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(57) ABSTRACT 

In accordance with some embodiments, systems, methods, 
and media for high dynamic range imaging using single­
photon and conventional image sensor data are provided. In 
some embodiments, the system comprises: first detectors 
configured to detect a level of photons proportional to 
incident photon flux; second detectors configured to detect 
arrival of individual photons; a processor programmed to: 
receive, from the first detectors, first values indicative of 
photon flux from a scene with a first resolution; receive, 
from the second detectors, second values indicative of 
photon flux from the scene with a lower resolution; provide 
a first encoder of a trained machine learning model first flux 
values based on the first values, provide the second encoder 
of the model second flux values; receive, as output, values 
indicative of photon flux from the scene; and generate a high 
dynamic range image based on the third plurality of values. 

21 Claims, 11 Drawing Sheets 
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In some embodiments, the system further comprises a 
CMOS image sensor that includes the first plurality of 
detectors. 

SYSTEMS, METHODS, AND MEDIA FOR 
HIGH DYNAMIC RANGE IMAGING USING 

SINGLE-PHOTON AND CONVENTIONAL 
IMAGE SENSOR DATA In some embodiments, each detector of the second plu-

5 rality of detectors comprises a single-photon detector. 
STATEMENT REGARDING FEDERALLY 

SPONSORED RESEARCH 
In some embodiments, wherein each single-photon detec­

tor is configured to record a number of photons detected 
within an exposure time. 

This invention was made with government support under 
1846884 awarded by the National Science Foundation and 
under DE-NA0003921 awarded by the US Department of 
Energy. The government has certain rights in the invention. 

In some embodiments, the first resolution is at least four 
IO times greater than the second resolution. 

In some embodiments, the trained machine learning 
model includes a first skip connection between a layer of the 
first encoder and a layer of the decoder, and a second skip 
connection between a layer of the second encoder and the 

NIA 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 15 layer of the decoder, wherein the trained machine learning 

model is configured to concatenate values from the layer of 
the first encoder and values from the layer of the second 
encoder. 

BACKGROUND 

In general, conventional image sensors, such as image 
sensors based on charged-coupled device (CCD) or comple­
mentary semiconductor metal oxide (CMOS) technology, 
have a limited dynamic range. 

In some embodiments, the at least one processor is further 
20 programmed to: estimate the first plurality of flux values 

using the first plurality of values and the relationship: 

Accordingly, new systems, methods, and media for high 25 

dynamic range imaging using single-photon and conven­
tional image sensor data are desirable. 

SUMMARY 

A CMOS 

<f> CMOS = !!.I__ 
qcMosT' 

where <J'>CMos is the estimated flux for the portion of the 
scene, NcMos T is a value output by a detector of the first 

In accordance with some embodiments of the disclosed 
subject matter, systems, methods, and media for high 
dynamic range imaging using single-photon and conven­
tional image sensor data are provided. 

30 plurality of detectors, qcMos is a sensitivity of the detector, 
and Tis exposure time; and estimate the second plurality of 
flux values using the second plurality of values and the 
relationship: 

In accordance with some embodiments of the disclosed 35 

subject matter, a system for generating high dynamic range 
digital images is provided, the system comprising: a first 
plurality of detectors, each configured to detect a level of 
photons arriving at the detector that is proportional to an 
incident photon flux at the detector, the first plurality of 40 

detectors arranged in a first array; a second plurality of 
detectors, each configured to detect arrival of individual 
photons, the second plurality of detectors arranged in a 
second array; at least one processor that is programmed to: 
receive, from the first plurality of detectors, first image data 45 

comprising a first plurality of values each indicative of 
photon flux from a portion of a scene corresponding to a 
respective detector of the first plurality of detectors, wherein 
the first image data has a first resolution; receive, from the 
second plurality of detectors, second image data comprising 50 

a second plurality of values each indicative of photon flux 
from a portion of the scene corresponding to a respective 
detector of the second plurality of detectors, wherein the 
second image data has a second resolution that is lower than 
the first resolution; provide, as input to a first encoder of a 55 

trained machine learning model, a first plurality of flux 
values based on the first plurality of values, wherein the 
trained machine learning model comprises the first encoder, 
a second encoder, and a decoder; provide, as input to the 
second encoder of the trained machine learning model, a 60 

second plurality of flux values based on the second plurality 
of values; receive, as output from the trained machine 
learning model, a third plurality of values each indicative of 
photon flux from a portion of the scene corresponding to a 
respective detector of the first plurality of detectors; and 65 

generate a high dynamic range image based on the third 
plurality of values. 

~;ic/qsPAD 
ASPC 

Tspc -rdNTspc 

where <J'>5Pc is the estimated flux for the portion of the scene, 
T sPc is exposure time, NsPc T is a photon count corre­
sponding to the number of ph~ton detections in exposure 
time Tspr, qsPAn is a sensitivity of the detector, and td is a 
dead time of the detector. 

In accordance with some embodiments of the disclosed 
subject matter, a method for generating high dynamic range 
digital images is provided, the method comprising: receiv­
ing, from a first plurality of detectors, first image data 
comprising a first plurality of values each indicative of 
photon flux from a portion of a scene corresponding to a 
respective detector of the first plurality of detectors, wherein 
the first image data has a first resolution, each of the 
detectors of the first plurality of detectors is configured to 
detect a level of photons arriving at the detector that is 
proportional to an incident photon flux at the detector, and 
the first plurality of detectors are arranged in a first array; 
receive, from the second plurality of detectors, second image 
data comprising a second plurality of values each indicative 
of photon flux from a portion of the scene corresponding to 
a respective detector of the second plurality of detectors, 
wherein the second image data has a second resolution that 
is lower than the first resolution, each of the detectors of the 
second plurality of detectors is configured to configured to 
detect arrival of individual photons, and the second plurality 
of detectors are arranged in a second array; providing, as 
input to a first encoder of a trained machine learning model, 
a first plurality of flux values based on the second plurality 
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server, shown in FIG. 2 in accordance with some embodi­
ments of the disclosed subject matter. 

FIG. 4 shows an example illustrating a comparison of 
theoretical signal-to-noise ratios (SNRs) across various flux 
levels for mechanisms described herein and another tech­
nique. 

FIG. 5 shows an example of a topology of a convolutional 

of values, wherein the trained machine learning model 
comprises the first encoder, a second encoder, and a decoder; 
providing, as input to the second encoder of the trained 
machine learning model, a second plurality of flux values 
based on the first plurality of values; receiving, as output 
from the trained machine learning model, a third plurality of 
values each indicative of photon flux from a portion of the 
scene corresponding to a respective detector of the first 
plurality of detectors; and generating a high dynamic range 
image based on the third plurality of values. 10 

neural network that can be used to implement mechanisms 
for high dynamic range imaging using single-photon and 
conventional image sensor data in accordance with some 
embodiments of the disclosed subject matter. In accordance with some embodiments of the disclosed 

subject matter, non-transitory computer readable medium 
containing computer executable instructions that, when 
executed by a processor, cause the processor to perform a 
method for generating high dynamic range digital images is 
provided, the method comprising: receiving, from a first 
plurality of detectors, first image data comprising a first 
plurality of values each indicative of photon flux from a 
portion of a scene corresponding to a respective detector of 
the first plurality of detectors, wherein the first image data 
has a first resolution, each of the detectors of the first 
plurality of detectors is configured to detect a level of 
photons arriving at the detector that is proportional to an 
incident photon flux at the detector, and the first plurality of 
detectors are arranged in a first array; receive, from the 
second plurality of detectors, second image data comprising 
a second plurality of values each indicative of photon flux 
from a portion of the scene corresponding to a respective 
detector of the second plurality of detectors, wherein the 
second image data has a second resolution that is lower than 
the first resolution, each of the detectors of the second 
plurality of detectors is configured to configured to detect 
arrival of individual photons, and the second plurality of 
detectors are arranged in a second array; providing, as input 

FIG. 6 shows an example of a process for high dynamic 
range imaging using single-photon and conventional image 
sensor data in accordance with some embodiments of the 

15 disclosed subject matter. 
FIG. 7 shows an example of a CMOS image of a scene, 

a single-photon sensor image of the scene, a high dynamic 
range image of the scene generated using mechanisms 
described herein, and portions of the scene generated using 

20 another technique. 
FIG. 8 shows an example of a CMOS image of a second 

scene, a single-photon sensor image of the second scene, a 
high dynamic range image of the second scene generated 
using mechanisms described herein, and portions of the 

25 second scene generated using yet another technique. 
FIG. 9 shows an example of a CMOS image of a third 

scene, a single-photon sensor image of the third scene, a 
high dynamic range image of the third scene generated using 
mechanisms described herein, and portions of the third 

30 scene generated using yet another technique. 
FIG. 10 shows examples of qualitative metrics of perfor­

mance for images generated using mechanisms described 
herein and various other techniques. 

FIG. 11 shows examples of images generated using 
35 mechanisms described herein and various other techniques 

and images generated using various other techniques. to a first encoder of a trained machine learning model, a first 
plurality of flux values based on the first plurality of values, 
wherein the trained machine learning model comprises the 
first encoder, a second encoder, and a decoder; providing, as 
input to the second encoder of the trained machine learning 40 

model, a second plurality of flux values based on the second 
plurality of values; receiving, as output from the trained 
machine learning model, a third plurality of values each 
indicative of photon flux from a portion of the scene 
corresponding to a respective detector of the first plurality of 45 

detectors; and generating a high dynamic range image based 

DETAILED DESCRIPTION 

In accordance with various embodiments, mechanisms 
(which can, for example, include systems, methods, and 
media) for high dynamic range imaging using single-photon 
and conventional image sensor data are provided. 

Recently, single-photon image sensors (e.g., based on 
single-photon avalanche diode (SPAD) detector technol­
ogy), have become more popular for various image sensing 
applications. Such sensors can exhibit extreme sensitivity to 
light (e.g., down to individual photons) and high timing 
resolution, which can be used to achieve high dynamic range 

on the third plurality of values. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Various objects, features, and advantages of the disclosed 
subject matter can be more fully appreciated with reference 
to the following detailed description of the disclosed subject 
matter when considered in connection with the following 
drawings, in which like reference numerals identify like 
elements. 

FIG. 1 shows an example of a high dynamic range scene, 
images of the scene generated using a complementary 
metal-oxide semiconductor (CMOS) image sensor and a 
single-photon image sensor, and a histogram showing the 
number of true scene pixels at various flux levels. 

FIG. 2 shows an example of a system for high dynamic 
range imaging using single-photon and conventional image 
sensor data in accordance with some embodiments of the 
disclosed subject matter. 

FIG. 3 shows an example of hardware that can be used to 
implement an image data source, a computing device, and a 

50 ( e.g., extreme dynamic range where the brightest point in the 
image can be more than six orders of magnitude brighter 
than the dimmest point) from a single-shot. However, single­
photon sensors have been limited to single-pixel detectors 
( e.g., which are swept across a scene) or very low-resolution 

55 SPAD arrays (e.g., 32x32 pixel arrays). While megapixel 
SPAD arrays are likely to be available relatively soon, the 
per-pixel bit-depth of these sensors is likely to be 1-bit. This 
can require thousands of binary frames to be read off the 
sensor to reconstruct a single image, which has relatively 

60 high power consumption, relatively long acquisition times, 
and are difficult to process in real time. 

Emerging computer vision applications can benefit from 
imaging systems capable of capturing brightness levels with 
high dynamic range. For example, in a scene with very high 

65 ( e.g., extreme) dynamic range, a brightest point in the image 
can be more than 6 orders of magnitude brighter than the 
dimmest point. 
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Some conventional high dynamic range imaging tech­
niques capture multiple low dynamic range images of a 
scene with different exposure times, and merge the multiple 
images into a single high dynamic range image. For 
example, exposure bracketing, where a sequence of images 5 

with different exposure times are fused into a single high 
dynamic range (HDR) image, has been used to attempt to 
produce an image with increased dynamic range. However, 

6 
incident photon flux and an output of the pixel. This 
response curve is an intrinsic property of the pixel and is 
quite different for a conventional CMOS image sensor pixel 
and a single-photon image sensor pixel. 

A conventional CMOS camera pixel has a linear response 
curve where the photoelectric charge accumulated in the 
pixel is directly proportional to the incident photon flux <I>. 
Camera manufacturers often apply a proprietary non-linear 
compression curve called the camera response function this technique can lead to ghosting and light flicker artifacts, 

especially for dynamic scenes. To mitigate these artifacts, 
commercial HDR techniques are generally limited to fusing 
only 2-4 exposures acquired through sequential capture or 
with dual-pixel architectures. Recovering an extreme 
dynamic range image from only a few exposure stops often 
results in spatially non-uniform signal-to-noise-ratio (SNR) 
dip artifacts throughout the image. Large SNR dips can be 
a challenge because fine image features can be overwhelmed 

IO (CRF) to the raw pixel measurement. Assuming that access 
to the raw (linear) pixel values are accessible, the pixel 
output, NT cMos, can be represented as a linear function of <I>. 
For example, the average number of photoelectrons accu­
mulated in a CMOS pixel over exposure time, T, can be 

15 represented using the following relationship: 

by noise, which can be difficult to denoise. Overall, spatially 
non-uniform SNR drops are a fundamental limitation of 
exposure bracketing in high dynamic range scenarios when 20 

only a small number of exposures can be captured. Although 
such techniques can produce acceptable images for static 
scenes, these techniques often suffer from "ghosting" arti­
facts when a scene includes motion. Spatially varying expo­
sure image sensors can be used to attempt to mitigate such 25 
artifacts, but such image sensors introduce additional hard­
ware complexity if more than two exposures are needed to 
cover the dynamic range. As described below, mechanisms 
described herein can use just two image sensors (e.g., a 
CMOS image sensor and a single-photon image sensor) can 30 

be used to generate extremely high dynamic range content 
(e.g., beyond the capability of conventional techniques, such 
as CMOS-CMOS fusion). 

Another more recently developed technique attempts to 
generate a high dynamic range image using deep learning 35 

techniques to recover saturated regions from a single CMOS 
image. Such a technique performs quite well when the image 
contains a few overexposed regions. However, for scenes 
with extreme dynamic range where large regions of the 
scene are overexposed, such a deep learning approach can 40 

introduce significant artifacts, which are not appropriate in 
safety-critical applications. In some embodiments, mecha­
nisms described herein can use relatively low resolution, and 
high dynamic range single-photon image sensor image data 
to facilitate reconstructing extremely bright and saturated 45 

regions that conventional single-image high dynamic range 
techniques struggle to recover. 

Recently, event-based vision sensors have been used in 
conjunction with a CMOS image sensor for high dynamic 
range imaging. Unlike an event-camera that only captures 50 

changes in brightness, mechanisms described herein can 
utilize single-photon image sensor image data to directly 
capture scene intensity with extremely high dynamic range. 
Quanta image sensors (QIS) are also sensitive down to 
individual photons and can provide much higher dynamic 55 

range than conventional CMOS cameras. Nonetheless, due 
to the lack of precise timing information, the dynamic range 
achievable by the QIS is lower that what could be achieved 
with a SPAD-based SPC. 

and has a variance due to Poisson noise can be represented 
using the following relationship: 

(2) 

where 0<qcMos<l is the pixel sensitivity. Note that if raw 
linear pixel values are not available, the CRF can be 
estimated to linearize the values output by the image sensor. 
Recent advances in CMOS pixel technology have led to a 
reduction in electronic read noise sources, approaching or 
achieving sub-electron levels in normal illumination condi­
tions. Electronic read noise in such pixels is negligible in a 
high-flux regime considered herein, and can be ignored. In 
some embodiments, a Gaussian approximation can be used, 
and it can be assumed that each CMOS pixel generates an 
output NcMos T that follows a normal distribution with mean 
and variance represented by EQS. (1) and (2), and rounded 
to the nearest integer. Additionally, a full well capacity can 
be enforced, such that NcMos T can be clamped at a maxi­
mum ofNFwc-

In some embodiments, the incident per-pixel photon flux 
received at a CMOS pixel can be estimated using the 
following relationship: 

A CMOS 

<f> CMOS = !!.I__ 
qcMosT 

(3) 

if the pixel is not saturated (e.g., the pixel output NcMos Tis 
less than N Fwd-

In some embodiments, a single-photon pixel (e.g., imple­
mented using a single-photon avalanche diode (SPAD), 
implemented using jots of a QIS, or) can be operated in a 
passive free-running configuration. For example, in such a 
single-photon pixel, after each photon detection event, a 
single-photon sensor enters a dead-time during which the 
sensor cannot detect any photons. In such a free-running 
configuration when the photon flux is higher, the fraction of 
photons missed due to the dead-time can be expected to be 
higher. This results in a non-linear response curve where the 
average number of photons (N/Pc) captured by the pixel 
over a fixed exposure time (T) can be represented using the 

In general, the photon irradiance received at an image 
sensor pixel is proportional to the true brightness (radiance) 
of the scene point. If a fixed pixel size is assumed, the photon 
irradiance can be converted to total incident photon flux 
(e.g., in photons per second) which can be used as a proxy 

60 following relationship: 

for scene brightness. Considering a fixed scene point with a 65 

brightness of <I> photons/second, the response curve of the 
image sensor pixel can determine a relationship between the 

(4) 

where O<qsPAo<l is the pixel sensitivity, and t 2 _7 is the 
dead-time. Due to the inherent uncertainty from the Poisson 
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nature of light, the number of photons can be expected to 
fluctuate and the variance of such fluctuation can be repre­
sented using the following relationship: 

(5) 

In some embodiments, a Gaussian approximation can be 
used, and it can be assumed that each single-photon pixel 
generates normally distributed photon counts with a mean 
and variance represented by EQS. (4) and (5) and rounded 
to the closest integer. From the measured photon counts, 
N/Pc, the per-pixel photon flux can be estimated using the 
inverse of EQ. (4), which can be represented as: 

<f>SPC 
ASPC 
Nr /qsPAD 

ASPC 
T-TdNT 

(6) 

In some embodiments, mechanisms described herein can 
estimate the flux at each single-photon sensor, for example, 
using EQ. (6). 

In some embodiments, the per-pixel photon flux can be 
estimated based on the arrival time of photons in addition to, 
or in lieu of, a count of the number of photon arrivals. For 
example, as described in U.S. Pat. No. 10,616,512, per-pixel 
photon flux can be calculated based on the mean time 
between photon detections. For example, per-pixel photon 
flux can be estimated using the following relationship: 

(6') 
where 

j N(TJ-1 

X--- °\' X 
- N(T) - 1 L, ' 

i=l 

is the mean time between detections and 0<q < 1 is the photon 
detection probability of the SPAD pixel (sometimes referred 

8 
and the scene captured using a single-photon-based image 
sensor (labeled SPC). In some embodiments, mechanisms 
described herein fusing a single SPC image and a single 
CMOS image can outperform dual-exposure bracketing 

5 fusion techniques that rely on two images, especially in 
situations where the dynamic range is too large to be covered 
by two CMOS exposures, for example, as shown in FIG. 1, 
panel (b). 

FIG. 2 shows an example 200 of a system for high 
IO dynamic range imaging using single-photon and conven­

tional image sensor data in accordance with some embodi­
ments of the disclosed subject matter. As shown in FIG. 2, 
a computing device 210 can receive image data from an 
image data source(s) 202. In some embodiments, computing 

15 device 210 can execute at least a portion of an image 
processing system 204 to perform an image processing task, 
such as generating a high dynamic range image using a 
neural network, training a neural network to generate high 
dynamic range images, etc. Additionally, in some embodi-

20 ments, computing device 210 can execute at least a portion 
of a machine vision system (not shown) to perform a 
machine vision task, such as image classification, object 
detection, image segmentation, object tracking, and/or any 
other suitable computer vision task. For example, a machine 

25 vision system can receive one or more images (e.g., a high 
dynamic range image, etc.) generated by image processing 
system 204, and can perform a machine vision tasks based 
on the image(s) received from image processing system 204. 

Additionally or alternatively, in some embodiments, com-
30 puting device 210 can communicate data received from 

image data source 202 to a server 220 over a communication 
network 208, which can execute at least a portion of image 
processing system 204 and/or at least a portion of a machine 
vision system. In such embodiments, server 220 can return 

35 information to computing device 210 (and/or any other 
suitable computing device) indicative of an output of an 
image processing task performed by image processing sys­
tem 204 and/or a computer vision system. In some embodi­
ments, image processing system 204 can execute one or 

40 more portions of process 600 described below in connection 
with FIG. 6. 

In some embodiments, computing device 210 and/or 
server 220 can be any suitable computing device or combi­
nation of devices, such as a desktop computer, a laptop 

45 computer, a smartphone, a tablet computer, a wearable 
computer, a server computer, a computing device integrated 
into a vehicle (e.g., an autonomous vehicle), a camera, a 
robot, a virtual machine being executed by a physical to as the quantum efficiency of the SPAD pixel), and X; is the 

time between a pair of successive detections (e.g., X 1 is the 
time between the first and second detections, X2 is the time 50 

between the second and third detections, etc., and XN(D-l is 

computing device, etc. 
In some embodiments, image data source 202 can be any 

suitable source of image data (e.g., implemented with com­
bination of at least conventional pixels and single-photon 
pixels) and/or other data that can be used to generate high 
dynamic range images as described herein (e.g., depicting a 

the time between the penultimate and last detections within 
exposure time T). 

FIG. 1 shows an example of a high dynamic range scene, 
images of the scene generated using a complementary 
metal-oxide semiconductor (CMOS) image sensor and a 
single-photon image sensor, and a histogram showing the 
number of true scene pixels at various flux levels. 

In some embodiments, mechanisms described herein can 
utilize learning-based sensor fusion techniques that utilize 
high-resolution, low dynamic range (LDR) information 
(e.g., captured using conventional CMOS pixels) and low­
resolution, extremely high dynamic range image informa­
tion captured by a single-photon pixels to reconstruct a high 
spatial resolution and extreme dynamic range image. FIG. 1, 
panel (a) shows examples of a high dynamic range scene, the 
scene as captured using a conventional CMOS image sensor, 

55 scene in a physical environment of image data source 202). 
For example, image data source 202 can be implemented 
using one or more digital cameras that generate and/or 
output image data indicative of an arrival time of single 
photons. In a more particular example, image data source 

60 202 can include an imaging device configured to detect 
arrival of individual photons (e.g., using avalanche photo­
diodes), such as imaging devices described in U.S. patent 
application Ser. No. 16/844,899, filed Apr. 9, 2020, and titled 
"Systems, methods, and media for high dynamic range 

65 quanta burst imaging." As another more particular example, 
image data source 202 can include an imaging device 
configured to detect arrival of individual photons (e.g., using 
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jot-based detectors), such as imaging devices described in 
Fossum et al., "The quanta image sensor: Every photon 
Counts," Sensors, (2016). 

In some embodiments, image data source 202 can be local 
to computing device 210. For example, image data source 
202 can be incorporated with computing device 210 (e.g., 
computing device 210 can be configured as part of a device 
for capturing, storing, and/or processing image data). As 
another example, image data source 202 can be connected to 
computing device 210 by a cable, a direct wireless link, etc. 10 

Additionally or alternatively, in some embodiments, image 
data source 202 can be located locally and/or remotely from 
computing device 210, and can communicate image data 
(e.g., CMOS image data, single-photon sensor image data, 
etc.) to computing device 210 (and/or server 220) via a 15 

communication network (e.g., communication network 
208). 

In some embodiments, communication network 208 can 
be any suitable communication network or combination of 
communication networks. For example, communication net- 20 

work 208 can include a Wi-Fi network (which can include 
one or more wireless routers, one or more switches, etc.), a 
peer-to-peer network (e.g., a Bluetooth network), a cellular 
network (e.g., a 3G network, a 4G network, a 5G network, 
etc., complying with any suitable standard, such as CDMA, 25 

GSM, LTE, LTE Advanced, NR, etc.), a wired network, etc. 
In some embodiments, communication network 208 can be 

10 
image data, instructions, values, etc., that can be used, for 
example, by processor 302 to perform an image processing 
task, to present content using display 304, to communicate 
with server 220 via communications system(s) 208, etc. 
Memory 310 can include any suitable volatile memory, 
non-volatile memory, storage, or any suitable combination 
thereof. For example, memory 310 can include random 
access memory (RAM), read-only memory (ROM), elec-
tronically-erasable programmable read-only memory (EE­
PROM), one or more flash drives, one or more hard disks, 
one or more solid state drives, one or more optical drives, 
etc. In some embodiments, memory 310 can have encoded 
thereon a computer program for controlling operation of 
computing device 210. For example, in such embodiments, 
processor 302 can execute at least a portion of the computer 
program to perform one or more image processing tasks 
described herein and/or to perform one or more machine 
vision tasks based on an output generated by an image 
processing task described herein, present content (e.g., 
images, information about an object included in image data, 
information about distances to one or more points in a scene, 
etc.), receive information and/or content from image data 
source 202, transmit information to image data source 202, 
receive information and/or content from server 220, transmit 
information to server 220, etc. As another example, proces­
sor 302 can execute at least a portion of the computer 
program to implement image processing system 204 and/or 
a machine vision system. As yet another example, processor 
302 can execute at least a portion of process 600 described 
below in connection with FIG. 6. 

In some embodiments, server 220 can include a processor 
312, a display 314, one or more inputs 316, one or more 
communications systems 318, and/or memory 320. In some 
embodiments, processor 312 can be any suitable hardware 

a local area network, a wide area network, a public network 
(e.g., the Internet), a private or semi-private network (e.g., a 
corporate or university intranet), any other suitable type of 30 

network, or any suitable combination of networks. Commu­
nications links shown in FIG. 2 can each be any suitable 
communications link or combination of communications 
links, such as wired links, fiber optic links, Wi-Fi links, 
Bluetooth links, cellular links, etc. 

FIG. 3 shows an example of hardware that can be used to 
implement image data source 202, computing device 210, 
and/or server 220, shown in FIG. 2 in accordance with some 
embodiments of the disclosed subject matter. As shown in 
FIG. 3, in some embodiments, computing device 210 can 40 

include a processor 302, a display 304, one or more inputs 
306, one or more communication systems 308, and/or 
memory 310. In some embodiments, processor 302 can be 
any suitable hardware processor or combination of proces­
sors, such as a central processing unit (CPU), a graphics 45 

processing unit (GPU), an application specific integrated 
circuit (ASIC), a field-programmable gate array (FPGA), 

35 processor or combination of processors, such as a CPU, a 
GPU, an ASIC, an FPGA, etc. In some embodiments, 
display 414 can include any suitable display devices, such as 
a computer monitor, a touchscreen, a television, etc. In some 

etc. In some embodiments, display 304 can include any 
suitable display devices, such as a computer monitor, a 
touchscreen, a television, an infotainment screen, etc. In 50 

some embodiments, inputs 306 can include any suitable 
input devices and/or sensors that can be used to receive user 
input, such as a keyboard, a mouse, a touchscreen, a micro­
phone, etc. 

In some embodiments, communications systems 308 can 55 

include any suitable hardware, firmware, and/or software for 
communicating information over communication network 
208 and/or any other suitable communication networks. For 
example, communications systems 308 can include one or 
more transceivers, one or more communication chips and/or 60 

chip sets, etc. In a more particular example, communications 
systems 308 can include hardware, firmware and/or software 
that can be used to establish a Wi-Fi connection, a Bluetooth 
connection, a cellular connection, an Ethernet connection, 

embodiments, inputs 316 can include any suitable input 
devices and/or sensors that can be used to receive user input, 
such as a keyboard, a mouse, a touchscreen, a microphone, 
etc. 

In some embodiments, communications systems 318 can 
include any suitable hardware, firmware, and/or software for 
communicating information over communication network 
208 and/or any other suitable communication networks. For 
example, communications systems 318 can include one or 
more transceivers, one or more communication chips and/or 
chip sets, etc. In a more particular example, communications 
systems 318 can include hardware, firmware and/or software 
that can be used to establish a Wi-Fi connection, a Bluetooth 
connection, a cellular connection, an Ethernet connection, 
etc. 

In some embodiments, memory 320 can include any 
suitable storage device or devices that can be used to store 
instructions, values, etc., that can be used, for example, by 
processor 312 to present content using display 314, to 
communicate with one or more computing devices 210, to 
communicate with one or more image data sources 202, etc. 
Memory 320 can include any suitable volatile memory, 
non-volatile memory, storage, or any suitable combination 
thereof. For example, memory 320 can include RAM, ROM, 
EEPROM, one or more flash drives, one or more hard disks, 
one or more solid state drives, one or more optical drives, 

etc. 
In some embodiments, memory 310 can include any 

suitable storage device or devices that can be used to store 

65 etc. In some embodiments, memory 320 can have encoded 
thereon a server program for controlling operation of server 
220. For example, in such embodiments, processor 312 can 
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execute at least a portion of the server program to perform 
one or more image processing tasks described herein and/or 
to perform one or more machine vision tasks based on an 
output generate by an image processing task described 
herein, present content (e.g., images, information about an 
object included in image data, information about distances 
to one or more points in a scene, etc.), receive information 
and/or content from image data source 202, transmit infor­
mation to image data source 202, receive information and/or 
content from computing device 210, transmit information to 
computing device 210, etc. As another example, processor 
312 can execute at least a portion of the server program to 
implement image processing system 204 and/or a machine 
vision system. As yet another example, processor 312 can 
execute at least a portion of process 600 described below in 
connection with FIG. 6. 

As shown, image data source 202 can include image 
sensors 322 ( e.g., a conventional area sensor that includes an 
array of conventional pixels, such as a CMOS sensor or a 
CCD sensor; and an area sensor that includes an array of 
single photon detectors, such as a SPAD array or array of 
jots, e.g., as described in U.S. patent application Ser. No. 
16/844,899); optics 322 (which can include, for example, 
one or more lenses, one or more attenuation elements such 
as a filter, a diaphragm, and/or any other suitable optical 
elements such as a beam splitter, etc.); a processor 326 for 
controlling operations of image data source 202 which can 
include any suitable hardware processor (which can be a 
central processing unit (CPU), a digital signal processor 
(DSP), a microcontroller (MCU), a graphics processing unit 
(GPU), etc.) or combination of hardware processors; an 
input device(s) 328 (such as a shutter button, a menu button, 

12 
can be a hybrid array including SPAD detectors and one or 
more conventional light detectors (e.g., CMOS-based pix­
els). As still another example, image sensor 322 can include 
multiple image sensors, such as a first image sensor that 
includes an array of SPAD detectors that can be used to 
generate at least information about the brightness of the 
scene and a second image sensor that includes one or more 
conventional pixels that can be used to generate higher 
resolution information about the colors and/or brightness in 

10 the scene. In such an example, optics 322 can include one or 
more optical elements (e.g., multiple lenses, a beam splitter, 
etc.) configured to direct a portion of incoming light toward 
a SPAD-based image sensor and another portion toward a 
conventional image sensor. In a more particular example, 

15 image sensors 322 can include a CMOS sensor, a CCD 
sensor, an array of single-photon avalanche diodes (SPADs ), 
an array of jots, etc. In some embodiments, image sensors 
322 can be co-located with respect to a scene to be imaged. 
For example, optics (e.g., a beam splitter) can be disposed 

20 between a lens and sensors 322, such that a conventional 
image sensor (e.g., a CMOS sensor, a CCS sensor, etc.) and 
a single-photon sensor (e.g., a SPAD sensor) are exposed to 
the same image of the scene. As another example, for scenes 
that are sufficiently distant from image data source 202, 

25 image sensors 324 can be associated with different lenses 
( e.g., having different optical axes), and can be spaced to 
sufficiently reduce parallax between the image sensors, such 
that the image sensors are effectively co-located. 

In some embodiments, image data source 202 can include 
30 additional optics. For example, although optics 324 is shown 

as a single lens or multiple parallel lenses, optics 324 can be 
implemented as compound lenses or combinations oflenses. 
Note that although mechanisms described herein are gener­
ally described as using SPAD-based detectors and CMOS-

a microphone, a touchscreen, a motion sensor, etc., or any 
suitable combination thereof) for accepting input from a user 
and/or from the environment; a display 330 (e.g., a touch­
screen, a liquid crystal display, a light emitting diode dis­
play, etc.) to present information (e.g., images, user inter­
faces, etc.) for consumption by a user; memory 332; a signal 
generator 334 for generating one or more signals to control 
operation of image sensors 322; a communication system or 40 

systems 336 for facilitating communication between image 
data source 202 and other devices, such as a smartphone, a 
wearable computer, a tablet computer, a laptop computer, a 
personal computer, a server, an embedded computer (e.g., 

35 based pixels, this is merely an example of a single photon 
detector and a conventional pixel. As described above, other 
single photon detectors can be used, such as jot-based image 
sensors, and other conventional pixels can be used, such as 
CCD pixels. 

In some embodiments, signal generator 334 can be one or 
more signal generators that can generate signals to control 
image sensors 322. For example, in some embodiments, 
signal generator 334 can supply signals to enable and/or 
disable one or more pixels of image sensor 322 (e.g., by 

for controlling an autonomous vehicle, robot, etc.), etc., via 
a communication link. In some embodiments, memory 332 
can store image data, and/or any other suitable data. 
Memory 332 can include a storage device (e.g., RAM, 
ROM, EEPROM, one or more flash drives, one or more hard 
disks, one or more solid state drives, one or more optical 
drives, etc.) for storing a computer program for controlling 
processor 326. In some embodiments, memory 332 can 
include instructions for causing processor 326 to execute 
processes associated with the mechanisms described herein, 
such as process 600 described below in connection with 
FIG. 6. 

In some embodiments, image sensors 322 can be include 
an image sensor that is implemented at least in part using an 
array ofSPAD detectors (sometimes referred to as a Geiger­
mode avalanche diode) and/or one or more other detectors 
that are configured to detect the arrival time of individual 
photons ( e.g., jots). In some embodiments, one or more 
elements of a single photon image sensor 322 can be 
configured to generate data indicative of the arrival time of 
photons from the scene via optics 324. For example, in some 
embodiments, image sensor 322 can be an array of multiple 
SPAD detectors. As yet another example, image sensor 322 

45 controlling a gating signal of a SPAD used to implement the 
pixel, by controlling signals applied to CMOS pixels). As 
another example, signal generator 334 can supply signals to 
control readout of image signals from image sensor 322 
(e.g., to memory 332, to processor 326, to a cache memory 

50 associated with image sensor 322, etc.). 
In some embodiments, image data source 202 can com­

municate with a remote device over a network using com­
munication system(s) 336 and a communication link. Addi­
tionally or alternatively, image data source 202 can be 

55 incorporated as part of another device and/or integrated as 
part of another device ( e.g., computing device 210), such as 
a smartphone, a tablet computer, a laptop computer, an 
autonomous vehicle, a robot, etc. Parts of image data source 
202 can be shared with a device within which image data 

60 source 202 is integrated. For example, if image data source 
202 is integrated with an autonomous vehicle, processor 326 
can be a processor of the autonomous vehicle and can be 
used to control operation of image data source 202. 

In some embodiments, display 330 can be used to present 
65 images and/or video generated by image data source 202 

and/or by another device ( e.g., computing device 210, server 
220, etc.), to present a user interface, etc. In some embodi-
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ments, display 330 can be implemented using any suitable 
device or combination of devices, and can include one or 
more inputs, such as a touchscreen. 

14 
can be characterized as having H1XW 1 pixels, where H1 can 
be a number of pixels in a particular direction (e.g., in a 
height direction) and W 1 can be a number of pixels in 
another direction (e.g., in a width direction). In such an 
example, the CMOS encoder can filter the input data (e.g., 
using a 3x3 convolution layer, a ReLU layer, a second a 3x3 
convolution layer, and a second ReLU layer), and can 
downsample the filtered data (e.g., using a 2x2 maxpool 
layer), reducing the size of the representation to 

HI 
H2=-

2 

FIG. 4 shows an example illustrating a comparison of 
theoretical signal-to-noise ratios (SNRs) across various flux 5 

levels for mechanisms described herein and another tech­
nique. As described above, the dynamic range of image 
sensor implemented using single-photon detectors (some­
times referred to as single photon cameras (SPC)) is suffi­
cient for many applications. Similarly, the spatial resolution 10 

of conventional image sensors (e.g., CMOS sensors) is also 
sufficient for many applications. In some embodiments, 
mechanisms described herein can utilize the relatively large 
dynamic that can be generated by single-photon detectors 
with relatively high spatial resolution of conventional image 
sensors to generate relatively high resolution images with 
higher dynamic range. For example, utilizing information 
both types of sensors can mitigate dip artifacts that may be 
caused by exposure bracketing, as single-photon detectors 20 

(e.g., SPADs) can sustain high signal-to-noise ratio (SNR) at 
extreme brightness levels by using sufficiently long (but 
practical) exposure times. As shown in FIG. 4, the SNR of 

15 and 

a conventional CMOS sensor may be limited outside of a 
narrow range of brightness levels. Utilizing a dual-exposure 25 

bracketing technique (e.g., capturing a first image with a 
short exposure time to attempt to properly expose bright 
regions, and a second image with a longer exposure time to 
attempt to properly expose dark regions) can expand the 
dynamic range of the image. However, there is a pronounced 30 

reduction in SNR for intermediate brightness regions. In 
some embodiments, mechanisms described herein can gen­
erate images with a photon flux versus SNR curve with a 
smaller dip, as the greater dynamic range of the SPC can 
increase the SNR in bright regions (e.g., with a single 35 

exposure for each image sensor), where 

WI 
W2= 2 . 

The CMOS encoder can perform similar operations using 
the downsampled data, further reducing the size of the 
representation to 

HI WI 
H3 = 4 and W3 = 4 , 

and so on. In some embodiments, the decoder can further 
filter the representation, and can up-sample the feature maps. 
The last layer can execute a blending operation of the input 
CMOS image and the learned up-sampling of the SPC 
image. 

As shown in FIG. 5, in some embodiments, output tensors 
in the decoder (e.g., the first box after each arrow in the 
decoder) can be concatenated with an element from the 
CMOS encoder and, in some layers, an element from the 
SPC encoder. For example, a 512xH6 xW6 tensor can be 
generated by up-sampling the final 512xH7xW 7 by a factor 

FIG. 5 shows an example of a topology of a convolutional 
neural network that can be used to implement mechanisms 

40 of 2, using a 3x3 convolution layer, and a ReLU layer. The 
512xH6xW6 tensor can be concatenated with (e5) and (y5), 
and the result of the concatenation can be used to generate 
a 512xH5xW5 tensor, which can then be concatenated with 
(e4) and (y4), and so on. 

In some embodiments, mechanisms described herein can 
use any suitable technique of combination of techniques to 
determine the estimated linear flux for various portions of an 
image. For example, mechanisms described herein can uti­
lize EQ. (3) to estimate flux based on an output of a CMOS 

for high dynamic range imaging using single-photon and 
conventional image sensor data in accordance with some 45 

embodiments of the disclosed subject matter. As shown in 
FIG. 5, mechanisms described herein can use a U-net-based 
network architecture. Additionally, in some embodiments, a 
network used in connection with mechanisms described 
herein can include multiple encoders. For example, the 
network can include a CMOS encoder that extracts features 
from CMOS images. As another example, the network can 
include a SPC encoder that extracts features from SPC 
images. In some embodiments, inputs to each encoder can 

50 sensor. As another example, mechanisms described herein 
can utilize EQ. (6) to estimate flux based on an output of a 
SPC sensor. 

In some embodiments, a neural network implemented in 
accordance with mechanisms described herein can be 

be estimated linear photon flux images output by and/or 
generated from the output of, the CMOS and SPC image 
sensors, respectively. Note that in the topology shown in 
FIG. 5, the CMOS image data has a resolution of 4x the 
resolution of the SPC images. However, this is merely an 
example, and the ratio of resolutions can be larger or smaller. 
For example, a neural network with a ratio of Sx or 16x can 
be implemented by including additional layers in the encod-
ers and in the decoder. 

In some embodiments, the encoders can sequentially filter 
and downsample by 2x the input conventional and single­
photon image data to extract multi-scale features. For 
example, as shown in FIG. 5, the conventional image data 

55 trained using a loss function that includes a term based on 
the difference between the labeled (e.g., true) flux associated 
with a particular portion of a training image, and the flux 
estimated by the neural network. Additionally, in some 
embodiments, the loss can include a term based on the 

60 difference between the content of the training image and the 
content of the image estimated by the neural network, which 
is sometimes referred to herein as the perceptual loss. 

In some embodiments, a neural network with parameters 
0 implemented in accordance with some embodiments of the 

65 disclosed subject matter can reconstruct flux values <I>Fused 

of a linear photon flux HDR image: 
(7) 
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Computing a loss directly on the linear high dynamic 
range pixel values generated by the neural network can 
result in the loss function being dominated by the larger 
pixel values. In some embodiments, the loss function can be 
calculated on tone-mapped domain, rather than using linear 
values output by the neural network. For example, mecha­
nisms described herein can use µ-compression as a differ­
entiable tone-mapping operator using the following relation­
ship: 

(8) 

Note that for all the models for which results are presented 
herein, a value µ=2000 was used. 

In some embodiments, mechanisms described herein can 
use a loss function that includes a pixel-wise loss and a 
perceptual loss. In some embodiments, the pixel-wise loss 
can be calculated as the 11 distance of the tone-mapped 
output and target using the following relationship: 

L 11 =11<1>µ-<i>/= 0 dll (9) 

Where <I> is the true photon flux image. In some embodi­
ments, the perceptual loss can be calculated using outputs of 
a pre-trained VGG-19 model, and using the following rela­
tionship: 

(10) 

16 
connection with EQS. (1)-(3) with the pixel sensitivity and 
exposure parameters set to qcMos=0.75 and T=0.01 s. This 
can be followed by the sensor saturation with NFWc=33400. 
Simulated CMOS images can include linear digitized pixel 

5 intensities (e.g., NTcMos), which is approximately a 15-bit 
image. 

In some embodiments, mechanisms described herein can 
simulate a CMOS image using by downsampling the <I> 
image (e.g., by 4x, Sx, etc.) using OpenCV's 

10 cv2.INTER_AREA interpolation. The SPC image can be 
simulated from <I> using the Gaussian approximation 
described above in connection with EQS. a(4)-(6) with pixel 
sensitivity, exposure time, and dead time parameters set to 

15 
q=0.25, T=0.01 s, and td =150 ns, respectively. In some 
embodiments, the simulated SPC image can represent the 
photon counts measured by each pixel (e.g., N/Pc). 

In results described below, a dataset of 667 high-resolu­
tion HDR images were used to generate a set of training 

20 images (e.g., 469 images with 4096x2048 resolution from 
Poly Haven, which were available at https(colon)//poly­
haven(dot)com; 93 images with 2048xl024 resolution from 
the Laval Indoor HDR dataset, which were described in 
Gardner et al., "Learning to predict indoor illumination from 

25 a single image," arXiv preprint arXiv:1704.00090 (2017) 
and are available at http(colon)//indoor(dot)hdrdb(dot)com; 
and 105 images with 2142xl 422 resolution which were used 
in Funt et al., "The effect of exposure on maxrgb color 
constancy," in Human Vision and Electronic Imaging 

30 (2010), and Funt et al., "The rehabilitation of maxrgb," in 
Color and Imaging Conference (2010)). For each dataset, the 
distribution of its irradiance values was analyzed to deter­
mine an appropriate scaling factor that would make the 

where gJ) are the ith layer activations of the VGG model. 35 

Using EQS. (9) and (10), in some embodiments, the loss 
function can be represented using the following relationship: 

distribution span a wide range of realistic photon flux values 
(details are described in Appendix A, which is hereby 
incorporated by reference herein in its entirety). For models 
that use monochrome inputs, the RIB channels were 
excluded. 

(11) 

where a=0.l. 
In some embodiments, mechanisms described herein can 

use any suitable training data to train the neural network. For 
example, in some embodiments, images with known flux 
values can be used to generate simulated CMOS and SPC 
images for use in training. As another example, image data 
source 202 can be used to capture images of scenes for 
which flux can be determined (e.g., using a second co­
located imaging device configured to determine the true flux 
in the scene). As yet another example, separate CMOS and 
SPC imaging devices (e.g., that are co-located) can be used 
to capture images of a scene for which brightness can be 
determined. 

Additionally, as described below, an experimental 

40 CMOS-SPC system was implemented and used to generate 
image pairs. However, the images were not aligned due to a 
relatively large physical distance between the sensors in the 
experimental system, and each sensor was subject particular 
optical parameters (e.g., different focal length and aberra-

45 tions). To mitigate the differences, small overlapping crops 
were manually selected from each image and registered by 
estimating an affine transformation using MATLAB' s 
imregtform function. The approximately aligned crops 
shown in the first and second rows of FIG. 11 are 84x73 and 

50 7lx71, respectively. Additionally, the CMOS and SPC crops 
were bilinearly re-sampled such that the dimensions were 
256x256 and 64x64. 

In some embodiments, the photon flux can be estimated 
from pixel intensities in the training images (e.g., using 

55 EQS. (3) and (6)) to generate CMOS and SPC images that 
have similar distributions in non-saturated regions. The 
CMOS (<I>cMos), SPC(<I>sPc), and ground truth (<I>) images 
can be normalized by dividing by the CMOS photon flux 
saturation limit (e.g., 

In general, as single-photon sensors are an emerging 
technology, there are no real-world datasets available. In 
some embodiments, a simulation pipeline that leverages 
existing HDR image datasets can be used to generate a 
large-scale paired CMOS-SPC image dataset. Additionally, 
current commercially available SPC sensors are mono­
chrome, and results described below are restricted to mono­
chrome images. However, this is merely an example, and 60 

mechanisms described herein can be used with color image 
data. NFwc) 

T , 
In some embodiments, mechanisms described herein can 

simulate CMOS images and SPC images from an input 
ground truth photon flux images, <I>. In some embodiments, 
mechanisms described herein can simulate a CMOS image 
using <I> and a Gaussian approximation described above in 

65 and multiplying by 255. 
In some embodiments, mechanisms described herein can, 

during each training step, randomly select patches from the 
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CMOS and SPC images of size 512x256 and 128x64, 
respectively. For example, to promote a balanced dataset 
that contains sufficient examples of saturated CMOS image 
regions, when selecting a random patch, mechanisms 
described herein can sample 10 patches and select a patch 
where at least 10% of the pixels are saturated. If none of the 
patches satisfy this criteria, one of the patches can be 
returned ( e.g., a randomly selected patch of the 10 patches, 

18 
described above, in some embodiments, process 600 can 
generate simulated SPC image sensor data at 606 based on 
received ground truth photon flux values. 

At 608, process 600 can estimate flux for various areas of 
single-photon image sensor image data (e.g., image pixels) 
based on the single-photon image sensor data received at 
606. In some embodiments, process 600 can use any suitable 
technique or combination of techniques to estimate the flux. 
For example, process 600 can use techniques described a patch with the most saturated pixels, etc.). In some 

embodiments, such a patch selection strategy can prevent 
the neural network from only learning to output a copy of the 
CMOS image. Additionally, in some embodiments, a ran­
dom horizontal and/or vertical flip can be applied to the 
patch. 

10 above in connection with EQ. (6) to estimate the flux at each 
pixel. In some embodiment, process 600 can omit 608. For 
example, if the SPC image sensor data received at 606 is 
formatted as an estimated flux, rather than a photon count, 

As shown in FIG. 5, in some embodiments, a resize- 15 

convolution upsampling operator (e.g., up 2x+conv 3x3+ 
ReLU) can be used, which can mitigate checkerboard arti­
facts. 

process 600 can omit 608. 
At 610, process 600 can train a machine learning model 

( e.g., a U-net based neural network) using the estimated flux 
values for the CMOS and SPC images and the known flux 
associated with the ground truth image using any suitable 
technique or combination of techniques. In some embodi-In some embodiments, the dataset (e.g., including the 

simulated images) can be divided into training, validation, 
and test sets. The training and validation sets can include a 
subset of simulated images ( e.g., about 2/2 of the image) that 
can be split 80/20 into the training and validation sets. For 
example, results described below were generated using the 
images from Poly Haven. The test set can include a separate 
set of images (e.g., the remaining third of image). For 
example, results described below were generated using the 
images used in Funt et al. 

20 ments, process 600 can use techniques described above in 
connection with FIG. 5 to train the machine learning model. 
For example, as described above, in some embodiments, 
process 600 can use the loss function represented in EQ. (11) 
to train the machine learning model. As another example, in 

25 some embodiments, process use the loss function repre­
sented in EQ. (9) to train the machine learning model. 

In some embodiments, weights of the CMOS encoder can 
be initialized to pre-trained VGG-16 weights and the SPC 30 

encoder and sensor fusion decoder can be initialized using 
any suitable values (e.g., PyTorch's default initialization). 

The results described below were generated using models 
that were trained using the ADAM optimizer with default 
parameters and a batch size of 16. The model was trained for 35 

2000 epochs until convergence using a multi-step learning 
rate schedule where the learning rate starts at 10-3

, and every 
500 epochs is reduced by a factor of0.8. However, these are 
merely examples, and other parameters, batch sizes, number 

At 612, process 600 can receive conventional image 
sensor data for a scene with unknown flux. In some embodi­
ments, process 600 can receive the conventional image 
sensor data from any suitable source. For example, process 
600 can receive the conventional image sensor data from an 
image sensor of image data source 202 ( e.g., a CMOS image 
sensor, a CCD image sensor, CMOS pixels of a hybrid 
image sensor, etc.). As another example, process 600 can 
receive the conventional image sensor data from memory of 
image data source 202 ( e.g., locally from memory 332, from 
memory 332 via communication network 208, etc.). 

At 614, process 600 can estimate flux for various areas of 
conventional image sensor image data ( e.g., image pixels) 

of epochs, and learning rates can be used. 40 based on the conventional image sensor data received at 612. 
FIG. 6 shows an example of a process for high dynamic 

range imaging using single-photon and conventional image 
sensor data in accordance with some embodiments of the 
disclosed subject matter. 

At 602, process 600 can receive conventional image 45 

sensor image data for scenes with known flux. For example, 
process 600 can receive CMOS image sensor data. As 
another example, process 600 can receive CCD image 
sensor data. As described above, in some embodiments, 
process 600 can generate simulated CMOS image sensor 50 

data at 602 based on received ground truth photon flux 
values. 

At 604, process 600 can estimate flux for various areas of 
conventional image sensor image data (e.g., image pixels) 
based on the conventional image sensor data received at 602. 55 

In some embodiments, process 600 can use any suitable 
technique or combination of techniques to estimate the flux. 
For example, process 600 can use techniques described 
above in connection with EQ. (3) to estimate the flux at each 
pixel. In some embodiment, process 600 can omit 604. For 60 

example, if the conventional image sensor data received at 
602 is formatted as an estimated flux, rather than a CMOS 
intensity value, process 600 can omit 604. 

At 606, process 600 can receive single-photon image 
sensor image data for scenes with known flux. For example, 65 

process 600 can receive SPAD image sensor data. As another 
example, process 600 can receive jot image sensor data. As 

In some embodiments, process 600 can use any suitable 
technique or combination of techniques to estimate the flux. 
For example, process 600 can use techniques described 
above in connection with EQ. (3) to estimate the flux at each 
pixel. In some embodiment, process 600 can omit 614. For 
example, if the conventional image sensor data received at 
612 is formatted as an estimated flux, rather than an intensity 
value, process 600 can omit 614. 

At 616, process 600 can receive single-photon image 
sensor image data for a scene with unknown flux. For 
example, process 600 can receive SPAD image sensor data 
of the same scene with unknown flux that is represented by 
the conventional image sensor data received at 612. As 
another example, process 600 can receive jot image sensor 
data of the same scene with unknown flux that is represented 
by the conventional image sensor data received at 612. 

At 618, process 600 can estimate flux for various areas of 
single-photon image sensor image data (e.g., image pixels) 
based on the single-photon image sensor data received at 
616. In some embodiments, process 600 can use any suitable 
technique or combination of techniques to estimate the flux. 
For example, process 600 can use techniques described 
above in connection with EQ. (6) to estimate the flux at each 
pixel. In some embodiment, process 600 can omit 618. For 
example, if the SPC image sensor data received at 616 is 
formatted as an estimated flux, rather than a photon count, 
process 600 can omit 618. 
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In some embodiments, process 600 can scale the received 
image data (e.g., received at 612 and/or 616) prior to, or 
after, estimating the flux, such that the size ratio of conven­
tional image data and single-photon image data corresponds 
to the ratio used to train the machine learning model. 

At 620, process 600 can provide flux values correspond­
ing to the conventional image sensor image data received at 
612 and the single-photon image sensor image data received 
at 616 as input to the trained machine learning model. 

At 622, process 600 can receive predicted flux values for 10 

portions (e.g., pixels) of the scene (e.g., pixels) as output 
from the trained machine learning model. In some embodi­
ments, the output can have the same resolution as the input 
conventional image data (e.g., as shown in FIG. 5). 

20 
results labeled Laplacian Blending were generated using an 
algorithmic blending of an ES-RGAN super-resolved SPC 
image and a CMOS image using a technique described in 
Burt et al., "A multiresolution spline with application to 
image mosaics," ACM transactions on Graphics (1983). As 
a further example, results labeled Dual-Exposure Bracketing 
were generated by fusing two CMOS images with a short 
and a long exposure (0.001 millisecond (ms) and 10 ms), 
using a last-sample-before-saturation approach. 

To generate the DHDR and ExpandNet results. the esti-
mated CMOS photon flux images (<I>cMos) were scaled to 
[0,1], gamma-compression (y=0.5) was applied, and the data 
was re-scaled to an 8-bit image. Since DHDR and Expand­
Net are trained with RGB data, both rely on inter-channel 

At 624, process 600 can generate one or more images 
representing the scene based on the predicted flux received 
at 622 using any suitable technique or combination of 
techniques. For example, in some embodiments, process 600 
can generate brightness values based on the predicted flux 
values. In some embodiments, photon flux can be mapped to 
discrete brightness values using any suitable technique or 
combination of techniques. For example, process 600 can 

15 information, and therefore the RIB channels were not 
dropped for these models. ESRGAN takes as input tone­
mapped images scaled between [0, 1]. To generate appro­
priate inputs, µ-compression can be applied to the estimated 
SPC photon flux images (<I>sPc) which can then be scaled to 

20 [0, 1]. Finally, for the output images ofDHDR, ExpandNet, 
and ESRGAN, the pre-processing described above was 
reverted to produce corresponding linear photon flux 
images. This can ensure that all visual comparisons use the use the photon flux to estimate scene brightness as a float­

ing-point number (e.g., representing an absolute brightness 
level that can be represented in lux or watts per square 25 

meter), which can be used to represent scene brightness at 
that point ( e.g., either alone or in combination with other 
information, such as in the RGBE format). As another 
example, photon flux can be used to estimate scene bright­
ness as a floating-point number, and this value can be used 30 

with one or more tone mapping techniques and color infor­
mation to convert the floating point number to an 8 or 16-bit 
RGB bitmap image. In a more particular example, an 
estimated flux values can be converted from a large floating 
point value (e.g., 32 bit floating point values) to 8 or 16 bits 35 

using the TonemapDrago function available from OpenCV 
with gamma and saturation parameters set to 1.0. 

In some embodiments, process 600 can utilize the one or 
more images generated at 624 for any suitable purpose. For 
example, process 600 can cause the one or more images to 40 

be presented via a display (e.g., display 330, display 304, 
display 314). As another example, process 600 can use the 
one or more images in a computer vision application ( e.g., 
object detection and/or recognition). 

FIG. 7 shows an example of a CMOS image of a scene, 45 

a single-photon sensor image of the scene, a high dynamic 
range image of the scene generated using mechanisms 
described herein, and portions of the scene generated using 
another technique. In FIGS. 7-11, image data generated 
using mechanisms described herein is shown and image data 50 

processed using various other techniques is also shown. For 
example, results labeled DHDR were generated from a 
single image (e.g., a single conventional CMOS image) 
using a trained convolutional neural network described in 
Santos et al., "Single image hdr reconstruction using a cnn 55 

with masked features and perceptual loss," arXiv preprint 
arXiv:2005.07335 (2020). As another example, results 
labeled ExpandNet were generated from a single image 
(e.g., a single conventional CMOS image) using a trained 
convolutional neural network described in Marnerides et al., 60 

"Expandnet: A deep convolutional neural network for high 
dynamic range expansion from low dynamic range content," 
in Computer Graphics Forum (2018). As yet another 
example, results labeled ESRGAN were generated using a 
technique described in Wang et al., "Esgran: Enhanced 65 

super-resolution generative adversarial networks," arXiv 
preprint arXiv:1809.00219 (2018). As still another example, 

same visualization pipeline which operates on photon flux 
images. 

For visual comparisons between high dynamic range 
images generated using mechanisms described herein and 
the various other techniques (e.g., as shown in FIGS. 7-9), 
we all images were tone mapped to 16-bit portable network 
graphics (PNG) formatted images using the TonemapDrago 
function available from Open CV with gamma and saturation 
parameters set to 1.0. Additionally, equal exposure and 
contrast adjustments were applied to the crops shown to 
highlight the details. 

FIG. 7 shows a comparison of mechanisms described 
herein to a state-of-the-art single-image HDR network, 
DHDR. In first row of cropped images, DHDR fails to 
recover both the contour and texture of the forehead and 
hair. As shown in the second row of cropped images, not 
only is the cotton-like texture on the collar missing in the 
image produced by DHDR, but the hallucinated texture of 
the beard also incorrectly mimics the pattern found on the 
edge of the collar. These hallucinated image segments are 
not acceptable in safety-critical applications. FIG. 7 suggests 
that single-image HDR techniques are unable to recover 
extreme HDR images because of insufficient contextual 
information in the saturated regions that these models can 
use to in-paint them, resulting in image patches that either 
lack texture or contain textures that deviate from the ground 
truth. In contrast, the image generated using mechanisms 
described herein (labeled "disclosed") utilizes the true low-
resolution HDR information from the SPC sensor to guide 
the dynamic range extension, rendering not only visually 
pleasing images, but also images that are consistent with the 
genuine physical appearance of the scene. Additional 
examples are included in Appendix A, which was incorpo-
rated by reference herein. 

FIG. 8 shows an example of a CMOS image of a second 
scene, a single-photon sensor image of the second scene, a 
high dynamic range image of the second scene generated 
using mechanisms described herein, and portions of the 
second scene generated using yet another technique. FIG. 8 
shows a comparison of mechanisms described herein to 
ESRGAN, a recent single-image super-resolution model. At 
first glance, ESRGAN appears to produce sharp, high­
contrast images. However, ESRGAN achieves such sharp-
ness at the cost of introducing non-existent high-frequency 
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patterns and textures. For instance, ESRGAN introduces 
artificial film grain-like texture on the metal plate (e.g., as 
shown in the second row of cropped images). additionally, 
ESRGAN fails to recover structured fine details, such as text 
(e.g., as shown in the first row of cropped images), which are 
likely to be essential features for some downstream com­
puter vision tasks. The image produced using mechanisms 
described herein uses the unsaturated high-resolution 
CMOS data to retain image details, such as the flower-like 
patterns at the bottom right of the cropped image in the 
second row of cropped images. Even in regions where the 
CMOS image is completely over-exposed, the model imple­
mented in accordance with some embodiments of the dis­
closed subject matter did a good job super-resolving the SPC 
image free of any hallucinated high-frequency artifacts, and 
effectively recovered structured details such as text more 
accurately than ESRGAN. Please refer to the supplementary 
document for additional comparisons. 

FIG. 9 shows an example of a CMOS image of a third 
scene, a single-photon sensor image of the third scene, a 
high dynamic range image of the third scene generated using 
mechanisms described herein, and portions of the third 
scene generated using yet another technique. FIG. 9 shows 
a comparison of mechanisms described herein with dual­
exposure bracketing. For dual-exposure bracketing, an SNR 
dip visually translates to non-uniform regions in the merged 
image where the noise level suddenly increases, leading to 

22 
described herein consistently outperform the other tech­
niques by a significant margin. 

Multiple different models were implemented in accor­
dance with some embodiments of the disclosed subject 
matter to evaluate the performance contribution(s) of dif­
ferent component of the neural network and data source( s). 
In particular, the performance of the following ablation 
models were evaluated: Model (Ml) uses a single CMOS 
input image to generate an HDR output and relies on the 

10 back-bone U-Net shown in FIG. 5, without the SPC encoder; 
model (M2) concatenates SPAD features to the decoder 
network shown in FIG. 5; and model (M3) introduces 
attention gates in the decoder network in addition to the 

15 SPAD input of(M2). ThemedianHDR-VDP3 quality scores 
for the three models computed on the validation set are 9 .68, 
9.99, and 9.98 and median µ-compressed MSE values are 
5.25xl0-4

, 2.95xl0-5
, and 4.14xl0-5

. Based on the preced­
ing, model (M2) was used to generate the results shown in 

20 FIGS. 7-11. Additional metrics and qualitative visual com­
parisons related to ablation models are described in Appen­
dix A, which has been incorporated by reference herein. 

FIG. 11 shows examples of images generated using 
mechanisms described herein and various other techniques 

25 and images generated using various other techniques. An 
experimental CMOS-SPC system was implemented and 
used to generate image pairs. However, the images were not 
aligned due to a relatively large physical distance between 
the sensors in the experimental system, and each sensor was 

a reduction in image quality. For example, in the first row of 
cropped images, the smooth bright and dark spots on the 
wall are occluded by noise in the dual-exposure bracketing 
image, making it difficult to use denoising techniques on 
such features. Additionally, as shown in the second row of 
cropped images such discontinuities in SNR levels can be 
spatially complex and fragmented, introducing additional 
denoising challenges. In the implementation of mechanisms 
described herein used to generate the image in FIG. 9 the 
SPC and CMOS exposures were both 10 ms, and the SNR 
levels of the two sensors approximately match across the 
image, despite increases in brightness that may saturate the 
CMOS image. By maintaining high and uniform SNR, 40 

mechanisms described herein can produce relatively clean 
(e.g., low noise) images with important details across bright­
ness levels, which suggests that mechanisms described 
herein that use information from both conventional image 
data and image data generated by a single-photon sensor can 
produce superior results compared to a CMOS-CMOS 
hybrid in extreme HDR settings. Additional examples are 
included in Appendix A, which was incorporated by refer­
ence herein. 

30 subject particular optical parameters ( e.g., different focal 
length and aberrations). To mitigate the differences, small 
overlapping crops were manually selected from each image 
and registered by estimating an affine transformation using 

35 
MATLAB's imregtform function. The approximately 
aligned crops shown in the first and second rows of FIG. 11 
are 84x73 and 71x71, respectively. Additionally, the CMOS 
and SPC crops were bilinearly re-sampled such that the 
dimensions were 256x256 and 64x64. 

The CMOS and SPC data was downloaded and pre-
processed as described above, and was provided as input to 
a machine learning model trained as described above in 
connection with FIG. 5. FIG. 11 shows the selected pre­
processed image crops with extreme dynamic range (CMOS 

45 and SPC colunms) that were used as input for the evaluated 
models. The SPC images had a 5 ms exposure. The CMOS 
inputs (first colunm) have exposure times of 0.1 ms (first 
row) and 0.5 ms (second row). Note that, unlike the simu­
lated data described above, the exposure times between 

FIG. 10 shows examples of qualitative metrics of perfor­
mance for images generated using mechanisms described 
herein and various other techniques. FIG. 10 shows HDR­
VDP3 and mean-squared error (MSE) scores for each image 
in the test set (including images from the Funt et al. HDR 
dataset). Images with minimal extreme flux regions, achieve 
high HDR-VDP3 scores in all techniques that use CMOS as 
an input. Although, Expand-Net and DHDR mostly mitigate 
extremely low HDR-VDP3 scores, models with SPC inputs 
are better at preventing these outliers and produce more 
consistent scores through-out the dataset. The poor perfor­
mance of dual-exposure bracketing in both metrics suggest 
that these metrics penalize low SNR heavier than saturation. 
While DHDR is able to achieve comparable median HDR­
VDP3 and MSE scores than Laplacian blending, despite 
only using a single-image, Laplacian blending does a better 
job at preventing outliers with very poor image quality. 
Overall, techniques implemented using mechanisms 

50 CMOS and SPC were chosen not to match because using 
higher exposures for CMOS would have led to fully satu­
rated images. Similar to the description of results for simu­
lated data, DHDR failed to recover fine structures in the 
saturated CMOS regions (e.g., fire department text). Addi-

55 tionally, exposure bracketing, despite using 6 exposures 
ranging from 0.005 ms to 5 ms, was still unable to recover 
the thin wires of the lamp (shown in the first row). Due to 
imperfect alignnient of the CMOS and SPC crops, the output 
of the model generated blurred details in both images (lamp 

60 details and fire department text). However, these features are 
visible in the image generated using mechanisms described 
herein, and were not completely suppressed by the CMOS 
saturation limit. Additionally, note that in FIG. 11 the CMOS 
and SPC image crops were derived from similar spatial 

65 resolutions, therefore, the CMOS crop does not contain any 
additional spatial information that can be used by the model. 
Additional simulation results and images of the scenes used 
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to generate the results in FIGS. 7-11 are described in 
Appendix A, which has been incorporated by reference 
herein. 

In some embodiments, any suitable computer readable 
media can be used for storing instructions for performing the 5 

functions and/or processes described herein. For example, in 
some embodiments, computer readable media can be tran­
sitory or non-transitory. For example, non-transitory com­
puter readable media can include media such as magnetic 
media (such as hard disks, floppy disks, etc.), optical media 10 

(such as compact discs, digital video discs, Blu-ray discs, 
etc.), semiconductor media (such as RAM, Flash memory, 
electrically programmable read only memory (EPROM), 
electrically erasable programmable read only memory (EE-

15 
PROM), etc.), any suitable media that is not fleeting or 
devoid of any semblance of permanence during transmis­
sion, and/or any suitable tangible media. As another 
example, transitory computer readable media can include 
signals on networks, in wires, conductors, optical fibers, 20 
circuits, or any suitable media that is fleeting and devoid of 
any semblance of permanence during transmission, and/or 
any suitable intangible media. 

It should be noted that, as used herein, the term mecha­
nism can encompass hardware, software, firmware, or any 25 
suitable combination thereof. 

Tt should he understood that the ahove described steps of 

24 
provide, as input to a first encoder of a trained machine 

learning model, a first plurality of flux values based 
on the first plurality of values, 
wherein the trained machine learning model com­

prises the first encoder, a second encoder, and a 
decoder; 

provide, as input to the second encoder of the trained 
machine learning model, a second plurality of flux 
values based on the second plurality of values; 

receive, as output from the trained machine learning 
model, a third plurality of values each indicative of 
photon flux from a portion of the scene correspond­
ing to a respective detector of the first plurality of 
detectors; and 

generate a high dynamic range image based on the third 
plurality of values. 

2. The system of claim 1, further comprising a CMOS 
image sensor that includes the first plurality of detectors. 

3. The system of claim 1, wherein each detector of the 
second plurality of detectors comprises a single-photon 
detector. 

4. The system of claim 3, wherein each single-photon 
detector is configured to record a number of photons 
detected within an exposure time. 

5. The system of claim 1, wherein the first resolution is at 
least four times greater than the second resolution. 

the process of FIG. 6 can be executed or performed in any 
suitable order or sequence not limited to the order and 
sequence shown and described in the figures. Also, some of 
the above steps of the process of FIG. 6 can be executed or 
performed substantially simultaneously where appropriate 
or in parallel to reduce latency and processing times. 

Although the invention has been described and illustrated 

6. The system of claim 1, wherein the trained machine 
learning model includes a first skip connection between a 

30 layer of the first encoder and a layer of the decoder, and a 
second skip connection between a layer of the second 
encoder and the layer of the decoder, wherein the trained 
machine learning model is configured to concatenate values 

35 
from the layer of the first encoder and values from the layer 
of the second encoder. 

in the foregoing illustrative embodiments, it is understood 
that the present disclosure has been made only by way of 
example, and that numerous changes in the details of imple­
mentation of the invention can be made without departing 
from the spirit and scope of the invention, which is limited 
only by the claims that follow. Features of the disclosed 40 
embodiments can be combined and rearranged in various 
ways. 

What is claimed is: 
1. A system for generating high dynamic range digital 45 

images, comprising: 
a first plurality of detectors, each configured to detect a 

level of photons arriving at the detector that is propor­
tional to an incident photon flux at the detector, the first 
plurality of detectors arranged in a first array; 

a second plurality of detectors, each configured to detect 
arrival of individual photons, the second plurality of 
detectors arranged in a second array; 

at least one processor that is programmed to: 

50 

receive, from the first plurality of detectors, first image 55 

data comprising a first plurality of values each 
indicative of photon flux from a portion of a scene 
corresponding to a respective detector of the first 
plurality of detectors, 
wherein the first image data has a first resolution; 60 

7. The system of claim 1, wherein the at least one 
processor is further programmed to: 

estimate the first plurality of flux values using the first 
plurality of values and the relationship: 

A CMOS 

<f> CMOS = !!..I___ 
qcMosT' 

where <J'>CMos is the estimated flux for the portion of the 
scene, NT cMos is a value output by a detector of the first 
plurality of detectors, qcMos is a sensitivity of the 
detector, and T is exposure time; and 

estimate the second plurality of flux values using the 
second plurality of values and the relationship: 

where <J'>SPc is the estimated flux for the portion of the 
scene, T sPc is exposure time, NsPc T is a photon count 
corresponding to a number of ph~ton detections in 
exposure time T sPo qsPAD is a sensitivity of the detec-

tor, and T d is a dead time of the detector. 
8. A method for generating high dynamic range digital 

receive, from the second plurality of detectors, second 
image data comprising a second plurality of values 
each indicative of photon flux from a portion of the 
scene corresponding to a respective detector of the 
second plurality of detectors, 65 images, comprising: 
wherein the second image data has a second resolu­

tion that is lower than the first resolution; 
receiving, from a first plurality of detectors, first image 

data comprising a first plurality of values each indica-
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tive of photon flux from a portion of a scene corre­
sponding to a respective detector of the first plurality of 
detectors, 
wherein the first image data has a first resolution, 
each of the detectors of the first plurality of detectors is 5 

configured to detect a level of photons arriving at the 
detector that is proportional to an incident photon 
flux at the detector, and 

the first plurality of detectors are arranged in a first 
IO array; 

receive, from a second plurality of detectors, second 
image data comprising a second plurality of values 
each indicative of photon flux from a portion of the 
scene corresponding to a respective detector of the 15 
second plurality of detectors, 
wherein the second image data has a second resolution 

that is lower than the first resolution, 
each of the detectors of the second plurality of detectors 

is configured to configured to detect arrival of indi- 20 

vidual photons, and 
the second plurality of detectors are arranged in a 

second array; 
providing, as input to a first encoder of a trained machine 

learning model, a first plurality of flux values based on 25 

the second plurality of values, 
wherein the trained machine learning model comprises 

the first encoder, a second encoder, and a decoder; 
providing, as input to the second encoder of the trained 

machine learning model, a second plurality of flux 30 

values based on the first plurality of values; 
receiving, as output from the trained machine learning 

model, a third plurality of values each indicative of 
photon flux from a portion of the scene corresponding 
to a respective detector of the first plurality of detec- 35 

tors; and 
generating a high dynamic range image based on the third 

plurality of values. 
9. The method of claim 8, wherein the first plurality of 

detectors are included in a CMOS image sensor. 40 

10. The method of claim 8, wherein each detector of the 
second plurality of detectors comprises a single-photon 
detectors. 

11. The method of claim 10, wherein each single-photon 
detectors is configured to record a number of photons 45 

detected within an exposure time. 
12. The method of claim 8, wherein the first resolution is 

at least four times greater than the second resolution. 
13. The method of claim 8, wherein the trained machine 

learning model includes a first skip connection between a 50 

layer of the first encoder and a layer of the decoder, and a 
second skip connection between a layer of the second 
encoder and the layer of the decoder, wherein the trained 
machine learning model is configured to concatenate values 
from the layer of the first encoder and values from the layer 55 

of the second encoder. 
14. The method of claim 8, further comprising: 
estimating the first plurality of flux values using the first 

plurality of values and the relationship: 

A CMOS 

<f> CMOS = !!..I__ 
qcMosT' 

where <J'>CMos is the estimated flux for the portion of the 
scene, NcMos Tis a value output by a detector of the first 

60 

65 
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plurality of detectors, qcMos is a sens1tJv1ty of the 
detector, and T is exposure time; and 

estimating the second plurality of flux values using the 
second plurality of values and the relationship: 

<f>SPC ~;ic/qsPAD 
ASPC 

Tspc -rdNTspc 

where <J'>SPc is the estimated flux for the portion of the 
scene, T sPc is exposure time, NsPc T is a photon count 
corresponding to a number of ph~ton detections in 
exposure time T sPo qsPAD is a sensitivity of the detec-

tor, and T d is a dead time of the detector. 

15. A non-transitory computer readable medium contain­
ing computer executable instructions that, when executed by 
a processor, cause the processor to perform a method for 
generating high dynamic range digital images, the method 
comprising: 

receiving, from a first plurality of detectors, first image 
data comprising a first plurality of values each indica­
tive of photon flux from a portion of a scene corre­
sponding to a respective detector of the first plurality of 
detectors, 

wherein the first image data has a first resolution, 

each of the detectors of the first plurality of detectors is 
configured to detect a level of photons arriving at the 
detector that is proportional to an incident photon 
flux at the detector, and 

the first plurality of detectors are arranged in a first 
array; 

receive, from a second plurality of detectors, second 
image data comprising a second plurality of values 
each indicative of photon flux from a portion of the 
scene corresponding to a respective detector of the 
second plurality of detectors, 

wherein the second image data has a second resolution 
that is lower than the first resolution, 

each of the detectors of the second plurality of detectors 
is configured to configured to detect arrival of indi­
vidual photons, and 

the second plurality of detectors are arranged in a 
second array; 

providing, as input to a first encoder of a trained machine 
learning model, a first plurality of flux values based on 
the first plurality of values, 

wherein the trained machine learning model comprises 
the first encoder, a second encoder, and a decoder; 

providing, as input to the second encoder of the trained 
machine learning model, a second plurality of flux 
values based on the second plurality of values; 

receiving, as output from the trained machine learning 
model, a third plurality of values each indicative of 
photon flux from a portion of the scene corresponding 
to a respective detector of the first plurality of detec­
tors; and 

generating a high dynamic range image based on the third 
plurality of values. 

16. The non-transitory computer readable medium of 
claim 15, wherein the first plurality of detectors are included 
in a CMOS image sensor. 
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17. The non-transitory computer readable medium of 
claim 15, wherein each detector of the second plurality of 
detectors comprises a single-photon detector. 

18. The non-transitory computer readable medium of 
claim 17, wherein each single-photon detector is configured 5 

to record a number of photons detected within an exposure 
time. 

19. The non-transitory computer readable medium of 
claim 15, wherein the first resolution is at least four times 
greater than the second resolution. IO 

20. The non-transitory computer readable medium of 
claim 15, wherein the trained machine learning model 
includes a first skip connection between a layer of the first 
encoder and a layer of the decoder, and a second skip 
connection between a layer of the second encoder and the 15 

layer of the decoder, wherein the trained machine learning 
model is configured to concatenate values from the layer of 
the first encoder and values from the layer of the second 
encoder. 

21. The non-transitory computer readable medium of 20 

claim 15, wherein the method further comprises: 
estimating the first plurality of flux values using the first 

plurality of values and the relationship: 

A CMOS 

<f> CMOS = !!.I__ 
qcMosT' 
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where <I>cMos is the estimated flux for the portion of the 
scene, <I>cMos T is a value output by a detector of the first 
plurality of detectors, qcMos is a sensitivity of the detector, 
and T is exposure time; and 

estimating the second plurality of flux values using the 
second plurality of values and the relationship: 

~;ic/qsPAD 
ASPC 

Tspc -rdNTspc 

where <I>sPc is the estimated flux for the portion of the 
scene, T sPc is exposure time, NsPc T is a photon count 
corresponding to a number of ph~ton detections in 
exposure time T spc, qsPAD is a sensitivity of the detec­
tor, and td is a dead time of the detector. 

* * * * * 


