
I 1111111111111111 1111111111 11111 lllll 111111111111111 11111 1111111111 11111111 
US011539895Bl 

c12) United States Patent 
Seets et al. 

(10) Patent No.: 
(45) Date of Patent: 

US 11,539,895 Bl 
Dec. 27, 2022 

(54) SYSTEMS, METHODS, AND MEDIA FOR 
MOTION ADAPTIVE IMAGING USING 
SINGLE-PHOTON IMAGE SENSOR DATA 

2015/0312463 Al* 10/2015 Gupta 

2016/0373676 Al* 12/2016 Zhang . 
2021/0319606 Al 10/2021 Gupta et al. 

H04N 5/2355 
348/239 

H04N 5/332 

(71) 

(72) 

(73) 

( *) 

Applicant: WISCONSIN ALUMNI RESEARCH 
FOUNDATION, Madison, WI (US) 

Inventors: Trevor Seets, Madison, WI (US); Atul 
Ingle, Madison, WI (US); Andreas 
Velten, Madison, WI (US) 

Assignee: WISCONSIN ALUMNI RESEARCH 
FOUNDATION, Madison, WI (US) 

Notice: Subject to any disclaimer, the term ofthis 
patent is extended or adjusted under 35 
U.S.C. 154(b) by O days. 

OTHER PUBLICATIONS 

Brandli et al., A 240 x 180 130 dB 3 µs Latency Global Shutter 
Spatiotemporal Vision Sensor, IEEE Journal of Solid-State Circuits, 
2014, 49(10):2333-2341. 
Evangelidis et al., Parametric Image Alignment Using Enhanced 
Correlation Coefficient Maximization, IEEE Transactions on Pat­
tern Analysis and Machine Intelligence, 2008, 30(10):1858-1865. 
Fossum et al., The Quanta Image Sensor: Every Photon Counts, 
Sensors, 2016, 16(8):1260, 25 pages. 

(Continued) 

Primary Examiner - Luong T Nguyen 
(74) Attorney, Agent, or Firm -Quarles & Brady LLP 

(21) Appl. No.: 17/485,978 (57) ABSTRACT 

(22) 

(51) 

(52) 

(58) 

(56) 

Filed: Sep. 27, 2021 

Int. Cl. 
H04N 51235 
U.S. Cl. 

(2006.01) 

CPC ................................. H04N 512351 (2013.01) 
Field of Classification Search 
CPC .. H04N 5/2351; H04N 5/2352; H04N 5/2354; 

H04N 5/2355; H04N 5/2356; H04N 
5/235; H04N 5/23229 

See application file for complete search history. 

References Cited 

U.S. PATENT DOCUMENTS 

9,210,350 B2 * 12/2015 Dai H04N 5/378 
10,200,572 Bl* 2/2019 Fotland ................... G06T 7/246 

Scene (e.g .. with 
rclatjvc motion) 

SPADA1wy 

l04 

!High-speed cai,ture 
(e.g., up io ~100.000 fps) 

In accordance with some embodiments, systems, methods, 
and media for motion adaptive imaging using single-photon 
image sensor data are provided. In some embodiments, the 
system comprises: an image sensor comprising single-pho­
ton detectors in an array; a processor programmed to: 
receive a sequence of photon frames, each comprising pixels 
having a value indicative of whether a photon was received 
during a frame period, each of the pixels corresponds to a 
pixel location; identify, for each of the pixel locations, 
changepoints, each indicative of a change in scene bright­
ness; identify a photon frame in the sequence at which at 
least a threshold change in brightness has occurred based on 
the changepoints associated with each of the plurality of 
pixel locations; and generate a series of changepoint frames, 
wherein each changepoint frame is based on estimated 
brightness associated with each pixel location at a point in 
the sequence of photon frames. 
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SYSTEMS, METHODS, AND MEDIA FOR 
MOTION ADAPTIVE IMAGING USING 

SINGLE-PHOTON IMAGE SENSOR DATA 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

This invention was made with government support under 
HR0Oll-16-C-0025 awarded by the DOD/DARPA and 
under 1846884 awarded by the National Science Founda- 10 

tion. The government has certain rights in the invention. 

2 
In some embodiments, the at least one processor is further 

programmed to: estimate, for each of the plurality pixel 
locations using the series of images, a single brightness 
value between consecutive changepoints; and generate the 
first image based on the estimated single brightness value for 
each pixel location at the first point in the series of images. 

In some embodiments, the at least one processor is further 
programmed to: determine motion between at least a portion 
of the first image and at least a portion of the second image. 

In some embodiments, the at least one processor is further 
programmed to: generate a deblurred image based on the 
motion between the first image and the second image and 
pixel values of each of the series of images. 

NIA 

CROSS-REFERENCE TO RELATED 
APPLICATIONS In some embodiments, the at least one processor is further 

15 programmed to: generate an upsampled image based on the 
motion between the first image and the second image and 
pixel values of each of the series of images. 

BACKGROUND 

When imaging dynamic scenes with a conventional cam- 20 

era, the finite exposure time of the camera sensor results in 
motion blur. This blur can be due to motion in the scene or 
motion of the camera. Such blur can cause the images of a 
dynamic scene generated by the conventional camera to be 
relatively low quality for viewing by a user and for machine 25 

vision tasks. One solution to this problem is to simply lower 
the exposure time of the camera. However, this leads to 
noisy images, especially in low light conditions. 

Accordingly, new systems, methods, and media for 
motion adaptive imaging using single-photon image sensor 30 

data are desirable. 

SUMMARY 

In accordance with some embodiments of the disclosed 35 

subject matter, systems, methods, and media for motion 
adaptive imaging using single-photon image sensor data are 
provided. 

In some embodiments, the at least one processor is further 
programmed to: provide the first image and the second 
image to a machine learning model. 

In some embodiments, the threshold portion of pixel 
locations is at least one percent of pixel locations. 

In accordance with some embodiments of the disclosed 
subject matter, a method for generating digital images is 
provided, the method comprising: receiving, from an image 
sensor comprising a plurality of detectors configured to 
detect arrival of photons, a series of images, each image in 
the series of images comprising a plurality of pixels repre­
senting brightness of a portion of a scene, each of the 
plurality of pixels associated with a pixel location (x,y); 
identifying, for each of the plurality pixel locations using the 
series of images, one or more changepoints at which bright­
ness associated with the pixel transitions between different 
steady state brightness values; determining, based on 
changepoints associated with the plurality of pixel locations, 
a first point in the series of images at which at least a 
threshold portion of pixel locations have included a change­
point; generating a first image based on brightness associ­
ated with each pixel location at the first point in the series of In accordance with some embodiments of the disclosed 

subject matter, a system for generating digital images is 
provided, the system comprising: an image sensor compris­
ing a plurality of detectors configured to detect arrival of 
photons, the plurality of detectors arranged in an array; at 
least one processor that is programmed to: receive, from the 
image sensor, a series of images, each image in the series of 
images comprising a plurality of pixels representing bright­
ness of a portion of a scene, each of the plurality of pixels 
associated with a pixel location (x,y); identify, for each of 
the plurality pixel locations using the series of images, one 

40 images; determine, based on changepoints associated with 
the plurality of pixel locations, a second point in the series 
of images at which at least the threshold portion of pixel 
locations have included a changepoint; and generate a 
second image based on brightness associated with each pixel 

45 location at the second point in the series of images. 

or more changepoints at which brightness associated with 50 

the pixel transitions between different steady state brightness 
values; determine, based on changepoints associated with 
the plurality of pixel locations, a first point in the series of 
images at which at least a threshold portion of pixel loca­
tions have included a changepoint; generate a first image 55 

based on brightness associated with each pixel location at 
the first point in the series of images; determine, based on 
changepoints associated with the plurality of pixel locations, 
a second point in the series of images at which at least the 
threshold portion of pixel locations have included a change- 60 

point; and generate a second image based on brightness 
associated with each pixel location at the second point in the 
series of images. 

In accordance with some embodiments of the disclosed 
subject matter, a system for generating digital images is 
provided, the method comprising: an image sensor compris­
ing a plurality of single-photon detectors configured to 
detect arrival of photons, the plurality of detectors arranged 
in an array; at least one processor that is programmed to: 
receive a sequence of photon frames, each photon frame 
comprising a plurality of pixels having a value indicative of 
whether a photon was received during a frame period 
associated with the photon frame, wherein each of the 
plurality of pixels corresponds to a pixel location of a 
plurality of pixel locations; identify, for each of the plurality 
of pixel locations, a plurality of changepoints, each of the 
plurality of changepoints is indicative of a change in scene 
brightness; identify a photon frame in the sequence of 
photon frames at which at least a threshold change in 
brightness has occurred based on the changepoints associ­
ated with each of the plurality of pixel locations; and 
generate a series of changepoint frames, wherein each In some embodiments, each of the plurality of detectors is 

a single-photon avalanche diode (SPAD). 
In some embodiments, each SPAD is configured to record 

a timestamp at which a single photon was detected. 

65 changepoint frame is based on estimated brightness associ­
ated with each pixel location at a point in the sequence of 
photon frames. 
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In some embodiments, the at least one processor that is 
further programmed to: identify each of plurality of change­
points using no information from photon frames following a 
photon frame corresponding to the respective changepoint in 
the sequence. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Various objects, features, and advantages of the disclosed 
subject matter can be more fully appreciated with reference 
to the following detailed description of the disclosed subject 
matter when considered in connection with the following 
drawings, in which like reference numerals identify like 
elements. 

FIG. 1 shows an example of a flow for motion adaptive 
imaging using single-photon image sensor data in accor­
dance with some embodiments of the disclosed subject 
matter. 

FIG. 2 shows examples of photon frames, flux change­
point estimates based on the photon frames, changepoint 
frames based on the flux changepoint estimates, and a 
deblurred image generated based on the photon frames and 
the changepoint frames in accordance with some embodi­
ments of the disclosed subject matter. 

FIG. 3 shows an example of a system for adaptive 
imaging using single-photon image sensor data in accor­
dance with some embodiments of the disclosed subject 
matter. 

FIG. 4 shows an example of hardware that can be used to 
implement an image data source, a computing device, and a 
server, shown in FIG. 3 in accordance with some embodi­
ments of the disclosed subject matter. 

4 
temporal resolution brightness information in various areas 
of the scene (e.g., on a per pixel level), and can use the 
brightness information to quantify motion in the scene. In 
some embodiments, mechanisms described herein can gen­
erate image data representing a relatively static period of 
time in the scene based on information about motion in the 
scene derived from the high temporal resolution brightness 
information. 

As described above, in some embodiments, mechanisms 
10 described herein can be use SPADs to generate relatively 

high temporal resolution brightness data. SPADs are a 
rapidly developing image sensing technology that can be 
exhibit extreme low-light sensitivity and picosecond timing 
resolution. SPADs can be used in applications such as light 

15 detection and ranging (LiDAR), non-line-of-sight imaging, 
and fluorescence microscopy that operate in photon-starved 
scenarios. In some embodiments, mechanisms described 
herein can use the high light sensitivity and timing resolu­
tion of SPADs to generate image data for scenes under 

20 various imaging conditions, including dynamic scenes in a 
passive imaging setting with low illumination conditions 
( e.g., scenes for which conventional digital imaging is 
challenging). 

In some embodiments, data captured by an image sensor 
25 implemented to detect the arrival of individual photons ( e.g., 

a SPAD array sensor, a QIS) can be represented as a 3D 
spatio-temporal tensor of photon detection events which can 
be integrated along arbitrary spatio-temporal trajectories 
with dynamically varying integration windows, which can 

30 be defined based on scene motion. 

FIG. 5 shows an example illustrating a comparison of 
errors generated at different combinations of scene motion 
and scene contrast by a simulated implementation of mecha- 35 

nisms described herein and another technique. 

In some embodiments, mechanisms described herein can 
be used to estimate pixel motion from photon timestamp 
data and dynamically adapt integration windows to reduce 
( e.g., minimize motion blur). As described below, simulation 
results show the applicability of techniques described herein 
to a variety of motion profiles including translation, rotation, 
and local object motion. FIG. 6 shows an example of a scene, images of the scene 

generated using various techniques including techniques 
described herein, and signal to noise ratio of various tech­
niques at different levels of scene brightness. 

FIG. 7 shows an example of a process for adaptive 
imaging using single-photon image sensor data in accor­
dance with some embodiments of the disclosed subject 
matter. 

In some embodiments, mechanisms described herein can 
address trade-offs between noise and motion blur due to 

40 scene motion during image capture. For example, mecha­
nisms described herein can be used to generate images with 
improved image quality in challenging scenarios, such as 
capturing images in low light, with fast moving objects. 

FIG. 8 shows an example of a scene including moving 45 

objects, and images of the scene generated using various 
techniques, including techniques described herein. 

Light is fundamentally discrete and can be measured in 
terms of photons. Conventional camera pixels measure 
brightness by first converting incident photon energy into an 
analog quantity (e.g., photocurrent, or charge) that is then 
measured and digitized. When imaging in low light levels 
using conventional image sensor technologies, much of the 

FIG. 9 shows an example of clustered flux change points 
in space and time that can be used to segment objects in a 
scene from a scene background in accordance with some 50 

embodiments of the disclosed subject matter. 
information present in the incident photons is lost due to 
electronic noise inherent in the analog-to-digital conversion 

FIG. 10 shows examples of deblurred images of a scene 
generated using techniques described herein. 

FIG. 11 shows examples of deblurred images of another 
scene generated using techniques described herein. 

DETAILED DESCRIPTION 

In accordance with various embodiments, mechanisms 
(which can, for example, include systems, methods, and 
media) for motion adaptive imaging using single-photon 
image sensor data are provided. 

In some embodiments, mechanisms described herein can 
utilize single photon sensors, such as single-photon ava­
lanche diodes (SPADs) and quanta image sensor (QIS) (e.g., 
as described in Fossum et al., "The quanta image sensor: 
Every photon Counts," Sensors, (2016)), to capture high 

and readout process. Unlike conventional image sensor 
pixels that require l00's-l000's of photons to produce a 
meaningful signal, SPADs are sensitive down to individual 

55 photons. A SPAD pixel can generate a signal indicative of a 
photon arrival at a particular time, with a time resolution on 
the order of hundreds of picoseconds ( e.g., a photon arrival 
time can be recorded within an accuracy of hundreds of 
picoseconds). For example, a SPAD pixel can be configured 

60 to record a timestamp corresponding to a time at which 
arrival of a photon was detected by the SPAD. When the 
arrival of a single pixel can be recorded with sufficient 
accuracy, each photon detection can be seen as an instanta­
neous event free from any motion blur, as the photon left an 

65 object (e.g., by reflection or emission) at a particular 
moment in time, and corresponds to a particular spatial 
location of the object at that moment in time. Such sensi-
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tivity has the potential to facilitate imaging in low light, 
and/or imaging at very high frame rates where each image 
frame is photon-starved. 

The information captured by a SPAD-based sensor is thus 
quite different than a conventional camera: in addition to two 
spatial dimensions ( e.g., the two-dimensional projection of 
the scene onto the image sensor), a SPAD-based sensor can 
also be configured to capture data on a high resolution time 
axis. In some embodiments, SPAD data in two spatial 
dimensions and one time dimension can be used to generate 10 

a three dimensional (3D) spatio-temporal tensor of photon 
detection events ( e.g., 2 spatial dimensions plus 1 time 
dimension). In some embodiments, a 3D spatio-temporal 
tensor can be used to mitigate difficulties caused by the 
noise-blur trade-off. For example, in some embodiments, 15 

data indicative of photon arrival times can be combined 
dynamically, across space and time, when estimating scene 
brightness. In a more particular example, if the scene motion 

6 
higher time resolution than conventional cameras. As 
described above, conventional cameras create an analog 
approximation of a quantized photon stream ( e.g., a charge 
level in a capacitor) and then measure and digitize that 
analog quantity. This process introduces noise and cannot 
take advantage of the inherent quantized properties of pho­
tons incident on photodetectors. Accordingly, in some 
embodiments, mechanisms described herein using photon 
counting techniques can be expected to exhibit higher sen­
sitivity, higher accuracy, and higher temporal resolution 
(e.g., at least in low light scenarios) than conventional 
cameras that generate analog values based on photon arriv­
als integrated over time. 

While single-photon image sensing is a rapidly develop­
ing field, currently available single-photon sensitive image 
sensors have limited in spatial resolution compared to con­
ventional complementary metal-oxide-semiconductor 
(CMOS) and charge-coupled device (CCD) image sensors 
(e.g., on the order of hundreds to tens of thousands of pixels, 
compared to millions of pixels). For example, the feasibility 
of making megapixel resolution single-photon sensitive 
camera arrays has been the subject of recent research. 
Additionally, silicon SPAD arrays are amenable to manu­
facturing at scale using the same photolithographic fabrica-

is known prior to image processing, photons can be accu­
mulated along corresponding spatio-temporal trajectories to 20 

create an image with no motion blur. A conventional camera 
does not have this property because at capture time high 
frequency components are lost. So even if scene motion is 
known, image deblurring becomes an ill-posed inverse 
problem. 

In some embodiments, mechanisms described herein can 
generate dynamically changing exposure times, where each 
pixel can have a corresponding set of exposure times. For 
example, mechanisms described herein can use statistical 
changepoint detection to infer points in time where the 30 

photon flux at a given pixel changes from one steady state 
rate to another ( e.g., as an object that was present at the point 

25 tion techniques used to manufacture conventional CMOS 
image sensors, such that many of the foundries producing 
camera sensors used in mobile phones today can likely be 
configured to manufacture SPAD array sensors at similar 

in the scene corresponding to that pixel moves relative to the 
image sensor). Inferring such points can facilitate selection 
of exposure times that adapt to scene motion. For example, 35 

using change-points, a system implemented in accordance 
with some embodiments of the disclosed subject matter can 
facilitate tracking of high contrast edges in the scene, and 
aligmnent of relatively high speed motion ( e.g., due to 
objects moving in the scene and/or camera movement) 40 

across multiple image frames. In a more particular example, 
a system implemented in accordance with some embodi­
ments of the disclosed subject matter can be used to track 
global motion (e.g., rotation). In such an example, such a 
system can track varying motion speeds of different scene 45 

pixels, and can combine photons spatially to create 
deblurred images (e.g., for global motion, such as rotation). 
As another more particular example, a system implemented 

cost. Additionally, current SPAD sensors have a relatively 
small fill factor (e.g., the chip area sensitive to light) 
resulting from the large amount of additional circuitry that 
is used in connection with each pixel. Emerging fabrication 
techniques (e.g., 3D stacking technologies) have the poten­
tial to alleviate this limitation by placing the circuitry behind 
the photosensitive portion of the pixel. 

There are currently two main single-photon detection 
technologies for passive imaging: SPADs and quanta image 
sensors (QIS). Note that although mechanisms described 
herein are generally described in connection with SPAD 
sensors, this is an example, and mechanisms described 
herein can be used with data generated by other single-
photon detection technologies, such as QIS. 

FIG. 1 shows an example 100 of a flow for motion 
adaptive imaging using single-photon image sensor data in 
accordance with some embodiments of the disclosed subject 
matter. As shown in FIG. 1, a camera 102 implemented 
using a SPAD-based array can generate a sequence of frames 
106 of a scene 104 at a very high frame rate compared to 
conventional imaging ( e.g., on the order of thousands to in accordance with some embodiments of the disclosed 

subject matter can be used to track local scene motion. In 
such an example, such a system can generate robust esti­
mates of flux changepoints around the edges of moving 
objects that can improve deblurring results obtained from 
downstream motion alignment and integration. 

50 hundreds of thousands of frames per second). In FIG. 1, 
scene 104 can be a scene with relatively low ambient light, 
and relative motion (e.g., motion of one or more objects in 
scene 104, motion of camera 102 with respect to scene 104, 
etc.). 

In some embodiments, the SPAD-based array can gener-
ate images 106 of the scene that represent arrivals of single 
photons at various areas (e.g., pixels, groups of pixels, etc.) 
of the SPAD-based array (sometimes referred to as photon 
frames). In some embodiments, images 106 can be used to 

As described above, mechanisms described herein can be 55 

used to identify changepoints based on photon arrivals. The 
locations of such changepoints can be compared to a spike­
train generated by a neuromorphic event camera. For 
example, unlike a conventional event camera, mechanisms 
described herein can preserve original intensity information 
for each pixel. As another example, the number of events, 
and the location of such events ( e.g., changepoints) selected 
using mechanisms described herein can adapt to each pixel, 
without using a hard-coded change threshold (e.g., a hard­
coded change threshold implemented in some conventional 
event cameras). As yet another example, direct photon 
measurements are more sensitive, less noisy, and have a 

60 generate one or more images (sometimes referred to herein 
as changepoint images) that each correspond to a threshold 
amount of motion ( a series of changepoint images is some­
times referred to herein as a video). 

In some embodiments, mechanisms described herein can 
65 analyze images in a video 108 to identify motion in the 

scene, and can use the motion in the scene to generate one 
or more deblurred images of the scene using information 
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from images 106. Additionally or alternatively, mechanisms 
described herein can output video 108. For example, mecha­
nisms described herein can cause video 108 to be presented 
using a display. As another example, mechanisms described 
herein can cause video 108 to be provided to a machine 
vision process (e.g., a machine vision process implemented 
using a machine learning model trained using changepoint 
images). In some embodiments, data that can be used to 
generate changepoint frames can be referred to as change­
point video data. 

SPADs can be used with technologies, such as LiDAR 
and fluorescence microscopy, in which data is generated in 
synchronization with a relatively high-power active light 
source, such as a pulsed laser. In some embodiments, 
mechanisms described herein can use a SPAD-based array to 
perform passive imaging (e.g., without a synchronized rela­
tively high-power active light source). For example, mecha­
nisms described herein can collect ambient photons from the 
scene. As another example, mechanisms described herein 
can use a relatively low powered light source (e.g., one or 
more light emitting diodes (LEDs)). 

In some embodiments, mechanisms described herein can 
generate photon frames based on an imaging model that 
assumes a frame-based readout mechanism in which each 
SPAD pixel in a photon frame stores at most one timestamp 
of the first captured ambient photon. Examples are shown in 
FIGS. 1 and 2 (in FIG. 2, panels (a) and (b)), in which arrival 
time can represent a time at which a photon arrived ( or if the 
entire frame passed without any photons arriving). In a 
particular example, a SPAD-based array can be configured 
to generate a series of arrival times 106a corresponding to 
each area of the array (e.g., each pixel in the array). In the 
examples shown in FIGS. 1 and 2, a brighter area of the 
scene can correspond to shorter arrival times, and a dimmer 
area of the scene can correspond to longer arrival times. 

In some embodiments, photon frames can be read out 
synchronously from the entire SPAD array. For example, 
data can be read out at relatively high photon frame rates 
(e.g., on the order of hundreds of kilohertz (kHz) corre­
sponding to frame times on the order of a few microsec­
onds). 

In some embodiments, N Pf can denote a number of photon 
frames, and T Pf can be a frame period. The total exposure 
time can be represented by T=N,ffTPf" Focusing on a specific 
pixel in the SPAD array, the i' photon frame (e.g., where 
1:<:;i:"NPf), the output of the pixel can be tagged with a photon 
arrival timestamp t; relative to the start of the ith photon 
frame. In some embodiments, due to random timing jitter 
and finite resolution of timing electronics, the times tamp can 
be stored as a discrete fixed-point value. For example, the 
SPAD-based array used to generate images in FIGS. 10 and 
11 has a 250 picosecond discretization. In some embodi­
ments, if no photons are detected during a photon frame, t; 
can be set to T Pf" 

In general, photon arrivals at a SPAD pixel can be 
modeled as a Poisson process. It is possible to estimate the 
intensity of this process (which can correspond to perceived 
brightness at the pixel) from the sequence of photon arrival 
times. A maximum likelihood brightness estimator <I> for the 
true photon flux <I> can be represented as: 

8 
where q is the sensor's photon detection efficiency, and 
denotes a binary indicator variable. In EQ. (1), the pixel 
intensity is assumed to not change during the exposure time 
T. However, this assumption is violated in when the scene 

5 includes motion. If the temporal locations of intensity 
changes can be located, EQ. (1) can still be used to estimate 
a time-varying intensity profile for each pixel. 

In general, photon flux at a location of a particular portion 
of an image sensor (e.g., a pixel location, a jot location) may 

IO change over time, for example, due to scene motion. Such 
changes can make it challenging to choose pixel exposure 
times prior to generating an image. For example, for pixel 
locations that have with rapidly varying brightness, a shorter 
exposure time can generate higher quality image data. For 

15 pixel locations that have more slowly varying brightness, 
longer exposure times can be appropriate. 

In some embodiments, mechanisms described herein can 
dynamically adapt to brightness variations and choose time­
varying exposure times on a per pixel basis. For example, in 

20 some embodiments, mechanisms described herein can locate 
temporal change locations at which a pixel location's photon 
flux has a large change. Such a temporal location is some­
times referred to herein as a flux changepoint. 

In general, each pixel location in an array (e.g., a SPAD-
25 based array, a QIS array) can have different numbers of flux 

changepoints, which can occur at different times. In some 
embodiments, mechanisms described herein can operate 
based on the assumption that for each pixel the intensity 
remains constant between consecutive flux changepoints. 

30 Some pixel locations can maintain a constant brightness 
over an entire capture time T (e.g., pixels in a static portion 
of the scene). For such pixels, mechanisms described herein 
can determine that no flux changepoints are detected, and 
photons can be integrated over the entire capture time T to 

35 estimate a brightness of that portion of the scene. For pixels 
with brightness changes (e.g., due to motion), mechanisms 
described herein can approximate intensity variations using 
any suitable technique or combination of techniques. For 
example, mechanisms described herein can estimate inten-

40 sity over each piecewise constant sub-interval by summing 
photons during that sub-interval (e.g., an interval between 
two flux changepoints). As described below, the lengths of 
such sub-intervals can depend on how quickly the local pixel 
brightness varies over time, which in tum, can depend on the 

45 true motion speed. In some embodiments, mechanisms 
described herein can be unaffected by brightness changes in 
the scene due to lighting conditions (e.g., non-uniform scene 
illumination, shadows, etc.) when the change(s) in lighting 
occurs more slowly than motion of objects in the scene (e.g., 

50 natural light). Lighting changes that are relatively abrupt 
(e.g., a high speed flash, lightning, etc.), may cause a 
changepoint to be detected for one or more scene areas. 

In some embodiments, mechanisms described herein can 
use any suitable technique to detect changepoints for each of 

55 various regions of an image (e.g., for each pixel, for a group 
of pixels, etc.). For example, mechanisms described herein 
can use any technique that can split a time-series of mea­
surements into regions with similar statistical properties. In 

Npf 

I1u, * rv1 J 
<I> = _i=_l ___ _ 

particular, a time series generated by a SPAD-based array 
60 can be a sequence of photon timestamps at a pixel location, 

(lJ and mechanisms described herein can attempt to identify 
regions where the timestamps have the same mean arrival 
rate (e.g., the photon flux during this time is roughly 
constant). Such regions with relatively constant flux can be 

65 referred to as virtual exposures. In some embodiments, 
mechanisms described herein can generate a set of estimated 
flux values 108a associated with a particular pixel based on 
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the regions of relatively constant flux identified. Photons in 
each virtual exposure can be aggregated to create a piece­
wise constant flux estimates, which can be used to generate 
changepoint images and/or a video including changepoint 
images. 

10 
MUP algorithm made available by C. Truong, in the ruptures 
Python Package (available at https://ctruong(dot)perso(dot) 
math( dot )cnrs( dot )fr/ruptures-docs/build/html/index( dot) 
html) which is approximate but has a relatively fast run time 

5 (e.g., suitable for relatively large images). For example, 
mechanisms described herein can be implemented using the 
Pruned Exact Linear Time (PELT) algorithm described in 
Killick et al., "Optimal detection of changepoints with a 
linear computational cost," Journal of the American Statis-

The changepoint data (and the video of changepoint 
frames) does not have an inherent frame rate, as each pixel 
can be associated with a continuous time piecewise constant 
function, which can facilitate sampling of the changepoint 
video data at arbitrarily spaced time instants in [O,T] to 
obtain any suitable frame rate. For example, mechanisms 
described herein can sample the changepoint video data at 
non-uniform time intervals using any suitable criterion or 
combination of criterion. In a more particular example, 15 
starting with the initial frame sampled at t=O, mechanisms 
described herein can sample (e.g., generate) subsequent 
frames at moments in time when at least a threshold portion 
(e.g., 1 %, 5%, 10%, 15%, 20%, 25%, etc.) of the pixel 
values have switched to a new estimated photon flux. This 
can generate a series of frames with a variable frame rate 
that adapts to changes in scene dynamics (e.g., changes in 
velocity of motion in the scene), such that scenes with fast 
moving objects can be expected to produce a higher average 
video frame rate. Note that although mechanisms described 
herein are generally described as using photon frames in 
which each pixel location is associated with the arrival of 
one or more single photons during a frame period, mecha­
nisms described herein can be used with conventional cam­
eras (e.g., cameras with a frame rate above 30 frames per 
second). 

10 tical Association, 107(500):1590-1598 (2012), which gives 
an exact solution but runs slower (e.g., suitable for relatively 
small images). Additional details related to changepoint 
detection are described in Appendix A, which is hereby 
incorporated by reference herein in its entirety. 

Note that the cost function represented in EQ. (2) applies 
to photon timestamp data, but the same concept of adaptive 
flux changepoint detection can be used with photon count 
data as well (e.g., generated using a QIS sensor or a 
SPAD-based sensor). A modified cost function that uses 

20 photon counts (0 or 1) is described in Appendix A, which has 
been incorporated herein by reference. 

In general, as the number of pixels increases, processing 
photon frames with high spatio-temporal resolution can be 
expected to be increasingly resource intensive if the tech-

25 niques used for processing are not altered. The online 
changepoint technique described in Appendix A can reduce 
resource use, and accordingly, may be more suitable for a 
real-time implementation. Additionally, changepoint data 
can be used to implement video compression with variable 

30 frame rate. For example, by tuning the regularization param­
eter of the changepoint detection algorithm used a tradeoff 
between image fidelity and data rate can be achieved. In some embodiments, generating a series of changepoint 

frames (e.g., a video) using a threshold to adaptively gen­
erate changepoint images can preserve relatively large 
brightness changes in a scene. For example, the edges of a 
bright object moving across a dark background remain 
relatively sharp in each changepoint image. Note that por­
tions of the scene with finer texture details (e.g., within the 
borders of an object) may appear blurred. 

In some embodiments, mechanisms described herein can 
identify changepoints using a non-causal technique (which 
can be referred to as an offline technique). Such a non-causal 
changepoint identification technique can use a full sequence 

In some embodiments, mechanisms described herein can 
use changepoint data to estimate motion information in the 

35 scene. Such motion information can be used in connection 
with the photon frames to create a deblurred image or 
images (e.g., a deblurred video). 

In some embodiments, at 110, any suitable technique can 
be used to estimate motion using changepoint data. For 

40 example, mechanisms described herein can use a correla­
tion-based image registration technique to estimate motion 
between consecutive frames in changepoint data. In a more 
particular example, for each location p=[x,y] in an ith 

changepoint video frame, it can be assumed to map to a of photon timestamps associated with a particular pixel to 
estimate flux changepoints at that pixel. Additionally or 
alternatively, in some embodiments, mechanisms described 
herein can identify whether a particular photon frame cor­
responds to a changepoint using a technique that uses photon 
timestamps from preceding photon frames in a sequence of 
photon timestamps, and using fewer or zero photon time- 50 
stamps from frames that come after the particular photon 
frames. 

45 location p' in the (i+ 1 Y' frame. In such an example, the 
mapping can be approximated using a linear transformation: 

Ap=p', (3) 

In some embodiments, A can be constrained to represent 
planar Euclidean motion (rotation and translation). For 
example, using 0 to represent the amount of rotation cen­
tered around a point [rx,ry], and [tx,ty] to represent a trans­
lation vector, A can be represented as: In some embodiments, mechanisms described herein can 

use a changepoint identification technique based on an 
optimization problem that can be represented as: 

(2) 

where <I>; is the photon flux estimate given by EQ. (1) using 
only the subset of photons between times t1 and t1;+i· Here A 
is a penalty term that can mitigate overfitting by penalizing 
the number of flux changepoints. Various techniques can be 
used to detect changepoints. For example, mechanisms 
described herein can be implemented using the BOTTO-

55 

{ 

cose sine rx(l - cose) + rysine + r x} 
A= -sine cose ry(I - cose) - rxsine + Ty , 

0 0 1 

(4) 

60 In some embodiments, an enhanced correlation coefficient 
maximization algorithm can be used to estimate transfor­
mation matrix A for consecutive pairs of changepoint frames 
i➔i+ 1 (e.g., the enhanced correlation coefficient maximiza­
tion algorithm described in Evangelidis et al., "Parametric 

65 Image Alignment using Enhanced Correlation Coefficient 
Maximization," IEEE Transactions on Pattern Analysis and 
Machine Intelligence (2008)). Arbitrarily shaped global 
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motion trajectories can be generated based on a sequence of 
frame-to-frame linear transformations determined using 
techniques described herein. In some embodiments, mecha­
nisms described herein can use a patch-wise alignment and 
merging technique(s) to estimate more complex local 5 

motion and occlusions (e.g., as described in Hasinoff et al., 
"Burst photography for high dynamic range and low-light 
imaging on mobile cameras," ACM Transactions on Graph-

includes information on intensity and intensity changepoints 
(e.g., derived from single-photon timestamps, derived from 
photon counts, etc.). Additionally, deblurring techniques 
used in connection with event camera data can be adapted to 
photon frame data (e.g., generate by a SPAD-based sensor, 
generated by a QIS, etc.), as the flux change-points can 
represent changes in brightness similar to out-put of event 
cameras (e.g., techniques described in Gallego et al., "Event­
based vision: A survey," IEEE Transactions on Pattern ics (TOG) (2016), and/or Ma et al., "Quanta burst photog­

raphy," ACM Trans. Graph. (2020)). 10 Analysis and Machine Intelligence (2020); Gehrig et al., 
"EKLT: Asynchronous, photometric feature tracking using 
events and frames," Int. J. Comput. Vis. (2019); and Stof­
fregen et al., "Event-based motion segmentation by motion 
compensation," Proceedings of the IEEE International Con-

In some embodiments, at 112, mechanisms described 
herein can sum photon counts along estimated spatio-tem­
poral motion trajectories for each pixel using photon counts 
from the original photon frames, which can be used to 
generate a series of one or more still images 114 can be 15 

generated from the original photon frames. In some embodi­
ments, the photon counts and the total time associated with 
the summed frames can be used to estimate the brightness 
associated with a pixel using any suitable technique or 
combination of techniques. For example, techniques 20 

described in connection with EQS. (SS) and (S9) of Appen­
dix A. 

ference on Computer Vision, (2019)). 
In general, motion caused by camera shake can generally 

be expected to be caused by from small rotations in the 
camera that result in 2D translations and rotations in the 
image frames. The short distance translations of shaking 
camera can cause translations in the frames that are similar 
in nature, but smaller in magnitude to translations caused by 
object motion. 

In some embodiments, mechanisms described herein can 
assume that rotation, [rx,ry], is centered around the middle of 
the image and a change in rotation center can be modeled as 
a translation. For example, mechanisms described herein can 
solve for 0, 'tx, and 'ty, which can be linearly interpolated. 
Then using the interpolated motion parameters and EQ. (3), 
mechanisms described herein can align all photon frames 
corresponding to the time interval between changepoint 
frames i➔i+ 1, and can sum these frames to get a photon flux 
image using EQ. (1) at each pixel. This can generate a 
motion deblurred video with the same frame rate as the 
series of changepoint frames, but with finer textures pre­
served as shown in images 114. 

In some embodiments, any suitable technique can be used 
to generate a deblurred image 116 from images 114. For 
example, if a single deblurred image is to be generated (e.g., 
saved to memory, transmitted to another device, presented 
using a display, etc.), mechanisms described herein can 
repeat the process described above on consecutive frames in 
images 114, each time decreasing the frame rate by a factor 
of 2, until eventually a single image is generated. This can 
facilitate progressively combining photons along spatial­
temporal motion trajectories to increase the overall signal to 
noise ratio (SNR), and can also preserve high frequency 
details that may have been lost in changepoint images 108. 
In some embodiments, each image 114 can be associated 
with a current count sum (e.g., a count of photon frames in 
which a photon was detected) and a current time sum (e.g., 
a sum of time values associated with the detections). When 
combining information from two images 114, mechanisms 
described herein can use motion information (e.g., deter­
mined using video 108) to align the images, and can add the 
count sums and time sums associated with pixels along each 
motion trajectory, and can use the added count sums and 
time sums to estimate brightness (e.g., using EQ. (1)) for 
each pixel of the new image. Alternatively, in some embodi­
ments, mechanisms described herein can use the estimated 
brightness associated with each pixel along a trajectory to 
estimate a brightness of pixels in the new image. 

Translation of the camera over larger distances can result 
in parallax while motion within the scene can result in more 

25 complex changes. In these cases, technique described herein 
can capture scene changes approximately. For example, 
mechanisms described herein can be used to estimate frame 
to frame motion over short time-scales and limited to 
regions in the scene. Accordingly, deblurred images gener-

30 ated from data with large camera translations and/or large 
motions within the scene can include blurring and/or other 
artifacts. However, the photon frame image data and change­
point frames can be expected to be relatively free from blur 
and/or other artifacts. 

35 FIG. 2 shows examples of photon frames, flux change-
point estimates based on the photon frames, changepoint 
frames based on the flux changepoint estimates, and a 
deblurred image generated based on the photon frames and 
the changepoint frames in accordance with some embodi-

40 ments of the disclosed subject matter. As shown in FIG. 2, 
panel (a), mechanisms described herein can utilize a series 
of photon frames in which each pixel is associated with a 
timestamp indicating when a photon was detected within an 
exposure associated with that frame. As described above, in 

45 some embodiments, when a photon is not detected within a 
frame, a particular time (e.g., 2 µs) can be assigned to the 
pixel for that frame. 

In FIG. 2, panel (b), a time series of photon timestamps 
for a particular pixel is shown with flux changepoints 

50 highlighted with arrows, and estimated photon flux (in 
photons/second). As shown in FIG. 2, panel (b), longer 
photon timestamps generally correspond to lower photon 
flux, and shorter photon timestamps generally correspond to 
higher photon flux (e.g., as a photon is more likely to arrive 

55 early in a frame when the portion of the scene associated 
with the pixel is associated with high flux). In FIG. 2, panel 
(b), it can be seen that the photon timestamps rapidly vary 
and are extremely noisy due to a heavy-tailed exponential 
distribution. The changepoints (highlighted with arrows), 

60 can be calculated using techniques described herein. For 
example, in some embodiments, using the sequence of 
photon arrival times associated with the pixel, Note that while techniques described herein for aligning 

and adding photon frames has some similarities to a contrast 
maximization algorithm used for event cameras, such tech­
niques do not preserve intensity data unlike event camera 65 

data. As described above, in some embodiments, techniques 
described herein can utilize a video and/or other data that 
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mechanisms described herein can attempt to identify a 
subset [t11 , ••• , t1J, representing the flux changepoints. It can 
be assumed that photon flux between consecutive flux 
changepoints remains constant. For convenience, addition­
ally, the first and the last flux changepoint can be defined to 
be the first and the last photons captured by the pixel 11 = 1 
and lL=Npf). 

Additionally, mechanisms described herein can estimate a 
piecewise constant flux waveform for the pixel (shown by 
the solid line) using the timestamps between changepoints. 
In the example shown in FIG. 2, panel (b ), five different flux 
levels are detected. 

In FIG. 2, panel (c), an example of a portion of a series 
of changepoint frames generated based on the data repre­
sented in panels (a) and (b) is shown. FIG. 2, panel (d), 
shows an example of a deblurred image generated using 
motion trajectories determined using the changepoint frames 
of panel ( c) and the photon frame data shown in panel (a) 
(e.g., as described above in connection with de blurred image 
116). 

FIG. 3 shows an example 300 of a system for adaptive 
imaging using single-photon image sensor data in accor­
dance with some embodiments of the disclosed subject 
matter. As shown in FIG. 3, a computing device 310 can 
receive image data from an image data source 302. In some 
embodiments, computing device 310 can execute at least a 
portion of an image processing system 304 to perform an 
image processing task, such as generating a deblurred 
image, generating a series of deblurred images (e.g., a 
deblurred video), generating a series of changepoint frames, 
etc. Additionally, in some embodiments, computing device 
310 can execute at least a portion of a machine vision system 
(not shown) to perform a machine vision task, such as image 
classification, object detection, image segmentation, object 
tracking, and/or any other suitable computer vision task. For 
example, a machine vision system can receive one or more 
images ( e.g., a deblurred image, a de blurred video, a video 
of changepoint frames, etc.) generated by image processing 
system 304, and can perform a machine vision tasks based 
on the image(s) received from image processing system 304. 

Additionally or alternatively, in some embodiments, com­
puting device 310 can communicate data received from 
image data source 302 to a server 320 over a communication 
network 308, which can execute at least a portion of image 
processing system 304 and/or at least a portion of a machine 
vision system. In such embodiments, server 320 can return 
information to computing device 310 (and/or any other 
suitable computing device) indicative of an output of an 
image processing task performed by image processing sys­
tem 304 and/or a computer vision system. In some embodi­
ments, image processing system 304 can execute one or 
more portions of process 700 described below in connection 
with FIG. 7. 

In some embodiments, computing device 310 and/or 
server 320 can be any suitable computing device or combi­
nation of devices, such as a desktop computer, a laptop 
computer, a smartphone, a tablet computer, a wearable 
computer, a server computer, a computing device integrated 
into a vehicle ( e.g., an autonomous vehicle), a camera, a 
robot, a virtual machine being executed by a physical 
computing device, etc. 

In some embodiments, image data source 302 can be any 
suitable source of image data ( e.g., implemented with a 
SPAD-based array, implemented with a QIS, etc.) and/or 
other data that can be used to generate changepoint data 
(e.g., a series of changepoint frames, lists of changepoints 
and associated flux estimates) as described herein ( e.g., 

14 
depicting a scene in a physical environment of image data 
source 302). For example, image data source 302 can be 
implemented using one or more digital cameras that gener­
ate and/or output image data indicative of an arrival time of 
single photons. In a more particular example, image data 
source 302 can include an imaging device configured to 
detect arrival of individual photons (e.g., using avalanche 
photodiodes), such as imaging devices described in U.S. 
patent application Ser. No. 16/844,899, filed Apr. 9, 2020, 

10 and titled "Systems, methods, and media for high dynamic 
range quanta burst imaging." As another more particular 
example, image data source 302 can include an imaging 
device configured to detect arrival of individual photons 
(e.g., using jot-based detectors), such as imaging devices 

15 described in Fossum et al., "The quanta image sensor: Every 
photon Counts," Sensors, (2016). 

In some embodiments, image data source 302 can be local 
to computing device 310. For example, image data source 
302 can be incorporated with computing device 310 (e.g., 

20 computing device 310 can be configured as part of a device 
for capturing, storing, and/or processing image data). As 
another example, image data source 302 can be connected to 
computing device 310 by a cable, a direct wireless link, etc. 
Additionally or alternatively, in some embodiments, image 

25 data source 302 can be located locally and/or remotely from 
computing device 310, and can communicate image data 
( e.g., photon frames, changepoint image data, a series of 
changepoint frames, changepoint video data etc.) to com­
puting device 310 (and/or server 320) via a communication 

30 network (e.g., communication network 308). 
In some embodiments, communication network 308 can 

be any suitable communication network or combination of 
communication networks. For example, communication net­
work 308 can include a Wi-Fi network (which can include 

35 one or more wireless routers, one or more switches, etc.), a 
peer-to-peer network (e.g., a Bluetooth network), a cellular 
network (e.g., a 3G network, a 4G network, a 5G network, 
etc., complying with any suitable standard, such as CDMA, 
GSM, LTE, LTE Advanced, NR, etc.), a wired network, etc. 

40 In some embodiments, communication network 308 can be 
a local area network, a wide area network, a public network 
(e.g., the Internet), a private or semi-private network (e.g., a 
corporate or university intranet), any other suitable type of 
network, or any suitable combination of networks. Commu-

45 nications links shown in FIG. 3 can each be any suitable 
communications link or combination of communications 
links, such as wired links, fiber optic links, Wi-Fi links, 
Bluetooth links, cellular links, etc. 

FIG. 4 shows an example of hardware that can be used to 
50 implement image data source 302, computing device 310, 

and/or server 320, shown in FIG. 3 in accordance with some 
embodiments of the disclosed subject matter. As shown in 
FIG. 4, in some embodiments, computing device 310 can 
include a processor 402, a display 404, one or more inputs 

55 406, one or more communication systems 408, and/or 
memory 410. In some embodiments, processor 402 can be 
any suitable hardware processor or combination of proces­
sors, such as a central processing unit (CPU), a graphics 
processing unit (GPU), an application specific integrated 

60 circuit (ASIC), a field-programmable gate array (FPGA), 
etc. In some embodiments, display 404 can include any 
suitable display devices, such as a computer monitor, a 
touchscreen, a television, an infotainment screen, etc. In 
some embodiments, inputs 406 can include any suitable 

65 input devices and/or sensors that can be used to receive user 
input, such as a keyboard, a mouse, a touchscreen, a micro­
phone, etc. 
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In some embodiments, communications systems 408 can 
include any suitable hardware, firmware, and/or software for 
communicating information over communication network 
308 and/or any other suitable communication networks. For 
example, communications systems 408 can include one or 
more transceivers, one or more communication chips and/or 
chip sets, etc. In a more particular example, communications 
systems 408 can include hardware, firmware and/or software 
that can be used to establish a Wi-Fi connection, a Bluetooth 
connection, a cellular connection, an Ethernet connection, 10 

etc. 

16 
In some embodiments, memory 420 can include any 

suitable storage device or devices that can be used to store 
instructions, values, etc., that can be used, for example, by 
processor 412 to present content using display 414, to 
communicate with one or more computing devices 310, to 
communicate with one or more image data sources 302, etc. 
Memory 420 can include any suitable volatile memory, 
non-volatile memory, storage, or any suitable combination 
thereof. For example, memory 420 can include RAM, ROM, 
EEPROM, one or more flash drives, one or more hard disks, 
one or more solid state drives, one or more optical drives, 
etc. In some embodiments, memory 420 can have encoded 
thereon a server program for controlling operation of server 

15 320. For example, in such embodiments, processor 412 can 
execute at least a portion of the server program to perform 
one or more image processing tasks described herein and/or 
to perform one or more machine vision tasks based on an 
output generate by an image processing task described 

In some embodiments, memory 410 can include any 
suitable storage device or devices that can be used to store 
image data, instructions, values, etc., that can be used, for 
example, by processor 402 to perform an image processing 
task, to present content using display 404, to communicate 
with server 320 via communications system(s) 308, etc. 
Memory 410 can include any suitable volatile memory, 
non-volatile memory, storage, or any suitable combination 
thereof. For example, memory 410 can include random 
access memory (RAM), read-only memory (ROM), elec­
tronically-erasable programmable read-only memory (EE­
PROM), one or more flash drives, one or more hard disks, 
one or more solid state drives, one or more optical drives, 
etc. In some embodiments, memory 410 can have encoded 
thereon a computer program for controlling operation of 
computing device 310. For example, in such embodiments, 
processor 402 can execute at least a portion of the computer 
program to perform one or more image processing tasks 
described herein and/or to perform one or more machine 
vision tasks based on an output generate by an image 
processing task described herein, present content ( e.g., 
images, information about an object included in image data, 
information about distances to one or more points in a scene, 35 

etc.), receive information and/or content from image data 
source 302, transmit information to image data source 302, 
receive information and/or content from server 320, transmit 
information to server 320, etc. As another example, proces­
sor 402 can execute at least a portion of the computer 40 

program to implement image processing system 304 and/or 
a machine vision system. As yet another example, processor 
402 can execute at least a portion of process 700 described 
below in connection with FIG. 7. 

In some embodiments, server 320 can include a processor 
412, a display 214, one or more inputs 416, one or more 
communications systems 418, and/or memory 420. In some 
embodiments, processor 412 can be any suitable hardware 
processor or combination of processors, such as a CPU, a 
GPU, an ASIC, an FPGA, etc. In some embodiments, 
display 414 can include any suitable display devices, such as 
a computer monitor, a touchscreen, a television, etc. In some 
embodiments, inputs 416 can include any suitable input 
devices and/or sensors that can be used to receive user input, 
such as a keyboard, a mouse, a touchscreen, a microphone, 
etc. 

In some embodiments, communications systems 418 can 
include any suitable hardware, firmware, and/or software for 
communicating information over communication network 
308 and/or any other suitable communication networks. For 
example, communications systems 418 can include one or 
more transceivers, one or more communication chips and/or 
chip sets, etc. In a more particular example, communications 
systems 418 can include hardware, firmware and/or software 
that can be used to establish a Wi-Fi connection, a Bluetooth 
connection, a cellular connection, an Ethernet connection, 
etc. 

20 herein, present content ( e.g., images, information about an 
object included in image data, information about distances 
to one or more points in a scene, etc.), receive information 
and/or content from image data source 302, transmit infor­
mation to image data source 302, receive information and/or 

25 content from computing device 310, transmit information to 
computing device 310, etc. As another example, processor 
412 can execute at least a portion of the server program to 
implement image processing system 304 and/or a machine 
vision system. As yet another example, processor 412 can 

30 execute at least a portion of process 700 described below in 
connection with FIG. 7. 

In some embodiments, image data source 302 can include 
a processor 422, one or more sensors 424, one or more 
communications systems 426, and/or memory 428. In some 
embodiments, processor 422 can be any suitable hardware 
processor or combination of processors, such as a CPU, a 
GPU, an ASIC, an FPGA, etc. In some embodiments, 
sensor(s) 424 can be any suitable components to generate 
image data (e.g., asynchronously) representing a portion of 
a scene. For example, sensor(s) 224 can include a CMOS 
sensor, a CCD sensor, an array of single-photon avalanche 
diodes (SPADs), an array of jots (e.g., as described in U.S. 
patent application Ser. No. 16/844,899), a LiDAR sensor, 
etc. Although not shown, image data source 102 can include 

45 one or more light sources ( e.g., a LiDAR light source, a light 
source for structured light imaging, a modulated light source 
for continuous time-of-flight imaging, etc.). 

Note that, although not shown, image data source 102 can 
include any suitable inputs and/or outputs. For example, 

50 image data source 102 can include input devices and/or 
sensors that can be used to receive user input, such as a 
keyboard, a mouse, a touchscreen, a microphone, a trackpad, 
a trackball, hardware buttons, software buttons, etc. As 
another example, image data source 102 can include any 

55 suitable display devices, such as a computer monitor, a 
touchscreen, a television, etc., one or more speakers, etc. 

In some embodiments, communications systems 226 can 
include any suitable hardware, firmware, and/or software for 
communicating information to computing device 110 ( and, 

60 in some embodiments, over communication network 108 
and/or any other suitable communication networks). For 
example, communications systems 226 can include one or 
more transceivers, one or more communication chips and/or 
chip sets, etc. In a more particular example, communications 

65 systems 226 can include hardware, firmware and/or software 
that can be used to establish a wired connection using any 
suitable port and/or communication standard (e.g., VGA, 
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DVI video, USB, RS-232, etc.), Wi-Fi connection, a Blu­
etooth connection, a cellular connection, an Ethernet con­
nection, etc. 

18 
processes associated with the mechanisms described herein, 
such as process 700 described below in connection with 
FIG. 7. 

In some embodiments, memory 228 can include any 
suitable storage device or devices that can be used to store 
instructions, values, image data, etc., that can be used, for 
example, by processor 222 to: control sensor(s) 224, and/or 
receive outputs from sensor(s) 224; generate image data; 
present content (e.g., images, a user interface, etc.) using a 
display; communicate with one or more computing devices 10 

110; etc. Memory 228 can include any suitable volatile 
memory, non-volatile memory, storage, or any suitable com­
bination thereof. For example, memory 228 can include 
RAM, ROM, EEPROM, one or more flash drives, one or 15 

In some embodiments, image sensor 422 can be an image 
sensor that is implemented at least in part using an array of 
SPAD detectors (sometimes referred to as a Geiger-mode 
avalanche diode) and/or one or more other detectors that are 
configured to detect the arrival time of individual photons 
(e.g., jots of a QIS). In some embodiments, one or more 
elements of image sensor 422 can be configured to generate 
data indicative of the arrival time of photons from the scene 
via optics 424. For example, in some embodiments, image 
sensor 422 can be an array of multiple SPAD detectors. As 
yet another example, image sensor 422 can be a hybrid array 
including SPAD detectors and one or more conventional 
light detectors (e.g., CMOS-based pixels). As still another more hard disks, one or more solid state drives, one or more 

optical drives, etc. In some embodiments, memory 228 can 
have encoded thereon a program for controlling operation of 
image data source 102. For example, in such embodiments, 
processor 222 can execute at least a portion of the program 
to generate image data, transmit information and/or content 
(e.g., image data) to one or more computing devices 110, 
receive information and/or content from one or more com­
puting devices 110, transmit information and/or content 
(e.g., image data) to one or more servers 120, receive 
information and/or content from one or more servers 120, 
receive instructions from one or more devices ( e.g., a 
personal computer, a laptop computer, a tablet computer, a 
smartphone, etc.), etc. As another example, processor 222 
can execute at least a portion of the program to implement 
computer vision system 104. As yet another example, pro­
cessor 222 can execute at least a portion of process 600 
described below in connection with FIG. 6. 

As shown, system 300 can include an image sensor 422 
(e.g., an area sensor that includes an array of single photon 
detectors); optics 424 (which can include, for example, one 
or more lenses, one or more attenuation elements such as a 
filter, a diaphragm, and/or any other suitable optical ele­
ments such as a beam splitter, etc.); a processor 426 for 
controlling operations of image data source 302 which can 
include any suitable hardware processor (which can be a 
central processing unit (CPU), a digital signal processor 
(DSP), a microcontroller (MCU), a graphics processing unit 
(GPU), etc.) or combination of hardware processors; an 
input device(s) 428 (such as a shutter button, a menu button, 
a microphone, a touchscreen, a motion sensor, etc., or any 
suitable combination thereof) for accepting input from a user 
and/or from the environment; a display 430 (e.g., a touch­
screen, a liquid crystal display, a light emitting diode dis­
play, etc.) to present information (e.g., images, user inter­
faces, etc.) for consumption by a user; memory 432; a signal 
generator 434 for generating one or more signals to control 
operation of image sensor 422; a communication system or 
systems 436 for facilitating communication between image 
data source 302 and other devices, such as a smartphone, a 
wearable computer, a tablet computer, a laptop computer, a 
personal computer, a server, an embedded computer (e.g., 
for controlling an autonomous vehicle, robot, etc.), etc., via 
a communication link. In some embodiments, memory 432 
can store image data, and/or any other suitable data. 
Memory 432 can include a storage device (e.g., RAM, 
ROM, EEPROM, one or more flash drives, one or more hard 
disks, one or more solid state drives, one or more optical 
drives, etc.) for storing a computer program for controlling 
processor 426. In some embodiments, memory 432 can 
include instructions for causing processor 426 to execute 

example, image sensor 422 can be multiple image sensors, 
such as a first image sensor that includes an array of SPAD 
detectors that can be used to generate information about the 

20 brightness of the scene and a second image sensor that 
includes one or more conventional pixels that can be used to 
generate information about the colors in the scene. In such 
an example, optics 306 can include one or more optical 
elements (e.g., multiple lenses, a beam splitter, etc.) config-

25 ured to direct a portion of incoming light toward a SPAD­
based image sensor and another portion toward a conven­
tional image sensor. 

In some embodiments, image data source 302 can include 
additional optics. For example, although optics 424 is shown 

30 as a single lens, it can be implemented as a compound lens 
or combination of lenses. Note that although mechanisms 
described herein are generally described as using SPAD­
based detectors, this is merely an example of a single photon 
detector. As described above, other single photon detectors 

35 can be used, such as jot-based image sensors. 
In some embodiments, signal generator 434 can be one or 

more signal generators that can generate signals to control 
image sensor 422. For example, in some embodiments, 
signal generator 434 can supply signals to enable and/or 

40 disable one or more pixels of image sensor 422 ( e.g., by 
controlling a gating signal of a SPAD used to implement the 
pixel). As another example, signal generator 434 can supply 
signals to control readout of image signals from image 
sensor 422 ( e.g., to memory 432, to processor 426, to a cache 

45 memory associated with image sensor 422, etc.). 
In some embodiments, image data source 302 can com­

municate with a remote device over a network using com­
munication system(s) 436 and a communication link. Addi­
tionally or alternatively, image data source 302 can be 

50 incorporated as part of another device and/or integrated as 
part of another device (e.g., computing device 310), such as 
a smartphone, a tablet computer, a laptop computer, an 
autonomous vehicle, a robot, etc. Parts of image data source 
302 can be shared with a device within which image data 

55 source 302 is integrated. For example, if image data source 
302 is integrated with an autonomous vehicle, processor 426 
can be a processor of the autonomous vehicle and can be 
used to control operation of image data source 302. 

In some embodiments, display 430 can be used to present 
60 images and/or video generated by image data source 302 

and/or by another device ( e.g., computing device 310, server 
320, etc.), to present a user interface, etc. In some embodi­
ments, display 430 can be implemented using any suitable 
device or combination of devices, and can include one or 

65 more inputs, such as a touchscreen. 
FIG. 5 shows an example illustrating a comparison of 

errors generated at different combinations of scene motion 
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and scene contrast by a simulated implementation of mecha­
nisms described herein and another technique. As shown in 
FIG. 5, there is generally a trade-off between contrast and 
motion speed when attempting to detect changepoints. For 
example, it is generally more difficult to detect flux changes 
as an object moves more quickly and/or as contrast between 
the object and its background decreases. To evaluate this 
trade-off, a single SPAD pixel was simulated for 800 photon 
frames with a time varying flux signal with a randomly 
placed pulse wave. The pulse width can be used as a proxy 10 

for motion speed, and contrast can be varied by varying the 
ratio of the pulse height. The absolute difference was cal­
culated between the number of changepoints detected using 
mechanisms described herein and the true number of flux 
changes (which is exactly 2 for a single pulse), which is 15 

referred to herein as annotation error. 
FIG. 5 compares annotation errors generated from the 

simulated data with different values of contrast and motion 
speeds for two different techniques. For each set of contrasts 
and motion speeds 120 simulations were run, and FIG. 5 20 

shows the average number of annotation errors. FIG. 5, 
column (a) shows results generated using mechanisms 
described herein utilizing the PELT algorithm described 
above in connection with FIG. 1 and EQ. (2) with two 
different values for penalty term A. FIG. 5, column (b) shows 25 

results generated using a fixed windowing approach dis­
cussed in Gyiingy et al., "Single-photon tacking for high­
speed vision," Sensors (2018) with two different window 
sizes (i.e., 64 frames and 128 frames). As shown in FIG. 5, 
mechanisms described herein generally produced fewer 30 

annotation errors at most combinations of motion and con­
trast, especially notable in challenging conditions such as 
high speed and low contrast. 

FIG. 6 shows an example of a scene, images of the scene 
generated using various techniques including techniques 35 

described herein, and signal to noise ratio of various tech­
niques at different levels of scene brightness. FIG. 6, panel 
(a) shows: a still image from a ground truth video of a 
rotating orange used to create simulated SPAD photon 
frames; a simulated single long exposure image of the 40 

rotating orange, which is quite blurry; a simulated single 
short exposure image of the rotating orange which has low 
contrast and is very noisy; and a deblurred image generated 
using mechanisms described herein (labeled "disclosed" in 
FIG. 6, panel (a)), which strikes a balance between noise and 45 

blur to get a sharp high-quality image. 
Starting with a ground truth high resolution, high frame 

rate video ( e.g., generated from a static image of an orange), 
the video frames were scaled to units of photons per second 
and photon frames were generated using exponentially dis- 50 

tributed arrival times. A photon frame readout from a SPAD 
array with 8000 bins and bin width of 256 picoseconds was 
modeled. The rotating orange image data was simulated by 
applying successive known rigid transformations to a static 
image, and SPAD data was generated by scaling the trans- 55 

formed images between 104 and 108 photons per second. The 
image was rotated by 0.1 ° for every 10 generated photons 
for a total of 1000 photons. The BOTTOMUP algorithm 
with penalty term A=5 was used for changepoint identifica­
tion to generate the deblurred image using mechanisms 60 

described herein. 
FIG. 6, panel (b) shows signal to noise ratio (SNR) of 

deblurred images generated from the orange scene shown in 
FIG. 6, panel (a), with varied brightness values generated 
using mechanisms described herein (labeled "disclosed") 65 

and using conventional techniques that use a fixed frame rate 
using two different window lengths for comparison. The 

20 
SNR of the deblurred images was calculated over a range of 
flux levels using the 12 (root-mean-squared) distance from 
the ground truth to the value in the deblurred image. The 
total number of photons captured was kept approximately 
constant by extending the capture time for dimmer flux 
levels. As shown in FIG. 6, panel (b ), deblurred images 
generated using mechanisms described herein dynamically 
adapted to motion and lighting, and thus was able to 
reconstruct a deblurred image with high SNR even in 
photon-starved regimes where the SNR of the fixed window 
techniques degrades rapidly. As shown in FIG. 6, panel (b), 
deblurred images generated based on changepoint video data 
stay above 20 dB at all photon rates, while the SNR 
associated with the deblurred images generated using the 
fixed photon window decrease as photon count decreases. 

FIG. 7 shows an example 700 of a process for adaptive 
imaging using single-photon image sensor data in accor­
dance with some embodiments of the disclosed subject 
matter. 

At 702, process 700 can capture a sequence of photon 
frames of a scene ( e.g., frames in which pixels are associated 
with photon arrival times, binary frames, etc.) using any 
suitable image sensor. For example, as described above in 
connection with FIGS. 1 and 4, the image sensor can be a 
SPAD-based image sensor, or a jot-based image sensor. 
However, these are merely examples, and mechanisms 
described herein can be used to generate high quality, high 
dynamic range images using any sensor that include single 
photon detectors. Additionally or alternatively, in some 
embodiments, at 702, process 700 can receive a sequence of 
photon frames of a scene from another device ( e.g., a device 
including a suitable image sensor). For example, in some 
embodiments, at least a portion of process 700 can be 
executed by image data source 302, which can capture a 
sequence of photon frames of a scene using an image sensor. 
As another example, a portion of process 700 can be 
executed by computing device 310 and/or server 320, which 
can receive a sequence of photon frames from image data 
source 302 (e.g., from a camera that captured the photon 
frames, from memory of image data source 302 which may 
or may not be implemented as a camera, etc.). 

In some embodiments, process 700 can cause the 
sequence of frames to be captured at any suitable frame rate 
and/or within any suitable time budget. For example, pro­
cess 700 can cause the sequence of frames to be captured 
with a high frame rate in situations where there is likely to 
be scene motion and/or high scene intensity. In a more 
particular example, the frame rate can set between about 300 
fps and about 100,000 fps for current SPAD-based image 
sensors. As another more particular example, the frame rate 
can set between about 30 fps and about 1,000 fps for current 
jot-based image sensors. 

In some embodiments, a total time budget (e.g., T) can be 
in a range from about 1 millisecond to about 1 second. In a 
particular example, the total time budget can be in a range 
from about 10 milliseconds to about 1 second for scenes 
with relatively high dynamic range. In some embodiments, 
the total time budget can be constrained based on the amount 
of motion in the scene, as it is more difficult to generate a 
high quality image for scenes with more motion for longer 
time budgets and/or more photon frames, especially if an 
object moves outside of the scene during the time budget. 
Additionally, in some embodiments, the total time budget 
can be constrained based on the amount of available 
memory, as a longer time budget and/or more photon frames 
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requires additional memory availability that can be written 
to at speeds that are comparable to the frame rates of the 
image sensor. 

In some embodiments, the total time budget can be 
omitted, and a stream of photon frames can be captured, with 
a sequence of photon frames corresponding to a particular 
time period selected after the frames have already been 
captured. For example, process 700 can cause photon frames 
of a scene to be captured continuously, and a sequence of 
frames can be selected from the continuously captured 
sequence at any suitable time for use in generating an 
changepoint data and/or deblurred images. 

22 
In some embodiments, process 700 can evaluate multiple 

portions of the scene (e.g., using a patch-based approach), 
and can determine when a threshold number of image areas 
within each patch have changed from a previous frame. 

In some embodiments, process 700 can determine when a 
portion of image areas that have changed from a previous 
frame changepoint has reached a threshold at various points 
in time ( e.g., corresponding to a single photon frame, 
corresponding to multiple photon frames) after a previous 

10 frame changepoint was identified and/or when an evaluation 
period begins. In such an example, process 700 can evaluate, 
for each image area, whether the estimated steady state flux 
has changed. 

At 704, process 700 can determine, for various areas ( e.g., 
pixels, groups of pixels) of the frame, when a brightness 
change has occurred. In some embodiments, process 700 can 15 

use any suitable technique or combination of techniques to 
determine when a changepoint (e.g., a brightness change) 
has occurred. For example, as described above in connection 
with FIG. 1, process 700 can analyze a series (e.g., a 
time series) of datapoints, and estimate when a change from 
one relatively steady state to a new relatively steady state. In 

In some embodiments, process 700 can compare a value 
associated with the image area at a beginning of an evalu­
ation period ( e.g., corresponding to a beginning of a time 
budget T, corresponding to a time associated with a previous 
changepoint image) to a value associated with the image 

20 area at a current time. In such embodiments, when a thresh­
old number of image areas have a different value, process 
700 can determine that a threshold portion of the scene has 
changed. 

a more particular example, process 700 can use techniques 
described above in connection with EQ. 2 to identify 
changepoints in a set of datapoints ( e.g., corresponding to 
time budget 7). As another more particular example, process 
700 can use techniques described in Appendix A to identify 
changepoints in a set of datapoints ( e.g., corresponding to a 
portion of time budget 7). 

In some embodiments, process 700 can generate a con­
tinuous-time piecewise function that can be used to deter­
mine the estimated flux associated with an area of the image 
sensor ( e.g., a pixel, a group of pixels) at any particular time. 
Additionally or alternatively, in some embodiments, process 
700 can store the location of changepoints, and estimated 
flux associated with the changepoints ( e.g., at tuples asso­
ciated with a particular pixel or group of pixels). In some 
embodiments, estimated flux can be stored using any suit­
able technique. For example, estimated flux can be stored 
using estimated flux values. In such an example, estimated 
flux can be stored using any suitable number of bits, with 0 
corresponding to black and a maximum value corresponding 
to white. As another example, estimated flux can be stored 
as an estimated number of photons per second ( e.g., as a 
floating point number). As yet another example, estimated 
flux can stored using or more delta values indicating a 
change in brightness from a previous estimated flux ( e.g., 
prior to a most recent changepoint). 

In some embodiments, process 700 can compare a value 
25 associated with the image area at a beginning of an evalu­

ation period or at a previous changepoint to a value asso­
ciated with the image area at a current time. In such 
embodiments, when a threshold number of changepoints 
have occurred regardless of how many image areas have a 

30 different value, process 700 can determine that a threshold 
portion of the scene has changed. 

In some embodiments, when the value has changed for a 
particular image area, process 700 can indicate that the 

35 
image area has changed ( e.g., using a flag, a bit in a bitmask, 
etc.). In such embodiments, when a threshold number of 
image areas have changed in value, process 700 can deter­
mine that a threshold portion of the scene has changed. 

In some embodiments, process 700 can determine, for 
40 each image area, whether a changepoint exists between a 

beginning of an evaluation period and a particular time. In 
such embodiments, when a threshold number of image areas 
have changed in value based on the presence of a change­
point, process 700 can determine that a threshold portion of 

45 the scene has changed. 
In some embodiments, changepoints (e.g., identified at 

706) and estimated flux between changepoints (e.g., esti­
mated at 704) associated with areas of the image sensor can 
be stored using any suitable technique or combination of 

50 techniques. For example, process 700 can associate, with 
each pixel, a list of values corresponding to changepoints, 
and an estimated flux between each changepoint. In a more 
particular example, process 700 can generate a list of values 
corresponding to pixel changepoints identified at 706, and 

At 706, process 700 can determine when a portion of 
image areas that have changed from a previous frame 
changepoint has reached a threshold using any suitable 
technique or combination of techniques, such as techniques 
described above in connection with FIG. 1. For example, 
process 700 can determine when a number of changepoints 
have occurred for since a previous frame changepoint, and 
when the number reached a threshold portion ( e.g., 1 %, 5%, 
etc.) of the number of image areas ( e.g., number of pixels), 
process 700 can determine that the threshold has been 
reached. In such an example, the total number of image areas 
that have contributed at least one changepoint may not reach 
the threshold, as some pixel areas may contribute multiple 60 

changepoints ( e.g., quickly varying portions of the scene), 
while others may contribute only one changepoint. 

55 can generate a list of flux estimates for times between the 
changepoints points. In such an example, such a list can be 
associated with each pixel or group of pixels, which can be 
used to determine an amount of motion represented by a 
period of time within total time budget T. 

At 708, process 700 can generate changepoint frames 
corresponding to a photon frame when the threshold has 
been reached at 706. In some embodiments, process 700 can 
determine a value for each image area ( e.g., pixel, group of 
pixels) based on an estimated flux at a time associated with 

As another example, process 700 can determine when a 
threshold number of image areas have accumulated at least 
one changepoint. In such an example, the total number of 
image areas that have contributed at least one changepoint 
can be expected to equal the threshold. 

65 the changepoint frame. For example, as described above, 
and shown in FIGS. 1 and 2, each time can be associated 
with a steady-state flux. In such an example, process 700 can 
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use the steady-state flux at a point in time corresponding to 
the changepoint frame to determine a flux value for the 
changepoint frame. 

In some embodiments, process 700 can generate change­
point frames at 708 serially ( e.g., each time a threshold 
portion of the scene has changed at 706, process 700 can 
initiate generation of a changepoint frame), and/or in parallel 
(e.g., after identifying multiple times at which a threshold 
portion of the scene has changed at 706). 

24 
rithm (DBSCAN) (e.g., as described in Ester et al., "A 
density-based algorithm for discovering clusters in large 
spatial databases with noise," In Proceedings of the Second 
International Conference on Knowledge Discovery and Data 
Mining (1996)), which can result in clusters being associ­
ated with different objects. For example, mechanisms 
described herein can attempt to identify pixels with change­
points that occur in relatively close proximity in time and 
space. 

In some embodiments, process 700 can format the 10 

changepoint frames as a series of frames (e.g., a video, such 
For each cluster, a bounding box can be created in the 

image data that includes pixels depicting a particular object. 
as video 108) at 708. For example, process 700 can concat­
enate the changepoint frames. As another example, process 
700 can generate a video in any suitable format. 

At 710, process 700 can determine motion between 15 

changepoint frames using any suitable technique or combi­
nation of techniques. For example, process 700 can use 
techniques described above in connection with FIG. 1 (e.g., 

As the object moves, the bounding can be moved with 
respect to the image, such that the bounding box includes 
pixels corresponding to the particular object. Such tech­
niques can facilitate isolation of different moving objects in 
the scene. In some embodiments, any suitable technique can 
be used in connection with determining the motion of each 
object individually (e.g., in connection with pixels that fall 
within the bounding box at any given time). Mechanisms 
described herein can then stitch together data associated 
with each object with the areas that are relatively static in the 

in connection with 110), such as correlation-based image 
registration between consecutive changepoint, patch-wise 20 

aligmnent techniques, etc. As another example, process 700 
can use techniques described above in connection with FIG. changepoint data. Additionally, in some embodiments, clus­

tering the changepoint data step also acts as a denoiser by 
rejecting spurious changepoints that do not belong to any 

6. As yet another example, process 700 can use techniques 
described below in connection with FIG. 8. 

25 cluster. At 712, process 700 can generate a series of frames using 
photon frames captured and/or received at 702 and motion 
information determined at 710. In some embodiments, pro­
cess 700 can use any suitable technique to generate 
deblurred frames at 712. For example, process 700 can use 
techniques described above in connection with 112 and 114 30 

of FIG. 1. 

In the example shown in FIG. 8, starting from a ground 
truth high resolution, high frame rate video, the video frames 
were scaled to units of photons per second (based on the flux 
associated with each pixel), and photon frames were gen­
erated using exponentially distributed arrival times. A pho­
ton frame readout from a SPAD array was modeled with 

In some embodiments, process 700 can upsample image 
data from the photon frames to generate higher resolution 
image data using motion data using any suitable technique 
or combination of techniques. For example, process 700 can 
use a zero order hold technique to upsample image data 
based on motion information (e.g., along the direction of 
motion). As another example, process 700 can use a trained 
machine learning model ( e.g., neural network) technique to 
upsample image data based on motion information. 

At 714, process 700 can generate a deblurred image based 
on the series of deblurred frames using any suitable tech­
nique or combination of techniques. For example, process 
700 use techniques described above in connection with 116 
of FIG. 1. 

In some embodiments, 710, 712, and/or 714 can be 
omitted. For example, in some embodiments, if process 700 
is configured to output a series of changepoint frames ( e.g., 
to a machine vision system), process 700 can omit 710 to 
714. As another example, in some embodiments, if process 
700 is configured to output a series of changepoint frames 
and motion information ( e.g., to a portion of image process­
ing system 104 executed by another device), process 700 can 
omit 712 and 714. As yet another example, in some embodi­
ments, if process 700 is configured to output a series of 
deblurred frames ( e.g., a de blurred video), process 700 can 
omit 714. 

8,000 time bins and bin width of 256 ps, corresponding to a 
frame period Tpfof about 2 µs. The ground truth video use 
to simulate multi-object motion includes two toy cars rolling 

35 down a ramp at different speeds. The video frame pixels 
were then scaled between 105 and 106 photons per second 
and a total of 690 photon frames were generated. A bright 
slow-moving car (highlighted by an arrow in FIG. 8 in 
images in which it is visible) has a contrast of 1.2 with 

40 respect to the background, and moves 48 pixels over the 
duration of video. The dark car has a contrast of 5.0 with the 
background, and moves 143 pixels over the duration of 
video. Pixel changepoints were identified from the photon 
frames using the PELT algorithm with A=6, and the DB 

45 SCAN clustering algorithm used E=7.5 and MinPts=40. A 
resulting deblurred image is shown in FIG. 9. As shown in 
FIG. 8, results generated using a fixed windowing approach 
discussed in Gyiingy blurs out the low contrast white car in 
the back of the image. FIG. 8 also shows a short exposure 

50 and a long exposure. As shown in FIG. 8, the short exposure 
is noisy, and the low-contrast white car is not easily distin­
guished from the background, and details of the black car are 
similarly not easily distinguished. In the long exposure, the 
black car is blurred, and the white car is difficult to locate 

55 against the background. A single changepoint frame is 
included in FIG. 1, corresponding to steady state values of 
the series of photon frames at a time of 0.1 microseconds. 

Mechanisms described herein can assign dynamically 
changing integration windows extracted from the change-

60 point data to successfully recover both cars simultaneously 
with negligible motion blur. The changepoint clusters used 
for segmenting cars from the static background in our 
method are shown in FIG. 9. 

FIG. 8 shows an example of a scene including moving 
objects, and images of the scene generated using various 
techniques, including techniques described herein. In some 
embodiments, mechanisms described herein can deblur 
image data depicting multiple objects moving at different 
velocities. For example, as shown in FIG. 8, mechanisms 
described herein can deblur data depicting multiple objects 
moving with respect to a static background. In some 65 

embodiments, mechanisms described herein can cluster 
changepoints using a density-based spatial clustering alga-

FIG. 9 shows an example of clustered flux change points 
in space and time that can be used to segment objects in a 
scene from a scene background in accordance with some 
embodiments of the disclosed subject matter. 



US 11,539,895 Bl 
25 

As shown in FIG. 9, two clusters of flux changepoints 
were identified from the photon frames generated in the 
simulation described above in connection with FIG. 8. In 
FIG. 9, a single frame of video is shown (corresponding to 
the beginning of the video), with flux changepoints plotted 
with respect to the horizontal (i.e., x) and vertical (i.e., y) 
axes of the image sensor, as well as being plotted with 
respect to the time in the video at which the flux changepoint 
occurred. 

26 
of the details in the vertical edges are sharp, but horizontal 
edges relatively remain blurry. 

Additional simulation results and images of the scenes 
used to generate the results in FIGS. 10 and 11 are described 
in Appendix A. 

In some embodiments, any suitable computer readable 
media can be used for storing instructions for performing the 
functions and/or processes described herein. For example, in 
some embodiments, computer readable media can be tran-

FIG. 10 shows examples of deblurred images of a scene 
generated using techniques described herein. 

Mechanisms described herein were evaluated using data 
captured using a 32x32 array of SPADs implemented using 
indium-gallium-arsenide (InGaAs) obtained from Princeton 
Lightwave Inc. The pixels of the array were sensitive to near 
infrared and shortwave infrared (i.e., in a wavelength range 
of about 900 nanometers (nm)-1.6 microns (µm)). The 
SPAD array was operated in a frame readout mode at 50,000 
photon frames per second, with each photon frame exposure 
window at 2 µs, sub-divided into 8000 bins, giving a 
temporal resolution of about 250 ps per bin. 

10 sitory or non-transitory. For example, non-transitory com­
puter readable media can include media such as magnetic 
media (such as hard disks, floppy disks, etc.), optical media 
(such as compact discs, digital video discs, Blu-ray discs, 
etc.), semiconductor media (such as RAM, Flash memory, 

15 electrically programmable read only memory (EPROM), 
electrically erasable programmable read only memory (EE­
PROM), etc.), any suitable media that is not fleeting or 
devoid of any semblance of permanence during transmis­
sion, and/or any suitable tangible media. As another 

20 example, transitory computer readable media can include 
signals on networks, in wires, conductors, optical fibers, 
circuits, or any suitable media that is fleeting and devoid of 
any semblance of permanence during transmission, and/or 

For this low resolution experimental data, the timestamp 
frames and the changepoint video data (including change­
points and estimated flux between changepoints) was zero­
order hold up sampled before estimating motion in the spatial 25 

dimensions (e.g., as described above in connection with 110 
of FIG. 1). Photon frames were then upsampled, and inte­
grated using the estimated motion (e.g., as described above 

any suitable intangible media. 
It should be noted that, as used herein, the term mecha­

nism can encompass hardware, software, firmware, or any 
suitable combination thereof. 

It should be understood that the above described steps of 
the process of FIG. 7 can be executed or performed in any in connection with 112 of FIG. 1). Upsampling before 

motion integration can facilitate photons that are captured in 
the same pixel to land in a larger space during the motion 
integration step. 

30 suitable order or sequence not limited to the order and 
sequence shown and described in the figures. Also, some of 
the above steps of the process of FIG. 7 can be executed or 
performed substantially simultaneously where appropriate FIG. 10 shows a "fan" scene, which demonstrates per­

formance of techniques described herein when a scene that 
includes relatively fast rotation. The background behind the 35 

fan in the scene was covered with absorbing black felt 
material. This facilitated treating the data as having global 
rotation, because there is hardly any light captured from the 
background. The optimal exposure time in this case depends 

or in parallel to reduce latency and processing times. 
Although the invention has been described and illustrated 

in the foregoing illustrative embodiments, it is understood 
that the present disclosure has been made only by way of 
example, and that numerous changes in the details of imple­
mentation of the invention can be made without departing 

40 from the spirit and scope of the invention, which is limited 
only by the claims that follow. Features of the disclosed 
embodiments can be combined and rearranged in various 
ways. 

on the rotation speed. Mechanisms described herein gener­
ated deblurred images that preserve details of the fan blades 
including a small black square patch on one of the fan 
blades. The top row in FIG. 10 includes a single photon 
frame, with colors corresponding to a timestamp at which a 
photon was detected (e.g., as shown in FIG. 2, panel (a)), a 45 

long exposure and a short exposure. The middle row 
includes de blurred images generated from photon frame data 
at the original resolution, and the bottom row shows the 
upsampled results. 

FIG. 11 shows examples of deblurred images of another 50 

scene generated using techniques described herein. 
FIG. 11 shows a "checkerboard" scene shows, and the 

results in FIG. 11 demonstrate deblurring results with purely 
horizontal global motion. Note that mechanisms described 
herein were able to resolve details such as the outlines of the 55 

squares on the checkerboard. As in FIG. 10, the top row in 
FIG. 11 includes a single photon frame, with colors corre­
sponding to a timestamp at which a photon was detected 
(e.g., as shown in FIG. 2, panel (a)), a long exposure and a 
short exposure. The middle row includes deblurred images 60 

generated from photon frame data at the original resolution, 
and the bottom row shows the upsampled results. 

The "fan" dataset was upsampled 9x compared to the 
original resolution. The "checkerboard" dataset on the other 
hand was upsampled 4x. The difference in upsampling rate 65 

is because the motion is slower and limited to only the 
horizontal dimension in the scene of FIG. 11. Note that some 

What is claimed is: 
1. A system for generating digital images, comprising: 
an image sensor comprising a plurality of detectors con­

figured to detect arrival of photons, the plurality of 
detectors arranged in an array; 

at least one processor that is programmed to: 
receive, from the image sensor, a series of images, each 

image in the series of images comprising a plurality 
of pixels representing brightness of a portion of a 
scene, each of the plurality of pixels associated with 
a pixel location (x,y); 

identify, for each of the plurality of pixel locations 
using the series of images, one or more changepoints 
at which a transition in brightness associated with a 
pixel between different steady state brightness values 
occurs; 

determine, based on the one or more changepoints 
associated with the plurality of pixel locations, a first 
point in the series of images at which at least a 
threshold portion of the plurality of pixel locations 
have included at least one changepoint; 

generate a first image based on brightness associated 
with each pixel location at the first point in the series 
of images; 
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plurality of pixel locations have included at least one 
changepoint that occurred after the first point in the 
series of images; and 

generate a second image based on brightness associated 
with each pixel location at the second point in the series 
of images. 

determine, based on changepoints associated with the 
plurality of pixel locations, a second point in the 
series of images at which at least the threshold 
portion of the plurality of pixel locations have 
included at least one changepoint that occurred after 
the first point in the series of images; and 

generate a second image based on brightness associated 
with each pixel location at the second point in the 
series of images. 

2. The system of claim 1, wherein each of the plurality of 
detectors is a single-photon avalanche diode (SPAD). 

11. The method of claim 10, wherein each of the plurality 
of detectors is a single-photon avalanche diode (SPAD). 

12. The method of claim 11, wherein each SPAD is 

10 
configured to record a timestamp at which a single photon 
was detected. 

3. The system of claim 2, wherein each SPAD is config­
ured to record a timestamp at which a single photon was 
detected. 

4. The system of claim 1, wherein the at least one 
processor is further programmed to: 

estimate, for each of the plurality of pixel locations using 
the series of images, a single brightness value between 
consecutive changepoints; and 

generate the first image based on the estimated single 
brightness value for each of the plurality of pixel 
locations at the first point in the series of images. 

5. The system of claim 1, wherein the at least one 
processor is further programmed to: 

determine motion between at least a portion of the first 
image and at least a portion of the second image. 

6. The system of claim 5, wherein the at least one 
processor is further programmed to: 

15 

20 

25 

generate a deblurred image based on the motion between 30 

the first image and the second image and pixel values 

13. The method of claim 10, further comprising: 
estimating, for each of the plurality of pixel locations 

using the series of images, a single brightness value 
between consecutive changepoints; and 

generating the first image based on the estimated single 
brightness value for each of the plurality of pixel 
locations at the first point in the series of images. 

14. The method of claim 10, further comprising: 
determining motion between the first image and the 

second image. 
15. The method of claim 14, further comprising: 
generating a deblurred image based on the motion 

between the first image and the second image and pixel 
values of each of the series of images. 

16. The method of claim 14, further comprising: 
generating an upsampled image based on the motion 

between the first image and the second image and pixel 
values of each of the series of images. 

17. The method of claim 10, further comprising: 
providing the first image and the second image to a 

machine learning model. 
of each of the series of images. 

7. The system of claim 5, wherein the at least one 
processor is further programmed to: 

18. The method of claim 10, wherein the threshold portion 
of the plurality of pixel locations is at least one percent of the 

35 
plurality of pixel locations. 

19. A system for generating digital images, comprising: 
an image sensor comprising a plurality of single-photon 

detectors configured to detect arrival of photons, the 
plurality of single-photon detectors arranged in an 
array; 

generate an upsampled image based on the motion 
between the first image and the second image and pixel 
values of each of the series of images. 

8. The system of claim 1, wherein the at least one 
processor is further programmed to: 

provide the first image and the second image to a machine 
learning model. 

9. The system of claim 1, wherein the threshold portion of 
the plurality of pixel locations is at least one percent of the 
plurality of pixel locations. 

40 

45 

10. A method for generating digital images, comprising: 
receiving, from an image sensor comprising a plurality of 

detectors configured to detect arrival of photons, a 
series of images, each image in the series of images 
comprising a plurality of pixels representing brightness 50 

of a portion of a scene, each of the plurality of pixels 
associated with a pixel location (x,y); 

identifying, for each of the plurality of pixel locations 
using the series of images, one or more changepoints at 
which a transition in brightness associated with a pixel 55 

between different steady state brightness values occurs; 
determining, based on the one or more changepoints 

associated with the plurality of pixel locations, a first 
point in the series of images at which at least a 
threshold portion of plurality of pixel locations have 60 

included at least one changepoint; 
generating a first image based on brightness associated 

with each pixel location at the first point in the series of 
images; 

determine, based on changepoints associated with the 65 

plurality of pixel locations, a second point in the series 
of images at which at least the threshold portion of the 

at least one processor that is programmed to: 
receive a sequence of photon frames, each photon 

frame comprising a plurality of pixels having a value 
indicative of whether a photon was received during 
an associated frame period, wherein each of the 
plurality of pixels corresponds to a pixel location of 
a plurality of pixel locations; 

identify, for each of the plurality of pixel locations, a 
plurality of changepoints, each of the plurality of 
changepoints is indicative of a change in scene 
brightness; 

identify a photon frame in the sequence of photon 
frames at which at least a threshold change in 
brightness has occurred based on the changepoints 
associated with each of the plurality of pixel loca­
tions; and 

generate a series of changepoint frames, wherein each 
changepoint frame is based on estimated brightness 
associated with each pixel location at a point in the 
sequence of photon frames. 

20. The system of claim 19, wherein the at least one 
processor that is further programmed to: 

identify each of plurality of changepoints using no infor­
mation from photon frames following a photon frame 
corresponding to the respective changepoint in the 
sequence. 

* * * * * 


