects in conventional single energy spec­
trum CT imaging. 

Breaking from these understandings, the present disclo­
sure provides systems and methods to decode spectral 
information in single energy spectrum or single-kV acqui- 60 

sitions when energy integration detectors are used and to 
create spectrally-resolved images, such as to differentiate 
objects with different elemental compositions. That is, the 
present disclosure breaks the historical understanding that 
CT-based material decomposition or spectral encoding 65 

requires at least two data sets acquired using at least two 
distinct energies. 

(3); 

where, y, denotes the line integral value for the i-th 
integral line, Emax denotes the maximal energy determined 
by the tube potential, Q(E) denotes the joint contribution of 
the energy distribution of entrance photons and energy 

response of the detector µ(x' E) denotes the energy depen­
dent linear attenuation coefficients of interest, which can be 
represented as a line integral of the linear attenuation 
coefficient of image object along the i-th integral line. 

According to the mean value theorem in calculus, for any 
measured signal, there exists an effective energy, E,, which 
is somewhere between zero and the maximal energy Emax, 

such that: 

(4); 

where, E,, denotes the beam effective energy for i-th x-ray 
path. Here, Q( E) is assumed to be normalized. 

Over the diagnostic x-ray energy range (20 keV to 140 
keV), photoelectric absorption and Compton scattering are 
the two dominant x-ray photon processes. Since interactions 
between material and x-ray photons are independent to the 
property of material, the energy dependent attenuation coef­
ficient of interest can be decomposed as a linear combination 
of a limited number of products of spatially-dependent and 
energy-dependent components: 

(5); 

where, c1(x) denotes the spatial distribution of photo­

electric coefficients, cix) denotes the spatial distribution of 
Compton coefficients, bi(E,) denotes the energy-dependent 
photoelectric component, and biE,)denotes the energy-de­
pendent Compton component. 

Based on the linear signal model of equation 5, equation 
4 can be simplified as: 

y,~fz;dlµ(l,e,)~f1ll[c1(l)b 1(e)+ 

c2(x)b2(E) ]~p 1,;b 1 ( E;)+P2,;bo( e;) (6); 

where, Pll2, denotes the line integral value of cll2(x) 
along i-th x-r~y path. 

The effective energy for each x-ray beam, E,, can be 
defined by solving the following minimal-norm problem: 

l; = argmin[p1,; b1(1o;) + p2,; b2(1o;)-y;]2. 
s; 

(7) 

The above optimization problem can be solved for each 
individual x-ray path to determine the effective energy for 
each measured datum. For each ray i, all possible E,E[0, 
Emaxl can be searched, for example, using a 0.01 keV 

interval. Each possible value of E,,Cll2(x) can be deter­
mined from numerical simulation or experimental studies, 
where the ground truth material maps are provided. With 
this, the line integral along i-th x-ray path can be determined 
numerically. Thus, i:, can be found, such that, the modeled 
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line integral value with a specific value of E, provides the 
closest value to the measured line integral y,. 

PROBLEM FORMULATION 
Quantitative material basis imaging in CT imaging can be 

formulated under the maximum-a-posterior (MAP) frame- 5 

work. The basis of MAP image reconstruction methods 
depends on the knowledge of photon statistics and prior 
information of ideal image representation. For an ideal 
photon counting detector derived in this model, the number 
of photons received by a given detector element i follows the 10 
Poisson statistics: 

-N -

P(X = N,) = N, 'exp(-N,) 
Ni! 

(8) 

where N, denotes the number of photons received at 
detector element i and N, denotes the mean photon number 

15 

at the detector element i. The measurements at different 
detector elements can be assumed to be statistically inde- 20 

pendent and, thus, the joint probability of the measured data 
set is given by: 

P(N)ccP(N1,N2, . .. )ccII,l'(N;) (9). 

Again, using the Beer-Lambert law in x-ray attenuation in 25 
matter with a linear attenuation coefficient distribution func-

tion µ(x, E) at spatial location X and x-ray energy E, the 
mean photon number at i-th measurement is given by: 

(10); 30 

where Na, denotes the initial photon number at the i-th 
measuremen"t before the photons enter the image object, 

12 
In x-ray CT, so-called sinogram projection data, y,, is 

obtained by the log-transform of the measured data N, and 
Na, as follows: 

the corresponding statistical mean is defined as: 

_ l No_; 
Yi= Il--=--. 

N; 

(14) 

Using the developed image digitized representation, one can 
readily obtain: 

y,:ccj([Aa 1];,[Aa2];, . .. ,[Aak];,Q)cc-)n [L
0
Q(e)exp(­

Lkbk(e)[Aak];)] 

In other words, 

(15). 

(16); 

where all of the image object specific information ak, 
image object independent information (such as basis energy 
dependence function biE)), scanner and scanning protocol 
specific function Q(E), and the system matrix information 
are explicitly contained in y, as shown in equation 15. Using 
the above mathematical formulation, a statistical learning 
problem is presented that, as will be described, can be solved 
using systems and methods referred to herein as the Deep­
En-Chroma framework or system. Q( E) is a normalized energy spectral function of photons that 

included the impact of both the entrance x-ray energy 
spectral distribution and the detector energy response func­
tion, and Emax denotes the maximal energy determined by 
the tube potential. 

STATISTICAL LEARNING PROBLEM FORMULA-
35 TION 

More particularly, from a set of measured data {N1 , 

The energy dependent linear attenuation coefficient of the 
image object can be decomposed as a linear combination of 
energy dependence function bk (E) and the corresponding 40 

N2 , ... }, the joint probability function P(N)=P(N1 , 

N2 , ... )=II, P(N,) described above is the limit of the known 
information. The desired image object basis image vectors ak 
are the statistical parameters, as set forth in equation 1. 

expansion coefficients aix), as follows: 

µ(x',E )ccLkak(x')bk(E) (11); 

where index k=l, 2, ... , K labels the material basis that 
is selected for the above decomposition. Since the energy 
dependence for each chosen material basis is known a priori, 

the linear attenuation coefficients µ(x, E) can be generated 
at any desired energy, provided that the spatial location 

dependent coefficients (i.e., {aix)hcc/) are known. With 
this context in place, the present disclosure recognizes 
provides a basis for spectral CT imaging using a single­
energy source by determining these spatial location depen­
dent coefficients. 

To obtain the conventional voxel representation for the 

basis image, aix), the basis image can be expanded into the 

image voxel basis functions e/x) as follows: 

(12); 

Therefore, the learning problem to be addressed by the 
Deep-En-Chroma system is to learn the statistical param­
eters akfrom the observed data set {Ni, N2 , ... }. In practice, 
although the entrance x-ray spectrum from x-ray tube may 

45 be experimentally determined, it is hard to determine the 
energy response function at each detector element. As a 
result, it is hard to experimentally determine the energy 
dependent function Q(E). Therefore, for the statistical prob­
lem formulation, a more ambitious learning objective is to 

50 also learn the energy dependent function Q(E) from the 
measured data set {Ni, N2 , ... }. 

In accordance with the present disclosure, a statistical 
inference method is provided to solve the above statistical 
learning problem. According to one non-limiting example, a 

55 Bayes method may be used. In this case, the following 
posterior probability can be solved according to a Bayesian 
statistical inference principle: 

where jE[l,N] and N=NxNyNz is the total number of 60 

image voxels. Using this voxel representation, the line 
integral of a material basis can be written as: 

P(N I 0:1, 0:2, ... , lYK, fl) 

P(a:1, 0:2, ... , lYK, fl) 

(17) 

f1,dx' ak(x')ccLJak)z,dx' e)x')ccL1A,,akJcc[Aak]; (13); 

where the MxN matrix A EIRMxN denotes the system 
65 

matrix and A,J the (i,j)-matrix element of A. ak is the 

digitized and vectorized material basis image aix). 

P(N) 

Namely, given the measured data set {N,, N2 , ... }, the 
statistical parameters 8={ a1 , a2 , . . . , aD Q} and the 
corresponding uncertainty in parameter estimation must be 
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In terms of the language used in game theory in econom­
ics, the three modules represent three players that form a 
grand coalition in the game. The players have their specific 
request in gain sharing as dictated by the corresponding loss 

determined. To perform the above parameter estimation 
task, the prior P(a1 , a2 , ... , aK, Q) could be explicitly 
introduced and then the parameters 8 to maximize the 
posterior probability could be searched. Namely, the statis­
tical parameters can be estimated via solving the following 
optimization problem: 

iHUi, Uz, ... ,lli{ ,Q}~argmax{ln P(Nlai, 
a2 , ... ,aK,Q)+!n P(a 1,a2 , .. aK,Q)} (18). 

5 function. The model training process can thus be viewed as 
the negotiation process among the players to seek for an 
agreement such that their contributions and gains in the 
game are settled with maximal degree of satisfaction. 

After the training of Deep-En-Chroma network is com-
10 plete, it is the material basis generator that is used to 

generate two material basis images from a single color-blind 
CT images since the characteristic spectral information 
buried into the measured data has been extracted and 

Unfortunately, even for K=2, the above optlm1zation 
problem is highly ill-posed as can be illustrated by consid­
ering the number of unknowns and available measurements. 
That is, there are KN unknowns but there are only M 
measurements and it is often the case KN>>M in practice. 
Some have tried to use empirical rules to reduce the 15 

instances where the problem camiot be solved. However, 
these empirical rules do not provide reliable and robust 
results that approach clinical needs. The major challenge 
encountered is the justification of prior and further con­
straints used in the attempts to reduce the ill-posedness of 20 

the problem. 
DEEP-EN-CHROMA SYSTEM 

encoded into the generative material basis generator module. 
More particularly, referring to FIG. 4, the material basis 

generator 302 'B takes a color-blind CT image with the 
dimension ofNxN as its input to generate K material basis 
images with the dimension of NxN via a 23-layer deep 
neural network. In this non-limiting example, there may be 
three types of convolutional layers used in the material basis 
generator 302. The first type 400, uses 3x3 convolutional 
kernels with stride 1 and dented as (Cony, 3x3, Sl) followed 
by a batch normalization operation (Bnorm) and the leaky 
rectified linear unit (LReLu) as its activation function. The 

Instead, the present disclosure overcomes these shortcom­
ings by designing an appropriate prior for solving the 
statistical parameter estimation problem using a supervised 
learning scheme. Since the ultimate learning objective is to 
estimate 8={ ai, a2 , ... , aD Q} from the measured data, the 
learning objective is to estimate the posterior probability 
distribution function P(a1 , a2 , ... , aK, QIN). 

25 second type 402, uses 3x3 convolutional kernels with stride 
2, i.e., (Cony, 3x3, S2), followed by Bnorm and LReLu. 
Leaky parameter used in LReLu was set to be 0.2. The third 
type 404, uses lxl convolutional kernels with stride 1, i.e., 
(Cony, lxl, Sl), followed by linear function as activation. 

All layers were designed with their corresponding bias 
terms as well. Convolutional operations in all convolutional 
layers were performed with padding to maintain the dimen­
sionality to be the same. Up-sampling layers 406 were 
designed with 2x2 kernel size (Up-sample 2x2) and bi-linear 

A deep neural network, which forms part of the Deep- 30 

En-Chroma system, has been designed and trained to learn 
the feed forward mapping T : N >----> 8, such that, the output, 
Qai, a2 , ... , aD QIN; :F ), of the Deep-En-Chroma can 
provide a good approximation for the desired posterior 
distribution P(a1 , a2 , ... , aK, QIN). 35 interpolation kernels were used in all up-sampling layers. 

Skip and concatenation connections 408 were used to facili­
tate the training process through backpropagation. Kernels 
in convolutional layers were initialized as Glorot uniform 
distributed random numbers and the bias terms were initial-

As will be described with respect to FIG. 3, the Deep­
En-Chroma system 300 can be represented as including 
three specific modules with specifically defined purposes. In 
FIG. 3, solid arrows show the forward path and dash arrows 
show the backpropagation path. 40 ized as zeros. In batch normalization layers, the momentum 

parameter was set to be 0.99 and the epsilon parameter was 
set to be 0.001. Beta terms were initialized as zeros and 
ganima terms were initialized as normal distributed random 
numbers with zero mean value and 0.01 standard deviation. 

The first module is the material basis generator 302. The 
material basis generator 302 is designed to decompose an 
input color-blind CT image 304 from a single-energy CT 
data acquisition into two material basis images 306, 308, 
such that the CT images at any given x-ray energy can be 45 

readily generated from the basis images and the correspond­
ing energy dependent function as shown in equation 11. That 

Moving mean terms were initialized as zeros and moving 
variance terms were initialized as ones. Mean centering and 
variance scaling were used for all batch normalization 
layers. In this non-limiting example of a detailed design of 
the material basis generator 302, The number below each 

is, the material basis generator 302 creates a color-resolving 
capability that has always been lost to single-energy CT 
systems. 50 output tensor denotes the number of channels of the output 

The En-Chroma generator 310 is the second module. The 
En-Chroma generator 310 extracts the effective energy from 
each of the measured datum, which includes the material 
basis images 306, 308, an input measured sinogram 312, and 
effective energy information 314. Note that, due to the 55 

polychromaticity of x-ray spectrum function Q(E) used in 
data measurement, each measured data carries its own 
spectral information and this specific feature is characterized 
by the effective energy which will be further described. It is 
the difference in effective energy of the measured data that 60 

can be exploited to help differentiate two objects with same 
CT number. 

tensor. 
Referring now to FIGS. 3 and 5, one non-limiting 

example of an implementation for the En-Chroma generator 
310 ( C) takes the estimated line integrals of the two 
material basis images from the material basis generator 306, 
308 and the measured sinogram 312 as its inputs to generate 
the effective energy distribution via a 4-layer deep neural 
network including a frozen forward projection layer 500 
followed by three trainable convolutional layers 502, 504, 
506. In the illustrated configuration, the En-Chroma genera­
tor 310 predicts the effective energy for each measured 
datum individually. The first convolutional layer 502 
encodes the input with dimension of 3xl to a feature space 
with the dimension of 128x256 along two channel direc-

The third module is the sinogram generator 316. The 
sinogram generator 316 processes the sinogram data and 
ensures that the obtained material basis images 306, 308 can 
indeed be used to generate the measured projection data 
using equation 15. 

65 tions. The second convolutional layer 504 transforms the 
hidden layer activations to another feature space with the 
dimension of 256x512. The third convolutional layer 506 
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transforms the hidden layer outputs to the feature space of 
effective energy with dimension of lxl. After each convo­
lutional layer, hyperbolic tangent function (tan h) was used 
as its activation function. Weights in convolutional layers 
were initialized as Glorot uniform distributed random num­
bers and bias terms were initialized as zeros. During the 
training process, the predicted effective energy from esti­
mated material basis maps (the output of module 1) was 
compared against to the ground true effective energy gen­
erated from true spectral CT data acquisitions. The differ­
ence between the predicted effective energy and ground true 
effective energy was backpropagated to regularize parameter 
updates in the material basis generator. 

16 
grals from the output of the first layer 602. The final 
convolutional layer 608, with lxl kernel size and linear 
activation, learns a linear combination to generate the esti­
mated polychromatic sinogram. In the final convolutional 

5 layer, the learned weights approximate the energy response 
of the experimental data acquisition including x-ray tube 
spectrum and detector energy responses. The sinogram 
generator aims to ensures the predicted polychromatic sino­
gram approximates measured projection data. 

10 DEEP-EN-CHROMA SYSTEM OPERATION 
With this basic framework for the modules of the Deep­

En-Chroma system 300, the interaction of the modules and 
function of the overall system can be described. The desired 
mapping ( :F) to generate material basis maps ( { ak} ~he/) 
from input CT image and measured sinogram is approxi­
mated by a deep neural network representation by a multi-
layer composition of a series of nonlinear mappings, i.e., a= 

:F (z),,,!F (z)=h(L)o h(L-l)o ... o h(l)o ... hC1l(z). Here IE{l, 

In conventional single-kV CT acquisitions, an x-ray 
source emits a polychromatic spectrum of x-ray photons. 15 

When polychromatic x-rays pass through an image object, 
the value ofx-ray attenuation coefficients depends on mate­
rial composition and the photon energy. This physical pro­
cess can be modeled by the polychromatic Beer-Lambert 
law described above in equation 11. 20 2, ... , L} denotes the layer index and L denotes the total 

number oflayers and "o" denotes the function composition. 
To simplify the notation, a compact notation without sub­
script indices is introduced to denote the input-output rela­
tionship at the I-th layer as zC1l=h(l-ll(zU- 1l). 

According to the mean value theorem for definite inte­
grals, Vi, there exists an energy E,E[0, EmaxL such that: 

(19); 

where, E, denotes the beam effective energy for i-th x-ray 
path nd Em= denotes the maximal energy determined by the 
tube potential. 

25 
Using the mean least square error as the goodness metric, 

As described above, the energy dependent attenuation 
coefficient of the image object can be decomposed as linear 
attenuation of limited number of products of spatial-depen- 30 

a loss function can be designed to optimize for the unknown 
parameters ( 'B, C, S) by solving the following optimiza­
tion problem: 

dent and energy-dependent components: µ(x, E)= 

~0ix)biE). Based on this linear signal model, the above 
formulae can be simplified as: 

(20); 

where, Pk.; denotes the line integral value of aix) along 
i-th x-ray path. Therefore, the effective energy for measured 
projection data can be estimated by solving the following 
minimal-norm problem: 

Er ~argmin0 JLhPk,ibk(e;)-y,]2 (21). 

The above optimization problem can be solved for each 
individual x-ray path to determine the effective energy for 
each measured datum. For each ray i, we search for all 
possible E, E[0, Emaxl on a 0.01 keV interval. For each 

possible value of E,, { aix)} are known from numerical 
simulation or experimental studies where the ground truth 
material maps are provided from dual-energy data acquisi­
tion. Once this is accomplished, the line integral along i-th 

x-ray path can be determined numerically. Thus, f; can be 
found, such that, the modeled line integral value with a 
specific value of E, provides the closest value to the mea­
sured line integral y,. For example, the effective energy 
calculation method can be used to generate ground true 
effective energy distributions for training the En-Chroma 
generator 310. 

Referring to FIGS. 3 and 6, the sinogram generator 316 

35 

40 

(22) 

where, iE{l, 2, ... , NJ denotes the index of training 
samples, Ns denotes the total number of training samples, 
µ·lb denotes the L2-norm of a given vector, ll·liP denotes the 
Frobenius norm of a given matrix, a=[ ai, a2 , ... , aK] denotes 
the compact notation that concatenates each basis channel of 
the ground true material basis map, x denotes the input CT 
image, and y denotes the input measured sinogram data. 
Three hyperparameters A1 , A2 , and A3 control the relative 

45 weights of the effective energy fidelity term (the second term 
in the above loss function) and the data fidelity term (the 
third term in the above loss function). By empirically 
selecting the value of A2 and A3 , encoded information in 
image domain, measured data domain and hidden spectral 

50 information (represented by effective energy of each mea­
sured datum) are jointly utilized to exact the needed spectral 
information from a conventional single-kV CT acquisition. 

To perform the backpropagation procedure for optimizing 
the model parameters, the gradients in each layer can be 

55 defined. Most of the gradient computation is similar to other 
well-known convolutional neural networks. However, some 
new operations are needed for the forward projection opera­
tion used in the material basis generator 302 and the En-
Chroma generator 310 (the L24 layer). 

( S) takes the estimated K material basis images 306, 308 60 

with dimension ofNxN as its input to generate the estimated 
polychromatic sinogram with the dimension ofNcxNv via a 
4-layer deep neural network 600. The first layer 602 in the 
sinogram generator 316 performs the forward projection for 
each output channel of the material basis generator 302 65 

individually. The second 604 and the third layer 606 gen­
erate a series of spectral-resolved monochromatic line inte-

Let .£ denote the loss function and eUl denote the 
unknowns to be learned at the I-th layer. The associated 
gradient 
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can be obtained through the backpropagation as: 

8zu+ii 8zu+21 8zCLl 8L (23) 

18 
is to regularize the process of material basis generation by 
the material basis generator 302 by enforcing the effective 
energy constraint. 

The sinogram generator 316 also has an impact on the 
80(/) 8zu+11 · · · 8z(L-11 8z(Ll · 

Here three types of gradients are needed: 

5 material basis generator 302. The functionality of the sino­
gram generator 316 can be understood from two different 
aspects. On the one hand, when the performance of the 
material basis generator 302 is suboptimal, then the material 
basis generator 302 predicts a pair of inaccurate basis maps 

8zCl+!) 8hU\zCO) 

80(/) 80(/l 

8zu+ 21 8h(/+l\z(/+l)) 

8zU+11 8zU+11 

(24) 
10 306, 308 (Loss #1). The pair of inaccurate material basis 

pairs 306, 308 will then be sent to the sinogram generator 
316 to produce inaccurate sinogram data when it is com­
pared to the measured sinogram (Loss #2). In the error 
backpropagation process, the L2 norm difference between 

8L r 8L 
8zl23) = A 8zl24). 

15 predicted and measured sinogram is propagated through the 
backpropagation path of the sinogram generator 316 to tune 
the learnable parameters in material basis generator 302. 

On the other hand, when the performance of the material 
basis generator 302 is nearly optimal (Loss #1 is minimal) The first two gradients can be calculated using the stan­

dard numerical routines, such as those provided by Tensor­
flow. In equation 24, compared to the matrix A, which 
performs the forward projection at the output of L23 in the 
feedforward path, its gradient, AT performs the direct back­
ward projection of the derivative of loss function with 
respect to the output of L24 in the backpropagation path to 
form the gradient at the L24. Here A denotes the forward 
projection operation and AT denotes the backward projection 
operation. Both A and AT can be implemented in compute 
unified device architecture (CUDA) and then incorporated 
as custom operations into numerical routines for calculating 
the first two gradients, such as using Tensorflow. 

20 and, thus, the predicted material basis maps 306, 308 are 
nearly accurate, the difference between predicted and mea­
sured sinogram (Loss #3) may still be significant because the 
sinogram generator 316 may have learned an inaccurate 
energy response function. As previously explained, learn-

25 able parameters in the last layer in the sinogram generator 
(i.e. the L30) approximate the joint impact of entrance x-ray 
spectrum and detector energy response function. If the 
learned joint energy response deviates from that used in 
numerical simulation or experimental data acquisition, the 

30 difference between predicted and measured sinogram (Loss 
#3) may still be significant. During the backpropagation 
process, the L2 norm difference between predicted and 
measured sinogram is propagated through the backpropaga­
tion path of the sinogram generator 316 to fine-tune the 

The En-Chroma generator 310 has an impact on the 
material basis generator 302. Due to the use of polychro­
matic x-ray sources in current medical CT imaging, the 
spectral information of the image object has already been 
encoded in the measured data even if the measurements are 
performed with a single polychromatic x-ray spectrum. In 
the past, it was not known how to extract this spectral 
information to be used for good, and in fact, many methods 
have been designed to discard the encoded spectral infor- 40 

mation. Due to the variation of effective energy carried by 
each measured datum, the acquired data set demonstrates 
spectral inconsistency and this spectral inconsistency is the 
root cause of beam hardening image artifacts in the recon­
structed CT images. Therefore, the efforts to reduce beam 45 

hardening in the past is essentially to discard the encoded 
spectral information in measured data. 

35 learnable parameters in L30. In the end, the learned joint 
energy response approximates that used experiment data 
acquisitions. 

To illustrate how the trained En-Chroma generator 310 
actually improves the material decomposition accuracy, one 
can observe follow the data path of FIG. 3 forward from the 50 

material basis generator 302. If the performance of the 
material basis generator 302 is suboptimal, it will predict a 
pair of inaccurate basis images 306, 308. With a pair of 
inaccurate material basis pairs 306, 308 (Loss #1) sent to the 
En-Chroma generator 310, the predicted effective energy 55 

map would also be inaccurate (Loss #2), compared to the 
ground true effective energy map generated from dual­
energy data acquisition. This difference is reflected in its 
contribution to the final training loss. During the backpropa­
gation process, the L2 norm difference between predicted 60 

and ground true effective energy maps is propagated through 
the backpropagation path of the En-Chroma generator 310 to 
fine-tune the learnable parameters in material basis genera-
tor 302. This backpropagation process is accomplished by 
using the gradient at the frozen forward projection layer 65 

(L24) that has been defined, for example, manually. In 
sunmiary, the functionality of the En-Chroma generator 310 

TRAINING 
To configure the Deep-En-Chroma system 300 to operate 

at best performance, a variety of non-limiting training strat­
egies were developed for the system. The acquired training 
data set included basis images, effective energy for each 
measured projection datum, and the sinogram projection 
data. These prepared training data were used to train the 
entire Deep-En-Chroma system 300 in two stages: 

Stage 1: Pretraining of three individual modules 
To pretrain the material basis generator 302, the training 

loss was obtained by setting A_l=l,A_2=A_3=0 in equation 
9. Similarly, to pretrain the En-Chroma generator 310, the 
training loss was obtained by setting A_2=1,A_l=A_3=0 in 
equation 9. 

Stage 2: End-to-end training all three modules together 
Following the pre-training of each individual module, an 

end-to-end global training is performed using the above two 
inputs (Sinogram and DICOM CT image) and all three 
outputs (basis image output, effective energy output, and 
sinogram output) in a weighted combination of the three 
training loss functions. In the global end-to-end training 
phase, an empirical two-step alternating training strategy 
was been employed. Within each training epoch, the entire 
training dataset was randomly distributed to 500 mini­
batches. For each given mini-batch, one of the two hyper­
parameters in the loss function (A_2 or A_3) was set to 0. To 
be more specific, at the current mini-batch, the model was 
trained only with material bases loss and effective energy 
loss, namely, A_l=l,A_2=0.1,A_3=0 were used in this mini­
batch. For the next adjacent mini-batch, the model was 



US 11,350,895 B2 
19 

trained only with material bases loss and data fidelity loss, 
namely, A_l=l,A_2=0,A_3=0.05 were used. After all mini­
batches were used to minimize the loss function, the same 
two-step alternating strategy is used for the next epoch. 

20 
4) For a CT image pixel falling into the i th material mask, 

the density of the tissue in that pixel was estimated using 

r;; - µ(x, ,:) 
P\A)- (µ) - , 

- (.s) 
P; 

The stochastic gradient descent with momentum was 5 

used as the optimizer in this training. Learning rate 
(ri=[ 10] '(-3)) and momentum (~=0.9) were empirically 
selected. Although there was no theoretical guarantee of 
convergence for the empirical two-step alternating training 
strategy, empirical convergence was confirmed by monitor­
ing the change of loss function value with respect to each 
epoch and showed that the two-step alternating strategy 
decreases the loss function value quasi-monotonically, and 
indicates the empirical convergence of the numerical pro-

10 
where 

cess. 
15 

Pretraining of the Deep-En-Chroma system 300, espe­
cially for pretraining of the En-Chroma generator 310 uti­
lized high quality training samples for effective energy 
distribution. Clinical CT images-based numerical simula­
tions were conducted to provide high quality training 
samples and the needed anatomical complexity for the 20 

pretraining phase. In the numerical simulation data acqui­
sition, clinical CT image volumes, each containing 150-250 
image slices, were used to generate simulation training data 
by using a standard ray-driven numerical forward projection 
procedure in a fan-beam geometry. The geometrical param- 25 

eters for the numerical simulation are the same as that used 
in a clinical 64-slice multi-detector row CT scanner. To 
make the simulated dataset as realistic as possible (i.e. with 
realistic anatomical structures) and to facilitate for further 
generalization to human subjects with complex anatomy, a 30 

density-scaling-based simulation method is used in numeri-
cal simulations. The method contained the following steps. 

From clinical contrast-enhanced CT images, a total of 
10,000 pairs of representative calcium and iodine concen­
tration levels (Cea and CI) were predetermined. Iodine-

35 
containing organs such as the coronary arteries and cardiac 
chambers are assumed to be composed of both water and the 
pre-selected iodine solution with concentration CI" Bony 
structures are assumed to be composed of both water and the 
pre-selected calcium solution with concentration Cea· The 
mass attenuation coefficient of an iodine-containing pixel 40 

can be represented as follows: 

(25) 

is the mass attenuation coefficient of the i th material at 
energy level E. 

5) The linear attenuation coefficient of the pixel at an 
arbitrary energy level E was estimated using 

The process in 1 )-5) was repeated for all pixels in the image. 
6) Monoenergetic sinograms at different E ( 40 to 140 ke V) 

were generated via numerical forward projection. 
7) A polychromatic sinogram was synthesized from the 

monoenergetic sinograms and the polychromatic x-ray spec­
trum. 

To collect data for the training of Deep-En-Chroma sys-
tem 300, anthropomorphic phantoms were scanned that 
included (i) a head phantom (PH-3 ACS Head, Kyoto 
Kagaku, Japan), (ii) a multipurpose anthropomorphic phan­
tom (Lungman, Kyoto Kagaku, Japan); (iii) an abdominal 
CT phantom with a custom tumor insert that contains 
multiple simulated liver lesions (CIRS Triple Modality 3D 
Abdominal Phantom, Norfolk, Va.); and (iv) the Gammex 
spectral CT phantom (Ganmiex, Middleton, Wis.) that pro­
vides users with the ability to perform quality assurance for 
spectral CT analysis of iodine and calcium. Training data 
acquisitions were performed using the GE 64-slice Discov­
ery CT 750 HD. All phantoms were scanned at 80 kV, 100 

where f denotes the weight fraction. The mass attenuation 
of each calcium-containing pixel can be modeled using the 
similar method. For clarity, a step-by-step procedure to 
generate the numerical simulation data is presented as 
follows: 

45 kV, 120 kV, and 140 kV to acquire the training data. From 
the acquired data, the following training labels was gener­
ated: (i) material-basis maps for (water, bone) and (water, 
iodine) and (ii) sinogram data for each given scan have been 
obtained using a proprietary software toolkit provided by 

1) An image-based segmentation technique can be used to 
segment each clinical CT image into a water mask ( denoted 
as Mw), an iodine solution mask ( denoted as M,odI), a 
calcium solution mask ( denoted as MeJ, and an air mask 
(denoted as Ma,r). 

2) For a given CT system and x-ray spectrum, the 
effective beam energy E was estimated via a calibration 
process. 

50 GE Healthcare. The CT images from the 80 and 140 kV 
scans were paired to perform image-domain material 
decomposition to generate the needed material basis training 
labels. A total of 5,000 CT scans were performed to acquire 
more than 1.0 million data pairs to train the network and test 

55 its performance. For each phantom, 90% of the acquired 
data has been used for training purposes and 10% of the data 
was allocated as test data to ensure that there is no overfitting 
in the training process of Deep-En-Chroma system 300. 

60 
3) The CT image with units of HU was converted to µ(x, 

The training data sets were acquired using the GE 64-slice 
Discovery CT750 HD scanner. This CT system is equipped 
with the GE fast kV switching technique known as Gem­
stone Spectral Imaging (GSI) (GE Healthcare, Wis.). All 
phantoms were scanned at 80 kV, 100 kV, 120 kV, and 140 
kV at a variety of exposure levels ranging from 10 mAs to 

----;, 

E) using 

65 500 mAs to acquire training data. From the acquired data, 
the following training labels have been generated: (1) mate­
rial basis images (water, calcium) and (water, iodine). The 
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images from the 80 kV scan and the 140 kV scan were paired 
22 

6. The system of claim 1 wherein the single energy 
spectrum x-ray dataset is a single energy spectrum computed 
tomography (CT) dataset. 

7. The system of claim 1 wherein the material basis 
5 generator is configured to extract energy dependent linear 

attenuation coefficients for each image object in the single 
energy spectrum x-ray dataset to decompose the single 
energy spectrum x-ray dataset as a linear combination of 

to perform image-domain material decomposition to gener­
ate basis images for each scanned phantom in order to obtain 
the training label basis images. (2) Label images for the 
effective energy feature "En-Chroma Generator" module. 
From the ground truth basis images, a forward projection 
operation is performed to generate the corresponding line 
integrals for each given ray. This step yields two line 
integrals, Pi., and p2 _, for the two corresponding material 
basis images respectively. The nonlinear optimization prob­
lem ( equation 11) was then solved to obtain the effective 
energy, E,, and used as the training label for the "En­
Chroma" module in the Deep-En-Chroma system. (3) Sino­
gram data, i.e. y, values, for each given scan were obtained. 
The same procedures were performed to generate training 15 

datasets for numerical simulated datasets. 

10 
energy dependence function bk ( E ), and corresponding 

expansion coefficients aix), wherein x is a selected spatial 
location, E is an x-ray energy in the single energy spectrum 
x-ray dataset at the selected spatial location, and k=l, 
2, ... , K, to serve as an index that labels material basis that 
is selected for decomposition. 

8. The system of claim 7 wherein the material basis 
generator is configured to generate material basis images 

aix) from the single energy spectrum x-ray dataset. 
Thus, it was shown that an implementation of a Deep­

En-Chroma system could be designed and trained to achieve 
spectral CT imaging using an energy integration detector 
and a single-energy acquisition. Both physical phantom 
studies and human subject studies demonstrate the clinical 
feasibility of generating quantitative iodine maps to detect 
lung perfusion defect for pulmonary embolism diagnosis. 

20 
9. The system of claim 8 wherein the output of material 

basis generator is configured to generate energy-resolved 

The present invention has been described in terms of one 
or more preferred embodiments, and it should be appreciated 25 

that many equivalents, alternatives, variations, and modifi­
cations, aside from those expressly stated, are possible and 
within the scope of the invention. 

The invention claimed is: 
1. A system for performing material decomposition using 

a single energy spectrum x-ray dataset, the system compris-
ing: 

30 

a material basis generator configured to decompose the 35 
single energy spectrum x-ray dataset into at least two 
material basis images; 

an en-chroma generator configured to regularize the mate­
rial basis generator by enforcing an effective energy 
constraint; and 

a sinogram generator configured to generate projection 
data from the at least two material basis images. 

2. The system of claim 1 wherein the en-chroma generator 
is configured to extract the effective energy from each datum 

40 

in the single energy spectrum x-ray dataset, including the at 45 
least two material basis images. 

3. The system of claim 1 wherein the material basis 
generator is configured to extract energy dependent linear 
attenuation coefficients for each image object in the single 
energy spectrum dataset to decompose the single energy 

50 
spectrum dataset as a linear combination of energy depen­
dence function bk (E), and corresponding expansion coeffi-

cients aix\ wherein x is a selected spatial location, E is an 
x-ray energy in the single energy spectrum x-ray dataset at 
the selected spatial location, and k= 1, 2, ... , K, to serve as 55 

an index that labels material basis that is selected for 
decomposition. 

spectral CT images, as follows: µ(7,E)=~k'7ix')biE). 
10. A method for performing a material decomposition 

using a single energy spectrum x-ray dataset, the method 
comprising: 

accessing the single energy spectrum x-ray dataset; 
decomposing the single energy spectrum x-ray dataset 

into a linear combination of energy dependence func­
tion, bk (E), and corresponding expansion coefficients, 

aix); 

wherein x is a selected spatial location in the single 
energy spectrum x-ray dataset, E is an x-ray energy in 
the single energy spectrum x-ray dataset at the selected 
spatial location, and, k=l, 2, ... , K, to an index that 
labels material basis that is selected for decomposition; 

wherein aix')=~jakJe/x), e/x) is an expanded image 
voxel basis function, where jE[l,N] and N=NxNyNz is 
a total number of image voxels in an image formed 
from the single energy spectrum x-ray dataset. 

11. The method of claim 10 wherein decomposing the 
single energy spectrum x-ray dataset includes subjecting the 
single energy spectrum x-ray dataset to a multi-module 
system. 

12. The method of claim 11 wherein the multi-module 
system includes: 

a material basis generator configured to decompose the 
single energy spectrum x-ray dataset into at least two 
material basis images; 

an en-chroma generator configured to regularize the mate­
rial basis generator by enforcing an effective energy 
constraint; and 

a sinogram generator configured to generate projection 
data from the at least two material basis images. 

13. The method of claim 10 further comprising receiving 
a user-selection of a desired energy for decomposition and 
wherein the decomposing is performed using the desired 
energy for decomposition. 4. The system of claim 3 wherein the material basis 

generator is configured to decompose the single energy 
spectrum x-ray dataset into linear attenuation coefficients, 

µ(7, E), as follows: 

14. A method for performing a material decomposition of 
60 a single energy spectrum x-ray dataset, the method com­

prising: 

5. The system of claim 1 wherein at least one of the 65 

material basis generator or the en-chroma generator are 
formed of a learning network. 

accessing the single energy spectrum x-ray dataset; 
receiving a user-selection of a desired energy for decom­

position; and 
decomposing the single energy spectrum x-ray dataset 

into a linear combination of energy dependence func­
tion using the desired energy for decomposition. 



US 11,350,895 B2 
23 

15. The method of claim 14 further comprising generating 
a set of images specific to the desired energy for decompo­
sition from the single energy spectrum x-ray dataset. 

24 
22. A medical imaging system comprising: 
an x-ray source configured to deliver x-rays to an imaging 

patient at a single, selected x-ray energy spectrum; 
16. The method of claim 14 wherein decomposing 

includes decomposing into a linear combination of energy 5 

dependence function, bk (E), and corresponding expansion 

a controller configured to control the x-ray source to 
acquire a single energy spectrum x-ray dataset from the 
imaging patient at the single, selected x-ray energy 
spectrum; coefficients, aix), wherein X is a selected spatial location 

in the single energy spectrum x-ray dataset, E is an x-ray 
energy in the single energy spectrum x-ray dataset at the 
selected spatial location, and k= 1, 2, ... , K, to an index that 10 

labels material basis that is selected for decomposition, and 

a material decomposition image reconstruction system 
comprising: 
a material basis generator configured to decompose the 

single energy spectrum x-ray dataset into at least two 
material basis images; 

wherein ai7)=~jakJe)x), e)x) is an expanded image 
voxel basis function, wherejE[l,N] and N=NxNyNz is a total 
number of image voxels in an image formed from the single 15 
energy spectrum x-ray dataset. 

an en-chroma generator configured to regularize the 
material basis generator by enforcing an effective 
energy constraint; and 

a sinogram generator configured to generate projection 
data from the at least two material basis images. 17. The method of claim 14 wherein decomposing the 

single energy spectrum x-ray dataset includes subjecting the 
single energy spectrum x-ray dataset to a multi-module 
system. 

18. The method of claim 17 wherein the multi-module 
system includes: 

a material basis generator configured to decompose the 
single energy spectrum x-ray dataset into at least two 
material basis images; 

an en-chroma generator configured to regularize the mate­
rial basis generator by enforcing an effective energy 
constraint; and 

a sinogram generator configured to generate projection 
data from the at least two material basis images. 

19. The method of claim 18 wherein the material basis 
generator is configured to extract energy dependent linear 
attenuation coefficients for each image object in the single 
energy spectrum x-ray dataset to decompose the single 
energy spectrum x-ray dataset as a linear combination of 
energy dependence function bk (E), and corresponding 

expansion coefficients aix), wherein X is a selected spatial 
location, E is an x-ray energy in the single energy spectrum 
x-ray dataset at the selected spatial location, and k=l, 

23. The system of claim 22 wherein the en-chroma 
generator is configured to extract the effective energy from 

20 each datum in the single energy spectrum x-ray dataset, 
including the at least two material basis images. 

24. The system of claim 22 wherein the material basis 
generator is configured to extract energy dependent linear 
attenuation coefficients for each image object in the single 

25 energy spectrum x-ray dataset to decompose the single 
energy spectrum x-ray dataset as a linear combination of 
energy dependence function bk ( E ), and corresponding 

expansion coefficients aix), wherein (x) is a selected 
spatial location, E is an x-ray energy in the single energy 

30 spectrum x-ray dataset at the selected spatial location, and 
k=l, 2, ... , K, to serve as an index that labels material basis 
that is selected for decomposition. 

25. The system of claim 24 wherein the material basis 
generator is configured to generate material basis images 

35 
aix) from the single energy spectrum x-ray dataset. 

26. The system of claim 25 wherein the output of material 
basis generator is configured to generate energy-resolved 
spectral CT images, as follows: 

2, ... , K, to serve as an index that labels material basis that 40 

is selected for decomposition. 
20. The method of claim 19 wherein the material basis 

generator is configured to generate material basis images 

aix) from the single energy spectrum x-ray dataset. 
21. The method of claim 20 wherein the output of material 

basis generator is configured to generate energy-resolved 
spectral CT images, as follows: 

27. The system of claim 26 wherein the energy depen­
dence functions bk (E) are specified by the materials used in 
material basis generator. 

45 28. The system of claim 22 wherein at least one of the 
material basis generator or the en-chroma generator are 
formed of a learning network. 

* * * * * 


