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SYSTEMS, METHODS, AND MEDIA FOR 
GENERATING DIGITAL IMAGES USING 
LOW BIT DEPTH IMAGE SENSOR DATA 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

This invention was made with government support under 
1943149 awarded by the National Science Foundation. The 
government has certain rights in the invention. 

NIA 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

BACKGROUND 

In general, image sensors that are capable of detecting the 
arrival of individual photons, which can be referred to as 
quanta image sensors, can generate data that has relatively 
low read noise, relatively high temporal granularity, and 
relatively high dynamic range. However, raw binary frames 
from a quanta image sensor contain high shot noise due to 
their short duration. 

Accordingly, new systems, methods, and media for gen­
erating digital images using low bit depth image sensor data 
are desirable. 

SUMMARY 

In accordance with some embodiments of the disclosed 
subject matter, systems, methods, and media for generating 
digital images using low bit depth image sensor data are 
provided. 

In accordance with some embodiments of the disclosed 
subject matter, a system for generating digital images is 
provided, the system comprising: an image sensor config­
ured to generate low bit depth frames; at least one processor 
that is programmed to: receive, from the image sensor, a 
series of low bit depth frames; provide low bit depth image 
information based on the series of low bit depth frames to a 
trained machine learning model, the trained machine learn-
ing model comprising: a three-dimensional convolutional 
layer; a two-dimensional convolutional long short term 
memory (LSTM) layer configured to receive an output of the 
three dimensional convolutional layer; a concatenation layer 
configured to generate a tensor that includes a concatenation 
of an output of the 2D convolutional LSTM layer and the 
low bit depth image information; and a two-dimensional 
convolutional layer configured to generate an output based 
on the tensor generated by the concatenation layer; and 
generate a high bit depth image of the scene based on an 
output of the two-dimensional convolutional layer. 

10 

2 
pnsmg: two 3D convolutional layers; a bidirectional 2D 
convolutional LSTM layer configured to receive an output 
of the second three-dimensional convolutional layer; and a 
concatenation layer configured to concatenate an input to the 
LSTM block and an output of the bidirectional two-dimen­
sional convolutional LSTM layer, wherein the three-dimen­
sional convolution layer, the two-dimensional convolutional 
LSTM layer, and the concatenation layer are included in the 
third LSTM block. 

In some embodiments, the trained machine learning 
model comprises a plurality of input chamiels, each corre­
sponding to a color channel. 

In accordance with some embodiments of the disclosed 

15 subject matter, a method for generating range digital images 
is provided, the method comprising: receiving, from an 
image sensor, a series oflow bit depth frames; providing low 
bit depth image information based on the series of low bit 
depth frames to a trained machine learning model, the 

20 trained machine learning model comprising: a three-dimen­
sional convolutional layer; a two-dimensional convolutional 
long short term memory (LSTM) layer configured to receive 
an output of the three dimensional convolutional layer; a 
concatenation layer configured to generate a tensor that 

25 includes a concatenation of an output of the 2D convolu­
tional LSTM layer and the low bit depth image information; 
and a two-dimensional convolutional layer configured to 
generate an output based on the tensor generated by the 
concatenation layer; and generating a high bit depth image 

30 of the scene based on an output of the two-dimensional 
convolutional layer. 

In accordance with some embodiments of the disclosed 
subject matter, a non-transitory computer readable medium 

35 
containing computer executable instructions that, when 
executed by a processor, cause the processor to perform a 
method for generating range digital images is provided, the 
method comprising: receiving, from an image sensor, a 
series oflow bit depth frames; providing low bit depth image 

40 information based on the series of low bit depth frames to a 
trained machine learning model, the trained machine learn­
ing model comprising: a three-dimensional convolutional 
layer; a two-dimensional convolutional long short term 
memory (LSTM) layer configured to receive an output of the 

45 three dimensional convolutional layer; a concatenation layer 
configured to generate a tensor that includes a concatenation 
of an output of the 2D convolutional LSTM layer and the 
low bit depth image information; and a two-dimensional 
convolutional layer configured to generate an output based 

50 on the tensor generated by the concatenation layer; and 
generating a high bit depth image of the scene based on an 
output of the two-dimensional convolutional layer. 

BRIEF DESCRIPTION OF THE DRAWINGS 
In some embodiments, the image sensor comprises a 55 

plurality of single-photon avalanche diodes. 
Various objects, features, and advantages of the disclosed 

subject matter can be more fully appreciated with reference 
to the following detailed description of the disclosed subject 

60 
matter when considered in connection with the following 
drawings, in which like reference numerals identify like 
elements. 

In some embodiments, the series of low bit depth frames 
comprises a series of binary frames. 

In some embodiments, pixels of the low bit depth frames 
are represented using no more than 4 bits. 

In some embodiments, pixels of the high bit depth image 
are represented using at least 8 bits. 

In some embodiments, the two-dimensional convolu­
tional LSTM layer is a bidirectional two-dimensional con­
volutional LSTM layer. 

In some embodiments, the trained machine learning 
model further comprises: three LSTM blocks, each com-

FIG. 1 shows an example of a high noise low bit depth 
frame of a scene and a low-noise high bit depth frame of the 

65 scene that can be generated using the low-bit depth frame in 
accordance with some embodiments of the disclosed subject 
matter. 
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FIG. 2 shows an example of a system for generating 
digital images using low bit depth image sensor data in 
accordance with some embodiments of the disclosed subject 
matter. 

FIG. 3 shows an example of hardware that can be used to 
implement an image data source, a computing device, and a 
server, shown in FIG. 2 in accordance with some embodi­
ments of the disclosed subject matter. 

FIG. 4 shows an example of a topology of a convolutional 
neural network that can be used to implement mechanisms 10 

for generating digital images using low bit depth image 
sensor data in accordance with some embodiments of the 
disclosed subject matter. 

FIG. 5 shows an example of another topology of a 
convolutional neural network that can be used to implement 15 

mechanisms for generating digital images using low bit 
depth image sensor data in accordance with some embodi­
ments of the disclosed subject matter. 

FIG. 6 shows an example of a process for generating 
digital images using low bit depth image sensor data in 20 

accordance with some embodiments of the disclosed subject 
matter. 

FIG. 7 shows an example of a low bit depth frame of a 
scene generated from a still image with simulated motion, a 
predicted low noise high bit depth frame of the scene 25 

generated from a stream of low bit depth frames using 
mechanisms described herein, and a ground truth image of 
the scene. 

FIG. 8 shows examples oflow bit depth frames based on 
varying numbers of binary frames generated from a still 30 

image with simulated motion, predicted low noise high bit 
depth frames of the scene generated from streams of the low 
bit depth frames using mechanisms described herein, and a 
ground truth image of the scene. 

FIG. 9 shows an example of a low bit depth frame of a 35 

scene generated from video data, a predicted low noise high 
bit depth frame of the scene generated from a stream oflow 
bit depth frames using mechanisms described herein, and a 
ground truth image of the scene. 

FIG. 10 shows an example of a high bit depth frame of the 40 

scene generated from a set up binary frames using another 
technique, a predicted low noise high bit depth frame of the 
scene generated from a stream of low bit depth frames using 
mechanisms described herein, and a ground truth image of 

4 
images at a rate that is comparable to a rate at which frames 
( or a relatively short series of frames) are output by a quanta 
image sensor. 

For example, single-photon avalanche diodes (SPADs) 
are a class of single-photon image sensor that can be 
operated at very high frame rates (e.g., on the order of 
100,000 frames per second). Conventional image sensors 
(e.g., CMOS image sensors, CCD image sensor) generally 
return an integer value from each pixel that is proportional 
to brightness of the scene at that pixel. Image sensors that are 
implemented with SPADs (and/or other QIS technologies) 
generally return binary values when configured in a frame 
read out mode. For example, a pixel implemented with a 
SPAD can output a 1 if at least one photon was detected and 
can output a O otherwise. SPADs offer several benefits over 
conventional sensors, including low read noise, high tem-
poral granularity, and high dynamic range. However, the raw 
binary frames from a SPAD (or any quanta image sensor) 
contain high shot noise due to their short duration. 

In some embodiments, mechanisms described herein can 
be implemented to recover relatively low noise and high bit 
depth images from low bit depth image data output by a QIS. 
For example, given a sequence of noisy frames {ba, 
bi, ... , b,} that include arbitrary scene and camera motion, 
mechanisms described herein can attempt to estimate a 
low-noise frame sequence {fa, fr, ... , f,} that corresponds 
to a true sequence of frames { fa, f1, ... , f,} corresponding 
to the scene. In some embodiments, mechanisms described 
herein can leverage the high frame rate of the input to create 
output with a high frame rate (e.g., an equally high frame 
rate) while merging the intensity information from multiple 
frames to reduce noise. 

In some embodiments, mechanisms described herein can 
estimate a frame f, using information from before and after 
the frame (e.g., from bsi and from b;;,;i, if such future 
information is available). Additionally or alternatively, in 
some embodiments, mechanisms described herein can esti­
mate a frame f, in real time or near real time ( e.g., an estimate 
f, soon after b, arrives, an estimate f, soon before b, arrives), 
and can exclude use of any future information, such that 
mechanisms described herein can f, using frames {ba, 
bu ... , b,}. 

In some embodiments, mechanisms described herein can 
compensate for motion between high-noise frames (e.g., 

the scene. 45 output from a QIS) using a recurrent convolutional neural 
network (RCNN). Convolutional neural networks can be 
used for many computer vision tasks, and are effective for 
processing spatially localized structures in images. Recur-

FIG. 11 shows an example of results of an object detection 
operation performed on a low bit depth frame of a scene 
generated from video data, a predicted low noise high bit 
depth frame of the scene generated from a stream oflow bit 
depth frames using mechanisms described herein, and a 50 

ground truth image of the scene. 

DETAILED DESCRIPTION 

rent neural networks can be used for temporal sequence 
processing, and are capable of processing and generating 
sequences of arbitrary length. In some embodiments, mecha-
nisms described herein can utilize an RCNN to process 
spatially localized structures in a sequence of high noise 
frames to generate a series of low noise frames. 

In accordance with various embodiments, mechanisms 55 

(which can, for example, include systems, methods, and 
media) for generating digital images using low bit depth 
image sensor data are provided. 

In some embodiments, mechanisms described herein can 
utilize one or more convolutional long short-term memory 
(LSTM) layers to recover relatively low noise and high bit 
depth images from low bit depth image data output by a QIS. 
LSTMs can be configured to model long-term dependencies In some embodiments, mechanisms described herein can 

be used to generate relatively low noise images with rela­
tively high bit depths ( e.g., at least 8 bits per pixel per color 
channel) using relatively high noise frames with relatively 
low bit depths ( e.g., 1 bit per pixel per color channel, 2 bits 
per pixel per color channel, 3 bits per pixel per color 
channel, 4 bits per pixel per color channel, no more than 4 
bits per pixel per color channel). In some embodiments, 
mechanisms described herein can generate high bit depth 

60 by adaptively updating an internal state. Convolutional 
LSTMs can replace the dense operations in a regular LSTM 
with convolutional operations. As described below, a model 
implemented using one or more bidirectional LSTMs, which 
allow information flow both backward and forward in time, 

65 achieved the highest performance. In order to utilize a 
bidirectional LSTM, all frames to be analyzed are captured 
and stored before processing. Alternatively, a model can be 
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implemented using one or more unidirectional LSTMs 
(which processes frames in the forward temporal direction 
only). For example, such a model can be implemented for 
real-time applications, and/or for use with devices with 
low-memory and/or processing resources. 

In some embodiments, mechanisms described herein can 
be implemented in a variety of different implementations 
with different computational costs. For example, in appli­
cations where resources (e.g., memory and/or computing 
resource) are limited, the number of layers and the size of 
each layer can be reduced. In general, a tradeoff space 
between smaller, more efficient networks and larger, high­
fidelity networks can be expected. 

In some embodiments, mechanisms described herein can 
be implemented to ingest new frames in real time, and to 
output high bit depth predicted frames at a similar rate. For 
example, after an RNN implemented in accordance with 
mechanisms described herein uses a new frame to update an 
internal state, that frame can be discarded (note that this is 
only the case for unidirectional RNNs). Other techniques 
(e.g., quanta burst photography) include capturing and stor­
ing all frames that are to be used prior to performing the 
analysis. 

In some embodiments, mechanisms described herein can 
be implemented with high inherent parallelism that facilitate 
efficient execution on a graphics processing unit (GPU). For 
example, preliminary results show orders of magnitude 
lower computation time compared to quanta burst photog­
raphy. 

In some embodiments, mechanisms described herein can 
be used to implement a model ( e.g., a convolutional RNN 
model) that can be trained end-to-end with one or more 
downstream neural networks that are configured to perform 
image processing tasks and/or machine vision tasks. For 
example, mechanisms described herein can be used to 
implement a convolutional RNN that can be trained con­
currently with a CNN that is configured to perform object 
detection. Such end-to-end training can facilitate the con­
volutional RNN and the downstream network can mutually 
optimize their parameters, facilitating higher quality output 
with noisier input. 

In some embodiments, a convolutional RNN imple­
mented in accordance with mechanisms described herein 
can learn statistical priors on video structure, which can 
cause such a convolutional RNN to outperform conven­
tional, non-learned algorithms on videos with extremely 
high noise. 

FIG. 1 shows an example of a high noise low bit depth 
frame of a scene and a low-noise high bit depth frame of the 
scene that can be generated using the low-bit depth frame in 
accordance with some embodiments of the disclosed subject 
matter. As shown in FIG. 1, a binary frame which may be 
output by a quanta image sensor is generally very noisy. To 
obtain a usable non-binary image, the information from 
multiple consecutive binary frames can be merged. Binary 
frame merging can be considered a special case of a more 
general problem: imaging and high-level vision under 
motion. When a scene contains motion, imaging systems can 
either reduce the exposure time to reduce the amount of 
motion captured during the exposure (which leads to noisier 
images), or increase the exposure time to deal with noise 
(which leads to blurred images). In either case, the result is 
a low-quality image. If this low-quality image is then fed to 
a downstream model ( e.g., a machine learning system for 
object detection), that model will suffer from reduced accu­
racy. 

6 
FIG. 2 shows an example 200 of a system for generating 

digital images using low bit depth image sensor data in 
accordance with some embodiments of the disclosed subject 
matter. As shown in FIG. 2, a computing device 210 can 
receive image data from an image data source(s) 202. In 
some embodiments, computing device 210 can execute at 
least a portion of an image processing system 204 to perform 
an image processing task, such as generating a high bit depth 
image from low bit depth images using a neural network, 

10 training a neural network to generate high bit depth image 
from low bit depth images, etc. Additionally, in some 
embodiments, computing device 210 can execute at least a 
portion of a machine vision system (not shown) to perform 
a machine vision task, such as image classification, object 

15 detection, image segmentation, object tracking, and/or any 
other suitable computer vision task. For example, a machine 
vision system can receive one or more images ( e.g., high bit 
depth images, etc.) generated by image processing system 
204, and can perform a machine vision task(s) based on the 

20 image(s) received from image processing system 204. 
Additionally or alternatively, in some embodiments, com­

puting device 210 can communicate data received from 
image data source 202 to a server 220 over a communication 
network 208, which can execute at least a portion of image 

25 processing system 204 and/or at least a portion of a machine 
vision system. In such embodiments, server 220 can return 
information to computing device 210 (and/or any other 
suitable computing device) indicative of an output of an 
image processing task performed by image processing sys-

30 tern 204 and/or a computer vision task performed by a 
computer vision system. In some embodiments, image pro­
cessing system 204 can execute one or more portions of 
process 600 described below in connection with FIG. 6. 

In some embodiments, computing device 210 and/or 
35 server 220 can be any suitable computing device or combi­

nation of devices, such as a desktop computer, a laptop 
computer, a smartphone, a tablet computer, a wearable 
computer, a server computer, a computing device integrated 
into a vehicle ( e.g., an autonomous vehicle), a camera, a 

40 robot, a virtual machine being executed by a physical 
computing device, etc. 

In some embodiments, image data source 202 can be any 
suitable source of low bit depth image data (e.g., imple­
mented with single-photon pixels, implemented with a com-

45 bination of conventional pixels and single-photon pixels) 
and/or other data that can be used to generate high bit depth 
image data as described herein ( e.g., depicting a scene in a 
physical environment of image data source 202). For 
example, image data source 202 can be implemented using 

50 one or more digital cameras that generate and/or output 
image data indicative of an arrival time of single photons. In 
a more particular example, image data source 202 can 
include an imaging device configured to detect arrival of 
individual photons (e.g., using avalanche photodiodes ), such 

55 as imaging devices described in U.S. patent application Ser. 
No. 16/844,899, filed Apr. 9, 2020, and titled "Systems, 
methods, and media for high dynamic range quanta burst 
imaging." As another more particular example, image data 
source 202 can include an imaging device configured to 

60 detect arrival of individual photons (e.g., using jot-based 
detectors), such as imaging devices described in Fossum et 
al., "The quanta image sensor: Every photon Counts," 
Sensors, (2016). 

In some embodiments, image data source 202 can be local 
65 to computing device 210. For example, image data source 

202 can be incorporated with computing device 210 (e.g., 
computing device 210 can be configured as part of a device 
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for capturing, storing, and/or processing image data). As 
another example, image data source 202 can be connected to 
computing device 210 by a cable, a direct wireless link, etc. 
Additionally or alternatively, in some embodiments, image 
data source 202 can be located locally and/or remotely from 
computing device 210, and can communicate image data 
(e.g., single-photon sensor image data, etc.) to computing 
device 210 (and/or server 220) via a communication net­
work (e.g., communication network 208). 

8 
memory 310 can include random access memory (RAM), 
read-only memory (ROM), electronically-erasable program­
mable read-only memory (EEPROM), one or more flash 
drives, one or more hard disks, one or more solid state 
drives, one or more optical drives, etc. In some embodi­
ments, memory 310 can have encoded thereon a computer 
program for controlling operation of computing device 210. 
For example, in such embodiments, processor 302 can 
execute at least a portion of the computer program to 

In some embodiments, communication network 208 can 
be any suitable communication network or combination of 
communication networks. For example, communication net­
work 208 can include a Wi-Fi network (which can include 
one or more wireless routers, one or more switches, etc.), a 
peer-to-peer network (e.g., a Bluetooth network), a cellular 
network (e.g., a 3G network, a 4G network, a 5G network, 
etc., complying with any suitable standard, such as CDMA, 
GSM, LTE, LTE Advanced, NR, etc.), a wired network, etc. 

10 perform one or more image processing tasks described 
herein and/or to perform one or more machine vision tasks 
based on an output generated by an image processing task 
described herein, present content (e.g., images, information 
about an object included in image data, information about 

In some embodiments, communication network 208 can be 

15 distances to one or more points in a scene, etc.), receive 
information and/or content from image data source 202, 
transmit information to image data source 202, receive 
information and/or content from server 220, transmit infor­
mation to server 220, etc. As another example, processor 302 

20 can execute at least a portion of the computer program to 
implement image processing system 204 and/or a machine 
vision system. As yet another example, processor 302 can 
execute at least a portion of process 600 described below in 
connection with FIG. 6. 

a local area network, a wide area network, a public network 
(e.g., the Internet), a private or semi-private network (e.g., a 
corporate or university intranet), any other suitable type of 
network, or any suitable combination of networks. Commu­
nications links shown in FIG. 2 can each be any suitable 
communications link or combination of communications 25 

links, such as wired links, fiber optic links, Wi-Fi links, 
Bluetooth links, cellular links, etc. 

FIG. 3 shows an example of hardware that can be used to 
implement image data source 202, computing device 210, 
and/or server 220, shown in FIG. 2 in accordance with some 30 

embodiments of the disclosed subject matter. As shown in 
FIG. 3, in some embodiments, computing device 210 can 
include a processor 302, a display 304, one or more inputs 
306, one or more communication systems 308, and/or 
memory 310. In some embodiments, processor 302 can be 35 

any suitable hardware processor or combination of proces­
sors, such as a central processing unit (CPU), a graphics 
processing unit (GPU), an application specific integrated 
circuit (ASIC), a field-programmable gate array (FPGA), a 
digital signal processor (DSP), a microcontroller (MCU), 40 

etc. In some embodiments, display 304 can include any 
suitable display devices, such as a computer monitor, a 
touchscreen, a television, an infotainment screen, etc. In 
some embodiments, inputs 306 can include any suitable 
input devices and/or sensors that can be used to receive user 45 

input, such as a keyboard, a mouse, a touchscreen, a micro­
phone, etc. 

In some embodiments, communications systems 308 can 
include any suitable hardware, firmware, and/or software for 
communicating information over communication network 50 

208 and/or any other suitable communication networks. For 
example, communications systems 308 can include one or 
more transceivers, one or more communication chips and/or 
chip sets, etc. In a more particular example, communications 
systems 308 can include hardware, firmware and/or software 55 

that can be used to establish a Wi-Fi connection, a Bluetooth 
connection, a cellular connection, an Ethernet connection, 
etc. 

In some embodiments, server 220 can include a processor 
312, a display 314, one or more inputs 316, one or more 
communications systems 318, and/or memory 320. In some 
embodiments, processor 312 can be any suitable hardware 
processor or combination of processors, such as a CPU, a 
GPU, an ASIC, an FPGA, a DSP, an MCU, etc. In some 
embodiments, display 314 can include any suitable display 
devices, such as a computer monitor, a touchscreen, a 
television, etc. In some embodiments, inputs 316 can 
include any suitable input devices and/or sensors that can be 
used to receive user input, such as a keyboard, a mouse, a 
touchscreen, a microphone, etc. 

In some embodiments, communications systems 318 can 
include any suitable hardware, firmware, and/or software for 
communicating information over communication network 
208 and/or any other suitable communication networks. For 
example, communications systems 318 can include one or 
more transceivers, one or more communication chips and/or 
chip sets, etc. In a more particular example, communications 
systems 318 can include hardware, firmware and/or software 
that can be used to establish a Wi-Fi connection, a Bluetooth 
connection, a cellular connection, an Ethernet connection, 
etc. 

In some embodiments, memory 320 can include any 
suitable storage device or devices that can be used to store 
instructions, values, etc., that can be used, for example, by 
processor 312 to present content using display 314, to 
communicate with one or more computing devices 210, to 
communicate with one or more image data sources 202, etc. 
Memory 320 can include any suitable volatile memory, 
non-volatile memory, storage, or any suitable combination 
thereof. For example, memory 320 can include RAM, ROM, 
EEPROM, one or more flash drives, one or more hard disks, 
one or more solid state drives, one or more optical drives, 
etc. In some embodiments, memory 320 can have encoded In some embodiments, memory 310 can include any 

suitable storage device or devices that can be used to store 
image data, instructions, values, etc., that can be used, for 
example, by processor 302 to perform an image processing 
task, to perform a machine vision task, to present content 
using display 304, to communicate with server 220 via 
communications system(s) 208, etc. Memory 310 can 
include any suitable volatile memory, non-volatile memory, 
storage, or any suitable combination thereof. For example, 

60 thereon a server program for controlling operation of server 
220. For example, in such embodiments, processor 312 can 
execute at least a portion of the server program to perform 
one or more image processing tasks described herein and/or 
to perform one or more machine vision tasks based on an 

65 output generate by an image processing task described 
herein, present content ( e.g., images, information about an 
object included in image data, information about distances 
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to one or more points in a scene, etc.), receive information 
and/or content from image data source 202, transmit infor­
mation to image data source 202, receive information and/or 
content from computing device 210, transmit information to 
computing device 210, etc. As another example, processor 
312 can execute at least a portion of the server program to 
implement image processing system 204 and/or a machine 
vision system. As yet another example, processor 312 can 
execute at least a portion of process 600 described below in 
connection with FIG. 6. 

10 
single photon detector. As described above, other single 
photon detectors can be used, such as jot-based image 
sensors. 

In some embodiments, signal generator 334 can be one or 
more signal generators that can generate signals to control 
image sensors 322. For example, in some embodiments, 
signal generator 334 can supply signals to enable and/or 
disable one or more pixels of image sensor 322 (e.g., by 
controlling a gating signal of a SPAD used to implement the 

10 pixel). As another example, signal generator 334 can supply 
signals to control readout of image signals from image 
sensor 322 ( e.g., to memory 332, to processor 326, to a cache 
memory associated with image sensor 322, etc.). 

As shown, image data source 202 can include an image 
sensor 322 (e.g., an area sensor that includes an array of 
single photon detectors, such as a SPAD array or array of 
jots, e.g., as described in U.S. patent application Ser. No. 
16/844,899); optics 324 (which can include, for example, 15 

one or more lenses, one or more attenuation elements such 

In some embodiments, image data source 202 can com-
municate with a remote device over a network using com­
munication system(s) 336 and a communication link. Addi­
tionally or alternatively, image data source 202 can be 
incorporated as part of another device and/or integrated as 

as a filter, a diaphragm, and/or any other suitable optical 
elements such as a beam splitter, etc.); a processor 326 for 
controlling operations of image data source 202 which can 
include any suitable hardware processor (which can be a 
CPU, a GPU, an FPGA, an ASIC, a DSP, an MCU, etc.) or 
combination of hardware processors; an input device(s) 328 
( such as a shutter button, a menu button, a microphone, a 
touchscreen, a motion sensor, etc., or any suitable combi­
nation thereof) for accepting input from a user and/or from 

20 part of another device ( e.g., computing device 210), such as 
a smartphone, a tablet computer, a laptop computer, an 
autonomous vehicle, a robot, etc. Parts of image data source 
202 can be shared with a device within which image data 
source 202 is integrated. For example, if image data source 

25 202 is integrated with an autonomous vehicle, processor 326 
can be a processor of the autonomous vehicle and can be 
used to control operation of image data source 202. 

the environment; a display 330 ( e.g., a touchscreen, a liquid 
crystal display, a light emitting diode display, etc.) to present 
information ( e.g., images, user interfaces, etc.) for consump­
tion by a user; memory 332; a signal generator 334 for 
generating one or more signals to control operation of image 
sensors 322; a communication system or systems 336 for 
facilitating communication between image data source 202 
and other devices, such as a smartphone, a wearable com­
puter, a tablet computer, a laptop computer, a personal 
computer, a server, an embedded computer (e.g., for con- 35 

trolling an autonomous vehicle, robot, etc.), etc., via a 
communication link. In some embodiments, memory 332 

In some embodiments, display 330 can be used to present 
images and/or video generated by image data source 202 

30 and/or by another device ( e.g., computing device 210, server 
220, etc.), to present a user interface, etc. In some embodi­
ments, display 330 can be implemented using any suitable 
device or combination of devices, and can include one or 
more inputs, such as a touchscreen. 

FIG. 4 shows an example 400 of a topology of a machine 
learning model that can be used to implement mechanisms 
for generating digital images using low bit depth image 
sensor data in accordance with some embodiments of the 
disclosed subject matter. In some embodiments, a machine 
learning model based on topology 400 can receive input 
generated by a quanta image sensor ( e.g., implemented with 

can store image data, and/or any other suitable data. 
Memory 332 can include a storage device (e.g., RAM, 
ROM, EEPROM, one or more flash drives, one or more hard 40 

disks, one or more solid state drives, one or more optical 
drives, etc.) for storing a computer program for controlling 
processor 326. In some embodiments, memory 332 can 
include instructions for causing processor 326 to execute 
processes associated with the mechanisms described herein, 45 

such as process 600 described below in connection with 
FIG. 6. 

an array of SPADs ). Such input can be formatted in various 
ways. For example, the input can be received as a sequence 
(e.g., a stream) of binary low bit depth frames (e.g., 1 bit 
frames). As another example, the input can be received as a 
sequence of non-binary low bit depth frames (e.g., a 2 bit 
frame, a 3 bit frame, etc.). In a more particular example, a 
multibit ( e.g., 2 bit, 3 bit, 4 bit) frame include a value, at each 
pixel, corresponding to a sum of multiple binary frames. In 

In some embodiments, image sensors 322 can be include 
an image sensor that is implemented at least in part using an 
array ofSPAD detectors (sometimes referred to as a Geiger­
mode avalanche diode) and/or one or more other detectors 
that are configured to detect the arrival time of individual 
photons ( e.g., jots). In some embodiments, one or more 
elements of a single photon image sensor 322 can be 
configured to generate data indicative of the arrival time of 
photons from the scene via optics 324. For example, in some 
embodiments, image sensor 322 can be an array of multiple 
SPAD detectors. As yet another example, image sensor 322 
can be a hybrid array including SPAD detectors and one or 
more conventional light detectors (e.g., CMOS-based pix­
els). 

In some embodiments, image data source 202 can include 
additional optics. For example, although optics 324 is shown 
as a single lens, optics 324 can be implemented as com­
pound lenses or combinations of lenses. Note that although 
mechanisms described herein are generally described as 
using SPAD-based detectors, this is merely an example of a 

50 such an example, a 2 bit frame can be a sum of up to four 
binary frames, a 3 bit frame can be a sum of up to eight 
binary frames, etc. As still another example, the input can be 
received as a sequence of averaged low bit depth frames. In 
such an example, data from each pixel location in a frame 

55 can be averaged across multiple frames ( e.g., two frames, 
four frames, eight frames, or any other suitable number of 
frames). In a particular example, an average of eight frames 
can be calculated by, at each pixel location, determining a 
sum of pixel detections ( e.g., for 1 bit frames, a value from 

60 0 to 8), and dividing by 8. Note that multibit frames can 
include information from multiple binary frames, and an 
averaged low bit depth frame can be generated from one or 
more multibit frames. For example, data from four binary 
frames can be used to generate a 2 bit frame, and two 2 bit 

65 frames can be used to generate an average of eight frames by 
determining a sum of pixel values in the two frames, and 
dividing by 8. 
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In some embodiments, topology 400 can be utilize data 
from multiple color channels, and can output high bit depth 
color image data. For example, topology 400 can be modi­
fied to include multiple input channels (e.g., three image 
channels corresponding to red, green, and blue data, or more 
than three channels for color image data that includes more 
than three color channels) and multiple output channels 
(e.g., corresponding to colors associated with the input data). 

In some embodiments, topology 400 can include one or 
more 3D convolutional layers. Such 3D convolutions can 10 

generate features that reflect spatiotemporal patterns in the 
input. For example, topology 400 can include a single 3D 
convolutional layer prior to a convolutional LSTM layer. As 
another example, topology 400 can include multiple 3D 
convolutional layers prior to a convolutional LSTM layer. In 15 

some embodiments, each 3D convolutional layer can use 
any suitable kernel. For example, a 3D convolutional layer 
can use a 3x3x3 kernel. As another example, a 3D convo­
lutional layer can use a lxlxl kernel, a 5x5x5 kernel, a 
7x7x7 kernel, or any other suitable kernel. In some embodi- 20 

ments, each 3D convolutional layer can include any suitable 
number of output channels, which can result in a corre­
sponding number of kernels being trained. For example, 
each 3D convolutional layer can generate 128 output chan­
nels using 128 kernels. As another example, each 3D con- 25 

volutional layer can generate more than 128 output channels 
(e.g., 256 output channels, 512 output channels, 1024 output 
channels, etc.). In some embodiments, each 3D convolu­
tional layer can utilize any suitable activation function. For 
example, 3D convolutional layers can utilize a rectified 30 

linear unit (ReLU) activation with any suitable leak rate 
(e.g., a leak rate of 0.3, or any other suitable leak rate). 

In some embodiments, one or more convolutional LSTM 
layer can be implemented using a unidirectional convolu­
tional LSTM. Additionally or alternatively, one or more 35 

convolutional LSTM layers can be implemented using a 
bidirectional convolutional LSTM. For example, a unidirec­
tional convolutional LSTM layer can utilize a single con­
volutional LSTM cell, which can sequentially receive as 
outputs of a 3D convolutional layer as inputs. As another 40 

example, a bidirectional convolutional LSTM layer can 
utilize multiple convolutional LSTM cells. In such an 
example, an LSTM cell can sequentially receive outputs of 
a 3D convolutional layer as inputs in an order in which the 
outputs are generated, and another LSTM cell can sequen- 45 

tially receive outputs a 3D convolutional layer as inputs in 
a reverse order to the order in which the outputs were 
generated. 

In some embodiments, topology 400 can include one or 
more skip connections. For example, topology 400 can 50 

include a skip connection between an input and an output of 
an LSTM layer. In such an example, the input to the model 
and an output of the LSTM layer can be concatenated (e.g., 

12 
example, using skip connections and concatenation, a block 
I (e.g., including one or more 3D convolutional layers and a 
convolutional LSTM layer) can receive the input to block 
1-1, and also the input to all previous blocks (e.g., including 
the original model input). 

In some embodiments, a model implemented in accor­
dance with mechanisms described herein ( e.g., using one or 
more bidirectional LSTM layers, using only unidirectional 
LSTM layers) can, when estimating f,, leverage information 
collected before frame f, ( e.g., using frames with indices bsi) 
and information collected after frame from f, ( e.g., using 
frames with indices b;;,;i). For example, both bidirectional 
LSTMs and 3D convolutions (which can utilize receptive 
fields that extend a fixed distance into both the past and 
future in a stream of input frames) can leverage information 
from before and after a particular frame. As another 
example, in certain applications ( e.g., real-time applications) 
where an output is generated before an entire input sequence 
is received as input, the convolutional LSTM can be imple­
mented as a unidirectional LSTM and the 3D convolutions 
can lead to a fixed delay between receiving a frame b, and 
producing an estimate f,. 

In some embodiments, topology 400 can include at least 
one 2D convolutional layer that can generate an output 
frame. For example, a 2D convolutional layer can receive 
the output of a concatenation (e.g., including at least the 
output ofa convolutional LSTM layer and the input data). In 
some embodiments, the 2D convolutional layer can use any 
suitable kernel. For example, the 2D convolutional layer can 
use a lxl kernel. The 2D convolutional layer can operate 
independently on output associated with each time step (e.g., 
output data associated with a particular input frame b,). In 
some embodiments, the 2D convolutional layer can include 
any suitable number of output channels, which can corre­
spond to an output frame ( e.g., estimate f,). For example, the 
2D convolutional layer can have a single output channel. In 
some embodiments, an output of the 2D convolutional layer 
can be in a particular range (e.g., 0 to 1). For example, 
outputs outside of a particular range can be clipped to the 
particular range ( e.g., a value below zero can be set to zero, 
and a value above one can be set to one). As another 
example, an activation function (e.g., a sigmoid activation 
function) can be used to generate an output in a particular 
range. In some embodiments, an output of the 2D convo­
lutional layer can be mapped to a high bit depth image ( e.g., 
using any suitable tone mapping technique). For example, 
values can be converted to an integer value in a range 
including 0 and 255. In such an example, the mapping can 
be linear or non-linear. 

In some embodiments, a model implemented in accor­
dance with mechanisms described herein (e.g., based on 
topology 400, based on topology 500 described below in 
connection with FIG. 5, etc.) can be trained using any 
suitable technique or combination of techniques, and/or 
using any suitable training data. For example, the model can 
be trained using data that includes synthetic motion and/or 
data that includes video with real world motion. In a more 
particular example, some results described below were gen­
erated using a model trained using two datasets: a synthetic 

via a concatenation layer) using any suitable technique or 
combination of techniques. In some embodiments, concat- 55 

enation can be performed along the channel axis. For 
example, an input corresponding to a frame at time t can be 
concatenated with an output corresponding to a frame at 
time t. For example, if an input has 128 channels and an 
output has 128 channels, the concatenated output can have 
256 channels. As another example, topology 400 can include 

60 motion dataset and a real video dataset. Both datasets 

a skip connection between an output of an LSTM layer and 
an output of a subsequent LSTM layer. In such an example, 
the input to the model, an output of the first LSTM layer, and 
an output of the subsequent LSTM layer can be concat- 65 

enated (e.g., via a concatenation layer) using any suitable 
technique or combination of techniques. As yet another 

contained full-depth frames captured by conventional cam­
eras, which were used as the ground truth during training. In 
some embodiments, frames used as input for training can be 
generated by applying random Poisson binarization to the 
full-depth frames. 

In some embodiments, frames with synthetic motion can 
be generated using any suitable technique or combination of 
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techniques. For example, a computing device (e.g., a com­
puting device executing process 600) can extract a moving 
sequence of bounding boxes from a still image. The com­
puting device can use random walks in each coordinate of 
the bounding box (e.g., x, y, rotation, and scale). Steps in the 
random walk can be computed using the relationship: 

(I) 

where c is a coordinate (e.g., x coordinate, y coordinate, 
rotation, or scale), "'-ma/ is the maximum per-step change in 
c, cmin and cmax are bounds on c, and µ(-1, 1) is a sample 
from a uniform distribution between -1 and 1. One random 
walk step can correspond to several frames (e.g., 16 by 
default). Cubic spline interpolation can be used to smooth 
the piecewise linear walk between steps, resulting in C(l) 
smooth motion. The parameters "'-m=c' cmin' and cmax for 
each coordinate can be tuned (e.g., manually) to achieve 
motion on the order of one pixel per frame. 

In some embodiments, frames with real motion can be 
generated using any suitable technique or combination of 
techniques. For example, a computing device (e.g., a com­
puting device executing process 600) can extract low bit 
depth frames from high bit depth video. For example, low bit 
depth frames were generated from real video from the Need 

14 
can be averaged over 8-frame blocks. In such an example, 
the motion speed in the synthetic data can be scaled to give 
motion of approximately one pixel per 8-frame block. In the 
real video dataset, each frame can be repeated 8 times before 

5 binarization and 8-frame averaging. This 8-frame repetition 
makes the amount of motion between binary frames more 
manageable and can reduce the number of disk reads per 
sequence from 512 to 64. 

FIG. 5 shows an example 500 of another topology of a 
10 convolutional neural network that can be used to implement 

mechanisms for generating digital images using low bit 
depth image sensor data in accordance with some embodi­
ments of the disclosed subject matter. As shown in FIG. 5, 

15 
topology 500 can include three blocks that each include two 
3D convolutional layers and a bidirectional convolutional 
LSTM layer, and each block can be followed by a concat­
enation. The 3D convolutional layers can use 3x3x3 kernels, 
with 128 output channels, and the bidirectional convolu-

20 tional LSTM layers can include two convolutional LSTM 
cells that can each use 5x5 kernels, and can each have 64 
output channels. In some embodiments, topology 500 can 
include a 2D convolutional layer that can generate an output 
frame. The 2D convolutional layer can use a lxl kernel, 

for Speed (NFS) dataset, and were used during training of a 
model implemented in accordance with mechanisms 
described herein based on topology 500 described below in 
connection with FIG. 5. The NFS dataset includes 100 
videos with 380,000 total frames captured at 240 frames per 
second (FPS). The frames a have resolution of 1280x720 30 
pixels, which were downsized to 320xl80 pixels to speed 
training and reduce the magnitude of inter-frame motion 
(measured in pixels per frame). Object bounding boxes 
associated with the videos were not used. 

25 with 1 output channel. In some embodiments, each 3D 
convolutional layer can utilize a rectified linear unit (ReLU) 
activation with a leak rate of 0.3. 

In some embodiments, a machine learning model imple­
mented in accordance with mechanisms described herein 
(e.g., using topography 400 and/or topography 500) can be 
trained using any suitable optimizer (e.g., the RMSProp 
optimizer), any suitable learning rate (e.g., a learning rate of 
10-4), any suitable batch size (e.g., a batch size of 1), and 
any suitable loss function (e.g., an L2 loss function). In some 
embodiments, a training epoch can include any suitable 
number of sequences (e.g., 2048 sequences), each of which 

In some embodiments, a computing device (e.g., a com- 35 
puting device executing process 600) can generate a frame 
that simulates a frame captured by a low bit depth sensor 
from still image data and/or from a frame of video data using 
any suitable technique or combination of techniques. For 
example, the computing device can convert still image data 40 
or a frame of video to grayscale and reduce the bit width of 

(after any averaging) can include any suitable number of 
input frames of any suitable size (e.g., 64 frames of size 
32x32). In some embodiments, any suitable number of test 
sequences can be used to evaluate the performance of the 
trained machine learning model. For example, test 

the image (e.g., generating a binarized image). In a more 
particular example, the computing device can generate a 
binarized image using Poisson statistics. In such an example, 
a pixel with intensity iE [0,1] can be binarizes using the 45 
relationship: 

sequences that include 64 frames of size 128xl28 can be 
taken from a separate partition of the source dataset, and can 
be used to evaluate performance of the trained machine 
learning model. 

FIG. 6 shows an example 600 of a process for generating 
digital images using low bit depth image sensor data in 
accordance with some embodiments of the disclosed subject 
matter. { 

1 if 'U(0, 1) > e-' 
p= . 

0 else 

(2) 

where u (0,1) is a sample from a uniform distribution 
between O and 1. Note that the intensity is not scaled prior 
to binarization. In some embodiments, multibit data can be 
generated by binarizing individual frames and summing or 
averaging multiple frames to generate a multibit frame. 

In many real applications motion may be much less than 
one pixel per binary frame. Accordingly, it may often be 
computationally wasteful to perform reconstruction at a 
frame rate at which low bit depth frames (e.g., binary 
frames) are generated by an image sensor, which may be at 
a very high frame rate (e.g., 100,000 FPS or greater). In 
some embodiments, multiple frames (e.g., two frames, three 
frames, four frames, five frames, six frames, seven frames, 
eight frames, etc.) can be averaged, and the averaged frame 
can be provided as input to the model (e.g., for training 
and/or to a trained model). For example, inputs to the model 

50 At 602, process 600 can receive high bit depth still images 
(e.g., captured with a conventional image sensor, such as a 
CMOS image sensor, or a CCD image sensor). In some 
embodiments, process 600 can receive the high bit depth still 
images from any suitable source or combination of sources. 

55 For example, process 600 can receive the high bit depth 
images from a server (e.g., server 220), from a computing 
device (e.g., computing device 210), from memory (e.g., 
memory 310, memory 320), etc. 

At 604, process 600 can generate a series of simulated 
60 frames with interframe motion (e.g., translation, rotation, 

simulate axial motion, etc.) from each of the still frames 
using any suitable technique or combination of techniques. 
For example, as described above in connection with EQ. (1), 
process 600 can determine a position, orientation, and/or 

65 scale of a bounding box, and can generate a simulated frame 
based on the position, orientation, and/or scale of a bounding 
box. 
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At 606, process 600 can generate simulated low bit depth 
frames from the series of simulated frames using any 
suitable technique or combination of techniques. For 
example, process 600 can generate a low bit depth image 
from each simulated frame using techniques described 
above in connection with EQ. (2). As another example, 
process 600 can generate multiple low bit depth image from 
each simulated frame. As described above in connection 
with FIG. 4, in some embodiments, process 600 can com­
bine information from multiple simulated low bit depth 
frames, for example, by averaging a block of multiple 
frames. 

In some embodiments, process 600 can omit 602 to 606. 
For example, process 600 can generate simulated low depth 
frames from video data, as described below in connection 
with 608 and 610. 

At 608, process 600 can receive high bit depth video data 
(e.g., captured with a conventional image sensor, such as a 
CMOS image sensor, or a CCD image sensor). In some 
embodiments, process 600 can receive the high bit depth 
video data from any suitable source or combination of 
sources. For example, process 600 can receive the high bit 
depth images from a server (e.g., server 220), from a 
computing device (e.g., computing device 210), from 
memory (e.g., memory 310, memory 320), etc. 

At 610, process 600 can generate simulated low bit depth 
frames from frames of the video data using any suitable 
technique or combination of techniques. For example, pro­
cess 600 can generate a low bit depth image from each frame 
of video using techniques described above in connection 
with EQ. (2). As another example, process 600 can generate 
multiple low bit depth images from each frame of video. As 
described above in connection with FIG. 4, in some embodi­
ments, process 600 can combine information from multiple 
simulated low bit depth frames, for example, by averaging 
a block of multiple frames. 

At 612, process 600 can train a machine learning model 
(e.g., having a topology described above in connection with 
FI GS. 4 and/ or 5) using low bit depth frames (e.g., generated 
at 606 and/or 610) and the intensity from corresponding still 
images and/or frames of video data. In some embodiments, 
process 600 can use any suitable technique or combination 
of techniques to train the machine learning model. For 
example, process 600 can use techniques described above in 
connection with FIGS. 4 and 5 to train the machine learning 
model. For example, as described above, in some embodi­
ments, process 600 can use the L2 loss function, and can use 
an RMSProp optimizer. 

At 614, process 600 can receive a series of low bit depth 
frames from any suitable source. For example, process 600 
can receive SPAD image sensor data ( e.g., 1 bit SPAD image 
sensor data, multibit SPAD image sensor data) of a scene. As 
another example, process 600 can receive jot image sensor 
data (e.g., 1 bit jot image sensor data, multibit jot image 
sensor data) of a same scene. 

At 616, process 600 can combine information from mul­
tiple frames received at 614. For example, as described 
above in connection with FIG. 4, multiple frames (e.g., two 
frames, three frames, four frames, five frames, six frames, 
seven frames, eight frames, etc.) can be averaged, and the 
averaged frame can be provided as input to the trained 
machine learning model. In some embodiments, each frame 
can be included in a single average. For example, eight 
frames (e.g., frames 1 to 8) can be averaged to generate a 
first input, and another eight frames ( e.g., frames 9 to 16) can 
be averaged to generate a second input. In some embodi­
ments, combining information from multiple frames can be 

16 
omitted. For example, if single low bit depth frames are 
provided as input to the trained machine learning model, 
combining information from multiple frames can be omit­
ted. 

At 618, process 600 can provide low bit depth image 
information as input to the trained machine learning model. 
In some embodiments, process 600 can provide a sequence 
of single low bit depth frames as input to the trained machine 
learning model. In some embodiments, process 600 can 

10 combine information from multiple low bit depth frames to 
generate an aggregated low bit depth frame, and provide a 
sequence of aggregated low bit depth frames as input to the 
trained machine learning model. 

At 620, process 600 can receive a relatively high bit depth 
15 ( e.g., a full depth) frame as output from the trained machine 

learning model. For example, as described above in con­
nection with FIGS. 4 and 5, the trained machine learning 
model can generate a high bit depth frame for each input 
provided to the trained machine learning model (e.g., for 

20 each low bit depth frame provided as input to the trained 
machine learning model, for each aggregated low bit depth 
frame). In a more particular example, process 600 can 
receive the output in real time or near real time (e.g., 
generated by a trained machine learning model implemented 

25 with one or more unidirectional convolutional LSTM layers) 
after at least a predetermined number of inputs have been 
provided to the machine learning model. In such an 
example, the output can be generated after a delay corre­
sponding to a number of frames in the trained machine 

30 learning model's receptive field. In such an example, using 
convolutions with 3x3x3 kernels, the receptive field can 
cover 1+2m frames, where m corresponds to the number of 
3D convolutional layers used to implement the machine 
learning model. In a specific example, at a frame rate of 

35 about 100,000 frames per second, and using an average of 8 
frames for each input frame, the delay can be on the order 
of about 1 millisecond (ms) for a machine learning model 
implemented using topology 500. In another more particular 
example, process 600 can receive the output in real time 

40 without a substantial delay ( e.g., no delay after the initial 
frame is received at 614 and/or combined at 616) if temporal 
padding is applied prior to an input of a first frame. In yet 
another more particular example, process 600 can receive 
the output with a relatively short delay ( e.g., generated by a 

45 trained machine learning model implemented with one or 
more bidirectional convolutional LSTM layers) after a pre­
determined number of inputs have been provided to the 
machine learning model. In such an example, the output can 
be generated after a delay corresponding to a number of 

50 frames in the processing window. In such an example, if 
input is processed in 128-frame blocks, the delay can 
correspond to the time taken to acquire the 128 frames. In a 
specific example, at a frame rate of about 100,000 frames per 
second, and using an average of 8 frames for each input 

55 frame, the delay can be on the order of about 10 ms. 
In some embodiments, process 600 ( or any other suitable 

process) can perform additional image processing on an 
output received at 620. For example, process 600 (or any 
other suitable process) can perform denoising to an output 

60 received at 620. As another example, process 600 (or any 
other suitable process) can perform deblurring to an output 
received at 620. In some embodiments, such image process­
ing can be used in connection with an output of a machine 
learning model that is relatively light weight ( e.g., having 

65 fewer layers, having fewer channels, etc.). For example, a 
machine learning model implemented using topology 500 
can output relatively high quality images that may not 
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benefit much ( or at all) from further image processing. As 
another example, a machine learning model implemented 
using fewer layers, fewer channels, etc., may utilize fewer 
computing resources than a machine learning model imple­
mented using topology 500, and may generate images that 
are relatively lower quality (e.g., which may benefit from 
use of additional image processing). In such an example, 
additional image processing may or may not be applied prior 
to utilizing an output of the trained machine learning model 
as input to a downstream task (e.g., for use in a machine 10 

vision task). 
At 622, process 600 can present one or more output 

images (e.g., using a display), provide one or more output 
images to another device, provide one or more output 
images to a machine vision system (e.g., to perform a 15 

computer vision task). For example, process 600 can cause 
the one or more images to be presented via a display ( e.g., 
display 330, display 304, display 314). As another example, 
process 600 can use the one or more images in a computer 
vision application ( e.g., object detection and/or recognition). 20 

FIG. 7 shows an example of a low bit depth frame of a 
scene generated from a still image with simulated motion, a 
predicted low noise high bit depth frame of the scene 
generated from a stream of low bit depth frames using 
mechanisms described herein, and a ground truth image of 25 

the scene. Results shown in FIGS. 7 to 11 were generated 
using trained machine learning models implemented using 

18 
bit depth frames using mechanisms described herein, and a 
ground truth image of the scene. 

A machine learning model implemented in accordance 
with the topology described above in connection with FIG. 
5 was initialized with the weights of the core model and 
trained for 50 epochs using training data generated from 
video. The model achieved PSNR of 34.90 and SSIM of 
0.9238. Note that this is better than the performance of the 
synthetic motion model, likely due to the existence of large 
static regions in many real videos that facilitate high per­
formance (e.g., based on the reduced amount of motion in 
the test data). 

A baseline technique that included averaging all input 
frames together to attempt to generate a high bit depth image 
( e.g., averaging pixel values using 64 binary frames with no 
motion correction) was performed as a basis for comparison. 
This resulted in PSNR or 20.52 and SSIM of 0.6877 on the 
real video dataset. Another baseline technique that included 
performing a moving average over 64 binary frames ( or 8 
post-averaging frames). This resulted in PSNR of 20.83 and 
SSIM of 0.5868 on the real video dataset. 

FIG. 10 shows an example of a high bit depth frame of the 
scene generated from a set up binary frames using another 
technique, a predicted low noise high bit depth frame of the 
scene generated from a stream oflow bit depth frames using 
mechanisms described herein, and a ground truth image of 
the scene. 

Frames generated from real video data were used to 
generate a high bit depth image using a quanta burst pho­
tography (QBP) technique (e.g., described in U.S. Pat. No. 
11,170,549). The results shown in FIG. 10 were generated 
using frames generated from real video data without repeti­
tion of the frames (unintentionally), resulting in eight times 
faster motion than was used in the training dataset used to 
train the model described above in connection with FIG. 9, 
and the "predicted image" in FIG. 10 was generated using 
the same model. 

Both the QBP technique and the trained model of FIG. 9 
were used to generate high bit depth images from 100 

the topology described above in connection with FIG. 5. The 
machine learning models were trained using the RMSProp 
optimizer, a learning rate of 10-4

, a batch size of 1, and an 30 

L2 loss function. Each training epoch included 2048 
sequences, each of which (after any averaging) included 64 
frames of size 32x32. Test sequences included 64 frames of 
size 128x 128 and are taken from a separate partition of the 
source dataset. A "core model" was trained for 100 epochs 35 

on a synthetic motion dataset with averaging over 8 binary 
frames. It achieved a peak signal to noise ratio (PSNR) of 
32.10, and a structural similarity index (SSIM) of 0.8878. 
The predicted image in FIG. 7 was generated using the core 
model. 40 example sequences of low bit depth images. Since QBP 

recovers only a single frame from each sequence, the 
corresponding frame was extracted from the trained model's 
output for comparison. QBP and QBP-BM3D (a variant of 
QBP with a BM3D denoiser) achieved PSNR of 28.50 and 

FIG. 8 shows examples oflow bit depth frames based on 
varying numbers of binary frames generated from a still 
image with simulated motion, predicted low noise high bit 
depth frames of the scene generated from streams of the low 
bit depth frames using mechanisms described herein, and a 
ground truth image of the scene. 

In some scenes, non-negligible motion may occur 
between each binary frame. As such, averaging may result in 
blurring and information loss. FIG. 8 shows a comparison of 
four models whose inputs are averaged over 1, 2, 4, and 8 
binary frames. The motion speed between binary frames was 
scaled inversely by the number of averaged frames. In this 
way, the same amount of motion between averaged frames 
was achieved such that the behavior of the models can be 
analyzed as the signal-to-motion ratio decreases. 

The four models were each trained from scratch for 50 
epochs. The 1, 2, 4, and 8 frame models achieved PSNR of 
27.95, 29.37, 30.11 and 31.68, respectively, and SSIM od 
0.7448, 0.8090, 0.8305 and 0.8710, respectively. Perfor­
mance generally decreases as the signal-to-motion ratio 
increases. However, models implemented and trained in 
accordance with mechanisms described herein performed 
quite well in the extreme case where motion is on the order 
of one pixel per binary frame. 

FIG. 9 shows an example of a low bit depth frame of a 
scene generated from video data, a predicted low noise high 
bit depth frame of the scene generated from a stream oflow 

45 29.23 and SSIM of 0.7449 and 0.8160, respectively. The 
trained model yielded PSNR of 29.71 and SSIM of 0.8489. 
Although unintentional, the fact that the test motion speed 
was much higher than in the training dataset demonstrates 
the generalizability of mechanisms described herein to a 

50 variety of motion speeds. 
FIG. 11 shows an example of results of an object detection 

operation performed on a low bit depth frame of a scene 
generated from video data, a predicted low noise high bit 
depth frame of the scene generated from a stream of low bit 

55 depth frames using mechanisms described herein, and a 
ground truth image of the scene. 

For many applications, high bit depth frames generated 
using mechanisms described herein can be used by a down­
stream processing application. For example, a user may wish 

60 to run an object detector or calculate optical flow and/or 
object recognition tasks. FIG. 11 shows results generated by 
running an off-the-shelf object detector (YOLOv3, e.g., 
described in Redmon et al., "YOLOv3: An incremental 
improvement," arXiv:1804.02767 (2018)) using an 8 frame 

65 average of binary frames generated from a frame of video, 
an output of the trained machine learning model described 
above in connection with FIG. 9, and the corresponding 
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frame of video (labeled "ground truth"). As shown in FIG. 
11, results of the object detection were similar when per­
formed on the original video frame and the image output by 
the machine learning model, whereas an object was not 
detected in the 8 frame average. 

In some embodiments, any suitable computer readable 
media can be used for storing instructions for performing the 
functions and/or processes described herein. For example, in 
some embodiments, computer readable media can be tran­
sitory or non-transitory. For example, non-transitory com- 10 

puter readable media can include media such as magnetic 
media (such as hard disks, floppy disks, etc.), optical media 
(such as compact discs, digital video discs, Blu-ray discs, 
etc.), semiconductor media (such as RAM, Flash memory, 
electrically programmable read only memory (EPROM), 15 

electrically erasable progranimable read only memory (EE­
PROM), etc.), any suitable media that is not fleeting or 
devoid of any semblance of permanence during transmis­
sion, and/or any suitable tangible media. As another 
example, transitory computer readable media can include 20 

signals on networks, in wires, conductors, optical fibers, 
circuits, or any suitable media that is fleeting and devoid of 
any semblance of permanence during transmission, and/or 
any suitable intangible media. 

It should be noted that, as used herein, the term mecha- 25 

nism can encompass hardware, software, firmware, or any 
suitable combination thereof. 

It should be understood that the above described steps of 
the process of FIG. 6 can be executed or performed in any 
suitable order or sequence not limited to the order and 30 

sequence shown and described in the figures. Also, some of 
the above steps of the process of FIG. 6 can be executed or 
performed substantially simultaneously where appropriate 
or in parallel to reduce latency and processing times. 

Although the invention has been described and illustrated 35 

in the foregoing illustrative embodiments, it is understood 
that the present disclosure has been made only by way of 
example, and that numerous changes in the details of imple­
mentation of the invention can be made without departing 
from the spirit and scope of the invention, which is limited 40 

only by the claims that follow. Features of the disclosed 
embodiments can be combined and rearranged in various 
ways. 

What is claimed is: 
1. A system for generating range digital images, compris­

ing: 
an image sensor configured to generate low bit depth 

frames; 
at least one processor that is programmed to: 

receive, from the image sensor, a series oflow bit depth 
frames; 

45 

50 

provide low bit depth image information based on the 
series of low bit depth frames to a trained machine 
learning model, the trained machine learning model 55 

comprising: 
a three-dimensional (3D) convolutional layer; 

20 
generate a high bit depth image of a scene based on an 

output of the 2D convolutional layer. 
2. The system of claim 1, wherein the image sensor 

comprises a plurality of single-photon avalanche diodes. 
3. The system of claim 1, wherein the series of low bit 

depth frames comprises a series of binary frames. 
4. The system of claim 1, wherein pixels of the low bit 

depth frames are represented using no more than 4 bits. 
5. The system of claim 1, wherein pixels of the high bit 

depth image are represented using at least 8 bits. 
6. The system of claim 1, wherein the 2D convolutional 

LSTM layer is a bidirectional 2D convolutional LSTM 
layer. 

7. The system of claim 1, wherein the trained machine 
learning model further comprises: 

three LSTM blocks, each comprising: 
two 3D convolutional layers; 
a bidirectional 2D convolutional LSTM layer config­

ured to receive an output of a second 3D convolu­
tional layer of the two 3D convolutional layers; and 

a concatenation layer configured to concatenate an 
input to the LSTM block and an output of the 
bidirectional 2D convolutional LSTM layer, 

wherein the 3D convolution layer, the 2D convolutional 
LSTM layer, and the concatenation layer are included 
in the third LSTM block. 

8. The system of claim 1, wherein the trained machine 
learning model comprises a plurality of input channels, each 
corresponding to a color charmel. 

9. A method for generating range digital images, com­
prising: 

receiving, from an image sensor, a series of low bit depth 
frames; 

providing low bit depth image information based on the 
series of low bit depth frames to a trained machine 
learning model, the trained machine learning model 
comprising: 
a three-dimensional (3D) convolutional layer; 
a two-dimensional (2D) convolutional long short term 

memory (LSTM) layer configured to receive an 
output of the 3D convolutional layer; 

a concatenation layer configured to generate a tensor 
that includes a concatenation of an output of the 2D 
convolutional LSTM layer and the low bit depth 
image information; and 

a 2D convolutional layer configured to generate an 
output based on the tensor generated by the concat­
enation layer; and 

generating a high bit depth image of a scene based on an 
output of the 2D convolutional layer. 

10. The method of claim 9, wherein the image sensor 
comprises a plurality of single-photon avalanche diodes. 

11. The method of claim 9, wherein the series of low bit 
depth frames comprises a series of binary frames. 

12. The method of claim 9, wherein pixels of the low bit 
depth frames are represented using no more than 4 bits. a two-dimensional (2D) convolutional long short 

term memory (LSTM) layer configured to receive 
an output of the 3D convolutional layer; 

13. The method of claim 9, wherein pixels of the high bit 
60 depth image are represented using at least 8 bits. 

a concatenation layer configured to generate a tensor 
that includes a concatenation of an output of the 
2D convolutional LSTM layer and the low bit 
depth image information; and 

a 2D convolutional layer configured to generate an 
output based on the tensor generated by the con­
catenation layer; and 

14. The method of claim 9, wherein the 2D convolutional 
LSTM layer is a bidirectional 2D convolutional LSTM 
layer. 

15. The method of claim 9, wherein the trained machine 
65 learning model further comprises: 

three LSTM blocks, each comprising: 
two 3D convolutional layers; 
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a bidirectional 2D convolutional LSTM layer config­
ured to receive an output of a second 3D convolu­
tional layer of the two 3D convolutional layers; and 

a concatenation layer configured to concatenate an 
input to the LSTM block and an output of the 
bidirectional 2D convolutional LSTM layer, 

wherein the 3D convolution layer, the 2D convolutional 
LSTM layer, and the concatenation layer are included 
in the third LSTM block. 

22 
a two-dimensional (2D) convolutional long short term 

memory (LSTM) layer configured to receive an 
output of the 3D convolutional layer; 

a concatenation layer configured to generate a tensor 
that includes a concatenation of an output of the 2D 
convolutional LSTM layer and the low bit depth 
image information; and 

a 2D convolutional layer configured to generate an 
output based on the tensor generated by the concat­
enation layer; and 

generating a high bit depth image of a scene based on an 
output of the 2D convolutional layer. 

16. The method of claim 9, wherein the trained machine 10 

learning model comprises a plurality of input channels, each 
corresponding to a color channel. 

18. The non-transitory computer readable medium of 
claim 17, wherein the image sensor comprises a plurality of 

15 single-photon avalanche diodes. 

17. A non-transitory computer readable medium contain-
ing computer executable instructions that, when executed by 
a processor, cause the processor to perform a method for 
generating range digital images, comprising: 

receiving, from an image sensor, a series of low bit depth 
frames; 

providing low bit depth image information based on the 
series of low bit depth frames to a trained machine 
learning model, the trained machine learning model 
comprising: 
a three-dimensional (3D) convolutional layer; 

19. The non-transitory computer readable medium of 
claim 17, wherein the series of low bit depth frames com­
prises a series of binary frames. 

20. The non-transitory computer readable medium of 
20 claim 17, wherein pixels of the low bit depth frames are 

represented using no more than 4 bits, and pixels of the high 
bit depth image are represented using at least 8 bits. 

* * * * * 




