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SYSTEMS, METHODS, AND MEDIA FOR 
IMPROVING SIGNAL-TO-NOISE RATIO IN 

SINGLE-PHOTON DATA 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

This invention was made with government support under 
1943149 awarded by the National Science Foundation. The 
government has certain rights in the invention. 10 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

2 
a plurality of photon transients, each of the plurality of 
photon transients associated with a particular pixel location. 

In some embodiments, the at least one hardware processor 
is further progranmied to: generate, for each of the plurality 
of pixel locations, a set of photon transients including a 
photon transient associated with that pixel location and 
photon transients associated with neighboring pixel loca­
tions; calculate, for each set of photon transients, a plurality 
of transform coefficients; estimate, for each set of photon 
transients, a noise level based on a noise band and the 
plurality of transform coefficients calculated for that set of 
photon transients, wherein the noise band is based on a 
profile of a light source used to generate the photon tran-

NIA 

BACKGROUND 

15 sients; modify, for each set of photon transients, at least a 
subset of the plurality of transform coefficients based on the 
noise level, thereby generating a plurality of modified trans­
form coefficients; calculate, for each set of photon transients, 

Single-photon cameras (SPCs) are rapidly becoming a 
20 

technology of choice in active imaging due to their extreme 
sensitivity to individual photons and their ability to time-tag 
photon arrivals with nano-to-picosecond resolution. Unlike 
conventional cameras, SPCs enable image sensing at the 
fundamental limit imposed by the physics of light: an 25 
individual photon. However, SPCs can generate data with a 
low signal-to-noise ratio in non-ideal conditions, such as in 
environments with high background illumination, and in 
photon-starved environments. 

Accordingly, new systems, methods, and media for 30 

improving signal-to-noise ratio in single-photon data are 
provided. 

SUMMARY 

an inverse transform using the plurality of modified trans­
form coefficients associated with that set of photon tran­
sients, wherein the inverse transform produces a set of 
modified photon transients; generate, for each pixel location, 
photon flux estimates based on each modified photon tran­
sient associated with that pixel location. 

In some embodiments, the transform is a Fourier trans­
form, and the transform coefficients are Fourier coefficients. 

In some embodiments, the noise level is based on an 
average magnitude of a set of transform coefficients of the 
plurality of transform coefficients that falls within the noise 
band. 

In some embodiments, the at least one hardware processor 
is further programmed to: determine, for each set of photon 
transients, an energy of transform coefficients within the 
noise band; determine, for each set of photon transients, an 

In accordance with some embodiments of the disclosed 
subject matter, systems, methods, and media for improving 
signal-to-noise ratio in single-photon data are provided. 

35 energy of transform coefficients outside of the noise band; 
and select a noise reduction algorithm based on a ratio of the 
energy of transform coefficients within the noise band to the 
energy of transform coefficients outside of the noise band. 

In some embodiments, the at least one hardware processor In accordance with some embodiments of the disclosed 
subject matter, a system for generating single-photon imag­ 40 is further programmed to: determine, for each set of photon 

transients, a noise threshold based on the noise level; and 
modify, for each set of photon transients, the subset of the 
plurality of transform coefficients that fall below the noise 
threshold to zero. 

ing data with improved signal-to-noise ratio is provided, the 
system comprising: at least one hardware processor that is 
programmed to: generate, for each of a plurality of pixel 
locations, initial photon flux estimates based on a first set of 
photon transients including a photon transient associated 45 

with the pixel location and photon transients associated with 
neighboring pixel locations, wherein each of the photon 
transients comprises a histogram of photon counts during a 
plurality of time bins at the pixel location; identify, for a 
scene patch associated with each of the plurality of pixel 50 

locations, one or more similar scene patches using intensity 
information for each of the plurality of pixel locations; and 
generate, for each of the plurality of pixel locations, final 
photon flux estimates based on a second set of photon 
transients including photon transients associated with the 55 

scene patch and each of the one or more similar scene 
patches. 

In some embodiments, the system further comprises: a 
light source; and an image sensor comprising a single­
photon detector; wherein the at least one hardware processor 60 

is further progranmied to: cause the light source to emit a 
sequence of n pulses toward a scene; receive, from the 
single-photon detector, information indicative of arrival 
times of light from the scene; generate a first photon 
transient corresponding to a first pixel location using the 65 

information indicative of arrival times of light from the 
scene; and generate a 3D photon transient cube comprising 

In some embodiments, the at least one hardware processor 
is further programmed to: generate, for each set of photon 
transients, a set of intensity values corresponding to the pixel 
locations associated with the set of photon transients; cal­
culate, for each set of intensity values, a second plurality of 
transform coefficients; and perform an element-wise multi­
plication between the second plurality of transform coeffi-
cients and elements of the first plurality of transform coef­
ficients thereby generating the plurality of modified 
transform coefficients. 

In some embodiments, the at least one hardware processor 
is further programmed to: modify, for each set of photon 
transients, at least a subset of the plurality of transform 
coefficients based on the noise level and the photon flux 
estimates, thereby generating a second plurality of modified 
transform coefficients; calculate, for each set of photon 
transients, an inverse transform using the second plurality of 
modified transform coefficients associated with that set of 
photon transients, wherein the inverse transform produces a 
second set of modified photon transients; generate, for each 
pixel location, the initial photon flux estimates based on each 
modified photon transient in the second set of modified 
photon transients associated with that pixel location. 
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In some embodiments, the at least one hardware processor 
is further prograrmned to: generate the second plurality of 
modified transform coefficients using Wiener filtering. 

In some embodiments, the at least one hardware processor 
is further prograrmned to: generate, for each of the plurality 
of pixel locations, a second set of photon transients includ-
ing a photon transient associated with that pixel location and 
photon transients associated with neighboring pixel loca­
tions based on the photon flux estimates; associate, for each 
second set of photon transients, one or more sets of photon 10 

transients corresponding to the one or more similar scene 
patches to the scene patch associated with that set of photon 
transients, thereby generating a plurality of 4D sets of 
photon transients; calculate, for each of the plurality of 4D 
sets of photon transients, a plurality of transform coeffi- 15 

cients; estimate, for each set of photon transients, a noise 
level based on a noise band and the plurality of transform 
coefficients calculated for that 4D set of photon transients, 
wherein the noise band is based on a profile of a light source 
used to generate the photon transients; modify, for each 4D 20 

set of photon transients, at least a subset of the plurality of 
transform coefficients based on the noise level, thereby 
generating a third plurality of modified transform coeffi­
cients; calculate, for each 4D set of photon transients, an 
inverse transform using the third plurality of modified 25 

transform coefficients associated with that set of photon 
transients, wherein the inverse transform produces a third set 
of modified photon transients; generate, for each pixel 
location, second photon flux estimates based on each modi­
fied photon transient associated with that pixel location in 30 

the third set of modified photon transients. 
In some embodiments, the transform is a Fourier trans­

form, and the transform coefficients are Fourier coefficients. 
In some embodiments, the noise level is based on an 

average magnitude of a set of transform coefficients of the 35 

plurality of transform coefficients that falls within the noise 
band. 

In some embodiments, the at least one hardware processor 

4 
flux estimates, thereby generating a third plurality of modi­
fied transform coefficients; calculate, for each 4D set of 
photon transients, an inverse transform using the third 
plurality of modified transform coefficients associated with 
that 4D set of photon transients, wherein the inverse trans­
form produces a third set of modified photon transients; and 
generate, for each pixel location, the final photon flux 
estimates based on each modified photon transient in the 
third set of modified photon transients associated with that 
pixel location. 

In some embodiments, the at least one hardware processor 
is further prograrmned to: generate the third plurality of 
modified transform coefficients using Wiener filtering. 

In accordance with some embodiments of the disclosed 
subject matter, a method for generating single-photon imag­
ing data with improved signal-to-noise ratio is provided, the 
method comprising: generating, for each of a plurality of 
pixel locations, initial photon flux estimates based on a first 
set of photon transients including a photon transient asso­
ciated with the pixel location and photon transients associ-
ated with neighboring pixel locations, wherein each of the 
photon transients comprises a histogram of photon counts 
during a plurality of time bins at the pixel location; identi­
fying, for a scene patch associated with each of the plurality 
of pixel locations, one or more similar scene patches using 
intensity information for each of the plurality of pixel 
locations; and generating, for each of the plurality of pixel 
locations, final photon flux estimates based on a second set 
of photon transients including photon transients associated 
with the scene patch and each of the one or more similar 
scene patches. 

In accordance with some embodiments of the disclosed 
subject matter, a non-transitory computer readable medium 
containing computer executable instructions that, when 
executed by a processor, cause the processor to perform a 
method for generating single-photon imaging data with 
improved signal-to-noise ratio is provided, the method com­
prising: generating, for each of a plurality of pixel locations, is further prograrmned to: determine, for each 4D set of 

photon transients, an energy of transform coefficients within 
the noise band; determine, for each 4D set of photon 
transients, an energy of transform coefficients outside of the 
noise band; and select a noise reduction algorithm based on 
a ratio of the energy of transform coefficients within the 
noise band to the energy of transform coefficients outside of 
the noise band. 

40 initial photon flux estimates based on a first set of photon 
transients including a photon transient associated with the 
pixel location and photon transients associated with neigh­
boring pixel locations, wherein each of the photon transients 
comprises a histogram of photon counts during a plurality of 

In some embodiments, the at least one hardware processor 
is further prograrmned to: determine, for each 4D set of 
photon transients, a noise threshold based on the noise level; 
and modify, for each 4D set of photon transients, the subset 
of the plurality of transform coefficients that fall below the 
noise threshold to zero. 

In some embodiments, the at least one hardware processor 

45 time bins at the pixel location; identifying, for a scene patch 
associated with each of the plurality of pixel locations, one 
or more similar scene patches using intensity information for 
each of the plurality of pixel locations; and generating, for 
each of the plurality of pixel locations, final photon flux 

50 estimates based on a second set of photon transients includ­
ing photon transients associated with the scene patch and 
each of the one or more similar scene patches. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Various objects, features, and advantages of the disclosed 
subject matter can be more fully appreciated with reference 
to the following detailed description of the disclosed subject 
matter when considered in connection with the following 
drawings, in which like reference numerals identify like 
elements. 

is further prograrmned to: generate, for each 4D set of 
photon transients, a set of intensity values corresponding to 55 

the pixel locations associated with the set of photon tran­
sients; calculate, for each 4D set of intensity values, a third 
plurality of transform coefficients; and perform an element­
wise multiplication between the third plurality of transform 
coefficients and elements of the plurality of transform coef- 60 

ficients associated with that 4D set of photon transients 
thereby generating the third plurality of modified transform 
coefficients. 

FIG. lA shows an example setup for estimating a depth of 
a portion of a scene using an array of single-photon detectors 
and a light source in accordance with some embodiments of 

65 the disclosed subject matter, and transient histograms gen­
erated by a single-photon detector of the array under various 
conditions. 

In some embodiments, the at least one hardware processor 
is further programmed to: modify, for each 4D set of photon 
transients, at least a subset of the plurality of transform 
coefficients based on the noise level and the second photon 
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FIG. 1B shows an example of a raw photon transient cube 
generated using a light detection and ranging (LiDAR) 
device, a raw photon transient generated by a single-photon 
detector of the LiDAR for a portion of a scene represented 
by the raw photon transient cube, and a depth map of the 
scene generated using raw photon transients from the raw 
photon transient cube, and a corresponding processed pho-
ton transient cube and photon transient generated from the 
raw photon transient cube data using techniques described 
herein, and a depth map generated from the processed 10 

photon transient cube. 
FIG. lC shows an example of a raw photon transient cube 

generated using a fluorescence lifetime imaging microscopy 
(FLIM) device, a raw photon transient generated by a 15 
single-photon detector of the FLIM device for a portion of 
a scene represented by the raw photon transient cube, and a 
depth map of the scene generated using raw photon tran­
sients from the raw photon transient cube, and a correspond-
ing processed photon transient cube and photon transient 20 

generated from the raw photon transient cube data using 
techniques described herein, and a depth map generated 
from the processed photon transient cube. 

6 
FIG. SB shows examples of raw photon transients from 

the scenes shown in FIG. SA. 
FIG. SC shows a comparison of examples of depth maps 

generated from raw photon transients of two scenes in FIG. 
SA using various techniques, including techniques imple­
mented in accordance with some embodiments of the dis­
closed subject matter. 

FIGS. 9A shows an example of a scene with high back­
ground flux and depth maps generated from single-photon 
data using various techniques, including techniques imple­
mented in accordance with some embodiments of the dis-
closed subject matter. 

FIG. 9B shows an example of a scene with varying signal 
flux and depth maps generated from single-photon data 
using various techniques, including techniques implemented 
in accordance with some embodiments of the disclosed 
subject matter, and a raw photo transient and photo transient 
after processing using techniques described herein. 

FIG. lOA shows examples of fluorescent lifetime imaging 
microscopy images generated using various techniques, 
including techniques implemented in accordance with some 
embodiments of the disclosed subject matter, and lifetimes 
measured by the different techniques. 

FIG. 10B shows examples of autofluorescence fluorescent FIG. 2A shows examples of Fourier transforms of differ­
ent hierarchical subsets of a photon transient cube. 

FIG. 2B shows an example of hierarchical photon pro­
cessing in accordance with some embodiments of the dis­
closed subject matter. 

25 lifetime imaging microscopy images generated using vari­
ous techniques with maximum likelihood estimation, includ­
ing techniques implemented in accordance with some 
embodiments of the disclosed subject matter, and raw and 

FIG. 3A shows an example of a flow for improving 
signal-to-noise ratio in single-photon data in accordance 30 

with some embodiments of the disclosed subject matter. 
FIG. 3B shows an example of a flow for estimating flux 

from a noisy photon transient cube in accordance with some 
embodiments of the disclosed subject matter. 

FIG. 3C shows an example of a flow for estimating noise 35 

an initial flux estimate from a noisy photon transient cube in 
accordance with some embodiments of the disclosed subject 
matter. 

processed photon transients at a particular location. 
FIG. lOC shows examples of autofluorescence fluorescent 

lifetime imaging microscopy images generated using vari­
ous techniques with linear fitting, including techniques 
implemented in accordance with some embodiments of the 
disclosed subject matter, and raw and processed photon 
transients at a particular location. 

FIG. 11 shows examples of a scene and depth maps 
generated using various techniques with filtering before or 
after estimation, including techniques implemented in accor­
dance with some embodiments of the disclosed subject FIG. 3D shows an example of a flow for generating a 

photon transient cube with improved signal-to-noise ratio 
using a noise estimate and an initial flux estimate in accor­
dance with some embodiments of the disclosed subject 
matter. 

40 matter. 
FIG. 12 shows examples of various scenes and scene 

intensity estimations from photon transient data using vari­
ous techniques, including techniques implemented in accor­
dance with some embodiments of the disclosed subject FIG. 4 shows an example of a system for generating 

image data from single-photon data with improved signal­
to-noise ratio in accordance with some embodiments of the 
disclosed subject matter. 

45 matter. 
FIG. 13 shows examples of depth images generated from 

photon transient data using various techniques, including 
techniques implemented in accordance with some embodi­
ments of the disclosed subject matter and various leaming-

FIG. SA shows an example of a laser profile and a pure 
noise band in the frequency domain for a simulated LiDAR 
device. 50 based techniques. 

FIG. 5B shows an example of a laser profile and a pure 
noise band in the frequency domain for a LiDAR device 
used in an experimental setup used to generate experimental 
results. 

FIG. 14A shows examples depth maps generated from 
photon transient data using various techniques at different 
resolutions, including techniques implemented in accor­
dance with some embodiments of the disclosed subject 

FIG. 6 shows an example of a flow for guided photon 
processing using a transient photon cube and an intensity 
image in accordance with some embodiments of the dis­
closed subject matter, and depth maps generated using 
different techniques described herein. 

55 matter. 

FIG. 7 shows an example of a process for generating 60 

single-photon data with improved signal-to-noise ratio in 
accordance with some embodiments of the disclosed subject 
matter. 

FIG. SA shows examples of various scenes and depth 
maps generated from single-photon data using various tech- 65 

niques, including techniques implemented in accordance 
with some embodiments of the disclosed subject matter. 

FIG. 14B shows examples of scene intensity estimations 
from photon transient data using various techniques at 
different resolutions, including techniques implemented in 
accordance with some embodiments of the disclosed subject 
matter. 

FIG. 15A shows examples of fluorescent lifetime imaging 
microscopy images generated from photon transient data 
using various techniques at different levels of photons per 
pixels, including techniques implemented in accordance 
with some embodiments of the disclosed subject matter. 

FIG. 15B shows examples of processed photon transients 
generated from photon transient data using various tech-
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niques at different levels of photons per pixels, including 
techniques implemented in accordance with some embodi­
ments of the disclosed subject matter. 

FIG. 16A shows examples of fluorescent lifetime imaging 
microscopy images generated from photon transient data 
using various techniques in a low signal-to-noise ratio, 
including techniques implemented in accordance with some 
embodiments of the disclosed subject matter. 

8 

FIG. 16B shows examples of processed lifetime histo­
grams generated using the techniques, including techniques 10 

implemented in accordance with some embodiments of the 
disclosed subject matter. 

purpose photon processing unit (e.g., analogous to conven­
tional image processing units) that can be implemented 
on-chip in future single-photon camera sensor hardware. In 
some embodiments, mechanisms described herein can be 
versatility, tuning-free, and training-free operation. In 3D 
imaging, mechanisms described herein can enable long­
range low-power flash LiDARs for autonomous vehicles and 
robotic platforms. In some embodiments, mechanisms 
described herein can facilitate real-time in vivo observation 
of fluorescence lifetime contrasts in biomedical imaging 
applications to assess metabolism or systemic changes due 
to cellular activity. 

FIG. 17A shows examples of spatial sequences of fluo­
rescent lifetime imaging microscopy images and individual 
frames generated from photon transient data using a spatial 15 

binning technique and maximum likelihood estimate, 
including techniques implemented in accordance with some 
embodiments of the disclosed subject matter. 

In some embodiments, mechanisms described herein can 
utilize cubelet-based transforms (e.g., as described below in 
connection with FIGS. 2A to 3D). Processing each cubelet 
sequentially can result in relatively long compute times 
(e.g., on the order of minutes with 256x256x256 photon 
transient cubes by unoptimized MATLAB implementation). 

FIG. 17B shows examples of spatial sequences of fluo­
rescent lifetime imaging microscopy images and individual 20 

frames generated from photon transient data using tech­
niques implemented in accordance with some embodiments 

In some embodiments, each cubelet can be processed inde­
pendently (e.g., in parallel), making mechanisms described 
herein amenable to massively parallel processing ( e.g. on 
low-power graphic processing units (GPUs)), which can 
facilitate real-time implementations. Further speed-ups can 
be realized by implementing transforms (e.g., fast Fourier 

of the disclosed subject matter. 

DETAILED DESCRIPTION 

In accordance with various embodiments, mechanisms 
(which can, for example, include systems, methods, and 
media) for improving signal-to-noise ratio in single-photon 
data are provided. 

In some embodiments, mechanisms described herein can 
be used to implement photon processing techniques for 
single-photon cameras (SPCs) which are widely used for 
active imaging. Active imaging, in which an image sensor 
can be operated in unison with a controllable illumination 
source (e.g., a pulsed laser), can facilitates the estimation of 
various scene properties in a wide range of applications, 
such as depth measurement (e.g., an RGBD camera, a light 
detection and ranging (LiDAR), etc.), fluorescence lifetime 
imaging microscopy (FLIM), non-line-of-sight imaging, 
astronomy, low-light imaging, etc. To estimate scene fea­
tures, active imaging systems often require extremely pre­
cise measurements of light intensity from the scene as a 
function of position and time. For example, FLIM facilitates 
the detection of tissue pathology (e.g. malignant vs. healthy 
tissue) by monitoring fine-grained temporal decay of fluo­
rescence emission. As another example, LiDAR can esti­
mate 3D scene structures ( e.g., in robotics, computer vision, 
autonomous driving applications) with millimeter-to-centi­
meter depth resolution. Such applications require photon 
timing information to be captured with sub-nanosecond 
precision. 

25 transforms, wavelet transforms, etc.) in hardware and/or 
computing them optically. Additionally, in some embodi­
ments, considering that the temporal locations of signal 
features also convey important information in specific appli­
cations (e.g., LiDAR), wavelet transforms can be expected 

30 to achieve better performance than Fourier transforms in 
recovering photon fluxes. 

FIG. 1A shows an example setup for estimating a depth of 
a portion of a scene using an array of single-photon detectors 
and a light source in accordance with some embodiments of 

35 the disclosed subject matter, and transient histograms gen­
erated by a single-photon detector of the array under various 
conditions. 

FIG. 1B shows an example of a raw photon transient cube 
generated using a light detection and ranging (LiDAR) 

40 device, a raw photon transient generated by a single-photon 
detector of the LiDAR for a portion of a scene represented 
by the raw photon transient cube, and a depth map of the 
scene generated using raw photon transients from the raw 
photon transient cube, and a corresponding processed pho-

45 ton transient cube and photon transient generated from the 
raw photon transient cube data using techniques described 
herein, and a depth map generated from the processed 
photon transient cube. 

FIG. 1C shows an example of a raw photon transient cube 
50 generated using a fluorescence lifetime imaging microscopy 

(FLIM) device, a raw photon transient generated by a 
single-photon detector of the FLIM device for a portion of 
a scene represented by the raw photon transient cube, and a 
depth map of the scene generated using raw photon tran-

In some embodiments, mechanisms described herein can 
improve scene property estimation in a wide range of active 
imaging applications. For example, mechanisms described 
herein can facilitate LiDAR imaging over a wide range of 
photon flux levels, from a sub-photon regime ( e.g., with less 
than 1 average signal photon received per pixel over all laser 
cycles) to extremely high ambient sunlight regime ( e.g., 
more than 20,000 lux) and live-cell autofluorescence FLIM 60 

in extremely low photon count regimes ( e.g., 10 photons per 
pixel per cycle) where state-of-the-art techniques fail to 
provide reliable lifetime estimates. 

55 sients from the raw photon transient cube, and a correspond­
ing processed photon transient cube and photon transient 
generated from the raw photon transient cube data using 
techniques described herein, and a depth map generated 
from the processed photon transient cube. 

As shown in the example of FIG. 1A, in an active imaging 
system, a camera can operate in synchronization with a 
controllable light source ( e.g., a laser) to probe various scene 
properties such as fluorescence lifetimes or 3D depths. A 
single-photon camera-based active imaging system can In some embodiments, mechanisms described herein 

(sometimes referred to generally herein as collaborative 
photon processing for active single-photon imaging 
(CASPI)) can be used as a basic building block of general-

65 operate reliably over a limited range of photon flux levels 
(e.g., labeled "favorable" in FIG. 1A). For example, in low 
signal conditions (e.g., photon-starved), an SPC can suffer 
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from strong noise due to poor signal-to-noise ratio. As 
another example, in high illumination conditions, an SPC 
can suffer from severely distorted measurements, resulting 
in large errors in estimated depths and lifetimes. As shown 

10 
mation over a wide range of operating conditions while 
requiring no training and remaining agnostic to the appli­
cation in which it is being used. As described below in 
connection with FIGS. 8 to 17B, simulations and real 
experiments were carried out for two popular applications of 
SPCs (single-photon LiDAR and FLIM) that demonstrate 
performance of some described techniques. Robust depth 
estimation is shown in sub-photon regimes ( e.g., <l signal 
photons per pixel) and under strong background illumination 

in the example of FIGS. 1B and lC, mechanisms described 
herein ( e.g., CASPI) can be used to implement versatile 
photon processing techniques that enable reliable scene 
property estimation in extreme lighting conditions for a wide 
range of applications including, such as 3D scene recovery 
(as shown in FIG. 1B) and FLIM (as shown in FIG. lC). 10 (e.g., >200x higher ambient photons than signal photons). 

Another example shows a 5 times improvement in fluores­
cence lifetime estimation accuracy over state-of-the-art 
techniques with as few as 10 photons per pixel (generally 
such estimation requires 100 photons per pixel for mono-

In some embodiments, time-varying photon flux incident 
on each pixel of an SPC can be characterized using a 
histogram of photon counts as a function of detection times. 
Such a histogram is sometimes referred to herein as a ID 
photon transient or photon transient. Examples of ground­
truth photon flux and measured photon transients for single­
photon LiDAR are shown in FIG. 1B. By raster-scanning or 
flood-illuminating the scene with a pulsed laser source and 
using an array of single-photon detectors, a SPC can gen­
erate a 3D photon transient cube, in which various scene 
property estimates such as depth maps or fluorescence 
lifetime images can be obtained (e.g., as shown in FIGS. 1B 
and lC). 

15 exponential decays), facilitating live-cell autofluorescence 
imaging in extremely photon-starved regimes. 

FIG. 2A shows examples of Fourier transforms of differ­
ent hierarchical subsets of a photon transient cube. 

FIG. 2B shows an example of hierarchical photon pro-
20 cessing in accordance with some embodiments of the dis­

closed subject matter. 

As shown in FIG. lA, despite high time resolution, SPCs 

As shown in FIG. 2A, when stronger correlations are 
available in photon data, noise can be effectively suppressed 
relative to the signal in the Fourier domain, leading to better 

25 signal and noise separation by accurate noise estimation. can operate reliably over a narrow range of incident flux 
levels, and outside of that range can be expected to produce 
photon transients with low signal-to-noise ratio. For 
example, if there are very few photons (e.g., in a photon­
starved regime), SPC pixels suffer from unreliable estimates 
due to poor signal-to-noise ratios (SNRs). As another 30 

example, if there are too many photons ( e.g., in a photon­
flooded regime), the measured photon transients suffer from 
severe non-linear distortions, which are sometimes referred 
to as pileup. Although pileup can be mitigated computation­
ally (e.g., using Coates' correction), such correction can 35 

sometimes worsen the noise (e.g., as shown in FIG. lA). 
Many mission-critical active imaging applications in the real 
world encounter an extremely wide dynamic range of pho-
ton flux levels. For example, a single-photon flash LiDAR 
system that illuminates the entire field-of-view needs to 40 

recover 3D geometry with very few signal photons, often 
buried under bright sunlight. Although SPCs based on single 
photon avalanche diodes (SPADs) are rapidly becoming 
commercially available, the lack of a robust and versatile 
photon data processing pipeline limits the wider deployment 45 

of this exciting new technology. 
Conventional image and video processing algorithms are 

not designed for binary photon data, and thus fail to recover 
photon transient cubes under extreme illumination condi­
tions. This is because sparse binary photon counts under 50 

photon-starved regimes make it challenging to find spatio­
temporal correlations (both local and non-local), a basic 
building block of several conventional image processing 
techniques. Applying conventional filtering after scene prop­
erty estimation is inadequate since the noise is extreme, and 55 

does not follow conventional noise models. Modem deep­
leaming-based approaches often do not generalize well for 
out-of-distribution settings, making practical deployment 
for mission-critical applications such as biomedical imaging 
challenging. Although numerous state-of-the-art approaches 60 

have shown varying degrees of success for specific appli­
cations over a narrow set of operating conditions, unifying 
techniques towards realizing a general-purpose photon pro­
cessing unit for SPCs, akin to image processing units (IPU s) 

Note that the Fourier transforms of the 3D and 4D transients 
are flattened to the time/bin dimension. 

It is challenging to use non-local correlations directly in 
extreme illumination conditions due to severe noise. In some 
embodiments, techniques described herein can utilize a 
hierarchical approach, which can facilitate identification of 
non-local correlations from photon data captured in extreme 
illumination conditions. In some embodiments, mechanisms 
described herein can estimate photon fluxes using only local 
correlations, use the estimated photon flux to find similar 
cubelets, and recover final photon fluxes by exploiting local 
and non-local correlations collaboratively. 

In general, photon transient cubes for most natural scenes 
captured by high-resolution SPCs can be expected to contain 
abundant spatio-temporal correlations at multiple scales and 
dimensions, and exploiting local and nonlocal photon cor-
relations collaboratively, relatively accurate photon fluxes 
can be recovered even under extreme lighting conditions. 
FIG. 2A shows Fourier transforms (fattened along one 
dimension for visualization) of different hierarchical subsets 
of a photon transient cube, including a 1 D photon transient, 
a 3D photon transient cubelet, and a 4D photon transient set, 
which can be a set of similar 3D photon transient cubelets. 
As shown in FIG. 2A, when correlations increase with the 
dimension of the subsets, the amount of noise relative to the 
signal decreases. This is because any structured low fre-
quency signal components accumulate better than random 
noise components in a higher dimensional Fourier trans­
form. This phenomena becomes more prominent when not 
only local correlations but also non-local correlations are 
available (e.g., as in the 4D photon transient set), and noise 
can be significantly reduced. 

As shown in FIG. 2B, in some embodiments, mechanisms 
described herein can utilize a hierarchical approach to find 
similar cubelets and exploit both local and non-local corre­
lations even in the presence of strong noise and distortions. 
For example, initial flux estimates can be determined using 
only local correlations within 3D photon transient cubelets 
( e.g., local correlations can be correlations among data that 

in conventional CMOS cameras remains elusive. 
In some embodiments, photon data processing techniques 

described herein can facilitate reliable scene property esti-

65 falls within a single 3D photon transient cubelet). As shown 
in FIG. 2B, although non-local correlations are not 
exploited, the SNR of the photon transient based on the 
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initial estimated flux is much better than in the raw photon 
transient. For example, the SNR can be sufficiently 
improved to locate similar cubelets over larger non-local 
neighborhoods. In some embodiments, after finding the 
similar cubelets, final photon fluxes can be recovered using 
local and non-local correlations collaboratively from a set of 
similar 3D cubelets or 4D photon transient set. 

FIG. 3A shows an example 300 of a flow for improving 
signal-to-noise ratio in single-photon data in accordance 
with some embodiments of the disclosed subject matter. 

As shown in FIG. 3A a noisy and distorted photon 
transient cube, laser source prior ( e.g., a laser intensity over 
the time domain, as shown in FIGS. SA and 5B), and, in 
some embodiments, a high-quality intensity image can be 
supplied as input. In some embodiments, pileup distortions 
can be reduced in the photon transient cube using Coates' 
correction. After such a reduction, initial photon flux esti­
mates can be recovered using local correlations (LC), and 
the initial photon flux estimates can be used to find similar 
photon cubelets. After collecting the similar cubelets, final 
photon flux estimates can be recovered by exploiting local 
and non-local correlations (LC and NLC) collaboratively. As 
described below in connection with FIGS. 3B to 3D, photon 
fluxes can be estimated in multiple staged. The noise and 
initial fluxes can be recovered first, and the flux estimates 
can be further refined through Wiener filtering based on the 
estimated SNR. 

As shown in FIG. 3A, a 3D photon transient cube can be 
generated. The raw data captured from the SPC can include 
a stream of photon timestamps at each pixel location. For 
each camera pixel, a ID photon transient can be constructed 
(e.g., E i+N', where N, is the number of time bins), which 
can be formatted as a histogram of photon counts as a 
function of photon detection times. Repeating this for all 
pixels, a 3D photon transient cube (e.g., E i+NyxNxxN,, where 
NY and Nx are the numbers of rows and colunms in the SPC 
pixel array) as shown in FIGS. 2A and 2B. 

In some embodiments, at 302, Coates' correction can be 
applied to the 3D photon transient cube, which can reduce 
pileup distortion. Note that the noise of the photon transient 
cube can be amplified at the cost of pileup reduction (the 
more severe the distortion is, the higher the noise will be). 
This amplified noise can be removed in subsequent process­
ing. 

In some embodiments, after Coates' correction, initial 
photon flux estimates can be recovered at 304 using local 
spatiotemporal correlations. Such initial photon flux esti­
mates can be used to locate similar cubelets more precisely, 
which can be used to leverage non-local correlations in the 
data. 

In some embodiments, a 3D photon transient cubelet ( e.g., 
E Jru.+ where CY and Cx are the numbers of rows and 
colunms of the cubelet, respectively) can be defined for each 
pixel such that the pixel is located at a particular location 
(e.g., the upper left front comer of the cubelet, the upper 
right comer, the lower left comer, the lower right comer, the 
center, etc.). For example, for a photon transient cube having 
spatial dimensions xxy (e.g., captured by an xxy array of 
single photon detectors, captured by scanning an xx 1 or 1 xy 
array of single photon detectors, by raster scanning one 
single photon detector, etc.), about xxy photon transient 
cubelets can be generated. For example, cubelets that over­
lap the boundary of the photon transient cube can be 
omitted. In such an example, if each cubelet is defined based 
on the upper left pixel, pixels that are closer to the lower 
boundary and/or the right boundary than the dimensions of 
the cubelet ( e.g., <CY or Cx), a cubelet defined on that pixel 

12 
can be omitted. As another example, cubelets that overlap 
the boundary of the photon transient cubelets can be padded 
( e.g., including a value of zero in positions that fall outside 
the photon transient cube, including a value of one in 
positions that fall outside the photon transient cube, etc.). 

In some embodiments, a noise level in the cubelet can be 
estimated (e.g., as describe below in connection with FIG. 
3C) and initial photon flux estimates can be recovered on a 
cubelet basis (e.g., as described below in connection with 

10 FIG. 3C). If the flux recovery on a cubelet basis is performed 
for all pixels of the photon transient cube, each pixel will 
have multiple flux estimates. The initial flux estimate for 
each pixel can be determined based on a weighted average 
of multiple flux estimates with appropriate weights ( e.g., as 

15 described below in connection with FIG. 3C). 
In some embodiments, after initial flux recovery using 

local correlations, at 306 similar cubelets can be identified, 
which can be used, at 308, to recover final flux estimates 
exploiting both local and non-local correlations. In some 

20 embodiments, at 306, to find similar cubelets relatively fast 
and relatively precisely. In some embodiments, the search 
space can be defined on the image domain instead of the 
photon transient cube domain. For example, if a high-quality 
intensity image ( e.g., E Jru.+ NyxNx) is available as additional 

25 input (e.g., from a co-located imaging modality, such as a 
low-light passive camera sensor), the high-quality intensity 
image can be used to define a search space. As another 
example, a pseudo-intensity image can be generated by 
s=ing over the time dimension of the photon transient 

30 cube recovered using local correlations. The resolution of 
the pseudo-intensity image can be the same as the spatial 
resolution of the photon transient cube. For each pixel, a 
reference patch P R(E Jru.+ can be defined on the pseudo­
intensity image such that the pixel is located at a particular 

35 location ( e.g., the upper left comer of the reference patch) 
which can correspond to the same location as the synchro­
nization with the cubelet. Next, a S,n,raxS,n,ra search win­
dow can be centered at the reference patch, and a target 
patch Pr(E Jru.+ can slide over the search window to 

40 find similar image patches. In some embodiments, a distance 
dpatch between PR and Pr can be defined as: 

In some embodiments, the set of similar image patches 
45 can include Ns,m image patches with the smallest dpatch 

values. In some embodiments, any suitable number of 
similar patches can be used. For example, Ns,m can be any 
suitable value. In a more particular example, as described 
below, Ns,m can be set to 10. As another particular example, 

50 Ns,m can be set to a value in a range [2,100]. As still another 
more particular example, Ns,m can be set to a value in a range 
[5,50]. In some embodiments, locations of similar cubelets 
can be defined as the locations of the similar image patches. 
Additionally or alternatively, in some embodiments, the set 

55 of similar image patches can include Ns,m image patches 
with dpatch values that fall within a threshold. 

In some embodiments, after collecting the similar cube­
lets, final photon flux estimates can be generated at 308 
using local and non-local correlations collaboratively. In 

60 some embodiments, flux recovery using both local and 
non-local correlations can follow the same process as flux 
recovery using only local correlations except that noise 
estimation and flux recovery can be performed on a 4D 
photon transient set (E Jru.+ CyxCxxN,xN,;m, where Nsim is the 

65 number of similar cubelets) instead of a 3D photon transient 
cubelet (E Jru.+ CyxCxxN,). In a particular example, ex =8, Cy =8, 
and Ns,m=l0 were used in simulations and experiments 
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described below (Cx=Cy=4 were used for the result 
described below in connection with FIG. 10). 

14 
(see, e.g., FIG. SA, rows 1-3 and FIG. SC) and 3,400 ps (see, 
e.g., FIG. SA, row 4). FIG. SA shows the Gaussian temporal 
laser profile used for LiDAR simulations and its Fourier 
magnitude, where pure noise band can be defined. 

The pure noise band can be also defined for non-Gaussian 

If multiple 3D photon transient cubes are available at 
different spatial or temporal positions, a 4D photon transient 
sequence (E 'll.+N,xN,xN,xN', where Ne is the number of the 5 

cubes) can be used as the input, rather than a photon 
transient cube. Additionally, in some embodiments, rela­
tively high-quality 3D intensity video ( E !Fl.+ N,xN,xN,) can be 
used as additional input (e.g., in lieu of an intensity image). 
In some embodiments, the same techniques can be used 
when a 4D photon transient sequence is used as when a 3D 
photon transient cube is used, except that the search space 
centered at the reference patch is a 3D volume with a 
dimension of S;n,raxSintraxSinter· Values of Sinrra=21 and 
Sinter=ll were used in simulations and experiments 
described below. 

laser pulses. For example, in LiDAR experiments described 
below, a non-Gaussian laser pulse was used with two 
asymmetric peaks (see, e.g., FIG. SB) as measured during 
calibration of the hardware setup used for the LiDAR 

10 experiments. Even for the non-Gaussian pulses, most of the 
signal energy is concentrated in the low-frequency band and 
the pure noise can be isolated as shown in FIG. SB. 

In some embodiments, the pure noise band for the non-

15 
Gaussian pulse used in LiDAR experiments described below 
was defined as all the Fourier frequency bins where the 
magnitude is less than 1 % of the maximum: 

FIG. 3B shows an example 310 of a flow for estimating 
flux from a noisy photon transient cube in accordance with 
some embodiments of the disclosed subject matter. 

20 
As shown in FIG. 3B, at 312, noise in each cubelet can be 

estimated, and a flux estimate can be generated based on the 
photon transient cube (e.g., the noisy photon transient cube, 
a photon transient cube generated from a first flux estimate), 
using any suitable technique or combination of techniques, 

25 
such as techniques described below in connection with FIG. 
3C. 

In some embodiments, at 314, the initial flux can be 
filtered (e.g., using Wiener filtering) to generate refined 
estimate fluxes from the flux. For example, photon fluxes 30 
can be recovered with Wiener filtering which is known to be 
optimal in a mean-squared-error sense. SNR can be calcu­
lated based on initial flux estimation and noise estimation 
and Fourier coefficients can be calculated according to the 
computed SNR. 35 

(3) 

where I f. (f)I is the Fourier magnitude of the instrument 
response function (IRF) at the frequency of f. For FLIM 
experiments, the pure noise band was defined similarly from 
the IRF of the FLIM system. 

After the pure noise band is isolated, a noise threshold can 
be defined as a statistical upper bound of the magnitude in 
the pure noise band (see, e.g., FIG. 2A): 

(4) 

where Bnoise is the pure noise band and IE[·] is a mean 
operator (e.g., calculating the mean of the magnitudes of the 
Fourier coefficients). In some embodiments, the noise 
threshold can be used to recover photon fluxes. FIG. 3C shows an example 320 of a flow for estimating 

noise an initial flux estimate from a noisy photon transient 
cube in accordance with some embodiments of the disclosed 
subject matter. 

In some embodiments, accurately estimating noise can 
facilitate recovering the relatively high accuracy photon 
fluxes in hierarchical processing techniques described 
herein. In some embodiments, techniques described herein 

In a more particular example, Rand J can represent the 
real and imaginary parts of the Fourier coefficients inside the 
pure noise band of the 1D photon transient, 3D photon 

40 transient cubelet, or 4D photon transient set. According to 

can isolate a pure noise band on a temporal frequency 
dimension. The pure noise band can be defined based on 

45 
various observations. For example, noise-free incident pho-
ton fluxes at the sensor cannot contain higher frequencies 
than the laser pulse since the optical path from the laser 
source to the sensor acts as a low-pass filter. As another 
example, the signal of interest (e.g., the laser pulse) spans a 

50 
subset of the low frequencies since most hardware compo­
nents of the laser source have limited bandwidth. In some 
embodiments, the pure noise band can be defined as the 
range of frequencies where the Fourier magnitude of the 
laser pulse is negligibly small. 

55 
In some embodiments, for Gaussian-shaped laser pulses, 

the pure noise band Bnoise can be defined as a band of 
frequencies spanning three standard deviations of the Gauss-
ian spectrum: 

(2) 

60 

where FWHM is the full-width at half-maximum of the 65 

Gaussian pulse. In the LiDAR simulations described below, 
Gaussian laser pulses with FWHM of 400 picoseconds (ps) 

the central limit theorem, Rand J can follow a Gaussian 
distribution with zero mean and standard deviation crN: R-

N(0,crN) and r7- N(0,crN)- If R- N(0,l) and r7- N(0, 

1), the noise magnitude M = ✓ R2+ J 2
- X(2). Rand J can 

be normalized using: 

(5) 

The following relationships also hold: 

(6) 

and 

std[.Jvt] = {i 1 -(f(
3 

/
2
))

2
, 

CTN [()) 

(7) 

where IE[·] and std[·] are the mean and standard deviation 
operators, respectively. Therefore, 



US 11,927,700 Bl 

and 

[(3 /2) 
lr.L?vfl = (TN,fi """"ri"i) 

15 

(8) 

(9) 

16 
cubelets. For example, Fourier coefficients with a magnitude 
that does not exceed the noise threshold can be set to zero, 
as such coefficients can be considered to be corrupted by 
noise. 

In some embodiments, flow 320 can determine whether to 
use guided photon processing at 326 or threshold processing 
at 328 based on the noise estimate at 324. For example, as 
described below in connection with FIG. 6, the noise esti­
mate can be used to determine a signal-to-noise ratio (SNR). ( 

f(3 / 2) ) 2 

std[Jvf] = (TN{i 1 - """"ri"i) . 

The noise threshold 8noise can be defined as lE [M]+4std 
[M]. Then 

IO In low SNR areas (e.g., cubelets or 4D sets of cubelets with 
an SNR that does not exceed a threshold) guided photon 
processing can be used at 326, and in higher SNR areas (e.g., 
cubelets or 4D sets of cubelets with an SNR exceeding 

Oaai" 
(10) 

IF:L?vfl -

15 
threshold), guided a noise threshold can be used at 328. 

In some embodiments, at 330, an inverse transform can be 
performed on the coefficients produced by guided photon 
processing at 326 and/or thresholding at 328, to produce flux 
estimates for each pixel location in each cubelet or set of 
cubelets. For example, an inverse Fourier transform (e.g., an IF:LM"l + 4std[J\,t] ( f(l) )2 ~ 

IF:L?vfl = 1 + 4 rc3 / 2) - 1 = 1 + 4'/ ; - 1 • 

⇒ 6noise = ( 1 + 4✓ ~ -1 )r.[Jvf]. 
(11) 

20 inverse FFT) can be performed using the Fourier coefficients 
resulting from guided photon processing and/or threshold­
ing. A result of the inverse transform can be a cubelet of flux 
estimates with reduced noise corresponding to the noisy 
photon cubelets that were provided as inputs. 

In some embodiments, at 332, information for particular 
pixels and time bins that are represented in multiple cubelets 
or sets of cubelets can be aggregated. For example, multiple 
initial flux estimates for each pixel can be aggregated to get 
a single flux estimate for each pixel and time bin using a 

With accurate local noise estimates, latent photon fluxes 25 

can be recovered by generalizing a filtering framework (e.g., 
BM3D, BM4D, and V-BM4D, for example as described in 
Dabov et al., "Image denoising by sparse 3-d transform­
domain collaborative filtering," IEEE Transactions on Image 
Processing (2007), Maggioni et al., "Video denoising, 
deblocking, and enhancement through separable 4-d nonlo­

30 weighted average: 

cal spatiotemporal transforms," IEEE Transactions on Image 
Processing (2012), and Maggioni et al., "Nonlocal trans­
form-domain filter for volumetric data denoising and recon­
struction," IEEE Transactions on Image Processing (2012)) 35 

to photon transient cubes. Such techniques can produce 
optimal results if reliable local noise statistics are available. 
In some embodiments, mechanisms described herein can 
automatically adapt to extremely noisy operating scenarios 
without requiring any prior knowledge of noise statistics. 40 

(12) 

where N1 is the number of all overlapping cubelets on the 
pixel, <I>; is the flux estimate for the pixel by the ith cubelet, 
and CO; is the weight assigned to the ith cubelet as follows: 

(13) 

where IBnoise ;1 2 is the energy of the Fourier coefficients 
inside the puie noise band of the ith cubelet. 

For example, at 322-332, initial flux estimation can be 
performed on a 3D photon transient cubelet basis or a 4D 

In some embodiments, at 322, each photon transient 
cubelet or set of photon transient cubelets (e.g., a 4D photon 
transient set) can be transformed using any suitable trans­
form. For example, a Fourier transform can be used to 
transform each photon transient cubelet into Fourier coef- 45 

ficients in the frequency domain. In a more particular 
example, a fast Fourier transform (FFT) can be used to 
transform each photon transient cubelet into Fourier coef­
ficients in the frequency domain. As another example, a 
suitable wavelet transform can be used. 50 photon transient set basis depending on available correla­

tions. Initial flux estimates of the photon transient cubelet ( or 
set of cubelets) can be obtained by thresholding with the 
noise threshold (e.g., based on EQ. (4)) in the Fourier 
domain or guided photon processing. If the initial flux 

In some embodiments, at 324, a noise estimation can be 
performed for each cubelet or set of cubelets using any 
suitable technique or combination of techniques. For 
example, a noise estimation can be performed using a pure 
noise band described above in connection with EQ. (2) or (3) 
and a noise threshold described above in connection with 
EQ. (4). 

In some embodiments, at 326, guided photon processing 
can be carried out to recover fluxes (e.g., in extremely low 
signal-to-noise regimes), using any suitable technique or 
combination of techniques. For example, techniques 
described below in connection with FIG. 6 can be used at 
326 to recover fluxes from a noisy cubelet. 

Additionally or alternatively, in some embodiments, at 
328, a noise threshold, such as the noise threshold described 
above in connection with EQ. (4) can be used to remove 
noise from the transformed photon cubelet or set of photon 

55 estimation is performed on the 4D photon transient set, all 
recovered 3D photon transient cubelets can be returned to 
their original positions. After the initial flux estimation is 
repeated for all pixels, multiple initial flux estimates for each 
pixel can be aggregated to get a single flux estimate using 

60 EQ. (12). 
FIG. 3D shows an example of a flow 340 for generating 

a photon transient cube with improved signal-to-noise ratio 
using a noise estimate and an initial flux estimate in accor­
dance with some embodiments of the disclosed subject 

65 matter. 
In some embodiments, based on initial flux estimates and 

noise estimates of each cubelet (or set of cubelets) (e.g., 
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generated using flow 320), Wiener filtering can be per­
formed as shown in FIG. 3D. 

In some embodiments, at 342, each photon transient 
cubelet or set of photon transient cubelets (e.g., a 4D photon 
transient set) from the noisy photon transient cube can be 
transformed using any suitable transform. For example, a 
Fourier transform can be used to transform each photon 
transient cubelet into Fourier coefficients in the frequency 
domain. In a more particular example, a fast Fourier trans­
form (FFT) can be used to transform each photon transient 
cubelet into Fourier coefficients in the frequency domain. As 
another example, a suitable wavelet transform can be used. 
In some embodiments, the transform at 342 can be omitted, 
and the transform coefficients calculated at 322 can be used 
in lieu of performing a transform at 342. 

In some embodiments, at 344, Wiener shrinkage can be 
applied in the Fourier domain using suitable Wiener coef­
ficients, and initial noise estimates for each cubelet. 

In some embodiments, the Wiener coefficients can be 
defined as: 

(14) 

W = 2 [ 2]' 
IAI + IF: IBaai"I 

where IAl 2 is the energy of the Fourier coefficients of the 
initial flux estimates of the cubelet (or set of cubelets), and 
1Bnoisel

2 is the energy of the Fourier coefficients from the 
original noisy cubelet inside the pure noise band of the 
cubelet (or set of cubelets). The Fourier coefficients of the 
noisy cubelet (set) can be attenuated by element-wise mul­
tiplication with W in the Fourier domain. 

18 
cation system or systems 416 for allowing communication 
between processor 408 and other devices, such as an auto­
mated system (e.g., an automated industrial inspection sys­
tem, an automated manufacturing system, an autonomous 

5 vehicle, etc.), a semi-automated system, a smartphone, a 
wearable computer, a tablet computer, a laptop computer, a 
personal computer, a game console, a server, etc., via a 
communication link. 

In some embodiments, memory 412 can store time stamps 
10 and/or a histogram of timestamps output by image sensor 

404, depth values, etc. Memory 412 can include a storage 
device (e.g., a hard disk, a solid state drive, a Blu-ray disc, 
a Digital Video Disk (DVD), random access memory 

15 
(RAM), read-only memory (ROM), electronically erasable 
programmable read-only memory (EEPROM), etc.) for stor­
ing a computer program for controlling processor 408. In 
some embodiments, memory 412 can include instructions 
for causing processor 408 to execute processes associated 

20 with the mechanisms described herein, such as processes 
described below in connection with FIG. 7. 

In some embodiments, light source 402 can be any 
suitable light source that can be configured to emit a pulse 
of light toward a scene 420. In some embodiments, light 

25 source 402 can be implemented using any suitable pulsed 
light source, such as a pulsed laser and/or light emitting 
diode (LED). In some embodiments, light source 402 can 
include an array of light sources (e.g., LEDs, laser diodes, 
etc.) that can be controlled (e.g., individually addressed, 

30 addressed by column, etc.) to create a pulse of light that has 
a relatively uniform intensity across one or more dimensions 
of scene 420. 

In some embodiments, at 346, an inverse transform can be 
performed on the coefficients produced from the filtering at 35 

344, to produce filtered flux estimates for each pixel location 

In some embodiments, image sensor 404 can include one 
or more detectors that are capable of capturing information 
at a high time resolution, such as one or more single-photon 
detectors (e.g., SPADs), one or more avalanche photodiodes 

in each cubelet or set of cubelets. For example, an inverse 
Fourier transform (e.g., an inverse FFT) can be performed 
using the Fourier coefficients resulting from guided photon 
processing and/or thresholding. A result of the inverse 40 

transform can be a cubelet of flux estimates with reduced 
noise corresponding to the noisy photon cubelets that were 
provided as inputs. 

(APDs), one or more jots (e.g., as described in Fossum et al., 
"The quanta image sensor: Every photon Counts," Sensors, 
(2016)), etc. For example, image sensor 404 can include a 
single single-photon detector or an array of multiple single­
photon detectors (e.g., SPADs, jots, photomultiplier tubes 
(PMTs), etc.). 

In some embodiments, image sensor 404 can include 
on-chip processing circuitry that can be used to output a In some embodiments, at 348, the Wiener-filtered results 

can be aggregated using techniques described above in 
connection with EQS. (12) and (13) recover a final photon 
transient cube. 

FIG. 4 shows an example 400 of a system for estimating 

45 value for each frame (e.g., indicating a time at which a 
photon was detected, or that a photon was not detected) 
and/or that can be used to generate a transient on the image 
sensor, which can be output to processor 408, which can 
facilitate a reduction in the volume of data transferred from a depth and orientation of a portion of a scene using a 

single-photon detector and diffuse light source in accordance 50 

with some embodiments of the disclosed subject matter. As 
shown in FIG. 4, system 400 can include a light source 402; 
an image sensor 404; optics 406 (which can include, for 
example, a lens, a filter, etc.); a processor 408 for controlling 
operations of system 400 which can include any suitable 55 

hardware processor (e.g., a central processing unit (CPU), a 
graphics processing unit (GPU), an accelerated processing 
unit (APU), a microprocessor, a digital signal processor, a 
microcontroller, an image processor, etc., one or more of 
which can be implemented using a field programmable gate 60 

array (FPGA) or an application specific integrated circuit 
(ASIC), or combination of hardware processors; an input 
device 410 (such as a shutter button, a menu button, a 
microphone, a touchscreen, etc.) for accepting input from a 
user and/or from the environment; memory 412; a signal 65 

generator 414 for generating one or more signals for driving 
light source 402 and/or image sensor 404; and a communi-

image sensor 404. For example, single-photon detectors of 
image sensor 404 can be associated with circuitry that 
implements at least a portion of process 700, described 
below. 

In some embodiments, optics 406 can include optics (e.g., 
a lens) for focusing light received from scene 420, one or 
more bandpass filters (e.g., narrow bandpass filters) centered 
around the wavelength of light emitted by light source 402, 
one or more neutral density filters, any other suitable optics, 
and/or any suitable combination thereof. In some embodi-
ments, a single filter can be used for the entire area of image 
sensor 404 and/or multiple filters can be used that are each 
associated with a smaller area of image sensor 404 (e.g., 
with individual pixels or groups of pixels). 

In some embodiments, signal generator 414 can be one or 
more signal generators that can generate signals to control 
light source 402. As described above in connection with 
light source 402, in some embodiments, signal generator 414 
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can generate a signal that indicates when light source 402 is 
to be activated or not activated. 

In some embodiments, system 400 can communicate with 
a remote device over a network using communication sys­
tem( s) 416 and a communication link. Additionally or alter­
natively, system 400 can be included as part of another 
device, such as an automated system, a semi-automated 
system, a security system, a smartphone, a tablet computer, 
a laptop computer, etc. Parts of system 400 can be shared 
with a device within which system 400 is integrated. For 
example, if system 400 is integrated with an autonomous 
vehicle (e.g., an autonomous car) or other autonomous 
mobile system (e.g., a mobile robot), processor 408 can be 
a processor of the autonomous system and can be used to 
control operation of system 400. 

In some embodiments, system 400 can communicate with 
any other suitable device, where the other device can be one 
of a general purpose device such as a computer or a special 
purpose device such as a client, a server, etc. Any of these 
general or special purpose devices can include any suitable 
components such as a hardware processor (which can be a 
microprocessor, digital signal processor, a controller, etc.), 
memory, communication interfaces, display controllers, 
input devices, etc. For example, the other device can be 
implemented as an automated system, a semi-automated 
system, a digital camera, a security camera, an outdoor 
monitoring system, a smartphone, a wearable computer, a 
tablet computer, a personal data assistant (PDA), a personal 
computer, a laptop computer, a multimedia terminal, a game 
console or peripheral for a gaming counsel or any of the 
above devices, a special purpose device, etc. 

Communications by communication system 416 via a 
communication link can be carried out using any suitable 
computer network, or any suitable combination of networks, 
including the Internet, an intranet, a wide-area network 
(WAN), a local-area network (LAN), a wireless network 
(e.g., a cellular network), a digital subscriber line (DSL) 
network, a frame relay network, an asynchronous transfer 
mode (ATM) network, a virtual private network (VPN). The 
communications link can include any communication links 
suitable for communicating data between system 400 and 
another device, such as a network link, a wireless link, a 
hard-wired link, a dial-up link, any other suitable commu­
nication link, or any suitable combination of such links. 
System 400 and/or another device ( e.g., a server, a personal 
computer, a smartphone, etc.) can enable a user to execute 
a computer program that uses information derived using the 
mechanisms described herein to, for example, identify one 
or more surfaces in a scene that can be approximated as a 
portion of a plane. 

Note that data received through the communication link 
or any other communication link(s) can be received from 
any suitable source. In some embodiments, processor 408 
can send and receive data through the communication link or 
any other communication link(s) using, for example, a 
transmitter, receiver, transmitter/receiver, transceiver, or any 
other suitable communication device. 

FIG. SA shows an example of a laser profile and a pure 
noise band in the frequency domain for a simulated LiDAR 
device. FIG. SB shows an example of a laser profile and a 
pure noise band in the frequency domain for a LiDAR 
device used in an experimental setup used to generate 
experimental results. 

Temporal laser profiles and corresponding pure noise 
bands for LiDAR simulations and experiments described 
below in connection with some of FIGS. SA to 17B are 
shown in FIGS. SA and SB, which show Gaussian and 

20 
non-Gaussian temporal laser profiles used for LiDAR simu­
lations and experiments, respectively. In both cases, the pure 
noise band can be defined by computing the Fourier spectral 
energy outside the main signal peak. 

FIG. 6 shows an example of a flow for guided photon 
processing using a transient photon cube and an intensity 
image in accordance with some embodiments of the dis­
closed subject matter, and depth maps generated using 
different techniques described herein. 

10 In some embodiments, guided photon processing can be 
used to recover photon fluxes in extremely low SNR sce­
narios ( e.g., in scenes with low SNR and/or in portions of a 
scene with low SNR). Guided photon processing can use 

15 spatial frequency correlations between the intensity image 
and the photon transient cube. As shown in FIG. 6, guided 
photon processing and thresholding can be adaptively 
selected based on the estimated cubelet SNR ( or the SNR of 
a set of cubelets) to generate initial flux estimates leading to 

20 improved depth estimates compared to using only thresh­
olding or guided photon processing. 

In extremely low SNR regimes (e.g., based on a ratio of 
energy in the noise band and outside the noise band), the 
noise component can still dominate in the transform domain 

25 notwithstanding high dimensional photon data. This can 
make it challenging to separate the noise and signal com­
ponents even with accurate noise estimation, and initial 
photon fluxes cannot be estimated reliably with simple 
thresholding. In some embodiments, guided photon process-

30 ing can be used to recover relatively accurate flux estimates 
in extremely low SNR regimes. In some embodiments, 
guided photon processing can use spatial-frequency corre­
lations between a 2D intensity ( e.g., from a pseudo-intensity 
generated from the noisy photon transient, or from an 

35 intensity image generated using another imaging modality) 
and the 3D photon transient cube to recover the photon 
fluxes under extremely low SNR scenarios. In general, a 2D 
pseudo-intensity image obtained by summing over the tem­
poral dimension of the 3D photon transient cube can be 

40 expected to share a similar spatial distribution of Fourier 
magnitude as the 3D photon transient cube, but has signifi­
cantly higher SNR due to temporal averaging. 

Given a noisy photon transient cubelet (E JR(+ cyxcxxN,), a 
pseudo-intensity patch (E JR(+ cyxcx) can be formed by sum-

45 ming over the time dimension. If a high-quality intensity 
image is available as an alternative input from another 
imaging modality, it can be used in lieu of the pseudo­
intensity information. Each pseudo-intensity patch can be 
normalized such that the sum of the pixel values is 1. Let 

50 P(EIC CyxCx) and C(EIC CyxCxxN,) be the Fourier coefficients of 
the normalized pseudo-intensity patch and the noisy cubelet, 
respectively. In some embodiments, a representation 
P'( EiC cyxcxxN,) of P over the same dimension as the cubelet 
can be generated by stacking P along the third dimension N, 

55 times. In some embodiments, guided photon processing can 
be performed in the Fourier domain by element-wise mul­
tiplication of P' and C as shown in FIG. 6. 

In some embodiments, guided photon processing and 
thresholding have pros and cons in initial flux estimation. 

60 Although Guided photon processing reduces noise more 
effectively than thresholding in extremely low SNR regimes, 
it can remove signal details as well. Thresholding can be 
expected to preserve signal details better than guided photon 
processing in high SNR regimes. Thus, in some embodi-

65 ments, mechanisms described herein can select between 
thresholding and guided photon processing adaptively 
depending on the SNR of the cubelet ( or set of cubelets) to 
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estimate initial flux estimates (e.g., as shown in FIG. 3C). 
The SNR of the cubelet (or set of cubelets) can be defined 
by: 

(15) 

where 1Bnoisel
2 is the energy of the Fourier coefficients inside 

the pure noise band, IBnoise cl 2 is the energy outside the pure 
noise band and IE [·] is the mean operator. In some embodi­
ments thresholding can be selected if R> R,h, and guided 
photon processing is selected otherwise. For example, 

1 
R,h = 0.8 

22 
histogram. In such an example, 706 can be omitted. As 
another more particular example, in a SPAD-based imple­
mentation and a scene with relatively high ambient bright­
ness, the transient histogram can generate the transient 

5 histogram using techniques to correct for pileup, such as 
using an asynchronous acquisition scheme, using a Coates 
correction to estimate the transient histogram, etc. In some 
embodiments, process 700 can include (e.g., prior to causing 
the light source to emit the N pulses at 702) determining an 

10 ambient brightness, and can determine whether to use a 
synchronous or asynchronous acquisition scheme, an attenu­
ation level (e.g., as described in connection with FIG. 10 of 
U.S. Pat. No. 11,448,767, which has been incorporated 

15 
herein by reference). 

At 708, process 700 can generate a photon transient cube 
using the photon transients associated with the imaged 
points in the scene. For example, process 700 can aggregate 
the photon transients generated at 706 into a 3D photon 

can be used for flux recovery using local correlations, and 20 transient cube that includes a photon transient for each pixel 
of a scene (e.g., corresponding to a particular single-photon 
detector in an array of single-photon detectors and/or a 
particular portion of a scene from which data was captured 
using a particular single-photon detector scanned over the 

1 
R,h = 0.9 

can be used for flux recovery using local and non-local 
correlations. 

FIG. 7 shows an example 700 of a process for generating 
single-photon data with improved signal-to-noise ratio in 
accordance with some embodiments of the disclosed subject 
matter. 

At 702, process 700 can cause a light source(s) (e.g., light 
source 402) to emit a series of light pulses (e.g., N light 
pulses) toward a scene. In some embodiments, process 5700 
can use any suitable technique or combination or techniques 
to cause the light source(s) to emit the series of light pulses 
toward the scene. For example, process 700 can utilize a 
signal generator (e.g., signal generator 414) to periodically 
(e.g., at regular and/or irregular intervals) cause the light 
source to emit a pulse of light. 

At 704, process 700 can capture image data of the scene 
illuminated with each of the light pulses emitted at 702. In 
some embodiments, process 700 can use any suitable tech­
nique or combination of techniques to capture image data of 

25 scene). 
At 710, process 700 can estimate, for each pixel, an initial 

photon flux for each point in the scene and for each time bin 
in the photon transient cube based on local correlations (e.g., 
based on a cubelet of neighboring pixels) using any suitable 

30 technique or combination of techniques. For example, pro­
cess 700 can use techniques described above in connection 
with 304 of FIG. 3A to estimate an initial photon flux for 
each point in the scene. 

At 712, process 700 can identify, using intensity values 
35 based on the initial flux estimates (e.g., based on a pseudo­

intensity image generated from the initial flux values) 
groups of cubelets (e.g., a 4D set of cubelets) that are 
correlated with a cubelet defined for each pixel using any 
suitable technique or combination of techniques. For 

40 example, techniques described above in connection with 306 
of FIG. 3Acan be used to identify groups of similar cubelets. 

At 714, process 700 can estimate, for each pixel, a final 
photon flux for each point in the scene and for each time bin 
in the photon transient cube based on local correlations (e.g., 

45 based on a cubelet of neighboring pixels) using any suitable 
technique or combination of techniques. For example, pro­
cess 700 can use techniques described above in connection 
with 308 of FIG. 3A to estimate a final photon flux for each 

the scene. For example, process 700 can capture a histogram 
based on timestamps output by one or more single photon 
imaging pixels (e.g., implemented using a SPAD, imple­
mented using a jot, using a photomultiplier tube, etc.) using 
synchronous techniques (e.g., using regular time intervals 50 

between laser pulses) or asynchronous techniques (e.g., 
using techniques described in U.S. Pat. No. 11,448,767, 
which is hereby incorporated by reference herein in its 
entirety). As another example, process 700 can capture a 
histogram based on outputs from a high speed ADC con­
figured to generate a brightness value based on an input 
analog signal received from an avalanche photo diode 
(APD), as described above. In such an example, fewer 
pulses (e.g., as few as one pulses) can be used to capture a 
histogram. 

point in the scene. 
At 716, process 700 can generate image data and/or other 

data based on the final photon flux estimates for each point 
in the scene. For example, in some embodiments, process 
700 can generate a 3D image and/or a depth map based on 
the final photon flux estimates for each point in the scene 

55 (e.g., from data generated by a LiDAR system or a 3D 
camera). As another example, process 700 can generate 
lifetime images based on the final photon flux estimates for 
each point in the scene (e.g., from data generated in a FLIM 
system). 

60 At 718, process 700 can present ( or cause to be presented) 
At 706, process 700 can generate a photon transient for 

each pixel using any suitable technique or combination of 
techniques. For example, for SPAD-based implementations, 
process 700 can generate the transient histogram from a 
SPAD histogram. In a more particular example, in a SPAD­
based implementation and a scene with relatively low ambi­
ent brightness, the transient histogram can be the SPAD 

the image data and/or other data generated at 716 and/or can 
output the data (e.g., to another system). For example, 
process 700 can utilize a display to present the data. As 
another example, process 700 can output the data (e.g., to 

65 another system), and the data can be used in any suitable 
application (e.g., for object detection, 3D scene mapping, 
etc.). 
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FIG. SA shows examples of various scenes and depth 
maps generated from single-photon data using various tech­
niques, including techniques implemented in accordance 
with some embodiments of the disclosed subject matter. 

24 
Thus, the time-discrete version of the total flux incident 
at p is given by: 

FIG. SB shows examples of raw photon transients from 5 
the scenes shown in FIG. SA. 

(20) 

In each laser cycle, random photon counts were generated 
according to Poisson statistics with <I>(p;n) as the mean, and 
the time bin index was recorded for the first incident photon. 
This was repeated over Ncycle number of laser cycles to 
construct the SPAD histogram. 

FIG. SC shows a comparison of examples of depth maps 
generated from raw photon transients of two scenes in FIG. 
SA using various techniques, including techniques imple­
mented in accordance with some embodiments of the dis-

10 closed subject matter. TABLE 1 shows the parameter values used to construct 
the photon transient cubes. 

TABLE 1 

In the following examples showing results from simulated 
and experimental data, SPAD histograms for LiDAR simu­
lations were built using the following techniques. The light­
ing condition is given by (Ns;JNbkg), where Nsig and Nbkg 
are the average incident signal and background photon 15 

counts per pixel during the total laser cycles, respectively. 
The mean signal photon counts incident at pixel p in each 
cycle is given by: 

Scene 

Art 

Photon transient cube specification for LiDAR simulations. 

(N,;g, Nbkg) Ncycle Nx NY N, ~ NC 

(2/50) 1,000 209 167 1,024 80 ps I 
Laundry (0.2/10) 1,000 202 167 1,024 80 ps I 

20 Bowling! (10/2,000) 1,000 188 167 1,024 80 ps I 
(16) Road (3,000/3,000) 1,000 200 200 1,024 680 ps 20 

where Ncycle is the total number of laser cycles, I( P,) is 25 
ground-truth intensity at P, D( P,) is ground-truth depth at 

The experimental LiDAR data includes two datasets 
captured using an asynchronous single-photon imaging 
technique (e.g., as described in U.S. Pat. No. 11,448,767). 

p, and IE 

is the mean of pixel-wise division of the depth map squared 
by the intensity image. The mean background photon counts 
incident at p per cycle per time bin is given as: 

(17) 

where IE [I] is the mean of the intensity image. Note from 
EQS. ( 16) and (17) that both signal and background fluxes 
are proportional to the intensity, and only the signal fluxes 

The datasets were obtained from a hardware prototype that 
included a 405 nanometer (nm) pulsed laser (Picoquant 
LDH-P-C-405B), a TCSPC module (Picoquant HydraHarp 

30 400), and a fast-gated SPAD. The laser was operated at a 
repetition frequency of 10 megahertz (MHz) for an unam­
biguous depth range of 15 meters (m). Each dataset has a 
ground-truth photon transient cube acquired with long 
acquisition time without ambient light. For the "face scene," 

35 the ground-truth data was down-sampled such that the 
average signal photon counts per pixel are 24, 2.4, and 0.8, 
respectively. The "deer" scene was captured under strong 
ambient illumination (>20,000 lux) high enough to cause 
pileup distortion. See TABLE 2 for more detailed photon 

40 transient cube specifications. 

TABLE 2 

are inversely proportional to the square of the depth while 
45 

the background fluxes remain constant regardless of the 
depth. 

Photon transient cube specification for LiDAR experiments. 

Scene (N,;g, Nbkg) Ncyc1e Nx NY N, ~ 

Face (24/0) 90 116 204 8,192 8 ps 

NC 

Assuming a Gaussian laser pulse, the time-discrete ver­
sion of the signal flux incident at p is given by: 

1 (2d) FWHM) <l>,;g(p; n) = N,;g(P). m = round - CT= ~ 
c!J., 2 v 2log2 !J., 

(18) 

(nE{l, ... ,N,)), 

where N is the normalized time-discrete Gaussian function 
with mean m and standard deviation cr; d is the depth; c is 
the speed of light, and fl, is the time bin size. Note that 

50 

Face (2.4/0) 9 116 204 8,192 8 ps 
Face (0.8/0) 3 116 204 8,192 8 ps 
Deer (2/320) 30 154 174 8,192 8 ps 

FIG. SA shows examples of LiDAR imaging-based depth 
maps generated using CASPI techniques described herein 
compared with matched filtering (e.g., described in Turin, 

55 "An introduction to matched filters," IRE Transactions on 
Information Theory, 1960), a statistical approach (e.g., as 
described in Rapp et al., "A few photons among many: 
Unmixing signal and noise for photon-efficient active imag­
ing," IEEE Transactions on Computation Imaging (2017)), 

60 and a learning-based approach (e.g., as described in Lindell 
et al., "Single-photon 3d imaging with deep sensor fusion," 
ACM Trans. Graph. (2018)) in various lighting conditions 
by simulations with the Middlebury and CARLA datasets. 

The time-discrete version of the background flux incident 65 

at p is given by: 

The three numbers underneath each depth estimation are the 
percent of inlier pixels that lie within 0.2%, 0.5%, and 1 % 
of the true depths. As shown in the third row, CASPI 

(19) techniques described herein can enhance the performance of 
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existing techniques. As shown in FIG. SB, CASPI tech­
niques can recover latent photon fluxes over various flux 
regimes and can facilitate reliable depth estimation even in 
extreme conditions. As shown in FIG. SC, state-of-the-art 
volumetric data denoising approaches fail to recover accu­
rate photon fluxes in challenging flux regimes, which leads 
to unreliable depth estimates. 

26 
nition (2017)), BM4D for volumetric data denoising ( e.g., as 
described in Maggioni et al., "Video denoising, deblocking, 
and enhancement through separable 4-d nonlocal spatiotem­
poral transforms"), and V-BM4D for video filtering (e.g., as 
described in Maggioni et al., "Nonlocal transform-domain 
filter for volumetric data denoising and reconstruction"). 
Final depth values were estimated using matched filtering. 
The compared approaches show some improvement in depth 
estimation in the low SBR regime, but struggle in the 

FIGS. SA to SC demonstrate the strengths of CASPI 
techniques in a single-photon LiDAR application. FIG. SA 
shows simulation results under a wide range of challenging 
lighting conditions measured in terms of the average inci­
dent signal (Ns,g) and background (Nbkg) photons per pixels. 
Test lighting conditions include a low SBR (signal-to­
background ratio) regime (Ns,g:2/N6kg:50), sub-signal pho­
ton regime (0.2/10), high background flux regime (10/2, 
000), and outdoor conditions (3,000/3,000) with high 
background flux and long depth range. Under each lighting 
condition, 3D photon transient cubes were simulated using 

10 sub-photon regime due to the lack of reliable knowledge of 
noise statistics. 

Reliable local noise statistics are required for BM4D and 
V-BM4D to produce optimal results. Although BM4D and 
V-BM4D feature an optional automatic local noise estima-

the first photon captured in each laser cycle for realistic 
SPAD measurements (as described above). Static, short 
depth range scenes from the Middlebury dataset ( e.g., 
described in Scharstein et al., "Leaming conditional random 
fields for stereo," in 2007 IEEE Conference on Computer 
Vision and Pattern Recognition (2007)) are simulated in 
rows 1-3, and a long-depth-range scene with motion with the 
CARLA simulator (e.g., described in Dosovitskiy et al., 
"Carla: An open urban driving simulator," Conference on 
Robot Leaming (2017)) is simulated in row 4. The measured 
photon transients are severely corrupted by noise and pileup 

15 tion procedure (e.g., as described in Maggioni et al., "Non­
local transform-domain denoising of volumetric data with 
groupwise adaptive variance estimation," Computational 
imaging x (2012)), it frequently fails for photon transient 
cubes because noise is estimated from arbitrary high-fre-

20 quency components that are not matched with the photon 
transient cubes for active imaging. Hand-tuning of noise 
parameters is not feasible for many active imaging sce­
narios, where the local SNR changes dynamically due to 
spatially and temporally varying illumination conditions. In 

25 contrast, CASPI-based techniques can automatically adapt 
to extremely noisy operating scenarios by estimating local 
noise accurately in the pure noise band without requiring 
any prior knowledge of noise statistics. CASPI-based tech­
niques can provide higher quality flux estimates and depth 

30 estimates than the state-of-the-art BM4DN-BM4D as shown in FIG. SB. The photon fluxes are estimated using 
techniques described herein and then depths were estimated 
through conventional matched filtering. Results generated 
using techniques described herein are compared with 
matched filtering and two state-of-the-art techniques for 
photon-efficient LiDAR imaging: a statistical approach 35 

(Rapp 2017) and a learning-based approach (Lindell 2018). 
These comparison techniques attempt to directly estimate 
depths without any pre-processing of the photon transient 
cubes. The performance metric used is the percent of inlier 
pixels at different error thresholds of 0.2%, 0.5%, and 1 %. 40 

The statistical approach (Rapp 2017) relies on the intu­
ition that signal photons cluster better than the background 
photons in the time domain. This assumption breaks down in 
the sub-photon regime where it is challenging to reliably 
locate signal photon clusters, and in the high background 45 

flux regime where spurious background photons may appear 
clustered. The learning-based approach (Lindell 2018) per­
forms well in the trained low SBR setting but fails under the 
non-trained extreme flux regimes. Although its performance 
can be improved by fusion with intensity images, it is still 50 

challenging for the learning-based approach to recover depth 
details in the extreme regimes (see, e.g., FIG. SA row 4). 
Note that in the high background flux regimes, Coates' 
correction was applied to all compared approaches to miti­
gate pileup. The CASPI-based techniques produced the best 55 

depth accuracy under all lighting conditions by recovering 
the most accurate latent photon fluxes (see FIG. SB). Note 
that CASPI-based techniques can be complementary to 
existing techniques and can enhance performance of the 
existing techniques by providing more accurate latent fluxes 60 

(e.g., as shown in FIG. SA, row 3). 
In FIG. SC, CASPI-based techniques are compared with 

various volumetric data denoising techniques: maximum 
likelihood estimation with total-variation (TV) (e.g., as 
described in O'Toole et al., "Reconstructing transient 65 

images from single-photon sensors," in Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recog-

approaches over various illumination conditions, as shown 
in FIG. SC. 

FIGS. 9A shows an example of a scene with high back­
ground flux and depth maps generated from single-photon 
data using various techniques, including techniques imple­
mented in accordance with some embodiments of the dis­
closed subject matter. 

FIG. 9B shows an example of a scene with varying signal 
flux and depth maps generated from single-photon data 
using various techniques, including techniques implemented 
in accordance with some embodiments of the disclosed 
subject matter, and a raw photo transient and photo transient 
after processing using techniques described herein. 

In FIGS. 9A and 9B experimental results on real-world 
data captured by a single-photon LiDAR hardware prototype 
are shown. These experiments have challenging operating 
conditions due to not just the lighting conditions but also a 
non-ideal double-peaked instrument response function (IRF) 
which deviates from a Gaussian IRF. 

As shown in FIGS. 9A and 9B, CASPI-based techniques 
succeeded in recovering 3D geometry in both high back­
ground flux and sub-photon regimes where the conventional 
approaches fail. CASPI-based techniques are robust to non­
idealities in real-world experimental datasets (e.g., non­
Gaussian laser pulse shape shown in the last row of FIG. 
9B). This demonstrates the practical versatility of CASPI­
based techniques across a wide range of operating condi­
tions. 

As shown in FIGS. 9A and 9B, conventional approaches 
only work in a high signal, low background flux regime. In 
contrast, CASPI-based techniques recovered high resolution 
3D geometry over a wider range of illumination conditions 
including high background flux and sub-signal photon 
regimes. 

FIG. lOA shows examples of fluorescent lifetime imaging 
microscopy images generated using various techniques, 
including techniques implemented in accordance with some 



US 11,927,700 Bl 
27 

embodiments of the disclosed subject matter, and lifetimes 
measured by the different techniques. 

28 

FIG. lOB shows examples of autofluorescence fluorescent 
lifetime imaging microscopy images generated using vari­
ous techniques with maximum likelihood estimation, includ- 5 

ing techniques implemented in accordance with some 
embodiments of the disclosed subject matter, and raw and 
processed photon transients at a particular location. 

epithelial cells under physiological conditions. After apply­
ing CASPI to the sequences of photon transient cubes, 
lifetime estimates were obtained by MLE (FIG. lOB) and by 
linear fitting to the log-transformed ID photon transients 
(FIG. lOC). For comparison, spatial binning was applied to 
the sequences of photon transient cubes and BM3D to the 
lifetime estimates. As shown in FIGS. lOB and lOC, CASPI­
based techniques recovered detailed structural characteris­
tics of the samples by restoring the latent photon fluxes (last 
column), which is difficult to do with spatial binning+ 
BM3D. 

FIG. lOC shows examples of autofluorescence fluorescent 
lifetime imaging microscopy images generated using vari- 10 

ous techniques with linear fitting, including techniques 
implemented in accordance with some embodiments of the 
disclosed subject matter, and raw and processed photon 
transients at a particular location. 

The FLIM data were acquired using two custom mul-
tiphoton microscopes. These microscopes used pulsed fem­
tosecond lasers operating at a repetition rate 8xl07 hertz 
(Hz) and 720 nm dichroic cut-of filter for separating fluo­
rescence. Autofluorescence from cellular samples (NADH/ 

As shown in FIGS. lOA to lOC, CASPI-based techniques 15 

enable reliable lifetime estimates with as few as 10 photons 
per pixel and can achieve five times better performance in 
root-mean-square error (RMSE) compared to spatial binning 
of the photon transient cubes followed by BM3D applied to 
the lifetime estimates. The sample is :6ced BPAE endothelial 20 

cells with fluorescent labels. DAPI stained nuclei and 

NADPH) was excited at 740 nm and imaged using a 
bandpass emission filter centered at 457 nm with 50 nm band 
and an additional 680 nm short-pass filter to block the 
ultrafast laser. Mcherry label was excited at 740 nm, and 
collected using an emission filter centered at 630 nm and 69 

mitotracker stained mitochondrial structures are separable 
using CASPI even with 50 fold lesser photons. As shown in 
FIGS. lOB and lOC, CASPI-based techniques recovered 
true fluorescence emission (last colunm) from the low 
photon count datasets of autofluorescence of biological 
samples. With state-of-the-art fitting (FIG. lOB: maximum 
likelihood estimation (MLE)), or even with naive fitting 
(FIG. lOC: linear fit to the log-transformed histograms), 
CASPI-based techniques facilitated faithful reconstruction 
of lifetime images by recovering structural sample details. 

The effectiveness of CASPI-based techniques for FLIM 
with challenging low photon count datasets were also vali­
dated. Two FLIM datasets of fixed, labelled BPAE cells were 
collected with different acquisition times such that average 
photon counts per pixel are 10 and 500, respectively. The 
photon transient cube with 500 photons/pixel was used to 
get the ground-truth lifetimes. CASPI-based techniques 
were applied to the photon transient cube with 10 photons/ 
pixel to recover the temporal fluorescence emission and 
estimate the lifetimes using maximum-likelihood estimation 
(MLE), one of the most widely used estimation techniques 
for FLIM analysis. As a comparison, the SNR of the photon 
transient cube with 10 photons/pixel was enhanced by 7x7 
spatial binning ( similar to the spatial size of the cubelet used 
in the CASPI-based technique) and the lifetime was esti­
mated for each pixel using MLE. Furthermore, the BM3D 
(e.g., as described in Dabov 2007) to the lifetime domain to 
reduce the estimation error. As shown in FIG. lOA, results 
generated using CASPI-based techniques show substantially 
more reliable lifetime estimates than spatial binning+ 
BM3D. CASPI-based techniques achieved 5 times better 
performance in terms of root-mean-square error (RMSE). 
Based on these reliable estimates, DAPI stained nuclei and 
mitotracker stained mitochondrial structures are separable, 
which is challenging with spatial binning+BM3D (see FIG. 
lOA). Note that spatial binning+MLE is one of the best 
available options from the current off-the-shelfFLIM tools. 

nm emission band. The live-cell imaging was carried out 
using an incubator maintaining humidity, temperature, and 
CO2 levels at physiological conditions best suited for that 

25 cell line (37° C.,>90% RH and 5%). Briefly, the FLIM data 
were collected using time-correlated single-photon counting 
electronics. Using galvanometer clocks and pulsed laser 
sync signals, the photon arrival time was measured and 
single-pixel histograms were generated. The photons were 

30 collected using a photosensitive GaAsP PMT, and single­
photon timings were determined on the SPC-150 timing 
module. To allow photon counting electronics to operate at 
full capacity, the detector was set to operate at a constant 
gain. To perform the scanning and record the single pixel 

35 histograms, two lab-developed scanning tools, OpenScan 
and WiscScan, were used. To increase the number of frames 
used in a single 3D cube, the collection time per FLIM 
dataset was increased in the BH-150 parameters. The laser 
power was maintained below 25 milliwatts (mW) for live-

40 cell imaging. To generate additional contrast in the live cell 
experiments, a higher laser power was used that could 
induce apoptosis as shown in FIG. lOB. This power was set 
at 53 .5 mW and all power values controlled using an 
electro-optic modulator. All photon transient cubes used in 

45 the FLIM experiments have the same resolution of 256x 
256x256, and the time bin size is 48 ps. The number of 
photon cubes for the time-lapse sequences of the BPAE 
epithelial cells (FIG. lOB), the MCFl0A epithelial cells 
(FIG. lOC), and the HeLa cells with mCherry-H2B tags 

50 (FIGS. 16A and 16B) are 493, 260 and 60, frames respec­
tively. The 3D/Z-stack data of the cultured glioblastoma 
cells have 16 photon transient cubes but only 14 results are 
included in the paper (FIGS. 17A and 17B). 

FIG. 11 shows examples of a scene and depth maps 
55 generated using various techniques with filtering before or 

after estimation, including techniques implemented in accor­
dance with some embodiments of the disclosed subject 
matter. 

The test was expanded to imaging living cells using their 
autofluorescence contrast in unlabeled live cells. The low 60 

As shown in FIG. 11, filtering after estimation and esti­
mation after filtering are compared. Depth estimation fol­
lowed by conventional image filtering fails to get reliable 
depth estimates under challenging lighting conditions. After 
recovering the latent photon fluxes using CASPI-based 
techniques, reliable depth estimates can be obtained even 

yield of photons from intrinsic markers such as NADH and 
NADPH requires long collecting times. To provide a viable, 
long-term imaging situation, a time-lapse collection of 
FLIM datasets was performed on living cells under a multi­
photon excitation microscope. These are temporal sequences 
of 3D photon transient cubes with rapid non-rigid motion. 
FIGS. lOB and lOC show the lifetime estimates of the 

65 with a simple matched filtering approach. 
A comparison between conventional image filtering after 

depth estimation and depth estimation after using CASPI-
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based techniques are shown in FIG. 11. Given the noisy 
photon transient cube under the flux regime of (Ns,g:2/N6kg: 
50), a noisy depth map was obtained by traditional matched 
filtering as shown in FIG. 11. Since the noise of the 
estimated depth map in this challenging lighting condition 
does not follow commonly assumed noise models, the 
conventional image filtering such as median filtering (mask 
size: 3x3) and BM3D (noise variance=!) cannot recover 
reliable depth estimates as shown in FIG. 11. However, after 
the latent photon fluxes are recovered by CASPI-based 
techniques, and a high-quality depth map can be generated 
even with traditional matched filtering as shown in FIG. 11. 
This suggests that denoising early in the photon processing 
chain can be key to achieving high quality results. 

FIG. 12 shows examples of various scenes and scene 
intensity estimations from photon transient data using vari­
ous techniques, including techniques implemented in accor­
dance with some embodiments of the disclosed subject 
matter. 

As shown in FIG. 12, CASPI-based techniques can facili­
tate high-quality scene intensity estimates by summing over 
the time dimension of the recovered photon fluxes. Com­
pared to other approaches, CASPI-based techniques can 
preserve intensity details better in high signal-to-back­
ground ratio (SBR) regime (Ns,g:100/N6kg:100) while sup­
pressing the noise more effectively in sub-photon regime 
(0.2/10). In addition, the saturation and the excessive high 
contrast in the photon counting result are also reduced by 
CASPI-based techniques when operating in a high back­
ground flux regime (10/2000). Root-mean-square error 
(RMSE) is labeled below each image as the objective 
performance measure. 

FIG. 12 shows intensity estimation comparisons between 
different approaches under various lighting conditions with 
the Middlebury dataset. After recovering photon fluxes with 
CASPI-based techniques, intensity estimates were obtained 
by simply summing over the time dimension of the recov­
ered photon fluxes. Results are compared with photon count-

30 
niques without the intensity images provides better depth 
estimates than the learning-based approach with the inten­
sity images under all test lighting conditions. 

Although CASPI-based techniques provide reliable inten­
sity estimates as output, high-quality intensity images can 
also be used as input to get better depth estimates. Additional 
high-quality intensity information can be beneficial for 
similar cubelet finding and guided photon processing in 
CASPI-based techniques. FIG. 13 shows depth estimation 

10 results with and without the intensity images over a wide 
range of lighting conditions. 

FIG. 14A shows examples depth maps generated from 
photon transient data using various techniques at different 
resolutions, including techniques implemented in accor-

15 dance with some embodiments of the disclosed subject 
matter. 

FIG. 14B shows examples of scene intensity estimations 
from photon transient data using various techniques at 
different resolutions, including techniques implemented in 

20 accordance with some embodiments of the disclosed subject 
matter. 

As shown in FIGS. 14A and 14B, intensity estimation 
performance increases with the spatial resolution of photon 
data. CASPI-based techniques show the best performance 

25 compared to other approaches in terms of both depth esti­
mation and intensity estimation at any spatial resolution. 

Depth and intensity estimation performance depends on 
the spatial resolution of the photon transient cube. Better 
estimates can be generated when the spatial resolution 

30 increases. FIG. 14A shows depth estimates by traditional 
matched filtering, statistical approach II (Rapp 2017), a 
learning-based approach (Lindell 2018), and CASPI-based 
techniques followed by matched filtering. FIG. 14B shows 
intensity estimates by photon counting, statistical approach 

35 I (Shin 2015), statistical approach II (Rapp 2017), and 
CASPI-based techniques followed by photon counting 
(summing over the time dimension of the photon transient 
cube). The test flux regime is (Ns,g:2/N6kg:50). Upper and 
lower rows show the results when the spatial resolution is ing (PC), and two statistical approaches (statistical I 

described in Shin et al., "Photon-efficient computational 3-d 
and reflectivity imaging with single-photon detectors," IEEE 
Transactions on Computational Imaging (2015), and statis­
tical II (Rapp 2017). Root-mean-square error (RMSE) is 
used as an objective performance measure. As shown in 
FIG. 12, CASPI-based techniques provide higher quality 45 

scene intensity estimates than the compared approaches over 

40 167x209 and 555x695, respectively. Most approaches show 
improved depth and intensity estimates when the spatial 
resolution increases. CASPI-based techniques showed the 
best performance compared to other approaches at any 
spatial resolution. 

FIG. 15A shows examples of fluorescent lifetime imaging 
microscopy images generated from photon transient data 
using various techniques at different levels of photons per 
pixels, including techniques implemented in accordance 
with some embodiments of the disclosed subject matter. 

a wide range of flux regimes. For example, CASPI-based 
techniques preserved intensity details better than the com­
pared approaches in high signal-to-background ratio (SBR) 
regime (Ns,g:100/N6kg:100) while suppressing the noise 50 

more effectively than the other approaches in the sub-photon 
regime (0.2/10). Additionally, in high background flux 
regime (10/2000), the saturated foreground and the exces­
sive high contrast region of the bowling ball in the photon 
counting result are recovered well with our approach. 55 

FIG. 15B shows examples of processed photon transients 
generated from photon transient data using various tech­
niques at different levels of photons per pixels, including 
techniques implemented in accordance with some embodi­
ments of the disclosed subject matter. 

As shown in FIGS. 15A and 15B, CASPI-based tech­
niques provide higher lifetime estimation accuracy than 
spatial binning even with as few as 10 photons/pixel by 
successfully recovering the temporal fluorescence emission. 

In order to study controlled photon-starved conditions, 

FIG. 13 shows examples of depth images generated from 
photon transient data using various techniques, including 
techniques implemented in accordance with some embodi­
ments of the disclosed subject matter and various learning­
based techniques. 

If high-quality intensity images are available as side 
input, better depth estimates can be generated using CASPI­
based techniques. CASPI-based techniques are compared 
with a learning-based approach (Lindell 2018) which pro­
vides two types of trained models with and without the 
intensity images. Although intensity information improves 
the performance of both approaches, CASPI-based tech-

60 live cells were imaged expressing mCherry-H2B fluorescent 
tags. With a photon count rate of 100 photons/sec/frame, 
multiple data sets with different photon counts were 
obtained by accumulating for different periods of time. The 
average photon counts per pixel of these photon transient 

65 cubes are about 10, 20, 40, 80, and 2,500 as shown in FIG. 
15A. The photon transient cube with 2,500 photons/pixel is 
used as ground-truth data. Each cube is processed in three 
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different ways for comparisons: no processing (raw data), 
7x7 spatial binning (the binning size is comparable to the 
spatial size of the photon cubelet of our approach), and using 
CASPI-based techniques. The lifetimes were fitted using 
MLE in the SPCimage. FIG. 15A shows the lifetime images 
estimated from these three processed photon cubes with 
different photon counts. The CASPI-based techniques facili­
tated estimation of reliable lifetime images by recovering 
accurate photon fluxes even with small photon counts (as 
low as 10 photons/pixel) as shown in FIG. 15B. 

FIG. 16A shows examples of fluorescent lifetime imaging 
microscopy images generated from photon transient data 
using various techniques in a low signal-to-noise ratio, 
including techniques implemented in accordance with some 
embodiments of the disclosed subject matter. 

FIG. 16B shows examples of processed lifetime histo­
grams generated using the techniques, including techniques 
implemented in accordance with some embodiments of the 
disclosed subject matter. 

32 
Further Examples Having a Variety of Features: 
Implementation examples are described in the following 

numbered clauses: 
1. A method for generating single-photon imaging data 

with improved signal-to-noise ratio, the method comprising: 
generating, for each of a plurality of pixel locations, initial 
photon flux estimates based on a first set of photon transients 
including a photon transient associated with the pixel loca­
tion and photon transients associated with neighboring pixel 

10 locations, wherein each of the photon transients comprises a 
histogram of photon counts during a plurality of time bins at 
the pixel location; identifying, for a scene patch associated 
with each of the plurality of pixel locations, one or more 
similar scene patches using intensity information for each of 

15 the plurality of pixel locations; and generating, for each of 
the plurality of pixel locations, final photon flux estimates 
based on a second set of photon transients including photon 
transients associated with the scene patch and each of the 
one or more similar scene patches. 

As shown in FIGS. 16A and 16B, the fluorescence emis- 20 

sion measurements of the MCherry stained cell nuclei which 
2. The method of clause 1, further comprising: causing a 

light source to emit a sequence of n pulses toward a scene; 
receiving, from a single-photon detector, information indica­
tive of arrival times oflight from the scene; generating a first 
photon transient corresponding to a first pixel location using 

has a known lifetime of 1.4 ns were captured in low SNR 
illumination conditions. The photon measurements were 
processed with 7x7 spatial binning and CASPI-based tech­
niques and the lifetime estimates were compared in terms of 
lifetime images and lifetime histograms. Using CASPI­
based techniques, more accurate lifetimes can be estimated 
for a greater number of pixels in the image. 

The accuracy of lifetime estimation was also tested with 
CASPI-based techniques in low SNR scenarios. A time­
lapse sequence of photon transient cubes of mCherry-H2B 
tags in HeLa cells were captured. MCherry has a known 
fluorescence lifetime of 1.4 ns. The photon measurements 
were processed with both 7x7 spatial binning and CASPI­
based techniques and the lifetime estimation results are 
compared in FIGS. 16A and 16B, which show the compari­
sons in terms of the estimated lifetime images and the 
estimated lifetime histograms. Using CASPI-based tech­
niques, lifetime estimates were obtained for more pixels, and 
the estimated lifetimes are better clustered around 1.4 ns, 
which is the ground-truth value. 

FIG. 17A shows examples of spatial sequences of fluo­
rescent lifetime imaging microscopy images and individual 
frames generated from photon transient data using a spatial 
binning technique and maximum likelihood estimate, 
including techniques implemented in accordance with some 
embodiments of the disclosed subject matter. 

25 the information indicative of arrival times of light from the 
scene; and generating a 3D photon transient cube compris­
ing a plurality of photon transients, each of the plurality of 
photon transients associated with a particular pixel location. 

3. The method of any one of clauses 1 or 2, further 
30 comprising generating, for each of the plurality of pixel 

locations, a set of photon transients including a photon 
transient associated with that pixel location and photon 
transients associated with neighboring pixel locations; cal­
culating, for each set of photon transients, a plurality of 

35 transform coefficients; estimating, for each set of photon 
transients, a noise level based on a noise band and the 
plurality of transform coefficients calculated for that set of 
photon transients, wherein the noise band is based on a 
profile of a light source used to generate the photon tran-

40 sients; modifying, for each set of photon transients, at least 
a subset of the plurality of transform coefficients based on 
the noise level, thereby generating a plurality of modified 
transform coefficients; calculating, for each set of photon 
transients, an inverse transform using the plurality of modi-

45 fied transform coefficients associated with that set of photon 
transients, wherein the inverse transform produces a set of 
modified photon transients; generating, for each pixel loca­
tion, photon flux estimates based on each modified photon FIG. 17B shows examples of spatial sequences of fluo­

rescent lifetime imaging microscopy images and individual 
frames generated from photon transient data using tech- 50 

niques implemented in accordance with some embodiments 

transient associated with that pixel location. 
4. The method of clause 3, wherein the transform is a 

Fourier transform, and the transform coefficients are Fourier 
coefficients. of the disclosed subject matter. 

As shown in FIGS. 17A and 17B, which show FLIM 
results with spatial sequence of photon data, CASPI-based 
techniques can be applied to not only the temporal sequence 
of the photon transient cubes but also the spatial sequence 
such as the Z-stack, where non-local correlations can also be 
exploited to recover photon fluxes. The improved morpho­
logical details without noise can help to make 3D FLIM 
acquisition faster and avoid laser-induced photobleaching. 

5. The method of any one of clauses 3 or 4, wherein the 
noise level is based on an average magnitude of a set of 

55 transform coefficients of the plurality of transform coeffi­
cients that falls within the noise band. 

6. The method of any one of clauses 3 to 5, further 
comprising determining, for each set of photon transients, an 
energy of transform coefficients within the noise band; 

60 determining, for each set of photon transients, an energy of 
transform coefficients outside of the noise band; and select­
ing a noise reduction algorithm based on a ratio of the energy 
of transform coefficients within the noise band to the energy 
of transform coefficients outside of the noise band. 

The 3D/Z-stack data of plated cellular pellets were 
obtained using their intrinsic autofluorescence. Non-local 
correlations between the cubes at different spatial positions 
can be exploited to recover the latent photon fluxes by our 
approach. The photon measurements were processed with 65 

7x7 spatial binning and using CASPI-based techniques, and 
FIGS. 17A and 17B compare the lifetime estimation results. 

7. The method of any one of clauses 3 to 6, further 
comprising determining, for each set of photon transients, a 
noise threshold based on the noise level; and modifying, for 
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each set of photon transients, the subset of the plurality of 
transform coefficients that fall below the noise threshold to 
zero. 

8. The method of any one of clauses 3 to 7, further 
comprising generating, for each set of photon transients, a 
set of intensity values corresponding to the pixel locations 
associated with the set of photon transients; calculating, for 
each set of intensity values, a second plurality of transform 
coefficients; and performing an element-wise multiplication 
between the second plurality of transform coefficients and 10 

elements of the first plurality of transform coefficients 
thereby generating the plurality of modified transform coef­
ficients. 

9. The method of any one of clauses 3 to 8, further 
comprising modifying, for each set of photon transients, at 15 

least a subset of the plurality of transform coefficients based 
on the noise level and the photon flux estimates, thereby 
generating a second plurality of modified transform coeffi­
cients; calculating, for each set of photon transients, an 
inverse transform using the second plurality of modified 20 

transform coefficients associated with that set of photon 
transients, wherein the inverse transform produces a second 
set of modified photon transients; generating, for each pixel 
location, the initial photon flux estimates based on each 
modified photon transient in the second set of modified 25 

photon transients associated with that pixel location. 
10. The method of clause 9, further comprising generating 

the second plurality of modified transform coefficients using 
Wiener filtering. 

11. The method of any one of clauses 1 to 10, further 30 

comprising generating, for each of the plurality of pixel 
locations, a second set of photon transients including a 
photon transient associated with that pixel location and 
photon transients associated with neighboring pixel loca­
tions based on the photon flux estimates; associating, for 35 

each second set of photon transients, one or more sets of 
photon transients corresponding to the one or more similar 
scene patches to the scene patch associated with that set of 
photon transients, thereby generating a plurality of 4D sets 
of photon transients; calculating, for each of the plurality of 40 

4D sets of photon transients, a plurality of transform coef­
ficients; estimating, for each set of photon transients, a noise 
level based on a noise band and the plurality of transform 
coefficients calculated for that 4D set of photon transients, 
wherein the noise band is based on a profile of a light source 45 

used to generate the photon transients; modifying, for each 
4D set of photon transients, at least a subset of the plurality 
of transform coefficients based on the noise level, thereby 
generating a third plurality of modified transform coeffi­
cients; calculating, for each 4D set of photon transients, an 50 

inverse transform using the third plurality of modified 
transform coefficients associated with that set of photon 
transients, wherein the inverse transform produces a third set 
of modified photon transients; generating, for each pixel 
location, second photon flux estimates based on each modi- 55 

fled photon transient associated with that pixel location in 
the third set of modified photon transients. 

34 
band; determining, for each 4D set of photon transients, an 
energy of transform coefficients outside of the noise band; 
and selecting a noise reduction algorithm based on a ratio of 
the energy of transform coefficients within the noise band to 
the energy of transform coefficients outside of the noise 
band. 

15. The method of any one of clauses 11 to 14, further 
comprising determining, for each 4D set of photon tran­
sients, a noise threshold based on the noise level; and 
modifying, for each 4D set of photon transients, the subset 
of the plurality of transform coefficients that fall below the 
noise threshold to zero. 

16. The method of any one of clauses 11 to 15, further 
comprising generating, for each 4D set of photon transients, 
a set of intensity values corresponding to the pixel locations 
associated with the set of photon transients; calculating, for 
each 4D set of intensity values, a third plurality of transform 
coefficients; and performing an element-wise multiplication 
between the third plurality of transform coefficients and 
elements of the plurality of transform coefficients associated 
with that 4D set of photon transients thereby generating the 
third plurality of modified transform coefficients. 

17. The method of any one of clauses 11 to 16, further 
comprising modifying, for each 4D set of photon transients, 
at least a subset of the plurality of transform coefficients 
based on the noise level and the second photon flux esti-
mates, thereby generating a third plurality of modified 
transform coefficients; calculating, for each 4D set of photon 
transients, an inverse transform using the third plurality of 
modified transform coefficients associated with that 4D set 
of photon transients, wherein the inverse transform produces 
a third set of modified photon transients; and generating, for 
each pixel location, the final photon flux estimates based on 
each modified photon transient in the third set of modified 
photon transients associated with that pixel location. 

18. The method of clause 17, further comprising gener­
ating the third plurality of modified transform coefficients 
using Wiener filtering. 

19. A system for generating single-photon imaging data 
with improved signal-to-noise ratio, comprising: at least one 
processor that is configured to: perform a method of any of 
clauses 1 to 18. 

20. A non-transitory computer-readable medium storing 
computer-executable code, comprising code for causing a 
computer to cause a processor to: perform a method of any 
of clauses 1 to 18. 

In some embodiments, any suitable computer readable 
media can be used for storing instructions for performing the 
functions and/or processes described herein. For example, in 
some embodiments, computer readable media can be tran­
sitory or non-transitory. For example, non-transitory com­
puter readable media can include media such as magnetic 
media (such as hard disks, floppy disks, etc.), optical media 
(such as compact discs, digital video discs, Blu-ray discs, 
etc.), semiconductor media (such as RAM, Flash memory, 
electrically programmable read only memory (EPROM), 
electrically erasable programmable read only memory (EE-

12. The method of clause 11, wherein the transform is a 
Fourier transform, and the transform coefficients are Fourier 
coefficients. 

13. The method of any one of clauses 11 or 12, wherein 
the noise level is based on an average magnitude of a set of 
transform coefficients of the plurality of transform coeffi­
cients that falls within the noise band. 

60 PROM), etc.), any suitable media that is not fleeting or 
devoid of any semblance of permanence during transmis­
sion, and/or any suitable tangible media. As another 
example, transitory computer readable media can include 

14. The method of any one of clauses 11 to 13, further 65 

comprising determining, for each 4D set of photon tran­
sients, an energy of transform coefficients within the noise 

signals on networks, in wires, conductors, optical fibers, 
circuits, or any suitable media that is fleeting and devoid of 
any semblance of permanence during transmission, and/or 
any suitable intangible media. 
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It should be noted that, as used herein, the term mecha­
nism can encompass hardware, software, firmware, or any 
suitable combination thereof. 

It should be understood that the above described steps of 
the process of FIG. 5 can be executed or performed in any 
suitable order or sequence not limited to the order and 
sequence shown and described in the figures. Also, some of 
the above steps of the processes of FIG. 5 can be executed 
or performed substantially simultaneously where appropri-
ate or in parallel to reduce latency and processing times. 10 

Although the invention has been described and illustrated 
in the foregoing illustrative embodiments, it is understood 
that the present disclosure has been made only by way of 
example, and that numerous changes in the details of imple­
mentation of the invention can be made without departing 15 

from the spirit and scope of the invention, which is limited 
only by the claims that follow. Features of the disclosed 
embodiments can be combined and rearranged in various 
ways. 

What is claimed is: 20 

1. A system for generating single-photon imaging data 
with improved signal-to-noise ratio, the system comprising: 

at least one hardware processor that is programmed to: 
generate, for each of a plurality of pixel locations, 

initial photon flux estimates based on a first set of 25 

photon transients including a photon transient asso­
ciated with the pixel location and photon transients 
associated with neighboring pixel locations, 
wherein each of the photon transients comprises a 

histogram of photon counts during a plurality of 30 

time bins at the pixel location; 
identify, for a scene patch associated with each of the 

plurality of pixel locations, one or more similar 
scene patches using intensity information for each of 
the plurality of pixel locations; and 35 

generate, for each of the plurality of pixel locations, 
final photon flux estimates based on a second set of 
photon transients including photon transients asso­
ciated with the scene patch and each of the one or 
more similar scene patches. 40 

2. The system of claim 1, further comprising: 
a light source; and 
an image sensor comprising a single-photon detector; 
wherein the at least one hardware processor is further 

programmed to: 45 

cause the light source to emit a sequence of n pulses 
toward a scene; 

receive, from the single-photon detector, information 
indicative of arrival times of light from the scene; 

generate a first photon transient corresponding to a first 50 

pixel location using the information indicative of 
arrival times of light from the scene; and 

generate a 3D photon transient cube comprising a 
plurality of photon transients, each of the plurality of 
photon transients associated with a particular pixel 55 

location. 
3. The system of claim 1, wherein the at least one 

hardware processor is further programmed to: 
generate, for each of the plurality of pixel locations, a set 

of photon transients including a photon transient asso- 60 

ciated with that pixel location and photon transients 
associated with neighboring pixel locations; 

calculate, for each set of photon transients, a plurality of 
transform coefficients; 

estimate, for each set of photon transients, a noise level 65 

based on a noise band and the plurality of transform 
coefficients calculated for that set of photon transients, 

36 
wherein the noise band is based on a profile of a light 

source used to generate the photon transients; 
modify, for each set of photon transients, at least a subset 

of the plurality of transform coefficients based on the 
noise level, thereby generating a plurality of modified 
transform coefficients; 

calculate, for each set of photon transients, an inverse 
transform using the plurality of modified transform 
coefficients associated with that set of photon tran­
sients, 
wherein the inverse transform produces a set of modi­

fied photon transients; 
generate, for each pixel location, photon flux estimates 

based on each modified photon transient associated 
with that pixel location. 

4. The system of claim 3, wherein the transform is a 
Fourier transform, and the transform coefficients are Fourier 
coefficients. 

5. The system of claim 3, wherein the noise level is based 
on an average magnitude of a set of transform coefficients of 
the plurality of transform coefficients that falls within the 
noise band. 

6. The system of claim 3, wherein the at least one 
hardware processor is further programmed to: 

determine, for each set of photon transients, an energy of 
transform coefficients within the noise band; 

determine, for each set of photon transients, an energy of 
transform coefficients outside of the noise band; and 

select a noise reduction algorithm based on a ratio of the 
energy of transform coefficients within the noise band 
to the energy of transform coefficients outside of the 
noise band. 

7. The system of claim 3, wherein the at least one 
hardware processor is further programmed to: 

determine, for each set of photon transients, a noise 
threshold based on the noise level; and 

modify, for each set of photon transients, the subset of the 
plurality of transform coefficients that fall below the 
noise threshold to zero. 

8. The system of claim 3, wherein the at least one 
hardware processor is further programmed to: 

generate, for each set of photon transients, a set of 
intensity values corresponding to the pixel locations 
associated with the set of photon transients; 

calculate, for each set of intensity values, a second 
plurality of transform coefficients; and 

perform an element-wise multiplication between the sec­
ond plurality of transform coefficients and elements of 
the first plurality of transform coefficients thereby 
generating the plurality of modified transform coeffi­
cients. 

9. The system of claim 3, wherein the at least one 
hardware processor is further programmed to: 

modify, for each set of photon transients, at least a subset 
of the plurality of transform coefficients based on the 
noise level and the photon flux estimates, thereby 
generating a second plurality of modified transform 
coefficients; 

calculate, for each set of photon transients, an inverse 
transform using the second plurality of modified trans­
form coefficients associated with that set of photon 
transients, 
wherein the inverse transform produces a second set of 

modified photon transients; 
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generate, for each pixel location, the initial photon flux 
estimates based on each modified photon transient in 
the second set of modified photon transients associated 
with that pixel location. 

10. The system of claim 9, wherein the at least one 
hardware processor is further programmed to: 

generate the second plurality of modified transform coef­
ficients using Wiener filtering. 

11. The system of claim 1, wherein the at least one 
hardware processor is further programmed to: 10 

generate, for each of the plurality of pixel locations, a 
second set of photon transients including a photon 
transient associated with that pixel location and photon 
transients associated with neighboring pixel locations 15 
based on the photon flux estimates; 

associate, for each second set of photon transients, one or 
more sets of photon transients corresponding to the one 
or more similar scene patches to the scene patch 
associated with that set of photon transients, thereby 20 

generating a plurality of 4D sets of photon transients; 
calculate, for each of the plurality of 4D sets of photon 

transients, a plurality of transform coefficients; 
estimate, for each set of photon transients, a noise level 

based on a noise band and the plurality of transform 25 

coefficients calculated for that 4D set of photon tran-
sients, 
wherein the noise band is based on a profile of a light 

source used to generate the photon transients; 
modify, for each 4D set of photon transients, at least a 30 

subset of the plurality of transform coefficients based 
on the noise level, thereby generating a third plurality 
of modified transform coefficients; 

38 
16. The system of claim 11, wherein the at least one 

hardware processor is further programmed to: 
generate, for each 4D set of photon transients, a set of 

intensity values corresponding to the pixel locations 
associated with the set of photon transients; 

calculate, for each 4D set of intensity values, a third 
plurality of transform coefficients; and 

perform an element-wise multiplication between the third 
plurality of transform coefficients and elements of the 
plurality of transform coefficients associated with that 
4D set of photon transients thereby generating the third 
plurality of modified transform coefficients. 

17. The system of claim 11, wherein the at least one 
hardware processor is further programmed to: 

modify, for each 4D set of photon transients, at least a 
subset of the plurality of transform coefficients based 
on the noise level and the second photon flux estimates, 
thereby generating a third plurality of modified trans­
form coefficients; 

calculate, for each 4D set of photon transients, an inverse 
transform using the third plurality of modified trans­
form coefficients associated with that 4D set of photon 
transients, 
wherein the inverse transform produces a third set of 

modified photon transients; and 
generate, for each pixel location, the final photon flux 

estimates based on each modified photon transient in 
the third set of modified photon transients associated 
with that pixel location. 

18. The system of claim 17, wherein the at least one 
hardware processor is further programmed to: 

generate the third plurality of modified transform coeffi­
cients using Wiener filtering. 

calculate, for each 4D set of photon transients, an inverse 
transform using the third plurality of modified trans­
form coefficients associated with that set of photon 
transients, 

19. A method for generating single-photon imaging data 
35 with improved signal-to-noise ratio, the method comprising: 

wherein the inverse transform produces a third set of 
modified photon transients; 

generate, for each pixel location, second photon flux 40 

estimates based on each modified photon transient 
associated with that pixel location in the third set of 
modified photon transients. 

12. The system of claim 11, wherein the transform is a 
Fourier transform, and the transform coefficients are Fourier 45 

coefficients. 
13. The system of claim 11, wherein the noise level is 

based on an average magnitude of a set of transform 
coefficients of the plurality of transform coefficients that 
falls within the noise band. 

14. The system of claim 11, wherein the at least one 
hardware processor is further programmed to: 

50 

generating, for each of a plurality of pixel locations, initial 
photon flux estimates based on a first set of photon 
transients including a photon transient associated with 
the pixel location and photon transients associated with 
neighboring pixel locations, 
wherein each of the photon transients comprises a 

histogram of photon counts during a plurality of time 
bins at the pixel location; 

identifying, for a scene patch associated with each of the 
plurality of pixel locations, one or more similar scene 
patches using intensity information for each of the 
plurality of pixel locations; and 

generating, for each of the plurality of pixel locations, 
final photon flux estimates based on a second set of 
photon transients including photon transients associ­
ated with the scene patch and each of the one or more 
similar scene patches. 

determine, for each 4D set of photon transients, an energy 
of transform coefficients within the noise band; 

determine, for each 4D set of photon transients, an energy 
of transform coefficients outside of the noise band; and 

select a noise reduction algorithm based on a ratio of the 
energy of transform coefficients within the noise band 

20. A non-transitory computer readable medium contain­
ing computer executable instructions that, when executed by 

55 a processor, cause the processor to perform a method for 
generating single-photon imaging data with improved sig­
nal-to-noise ratio, the method comprising: 

to the energy of transform coefficients outside of the 
noise band. 

15. The system of claim 11, wherein the at least one 
hardware processor is further programmed to: 

determine, for each 4D set of photon transients, a noise 
threshold based on the noise level; and 

60 

modify, for each 4D set of photon transients, the subset of 65 

the plurality of transform coefficients that fall below the 
noise threshold to zero. 

generating, for each of a plurality of pixel locations, initial 
photon flux estimates based on a first set of photon 
transients including a photon transient associated with 
the pixel location and photon transients associated with 
neighboring pixel locations, 
wherein each of the photon transients comprises a 

histogram of photon counts during a plurality of time 
bins at the pixel location; 

identifying, for a scene patch associated with each of the 
plurality of pixel locations, one or more similar scene 
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patches using intensity information for each of the 
plurality of pixel locations; and 

generating, for each of the plurality of pixel locations, 
final photon flux estimates based on a second set of 
photon transients including photon transients associ- 5 

ated with the scene patch and each of the one or more 
similar scene patches. 

* * * * * 

40 




