
c12) United States Patent
Dalmia et al.

(54) CACHE SYNCHRONIZATION FOR CHIPLET
ACCELERATORS

(71) Applicant: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(72) Inventors: Preyesh Dalmia, Madison, WI (US);
Rajesh Shashi Kumar, Madison, WI
(US); Matthew D. Sinclair, Middleton,
WI (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 1 day.

(21)

(22)

(65)

(51)

(52)

(58)

Appl. No.: 18/188,209

Filed: Mar. 22, 2023

Prior Publication Data

US 2024/0320158 Al

Int. Cl.
G06F 1210891
G06F 1210815
U.S. Cl.

Sep. 26, 2024

(2016.01)
(2016.01)

CPC G06F 1210891 (2013.01); G06F 1210815
(2013.01)

Field of Classification Search
CPC G06F 12/0891; G06F 12/0815
See application file for complete search history.

I 1111111111111111 lllll lllll 111111111111111 11111 1111111111 lll111111111111111
USO 12292836B2

(IO) Patent No.: US 12,292,836 B2
May 6, 2025 (45) Date of Patent:

(56) References Cited

U.S. PATENT DOCUMENTS

2020/0409859 Al 12/2020 Saleh et al.
2023/0401130 Al* 12/2023 Mehta G06F 11/0721

OTHER PUBLICATIONS

Debendra Das Sharma; "Universal chiplet interconnect express
(UCle): Building an open chiplet ecosystem." UCIE whitepaper
(2022). us.

* cited by examiner

Primary Examiner - Nanci N Wong
(74) Attorney, Agent, or Firm - Boyle Fredrickson, S.C.

(57) ABSTRACT

A chiplet-based architecture provides for a reduction in
cache synchronization operations by tracking a relationship
between chiplet execution kernels and array operands to
elide synchronization when particular arrays are not in use
in the caches of other chiplets or when the current target
chiplet already has the array operand. Further efficiency is
promoted in some embodiments by assigning chiplets for
reuse based on previously received arrays.

17 Claims, 3 Drawing Sheets

30
✓-r.====::::::;:-,

/ COMPUTE
/ UNIT 40

✓-✓• Ll 42
✓- .,,

/ .,, .,, 14 10

,---------....,...-·/_· ___ ---= ___ .,,_·_-" _________ ,........,)

32

34

12b

30
.,, .,,

1~

~
12b

12e

□□□□

I LOCAL CPI

I L2 I

~..__ __ ~ ~..__ __ ~
□□□□ □□□□

I LOCAL CPI I LOCAL CPI

I L2 I I L2 I

35

39

12f

36

32'
GLOBAL CP

38

24
33

U.S. Patent

16

22 21

May 6, 2025

20
I

' '

21e

21d 14

-,✓• -,,

Sheet 1 of 3

-,,
-.... ,,,,

,- I
' '

10

)

FIG. 1

30
.--.-----_--::...--=...-=.----.

,/ COMPUTE
/ UNIT

/

,/'
/ Ll

US 12,292,836 B2

40

42
/ /

/ , ' 14 10
/, /) ______ ___..__· ___ ----,,,,,::;._.,. _______ ___.,__

30
12a

32

34

12b

□□□□

I LOCAL CPI

I L2 I

1

8
2c

HBM

12b

12e

□□□□

I LOCAL CPI

I L2 I

□□□□

I LOCAL CPI

I L2 I

FIG. 2

35

39

12f

36

32'
GLOBAL CP

24
33

28

38

U.S. Patent

(
51

May 6, 2025

52 54

CHIPLET
TYPE

54t A B C D

1

2

3

4

5

1

1

1

1

1

Sheet 2 of 3 US 12,292,836 B2

FIG. 3

56

~
E \

4 1 FIG. 4

\

ARRAY RANGE R /W Cl C2 C3 C4

A OXO- R 10 00 00 11 OXFFF 3 3
A OX3FFF R/W 00 01 01 00 l) OX4FFF

B OXO- R 01 01 01 01 OXFFFF
FIG. 5

.... r, -
'\ (

55 57 \!
59

U.S. Patent May 6, 2025 Sheet 3 of 3 US 12,292,836 B2

50
NEW COMMAND

IDENTIFY ARRAY SUBARRAY

.-------'-------'----,68 .-----------.............. 80 .------------.............. 64
ELIDE FLUSH FLUSH L2 ELIDE FLUSH

ELIDE ACQUISITION ACQUIRE ARRAY ACQUIRE ARRAY

LAUNCH KERNEL
81

FIG. 6

US 12,292,836 B2
1

CACHE SYNCHRONIZATION FOR CHIPLET
ACCELERATORS

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

2

CROSS REFERENCE TO RELATED
APPLICATION

BACKGROUND OF THE INVENTION

More specifically, in one embodiment, the invention pro
vides a computer architecture having a set of computational
chiplets providing integrated circuitry on physically sepa
rated substrates, each computational chiplet providing a
cache. An interposer provides a communication pathway
between the chiplets on a substrate physically separate from
the substrates of the chiplets. The computer architecture
further provides a command processor for receiving com
mands from a host processor external to the interposer, the

10 command indicating a given computational chiplet type, a
given computational chiplet kernel providing instructions to
be executed by a given computational chiplet type, and a
given operand array for the given kernel. In this regard, the

The present invention relates generally to computer archi
tectures employing assemblies of "chiplet" integrated cir
cuits and, in particular, to an improved caching system for
such architectures.

15 command processor includes a chiplet coherency table link
ing previously executed kernels to associated operand arrays
and responds to the receipt of a command from the host
processor operating to: (1) direct the kernel to a given
chiplet; (2) determine whether any chiplets, other than the

As computer architectures gain complexity, reflected in
20 given chiplet, have copies of the given operand array; and

(3) elide a flushing of the caches of the other chiplets when
there are no copies of the given operand array. the number of transistors required to implement the designs,

there is interest in moving away from a single, monolithic
integrated circuit substrate to designs in which the functional
blocks of the architecture are separately fabricated on dif- 25
ferent substrates termed "chiplets." The chiplets are then
assembled together on an "interposer" which electrically
interconnects those substrates into a conventional package.
The resulting integrated circuit package may be electrically
connected with other components that are acceptably further 30

removed from the interposer than the chiplets are separated
from each other.

The benefits of assembling a device from chip lets include
the higher fabrication yields associate with smaller area
integrated circuits, the ability to change or upgrade the 35

architecture by changing a subset of the chiplets on the
interposer with reduced design and integration costs, and the
potential for constructing architectures using chiplets from
different manufacturers or process technologies.

This latter possibility, of using components from different 40

manufacturers, has promoted interest in developing a uni
form chiplet interface to allow these different chiplets to be
readily interconnected using a common protocol and bus
structure on the interposer. The proposed universal inter
faces necessarily make a trade-off between universality 45

(accommodating chiplets having a range of different func
tions and manufacturers) and communication speed, the
latter of which tends to be reduced by the interface mechan-
ics. This reduction in communication speed can cause a
bottleneck in data flow limiting the benefits of chiplet 50

design.

It is thus a feature of at least one embodiment of the
invention to offset the delays caused by an increase in cache
levels in chiplet systems by intelligently eliding cache
operations at kernel phase boundaries such as may consume
interposer bandwidth.

The command processor may further elide a flushing of
the caches of the chiplets when the given chiplet already has
a valid copy of the given operand array in cache from a
previously executed kernel.

It is thus a feature of at least one embodiment of the
invention to allow intelligent reuse of cache data to further
reduce unnecessary cache refresh operations.

The command processor may further assign the given
kernel to a target computational chiplet when the target
computational chi pl et already has a valid copy of the given
operand array in cache from a previously executed kernel.

It is thus a feature of at least one embodiment of the
invention to steer kernels to chip lets that already have access
to updated copies of the necessary array to eliminate both
unnecessary flushing and reading of array data.

The chiplet coherency table may further indicate a cache
state for the caches of the chiplets and further elides a
flushing of the caches of the chip lets when there are copies
of the given operand array in caches but they are read only.

It is thus a feature of at least one embodiment of the
invention to track the read/write status of the arrays used by
the chiplets to elide cache flushing when there is no danger
that an array has been modified (e.g., is dirty) because it is
read-only.

SUMMARY OF THE INVENTION

The present inventors have recognized that a significant
portion of communication delay in universal chiplet inter
face designs comes from an additional layer of memory
hierarchy necessary in the chiplet interfaces. Such caches
create a bottleneck in dataflow by requiring multiple levels

The chiplet coherency table may further indicate a cache
state for the caches of the chiplets and further elides a

55 flushing of the caches of the chip lets when there are copies
of the given operand array in the caches but the copies are
not dirty.

of cache flushing at the phase boundaries between chiplet 60

kernel executions.
To address this problem, the present invention provides an

intelligent cache monitoring system that elides cache syn
chronization operations that can be determined to be unnec
essary when there is a sufficiently complete knowledge of 65

the cache usage. Eliding these operations frees bandwidth in
the inter-chiplet communication paths improving data flow.

It is thus a feature of at least one embodiment of the
invention to provide a high-resolution understanding of the
cache state to eliminate cache flushing at phase boundaries
for caches that are not dirty.

The chiplets may include multiple computation elements
each associated with an Ll cache and communicating with
an L2 cache on the computational chiplet.

It is thus a feature of at least one embodiment of the
invention to improve the operation of architectures having
multiple levels of cache.

US 12,292,836 B2
3

The command processor may include a portion on each
computational chiplet tracking and reporting the cache state
of the cache and a portion on a command processor chip let
receiving the commands.

It is thus a feature of at least one embodiment of the
invention to provide both a high degree of local cache
information and a global perspective on cache usage for
effective elision.

These particular objects and advantages may apply to
only some embodiments falling within the claims and thus
do not define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified perspective view of a chiplet
architecture showing multiple chiplets on an interposer
attached to a carrier of an integrated circuit package;

FIG. 2 is a block diagram of the components of the chiplet
system of FIG. 1 showing multiple chiplets each holding
multiple computational units each having an Ll cache as
collected together on the chip let with an L2 cache and a local
command processor and in communication via an interposer
with each other, a memory providing an L3 cache, and a
global command processor;

4
Each of the chiplets 12a, 12b, 12d and 12e may also provide
a local command processor 32 (as will be described below)
and an L2 cache 34. The L2 cache 34 will not use a
write-through or write-no-allocate policy but typically a
write-back policy to eliminate performance degradation.

Referring still to FIG. 2, each of the individual units of the
compute units 30 in a chiplet 12 may provide for a process
ing core 40 (for example, specializing in some accelerated
computations such as graphics processing) and an Ll cache

10 42. The L1 caches may use a write-through or write-no
allocate cache management policy upon each change of
kernel.

Chiplets 12c may provide for various other functions
including, for example, a high-bandwidth memory (HBM)

15 such as a 3-D stacked synchronous dynamic random access
memory (SDRAM). The HBM chiplet 12c may implement
an L3 cache.

Chip let 12/ may further include a global command pro
cessor 32' which may provide one or more processors 35

20 communicating with a memory 37, the latter holding repro
grammable firmware 39, an array prediction table 41, a
chiplet coherency table 33, and a chiplet function table 24,
all as will be discussed further below.

FIG. 3 is a representation of a command received by the 25

chiplet architecture of FIG. 1 from a host processor provid-

Generally, the local command processors 32 will com
municate with the global command processor 32' to provide
a fine-scale monitoring of the L2 caches in the chiplets 12 to
update the chip let coherency table 33. In addition, if a kernel
uses irregular, indirect, or pointer-based accesses, the local
command processors 32 can communicate the accesses to

ing the chiplet type and a kernel identification;
FIG. 4 is a logical representation of an array prediction

table associating a kernel of the command of FIG. 3 with an
array.

FIG. 5 is a logical representation of a chiplet coherency
table identifying the state of arrays currently cached by the
chiplet architecture; and

FIG. 6 is a flow chart of the steps implemented by the
global command processor aided by the local command
processor of FIG. 2 in implementing a cache elision accord
ing to the chiplet coherency table of FIG. 4.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now to FIG. 1, a chiplet integrated circuit 10
may provide for a set of chip lets 12a-12/ each manufactured
using standard integrated circuit techniques on a separate
monolithic substrates, for example, of silicon with circuitry
created through conventional techniques of doping, etching,
and metallization.

The chiplets 12 may be attached to an interposer 14
providing interconnection wiring (not shown) between the
chiplets 12 and, for example, constructed of a ceramic
material or the like. The chiplets 12 electrically communi
cate with the interposer 14 by means of metallic bridges 16,
for example, solder bumps, positioned between the parallel
plates of the substrates of the chip lets 12 and the interposer
14.

The interposer 14 further communicates with a package
substrate 18 providing together with a package housing 20
an encapsulation protecting the integrated chiplets 12 and
interposer 14 from the environment. A set of metallic bridges

30 the global command processor 32'.
The global command processor 32' in turn, receives

commands from the host processor and schedules work
across the chiplets 12 and across particular compute units
30. By referring to the chiplet coherency table 33, the global

35 command processor 32' has a complete picture of what data
may still be in the chiplets' L2 caches and the status of that
data. In addition, the global command processor 32' may
perform synchronization, enforce memory consistency, copy
or move memory between the host and a chiplet integrated

40 circuit 10, perform error handling, manage the current power
settings (e.g., via Dynamic Frequency and Voltage Scaling,
or DVFS), and partition or virtualize the chiplet integrated
circuit 10 resources.

Chiplet 12/, in this example, may also provide a direct
45 memory controller 28, a host interface 36 for receiving

commands from the host processor, and in the case where
the chiplet integrated circuit 10 is a graphic accelerator, an
inter-GPU interface 38 for communicating with other por
tions of the GPU implemented by other chiplet integrated

50 circuits 10.
Referring momentarily to FIG. 3, during operation of the

chiplet integrated circuit 10, the host processor may provide
a command 51 identifying a kernel 54 to be executed by the
chiplet integrated circuit 10 and the type 52 of chiplet 12

55 needed for that execution. This command 51 will be
received by the global command processor 32' which will
schedule the kernel execution with a particular chiplet 12
and will handle updating and flushing the L2 cache 34 as
will now be described.

21 may connect the interposer to the package substrate 18, 60

the latter of which provides for standard electrical connec
tions 22 to attach the chiplet integrated circuit 10 to other
circuitry using conventional output termination such as a
pin-grid array.

Referring to FIG. 4, for these tasks, the global command
processor 32' will make use of an array prediction table 41
associating kernels with the data (arrays) they operate on,
and a chiplet coherency table 33 helping to manage cache
updating.

In one example embodiment, each of the chiplets 12a, 65

12b, 12d and 12e may provide for multiple compute units
30, for example, graphic processor general processing cores.

The array prediction table 41 holds a limited history of
execution of previous commands 51 as monitored by the
local command processors 32 which may track the data used

US 12,292,836 B2
5

by the kernels 54 to associate each kernel 54 (by identifier)
with a particular operand array on which the kernel 54
operates. The arrays 56 may be labeled with a short label
represented by a small number of bits by the host processor

6

to conserve memory space on the chiplet integrated circuit 5

10. In some embodiments, the array prediction table 41 may
also hold a subset of the operand array, for example
expressed as a range of virtual addresses, termed herein a
sub array 55, again based on this limited history.

In this regard, the array prediction table 41 may provide 10

a set of logical rows each associated with the kernel 54 and

Referring to FIG. 2, in cases where the chiplets 12 of the
chiplet integrated circuit 10 are heterogeneous (for example,
having different functions in contrast to identical functions
implementing an accelerator such as a GPU), the chiplets 12
and their different functions may be enrolled in the chiplet
function table 24 as follows matching each chiplet to a
particular function:

TABLE II

a set of logical colunms each associated with a different
array 56 and optionally different sub arrays 55.

Cl
C2
C3
C4

function ID
function ID
function ID
function ID

The present inventors have determined empirically that a 15
compact array prediction table 41 can be effectively used to
implement the present invention with a size compatible with

Referring now to FIG. 6, the global command processor
32' executing the firmware 39, and as indicated by process
block 50, may receive a new command from the host
processor, for example, related to an accelerator function
implemented by the chiplet integrated circuit 10. The receipt
of this command indicates the occurrence of a new execu-

a technically practical memory of the global command
processor 32'. Specifically, tracking as few as five different
kernels can be effective for implementation of the invention 20

and that a number of arrays may be limited to eight in the
case of the chiplet-implemented graphic processor unit.
More generally, the above described rows and colunms for
kernels and arrays can be less than lOOxlOO and less than

tion phase (a phase boundary) which would normally
involve a flushing of all of the L2 caches 34 on the chip lets
12 by invalidating the cache entries and writing back any
dirty cache entries (that is, entries that were modified by the
chiplet 12). In the present invention, in many cases, this

1 Oxl O with the data in each cell limited to 16 bits or less than 25

eight bits. It will be appreciated that these limitations may
still allow additional arrays to be effectively handled by
defining the array labels coarsely to include more data.
Limitations of the size of the chiplet coherency table 33 are
enforced by allowing ejection of entries by flushing the
caches recorded by those entries and will be described
below.

Referring now to FIG. 5, the local command processors
32 and global command processor 32' may also monitor
operation of the chiplets 12 to develop a chi pl et coherency
table 33 tracking the status of the L2 caches 34 of each
chiplet 12 with respect to the particular array 56 and
optionally sub array 55. The chiplet coherency table 33
provides a logical row for each array 56, and a read/write
colunm 57 indicating whether the array 56 and particular sub
array 55 has been accessed as read or read/write, and L2
status colunms 59 indicating caching of the array in the L2
caches of the different chiplets 12, here labeled Cl-C4 and
referring to the caches of chiplets 12a, 12b, 12d, and 12e,
respectively,

The indicated status may, for example, be as provided
below in Table I and stored in two bits of memory

00
01
10
11

TABLE I

Not present
Valid
Dirty
Stale

The "not present" state indicates that the array 56 is not
available in the respective L2 cache while the "valid state"
indicates that the array 56 is present and contains valid data
that properly reflects the main memory. The dirty state
indicates that the array 56 is in the cache but has been
changed by the chiplet 12 so that it is not consistent with the
main memory of the host processor and needs to be written
back to the main memory for cache synchronization. The
"stale" state indicates that the array may have been altered

flushing may be skipped or elided as will be described.
At process block 70, upon receipt of the command 51, the

identified kernel 54 (and optionally an identified sub range
30 55) is used to access the array prediction table 41 to

anticipate which array 56 will be used by the kernel 54 based
on historical usage patterns.

The global command processor 32' next reviews the
chiplet coherency table 33 at decision block 71 to match the

35 array 56 to L2 caches of the chiplets 12 to determine whether
any chiplets 12 currently have that array 56 in their L2
caches 34. If the array 56 is not currently present in any L2
cache, indicated by the "not present" tag in each of the
chiplets 12 associated with that array 56, then the flushing of

40 the L2 caches 34 may be elided (as indicated by process
block 64) and, this time instead used simply to flush and load
the necessary array 56 into the L2 cache 34 of the particular
chiplet 12 that will be executing the kernel 54 of the
command 51 as designated by the global command proces-

45 sor 32'.

50

With an exception discussed below, this allocation of
kernels 54 to chiplets 12 may be according to standard
allocation procedures, for example, intended to distribute the
work among chiplets 12 to manage power consumption, etc.

If at decision block 71, an existing L2 cache does contain
the array 56, at decision block 72, the function of the
particular chip let 12 holding the array 56 (obtained from
Table II above) is compared to the chi pl et type 52 of the
command 51. If there is a match, and the identified L2 cache

55 has a cache state of "valid" or "dirty," the global command
processor 32' allocates the kernel 54 to that chiplet 12 which
already has a copy of the array 56, again indicating that a
flushing of the L2 caches is not required per process block
68 but further that the array refresh from a memory may be

60 elided.

by another chiplet 12 but has not yet been evicted-thus if 65

this chiplet wants to access this data again, it must invalidate

In the situation where the relevant chi pl et 12 indicates that
the cache state is "stale" or if there is no other chiplet 12
satisfying the above conditions, the program 39 proceeds to
decision block 74 to determine if the array 56 that is present
in one of the chiplets 12 was designated "read only." If so,
the global command processor 32 simply changes the status
of the L2 cache in that chiplet 12 to "not present" in the it and get a new copy before accessing it again.

US 12,292,836 B2
7

chiplet coherency table 33 and again elides the flushing of
the cache at process block 64.

If at decision block 74 the relevant array 56 was marked
as read/write, then at decision block 76, the chiplet coher
ency table 33 is investigated to determine whether the
relevant cache entry is "dirty" (as opposed to "valid" or
"stale"). If the cache entry is in these latter states, then again
flushing of the cache can be elided at process blocks 71.
Otherwise a flushing of the identified L2 cache occurs at
process block 80 and the L2 cache of the chiplet 12, to which 10

the kernel of 54 will be allocated, is loaded with the
necessary array 56. In cases where the array 56 is in one of
the L2 caches outside of the chiplet 12 that will be handling
execution of the command 51, only that L2 cache as may be
selectively flushed. In cases where the array 56 and a given 15

sub array 55 is in one of the L2 cache is outside of the chip let
12 that will be handling execution of the command 51, only
a portion of that L2 cache may be flushed matching the given
sub array 55.

8
performance. It is also to be understood that additional or
alternative steps may be employed.

References to "a microprocessor" and "a processor" or
"the microprocessor" and "the processor," can be under
stood to include one or more microprocessors that can
communicate in a stand-alone and/or a distributed environ
ment(s), and can thus be configured to communicate via
wired or wireless communications with other processors,
where such one or more processor can be configured to
operate on one or more processor-controlled devices that can
be similar or different devices. Furthermore, references to
memory, unless otherwise specified, can include one or more
processor-readable and accessible memory elements and/or
components that can be internal to the processor-controlled
device, external to the processor-controlled device, and can
be accessed via a wired or wireless network.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained
herein and the claims should be understood to include

20 modified forms of those embodiments including portions of
the embodiments and combinations of elements of different

For other aspects of management of the L2 caches 34, the
program 39 may employ a procedure consistent with the
HMG cache protocol described in Xiaowei Ren, Daniel
Lustig, Evgeny Bolotin, Aamer Jaleel, Oreste Villa, and
David Nellans. HMG: Extending Cache Coherence Proto
cols Across Modem Hierarchical Multi-GPU Systems. In 25

26th IEEE International Symposium on High Performance
Computer Architecture, HPCA, pages 582-595, 2020,
hereby incorporated by reference. Generally the invention
will enforce a sequential consistency for heterogeneous
race-free memory model (SC-for-HRF), and for this reason 30

simultaneously executing kernels 54 will not be writing to
the same array 56 without explicit synchronization.

Subsequent to process blocks 80 and 71, the array pre
diction table 41 and chiplet coherency table 33 may be
updated and the kernel 54 described and the received 35

command 51 may be launched per process block 81.
The term "cache" as used herein is intended to cover

cache-like local memory structures distributed among the
chiplets that maintain coherence across devices, meaning
that valid data values in the structures having the same 40

address are identical.
Certain terminology is used herein for purposes of refer

ence only, and thus is not intended to be limiting. For
example, terms such as "upper", "lower", "above", and
"below" refer to directions in the drawings to which refer- 45

ence is made. Terms such as "front", "back", "rear", "bot
tom" and "side", describe the orientation of portions of the
component within a consistent but arbitrary frame of refer
ence which is made clear by reference to the text and the
associated drawings describing the component under dis- 50

cussion. Such terminology may include the words specifi
cally mentioned above, derivatives thereof, and words of
similar import. Similarly, the terms "first", "second" and
other such numerical terms referring to structures do not
imply a sequence or order unless clearly indicated by the 55

context.

embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications, are hereby incorporated
herein by reference in their entireties

To aid the Patent Office and any readers of any patent
issued on this application in interpreting the claims
appended hereto, applicants wish to note that they do not
intend any of the appended claims or claim elements to
invoke 35 U.S.C. 112(f) unless the words "means for" or
"step for" are explicitly used in the particular claim.

What we claim is:
1. A method of operating a computer architecture having:
a set of computational chiplets providing integrated cir

cuitry on physically separated substrates, each compu
tational chiplet providing a cache;

an interposer providing a communication pathway
between the chiplets on a substrate physically separate
from the substrates of the chiplets;

a global command processor for receiving commands
from a host processor external to the interposer indi
cating: a given computational chiplet type, a given
computational chiplet kernel providing instructions to
be executed by a given computational chiplet type, and
further receiving information identifying a given oper
and array for the given kernel; the global command
processor including a chiplet coherency table linking
previously executed kernels to associated and identified
operand arrays, the method operating to:

(1) direct the kernel to a given chiplet;
(2) determine whether any chiplets other than the given

chi pl et have copies of an operand array identified to the
given chiplet; and

(3) elide a flushing of the caches of the other chiplets
when there are no copies of the given operand array.

2. The method of claim 1 further eliding a flushing of the
caches of the other chiplets when the given chiplet when the
given chi pl et already has a valid copy of the given operand
array in cache from a previously executed kernel.

3. The method of claim 1 further assigning the given
kernel to a target computational chiplet when the target
computational chi pl et already has a valid copy of the given
operand array in cache from a previously executed kernel.

When introducing elements or features of the present
disclosure and the exemplary embodiments, the articles "a",
"an", "the" and "said" are intended to mean that there are
one or more of such elements or features. The terms "com- 60

prising", "including" and "having" are intended to be inclu
sive and mean that there may be additional elements or
features other than those specifically noted. It is further to be
understood that the method steps, processes, and operations
described herein are not to be construed as necessarily
requiring their performance in the particular order discussed

4. The method of claim 1 wherein the chiplet coherency
65 table links previously executed kernels to associated oper

and arrays and subranges of virtual addresses within the
associated operand arrays, the method further operating to: or illustrated, unless specifically identified as an order of

US 12,292,836 B2
9

(1) determine whether any chip lets other than the given
chi pl et has have copies of the given operand array and
a given subrange of virtual addresses within the given
operand array; and

(2) when there are copies of the given operand array and
the given subrange, elide a flushing of the caches of the
other chiplets outside of portions of the caches of the
other chiplets holding the given operand array and the
given subrange.

5. The method of claim 1 wherein the chiplet coherency 10

table further indicates a cache state for each of the caches of
the chiplets and wherein the method further elides a flushing
of the caches of the chiplets when there are copies of the
given operand array in caches but the caches having copies
of the given operand array are read only.

6. The method of claim 1 wherein the chiplet coherency
table further indicates a cache state for the caches of the
chiplets and wherein the method further elides a flushing of
the caches of the chiplets when there are copies of the given
operand array in the caches but the copies are not dirty.

7. A computer architecture comprising:
a set of computational chiplets providing integrated cir

cuitry on physically separated substrates, each compu
tational chiplet providing a cache;

15

20

an interposer providing a communication pathway 25

between the chiplets on a substrate physically separate
from the substrates of the chiplets;

a global command processor for receiving commands
from a host processor external to the interposer indi
cating a given computational chiplet type, a given 30

computational chiplet kernel providing instructions to
be executed by a given computational chiplet type, and
further receiving information identifying a given oper
and array for the given kernel; the global command
processor including a chiplet coherency table linking 35

previously executed kernels to associated and identified
operand arrays, the global command processor
responding to a receipt of a command from the host
processor operating to:

(1) direct the kernel to a given chip let; 40

10
to a target computational chiplet when the target computa
tional chi pl et already has a valid copy of the given operand
array in cache from a previously executed kernel.

10. The computer architecture of claim 7 wherein the
chiplet coherency table links previously executed kernels to
associated operand arrays and subranges of virtual addresses
within the associated operand arrays, the global command
processor responding to a receipt of a command from the
host processor operating to:

(1) determine whether any chiplets other than the given
chiplet have copies of the given operand array and a
given subrange of virtual addresses within the given
operand array; and

(2) when there are copies of the given operand array and
the given subrange, elide a flushing of the caches of the
other chiplets outside of portions of the caches of the
other chiplets holding the given operand array and the
given subrange.

11. The computer architecture of claim 7 wherein the
chiplet coherency table further indicates a cache state for
each of the caches of the chiplets and further elides a
flushing of the caches of the chip lets when there are copies
of the given operand array in caches but they the caches
having copies of the given operand array are read only.

12. The computer architecture of claim 7 wherein the
chi pl et coherency table further indicates a cache state for the
caches of the chiplets and further elides a flushing of the
caches of the chiplets when there are copies of the given
operand array in the caches but the copies are not dirty.

13. The computer architecture of claim 7 wherein the
chiplets include multiple computation elements, each of the
computation elements associated with an Ll cache and
communicating with an L2 cache on the respective chiplet.

14. The computer architecture of claim 7 wherein com
puter architecture includes:

a portion on each computational chiplet tracking and
reporting the cache state of the cache on the respective
computational chiplet; and

a portion on the command processor receiving the com
mands.

(2) determine whether any chiplets other than the given
chiplet have copies of a given operand array identified
to the given chiplet; and

(3) elide a flushing of the caches of the other chiplets
when there are no copies of the given operand array in
the other chiplets.

15. The computer architecture of claim 7 wherein the
chiplets are connected to the interposer by metallic bridges

45
positioned between substrates of the chiplets and the inter
poser in adjacent parallel planes.

8. The computer architecture of claim 7 wherein the
global command processor further elides a flushing of the
caches of the other chiplets when the given chiplet already
has a valid copy of the given operand array in cache from a
previously executed kernel.

9. The computer architecture of claim 7 wherein the
global command processor further assigns the given kernel

16. The computer architecture of claim 7 wherein the
computer architecture further includes a high-bandwidth
memory chip let providing a stacked set of integrated circuit

50
substrates attached to the interposer.

17. The computer architecture of claim 7 wherein the
computational chiplets are graphic accelerators.

* * * * *

