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(57) ABSTRACT

A method for characterizing a sample includes acquiring a

trace signal for the sample. A set of configurations is

generated for defining modeling signals to model the trace

signal. Each modeling signal is defined by a plurality of

model parameters, and each configuration represents an

associated modeling signal having a locally optimal score

for fitting the trace signal. A classification cluster is defined

in a parameter domain defined by the plurality of model

parameters. The classification cluster has an associated class
type. The sample is determined to have the class type

associated with the classification cluster responsive to deter-
mining that at least one of the configurations in the set has

a distance from the classification cluster less than a thresh-
old.
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DETERMINING A CLASS TYPE OF A
SAMPLE BY CLUSTERING LOCALLY

OPTIMAL MODEL PARAMETERS

[0001] This invention was made with governmentsupport
under 0914986 awarded by the National Science Founda-

tion. The government has certain rights in the invention.

BACKGROUND

[0002] Field of the Disclosure

[0003] The present disclosure relates generally to charac-

terizing a sample, and, more particularly, to determining a
class type of a sample by clustering locally optimal model

parameters.

[0004] Description of the Related Art

[0005] The classification of different histological cell
types in the human body is important for a variety of

biological and health-related applications. For example, for

the identification of malignant cells. The medical diagnosis
that is required for most treatment protocols of cancer is

knownas histopathology. First, a tissue sample is acquired
via surgery, biopsy or autopsy. Thetissue is then sliced into

multiple thin layers, each of which is placed in a fixative to
prevent decay. Different slices of the sample are subse-

quently stained with different chemicals, each of which is

known to reveal certain cellular components. The most
common staining technique is Hematoxylin and Eosin

(A&E). An expert, such as a pathologist, would then exam-
ine the stained slices and report histological findings and

conclusions accordingly. Histopathology may be comple-

mented by other methods, for example, bloodtests.

[0006] Microscopy images, enhanced by contrast agents
or stain, are limited to a spatial variation in optical proper-

ties, and, once stained, the tissue slice is unusable for any
future purpose. Moreover, the accuracy of the results

depends greatly on the skill and experience level of the
individual reviewing the sample.

[0007] While many of the medical analysis techniques are

still manual, it is of high interest among biomedical

researchers to automate the procedure of identifying the
majorhistological cell types within a bodytissue, e.g., breast

tissue, identification that is important for example in cancer
diagnosis. Fourier Transform Infrared (FTIR) spectroscopy

is one acquisition technique for gathering histological data.

In FTIR analysis, a sample slice is prepared, but is not
stained. Once the sample is placed in the FTIR system, a

beam ofinfrared (IR) is passed through the entire local area
of the sample. The beam that is collected as it exits the

sample is different from the input one, as someofthe energy
is absorbed by the chemical components present locally in

the sample. The raw FTIR data consist of a 3D dataset,

where each pixel in the 2D tissue is associated with a signal
that registers, at every frequency, or as used interchangeably,

wave number, of the IR beam the amount of energy that was
absorbed. This informationis collected from every local area

(pixel) in the biopsy, and the data are analyzed to glean
pertinent information from the biopsy, such as tissue types

or chemical composition.

[0008] One issue with using FTIR spectroscopy in cancer

diagnosis is signal contamination. This is typically caused
byjitter, scattering effects, water vapors, and more. Current

research methods carry out signal pre-processing to try to
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correct the contamination. Prevailing preprocessing tech-
niques include dimension reduction (typically via MNF) and

baseline adjustment.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The present disclosure may be better understood,

and its numerous features and advantages made apparent to
those skilled in the art, by referencing the accompanying

drawings. The use of the same reference symbols in different

drawings indicates similar or identical items.

[0010] FIG. 1 is a simplified block diagram of a diagnostic

system in accordance with some embodiments.

[0011] FIG. 2 is a flow diagram illustrating a method for

determining a class type of a sample in accordance with

some embodiments.

[0012] FIG. 3 is a diagram illustrating an FTIR data set

associated with multiple pixels in a tissue sample in accor-
dance with some embodiments.

[0013] FIG. 41s a diagram illustrating an example absorp-

tion rate trace signal for a given pixel in accordance with
some embodiments.

[0014] FIG. 5 is a diagram illustrating multiple model
signal configurations for a given trace signal in accordance

with some embodiments.

[0015] FIG.6 is a flow diagram illustrating a method for
identifying malignanttissue in a tissue sample in accordance

with some embodiments.

DETAILED DESCRIPTION

[0016] FIGS. 1-6 illustrate example techniques for iden-
tifying a class type of a sample, such as a tissue sample. In

the illustrated example, the class type of the sample is the
presence ofmalignant cancercells, such as ductal carcinoma

cells. A trace signal is acquired from a sample and is
modeled using a model having a plurality of model param-

eters. For each trace signal, one or more sets of model

parameters are generated. Each set of model parameters is
used to define a modeling signal for the trace signal. Each

such set of model parameters is locally optimal in the sense
that its modeling signal represents a local maximum (or

minimum) in an underlying model fitting setup. The sets of

model parameters are partitioned in the parameter space
(e.g., as vectors) to one or moreclassification clusters, where

each classification cluster may have an associated class type.
Aclassification cluster may be represented by an ellipsoid in

the parameter space. By determining that one or more of the
sets of model parameters for the trace signal is close to or

within the ellipsoid, the sample may beclassified as having

the class type associated with the cluster, such as the sample
being a malignanttissue.

[0017] FIG. 1 is a simplified block diagram of a diagnostic
system 100 including a Fourier Transform Infrared (FTIR)

spectroscopy tool 105 and a computing system 110. The

computing system 110 may be implementedin virtually any
type of electronic computing device, desktop computer, a

server, a minicomputer, a mainframe computer, or a super-
computer. The present subject matter is not limited by the

particular implementation ofthe computing system 110. The
computing system 110 includes a processor complex 115

communicating with a memory system 120. The memory

system 120 may include nonvolatile memory (e.g., hard
disk, flash memory, etc.), volatile memory (e.g., DRAM,

SRAM,etc.), or a combination thereof. The processor com-
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plex 115 may be any suitable processor knowninthe art, and
mayrepresent multiple interconnected processors in one or

more housings or distributed across multiple networked
locations. The computing system 110 may include user

interface hardware 125 (e.g., keyboard, mouse, display,
etc.), which together, along with associated user interface

software 130 comprise a user interface 135.

[0018] The processor complex 115 executes software
instructions stored in the memory system 120 and stores

results of the instructions on the memory system 120 to
implement a pre-processing application 140, a modeling

application 145, and a classification application 150, as

described in greater detail below.

[0019] FIG. 2 is a flow diagram illustrating a method 200

for determining a class type of a sample in accordance with

some embodiments.In the illustrative example the class type
is the presence of malignant cancer cells (e.g., ductal car-

cinoma) in a tissue sample, however, the techniques
described herein are not so limited, and the general modeling

and clustering techniques may be applied to other types of
samples for detecting other class types.

[0020] In method block 200, trace signal data is acquired.

Acquiring the trace signal data may include collecting the
trace signal data using the FTIR spectroscopy tool 105,

retrieving the trace signal from a data storage device, or
receiving the trace signal data over a networked data con-

nection. In some embodiments, the trace signal data repre-

sents FTIR energy absorption data for a tissue sample. The
tissue sample represents a two dimensional array of pixels.

The larger set of trace signal data represents an energy
absorption spectrum for each pixel that spans a plurality of

frequencies (1/s or Hz), which may also be represented as
wave numbers (1/cm). For ease ofillustration, the following

examples employ wave numbers or spectrum index num-

bers. For example, the full spectrum may contain 1506
entries. The wave numbercorresponding to the k” entry is

approximately 2 k+875.

[0021] A separate trace signal (absorption spectrum) is

generated for each pixel, each pixel representing a discrete

region of the tissue sample illuminated by the FTIR spec-
troscopy tool 105. The size of each pixel is dependent on the

resolution of the FTIR spectroscopytool 105 (e.g., about 1.1
um).

[0022] FIG.3 illustrates the trace signal data set, which is

represented by a data cube 300. In the illustrated embodi-
ment, the data cube 300 includes a block of 1024x1024

pixels, and eachtrace signal curve 305 for a given pixel 310
is 1506 data points deep, each data point representing energy

absorption at a particular wavelength. FIG. 4 illustrates an

example trace signal curve 305 showing an energy absorp-
tion spectrum for a given pixel.

[0023] In method block 205, pre-processing is optionally
performed (e.g., by the pre-processing application 140 of

FIG.1) on the trace signal data. The particular pre-process-

ing techniques employed may vary, and may includecreat-
ing a snapshotof the traces signal data (e.g., averaging and

downsampling—horizontally and vertically), removing
noise (e.g., convolution with a low passfilter using Fourier

domain thresholding), removing baseline artifacts (e.g.,
updating zero absorbance bandlocations and/or cubic spline

interpolation), and extracting a subset of the data. Particular

techniques for performing the pre-processing are known to
those of ordinary skill in the art, and they are not described

in detail herein.
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[0024] The example trace signal curve 305 illustrated in
FIG.4 represents pre-processed data, prior to extracting the

subset. In one embodiment, a subsetofthe trace signal curve
305 of a particular nature is analyzed. This subset may be

referred to as the amide I-II region 400 (or alternatively, the
protein band), which includes two characteristic peaks. The

region 400 generally represents the portion of the signal

associated with spectrum index numbers 302-435, or wave
numbers 1479-1745. If only the protein band data points are

used, they may be represented as protein band index num-
bers 1-133, and the conversion to wave numberis given by

approximately 2 k+1479. In some embodiments, the FTIR
spectroscopy tool 105 may be configuredto collect only data

from the region 400 by limiting the range of frequencies

applied to the sample. As a result, the data extraction would
not be necessary and the pre-processing techniques may

vary accordingly.

[0025] In method block 210, the trace signal curve 305 is
modeled(e.g., by the modeling application 145 of FIG. 1) to

generate a set of configurations, where each configuration is
a set of model parameters whose model signal is locally

optimal. In the illustrated embodiment, a Gaussian mixture
(GM)is employed to modeleach trace signal curve 305. The

application of the present subject matter is not limited to a

Gaussian mixture modeling approach, as other types of
models may be used. In some embodiments, the Gaussian

mixture includes four Gaussian components each havingits
own covariance matrix (i.e., variable tension). A parameter

domain, ©, is defined for the Gaussian mixture. Each GM
component has a magnitude component, ,, a mean com-

ponent, y,, and a standard deviation component, o,. The

parameter space is thus defined by the 12 model parameters
@cR". Each set 9€@ of model parameters generates a
modeling signal, g,, in the signal domain (i.e., the same
domain as the trace signal curve, f, of a given pixel in a given

tissue). In the present illustration, the model signal is a GM
with four components. Some of the modeling signals, g,,

poorly represent the underlying f, while others match better.

[0026] In principle, since © is small compared to the
signal domain, a perfect match is unlikely. A score, L(f.g,),

is associated with the modeling signal, g,. The scoring is
applied to a normalized Gaussian mixture:

Dd goth) = 1.
k

[0027] The score that determinesthefit between the model

signal and the trace signal for a particular set of parameters
is the log-likelihood of g,:

150) = >) flog goth).
k

[0028] Ascoring map maybedefined forthe sets ofmodel
parameters:

LpO>R,,0LS).

[0029] The map L, represents a parameter domain trans-

formationofthe originaltrace signal curve, f. Techniques for
determining the model parameters to modelthe signal, f, are

knownin the art, and they are not described in detail herein.
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For example, an expectation-maximization (EM)algorithm

may be employed. Conventional modeling approaches

attempt to find the one set of model parameters 05,, that
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Table 1 represents the number of times that the particular

configuration was observed across the 250 initialization

seeds.

TABLE 1
 

Four-Gaussian mixture configuration portfolio of 3 pixels with random initializations

 

 

ol pl ol @2 2 02 @3 13 03 o4 4 04

Pl P2 P3 P4 PS P6 PT P8 P9 P10 Pll P12 p

0.098 33.62 10.96 0.034 76.51 13.22 0.18 92.27 9.77 0.033 109.04 5.41 180
0.019 18.35 4.95 0.096 34.74 9.97 0.023 73.07 14.75 0.189 93.06 11.04 70
0.116 34.75 10.74 0.194 88.86 9.67 0.118 98.65 7.31 0.045 110.72 5.03 120
0.007 27.47 8.22 0.044 38.14 4.88 0.050 43.03 8.72 0.270 93.36 11.01 28
0.013 18.88 4.24 0.115 35.46 10.35 0.259 91.91 10.35 0.046 107.25 6.09 85
0.025 20.55 5.15 0.080 35.83 8.29 0.038 37.28 12.24 0.270 93.39 10.97 13
0.023 22.08 5.62 0.089 36.05 10.78 0.029 37.16 5.27 0.270 93.37 11.00 2
0.014 19.73 4.57 0.110 35.38 10.46 0.012 38.90 2.73 0.270 93.35 1101 1
0.112 34.63 10.86 0.013 39.48 2.55 0.259 91.91 10.33 0.047 107.28 609 1
0.138 38.49 11.28 0.215 87.90 10.55 0.139 100.26 7.05 0.033 112.87 4.38 17
0.139 38.32 11.13 0.011 65.54 4.47 0.230 8847 10.07 0.132 102.55 7.99 32
0.132 37.67 10.74 0.012 57.31 18.70 0.231 89.13 10.30 0.120 102.81 7.84 181
0.139 38.26 11.10 0.076 82.17 10.84 0.204 92.34 9.32 0.095 104.69 7.30 3
0.133 38.41 11.43 0.015 41.07 2.87 0.222 88.65 10.86 0.123 101.93 810 3
0.033 23.23 5.44 0.128 39.08 8.44 0.023 56.82 20.17 0.288 93.32 11.25 12
0.010 20.75 3.89 0.138 38.87 10.97 0.220 88.59 10.91 0.124 101.81 814 2

represents the global maximum of the scoring function, or [0035] It has been determined that samples with different

the optimal solution. Sets of model parameters that score

less than the global maximum are discarded. Rather than
determining only the global maximum set of model param-

eters, the modeling technique employed herein determines
all the locally optimal sets of model parameters.

[0030] To generate a set of locally optimal model param-

eters, a pseudo random seed ofmodel parametersis selected,
6°€@.An optimization process is performed until the model

parameters converge to a local optimal value, 0*, where
local perturbation of the parameters does not lead to an

improvedscore representing the fit between the model signal

and the trace signal. A locally optimal set of model param-
eters is referred to herein as a configuration, as the set of

associated model parameters define the configuration of the
modeling signal. A configuration is a parameter domain

representation of the trace signal, f. The process is repeated
with initial seeds that are selected pseudo-randomly over the

entire parameter domain to generate additional configura-

tions. In the illustrated embodiment, 250 random seeds are
employed to generate 250 possible configurations. Some

seeds will converge to the same configuration, so duplicate
configurations may be identified. In some embodiments

described below, a screening process may be employed

using a reducedset of seeds. If initial screening thresholds
are met, the full set may be used.

[0031] The resulting sets of locally optimal configurations
represent a transformation ofthe signal, f, into a likelihood-

based infrared Fourier transform (LIFT) representation

using the sequence:

[0032] Config(f)=(8,, 82, 83,...)

[0033] FIG. 5 is a diagram illustrating an example pixel

trace signal, f, and a set of four locally optimal configura-

tions 500 for modeling the signal. Rather than listing the 12
model parameters for each configuration, the Figure shows

the four Gaussians whose sum is the locally optimal mod-
eling signal g.

[0034] Table 1 illustrates a GM configuration portfolio for

3 pixels with random initializations. The parameter, p, in

class types result in different types of configurations. Heu-

ristically, each configuration is a feature of the signal, f. At
present, the actual likelihood score for each configuration is

not used for diagnostic purposes. It has been determined that
each configuration is a potentially valuable feature, because

the score it provides cannot be improved by local perturba-

tion of the parameters, and thus, it may include some
information about the sample.

[0036] To classify the sample (e.g., the pixel), the param-

eter space representations of the trace signal defined by the

configurations are evaluated to determine if any of the
configurations has parameters that reside in predetermined

regions of the parameter space. Based on empirical obser-
vation, these regions may be defined to identify one or more

class types (e.g., tissue types) for the sample. Such regions
maybedefined as classification clusters.

[0037] In method block 215, at least one classification
cluster is defined. This determination may be performed in

advance of the acquisition or processing of the signal trace
data. A basic characteristic of the output of LIFT is that the

totality of all the configurations that are produced from

different pixels (in the same subtissue, from different sub-
tissues of the same biopsy, from different biopsies of the

same subject, or from different subjects), occupy only a
small subset of the parameter space defined by the model

parameters. Moreover, this small subset is the union of a few
compact regions, each of which may have the shape of a

small ellipsoid. Each such compact region is defined as an

empirical cluster, and the empirical clusters are enumerated.
Each empirical cluster defines a class type. Each configu-

ration that is produced by LIFT falls inside one of the
empirical clusters, and thereby inherits the class type of that

cluster. Using this approach, configurations may be classi-
fied by the class type. Configurations in a particular class

type may be found in different tissue types. Examples of

tissue types include epithelium, stroma, necrosis, or carci-
nomaepithelium. Other class types may havetheir configu-

ration appear only in the pixels of one specific tissue type.
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[0038] Ina case where different tissue types contribute to
the same empirical cluster, that cluster may renderlittle

diagnostic value. However, it has been noted that some
empirical clusters are only associated with samples having a

particular class type. For example, one or more clusters in
the parameter space may be associated with tissue samples

having malignant cells, such as ductal carcinoma. Hence,if

a particular tissue sample includes one or more configura-
tions that fall within such a cluster, a diagnostic decision

may be madeto classify the tissue sample as being malig-
nant.

[0039] A classification cluster, C, may be defined that

encloses an empirical cluster. In some embodiments, the
classification cluster may be defined byanellipsoid. In other

embodiments, box conditions may be employed. An empiri-
cal cluster is somewhat qualitative. The empirical cluster

includes some degree of variation that is dependent on

factors, such as the particular patient used to identify the
cluster and the FTIR acquisition environment. In actuality,

each patient has a unique empirical cluster in the parameter
space that represents malignant cells in that patient. How-

ever, the unique clusters for different patients do overlap, so
a thresholding technique may be employed to account for

the variation between the tissue sample being classified and

the empirical clustering data that were used to identify the
classification clusters.

[0040] To define the approximate shape of an empirical

cluster, and thereby generate a classification cluster, a sin-
gular value decomposition (SVD) approach is employed.

Particular parameters for example classification clusters
employed to detect malignant tissue are described in greater

detail below.

[0041] An ellipsoid defining a classification cluster has 12
dimensions corresponding to the 12 model parameters,

@cR"™. To allow the comparison between a particular
configuration and a classification cluster, the classification

cluster is defined using singular value decomposition (SVD)
coordinates.

[0042] Consider a cluster C < ©, wherein a mean ofC (1.e.,

the centroid of the classification cluster) is w&O. The mean
is subtracted from the classification cluster to obtain:

C°:=C-u.

[0043] The singular value decomposition of C° is calcu-

lated and normalized by the singular vector values associ-
ated with the cluster (i.e., the boundaries of the cluster) to

obtain a matrix:

UC).

[0044] Techniques for generating the SVD representation

of a cluster C are known to those of ordinary skill in the art,

and they are not described in greater detail herein. The
singular vectors define the direction of the ellipsoid axes,

while the singular values provide an estimate for the length
of each axis. After subtracting the mean, the singular values

are used to scale the singular vectors to generate the SVD
vector representation of the classification cluster. The long

axis in the SVD representation corresponds to short axis in

the cluster and vice versa.

[0045] In method block 220, a distance between the con-

figurations for a given pixel and one or more classification

clusters is determined(e.g., by the classification application
145 of FIG. 1). Given a configuration 8¢ ©, the C-based

SVD local coordinates are:
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VO-p),

where the columnsof U are the scaled singular vectors.

[0046] The distance between a given configuration and the

cluster using a 2-norm calculationis:

4(8):>|7(0-p)|b.

[0047] The minimum distance across all of the configu-
rations associated with a given pixel is the distance from the

pixel to the classification cluster:

de{cy=min(ae(0;)).

[0048] In method block 225, the calculated distance is

compared to a classification threshold. The threshold
attempts to address the inherent qualitative nature and

variation associated with an empirical cluster. If the distance

is less than the classification threshold for a given configu-
ration in method block 225, the associated sample is clas-

sified as having a class type associated with theclassification
cluster in method block 230. In method block 235, the

process is repeated for additional trace signals (e.g., pixels).

[0049] The determining of the distance and comparing the
distance to a threshold is one example technique for deter-

mining proximity between the configuration and the cluster.
However, is some embodiments,a different proximity detec-

tion technique may be employed, depending on factors such
as the shape ofthe cluster.

[0050] Although FIG. 2 illustrates the use of a single

classification cluster, in some embodiments, one or more
classification clusters may be employed. The evaluations in

method blocks 220, 225, and 230 may be repeated for
additionalclassification clusters. Techniques that employall

the classification clusters in a single classification step may

be used in lieu of the separate processing of each classifi-
cation cluster.

[0051] Dueto the size of the FTIR data set, it is compu-
tationally demanding to generate the set of configurations

for each pixel for a full set of random seeds (e.g., 250). In

some embodiments, a screening process may be employed
to reduce the computational demands. During the training

process, an empirical cluster was identified that was indica-
tive, but not dispositive, of the presence of malignanttissue.

A screening cluster was defined for this empirical cluster. It

wasgenerally the case that malignanttissue samples resulted
in configurations proximate the screening cluster. However,

the screening cluster was not dispositive, because other
types of tissue also resulted in configurations that were

proximate the screening cluster. The malignant tissue also
tended to result in configurations that were proximate other

clusters (detailed below) that were dispositive of the pres-

ence of cancer. To reduce the computational complexity, a
reduced numberof random seeds(e.g., four) was employed

to screen the pixel. If one of the four resulting configurations
fell within the screening cluster, the modeling was iterated

over the full set of 250 seeds.

[0052] FIG.6 is a flow diagram illustrating a method 600
for identifying malignant tissue in a tissue sample in accor-

dance with some embodiments. The computational tech-
niques described above in reference to FIG. 2 may be

employed to model the FTIR data to generate configurations
andto evaluate clusters. In method block 605, FTIR data are

acquired from a tissue sample. Acquiring the FTIR data may

include collecting the data using the FTIR spectroscopytool
105, retrieving the FTIR data from a data storage device, or

receiving the FTIR data over a networked data connection.
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Pre-processing may be performed on the acquired FTIR
data, as described above. In the method 600, two types of

classification clusters are employed, a screening cluster
(indicative, but not dispositive), and two diagnostic clusters

(dispositive).

[0053] In method block 610, the trace signal data for a
given pixel is modeled using a reduced number of random

seeds (e.g., four) to generate a screening set of locally
optimal configurations. In method block 615, it is deter-

mined if a given pixel is within the screening cluster. In
some embodiments, a box condition may be used to define

the screening cluster, as opposed to using SVD coordinates.

An exemplary set ofbox conditions for the screening cluster
using wave numbersis:

[0054] 1548<P5<1557 &
[0055] 9<P5<14&
[0056] 1524<P2<1534 &
[0057] P8>1612,

where PX represents the model parameter, as illustrated

above in Table 1. Model parameters P2, P5, and P8 are the
means of the 1°, 2”, and 3”” Gaussians, and P6 is the

standard deviation of the 2”“ Gaussian. Note that only a
reduced set of model parameters is employed with the box
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[0060] In method block 635, the distance between the

diagnostic set of configurations and one or more diagnostic

clusters is determined. In the illustrated embodiment, two

diagnostic clusters are employed. It has been determined

that about 10-30% of malignant pixels result in configura-

tions that appear in the first diagnostic cluster and about

10-20% of malignant pixels result in configurations that
appear in the second diagnostic cluster. Thus, the presence

of cancer is detected based on relatively small subset ofthe
malignant pixels.

[0061] Example values for the centroids of the screening
cluster and the diagnostic clusters are illustrated in Table 2.

The values are expressed in spectrum index numbers. To
convert the standard deviation to wave numbers, they may

be multiplied by 2. To convert the means to wave numbers,
they may be multiplied by 2 and increased by 1479 (they are

represented by protein band index values in Table 2). As

described above, these values are dependent on the particu-
lar patient used to generate the clusters and the FTIR

acquisition environment. The variation due to these affects
maybe addressed by selecting thresholds for the screening

cluster and the diagnostic clusters (e.g., box conditions or
distance thresholds).

TABLE 2
 

Type Pl P2

Centroids of Screening and Diagnostic Clusters

 

DC1 0.021

ol pl @2 p2 02 @3 13 03 a4 4 04

P4 PS P6 P7 P8 P9 ~P1O Pll P12

sc 0.040 26.030 7.950 0.050 38.420 6.260 0.097 86.700 7.860 0.090 100.200 8.020

25.210 7.820 0.021 26.680 7.990 0.052 38.440 6.210 0.148 93.260 10.430

DC2 0.030 23.700 7.360 0.001 26.370 3.050 0.057 37.480 6.540 0.143 93.070 10.470
 

conditions of the screening cluster, thereby simplifying the
calculation. In other embodiments, an ellipsoid may be

defined for the screening cluster in SVD coordinates and a
distance may be calculated, as described above.

[0058] If the pixel does not have an associated configu-
ration within the screening cluster in method block 620, the

screening process is repeated in method block 625 for

additional pixel trace signals by returning to method block
610 for a new pixel.

[0059] If the pixel does have an associated configuration
within the screening cluster in method block 620, a full set

of random seeds is employed to generate a diagnostic set of
locally optimal configurations for the pixel trace signal in

method block 630 (e.g., 250 minus the number used to

generate the screening set). The configurations determined
in the screening set may be addedto the additional configu-

rations determined in method block 630.

[0062] To determine the distance between the configura-
tions of a selected pixel and the diagnostic clusters, the

centroid of the diagnostic cluster is subtracted from the
configurations in the diagnosticset.

[0063] The mean adjusted configurations are provided in
matrix form, with the columns representing the configura-

tions. An inner product is determined between the configu-

ration matrix and the singular vector matrix generated by
scaling the diagnostic cluster using the singular values to

generate a distance vector. A 2-norm calculation is per-
formed on the distance vector to generate the minimum

distance between the configurations vectors and the diag-
nostic clusters.

[0064] Example singular value vector matrices for the

diagnostic clusters are provided below in Tables 3 and 4. In
the SVD matrix, the 12 parameters (coefficients, mean,

standard deviation) can be used to index the rows.

TABLE3
 

Singular Value Matrix of Diagnostic Cluster 1
 

300.728 30.568 17.916 1.445 0.059 0.036 -0.010 -0,009 -0,006 0.005 -0,001 0.001

-0.070 0.155 -0.294 0.015 -0.067 0.122 -0.024 -0.145 0.029 0.180 -0,221 0.179

0.069 0.361 -0.186 0.185 0.067 1.153 -0.585 0.294 -0,220 -0.415 -0.110 -0.031

300.224 44.434 -17.204 2.132 -0.013  -0.058 0.024 0,014 0.003 -0,006 0.000 -0,.001

—0.085 0.395 -0.232 -0,009 0.195 0.509 -0.071 -0.065 -0,069 0.312 -0,126 -0.212

-0.036 0.227 -0.292 0.183 0.244 2.037 0.342 0.636 0.193 0.162 0.071 0.050

-147.969 164.646 1438 4,515 0.036 -0,027 0.001 0.005 -0,004 0,002 0.000 0.000

-1.514 -0.430 0.705 -0.174 -0.345 -1.128 0.511 0.930 0.323 -0.107 -0,095 -0.043

2.666 -0.266 -0.060 0.076 -1.014 -0.541 -1.086 0.598  -0,062 0.220 0.052 0.028
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TABLE 3-continued
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Singular Value Matrix of Diagnostic Cluster 1
 

 

 

 

 

-29.087 -62.911 0.308 14.023 0.146 -0.070 0.011 0.015 -0.016 0.004 0,000 ~—-0.000
0.505  -0.072 -0.105 0.272 0.448 0.195. -0.530 -0.341 0.858 -0.061  -0.007 -0.021

-0.727 0.423. -0.315  -0.739 3.288 -0.512 -0.219 0.276 -0.107 0.046 -0.007_—(0.020

TABLE4

Singular Value Matrix of Diagnostic Cluster 2

221.429 -186.597 -102.043 -2.907 -0.287 -0.077 0.010 0.015 0.003 0.007 -0.001 0.000
0.468 1.617 0.955 1.457 -1.503 -0.849  -0.535 -0.178 0.157 -0.035 0.058 -0.134
1.735 -3.611 -3.471 -3.810 5.470 1.217 -0.373 -0.287 0.122. -0.174 0.029 -0.037

475.114 79.159 534.354 -1.304 -0.033. 0.005 0,000 0.003 0,003 -0.005 _-0.001 0.000
0.552 0.238 0.047. -0.150 0.464 0.056 -0.239 -0.351 -0.076 0.454 -0.358 -0.021

-1.341  -0.823. -0.388 0.590 -0.530 -0.255 -1.195 0.613 0.144. -0.680 -0.168 0.018
1.649 211.477 -98.877  -6.988 -0.402 -0.102 -0.015 0.010 0,009 0.006 0,000 -~—-0.000

-2.141 0.703 0.240 -0.535 -0.193 1.269 0.717. 1.523 -0.129 0.098 -0.038 -0.046
1.664 -0.841 0.136 0.294 -0.680 0.841 -1.794 0.344 0.012, 0.495 0.115 0.022

-64.870 -51.881 47.188 -19.733 -1.017  -0.273 -0.033 0.024 0.025 0.013 -0.001 0.000
0.715 0.025 -0.190  -0.569 0.329 -0.211 -0.362 -0.113 -1.107 -0.145 0,020 -0.013
1.449 0.830 0.364 -0.015 3.109 -2.428 -0.091 0.767 0.019 0.240 0.022 0.010

[0065] In method block 640, the calculated distance is signals to model the energy absorption spectrum signal for
comparedto a classification threshold. As described above,

the threshold is selected to compensate for the inherent
qualitative nature and variation associated with the empirical

cluster used in generating the diagnostic clusters. If the

distance is less than the classification threshold for a given
configuration in method block 640, the associated pixel is

classified as having malignant tissue. Again, evaluating
distance is considered one example technique for determin-

ing proximity.

[0066] In method block 625, the process is repeated for
additional pixel trace signals. During the iterative process

that spans the multiple pixels, the results of the individual
pixel classifications may be grouped to allow for a subse-

quent global classification of the entire tissue sample. For
example, a grid may be defined for a particular tissue

sample, and a count of malignant pixels may be generated

for each grid section. Not all grid sections may include
malignant pixels. To classify the overall tissue sample as

being malignant, count thresholds may be employed for
each grid section and/or for the overall sample.

[0067] In some embodiments, a method for characterizing
a sample includes acquiring a trace signal for the sample. A

set of configurations is generated for defining modeling

signals to model the trace signal. Each modeling signal is
defined by a plurality of model parameters, and each con-

figuration represents an associated modeling signal having a
local maximum score for fitting the trace signal. A classifi-

cation cluster is defined in a parameter domain defined by
the plurality of model parameters. The classification cluster

has an associated classification type. The sample is deter-

mined to have the classification type associated with the
classification cluster responsive to determining that at least

one of the configurations in the set is proximate the classi-
fication cluster.

[0068] In some embodiments, a method for detecting
malignancy in a tissue sample includes acquiring a set of

Fourier Transform Infrared (FTIR) spectroscopy data for the

tissue sample. The FTIR data includes an energy absorption
spectrum signalfor each ofa plurality ofpixels. A diagnostic

set of configurations is generated for defining modeling

a selected pixel. Each modeling signal is defined by a

plurality ofmodel parameters. Each configuration represents
an associated modeling signal and has a local maximum

score for fitting the energy absorption spectrum signal. A

classification cluster is defined in a parameter domain
defined by the plurality of model parameters. It is deter-

mined that the selected pixel is associated with malignant
tissue responsive to determining that at least one of the

configurations in the diagnostic set is proximate the classi-

fication cluster. The generating of the diagnostic set of
configurations and the determining of the proximity to the

classification cluster are repeated for each of the pixels.
[0069] Insome embodiments, a system includes a memory

to store a plurality of instructions and a processor. The
processor is to execute the instructions to acquire a trace

signal for a sample, generate a set of configurations for

defining modeling signals to model the trace signal, wherein
each modeling signal is defined by a plurality of model

parameters, and each configuration represents an associated
modeling signal having a local maximum score forfitting

the trace signal, define a classification cluster in a parameter
domain defined by the plurality of model parameters, the

classification cluster having an associated classification

type, and determine that the sample has the classification
type associated with the classification cluster responsive to

determining that at least one of the configurations in the set
is proximate the classification cluster.

[0070] In some embodiments, certain aspects of the tech-
niques described herein may implemented by one or more

processors of a processing system executing software. The

software comprises one or more sets of executable instruc-
tions stored or otherwise tangibly embodied on a non-

transitory computer readable storage medium. The software
can include the instructions and certain data that, when

executed by the one or more processors, manipulate the one
or more processors to perform one or more aspects of the
techniques described above. The non-transitory computer

readable storage medium can include, for example, a mag-
netic or optical disk storage device, solid state storage

devices such as flash memory, a cache, random access
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memory (RAM), or other non-volatile memory devices, and
the like. The executable instructions stored on the non-

transitory computer readable storage medium may be in
source code, assembly language code, object code, or other

instruction format that is interpreted or otherwise executable
by one or more processors.

[0071] A  non-transitory computer readable storage

medium may include any storage medium, or combination
of storage media, accessible by a computer system during

use to provide instructions and/or data to the computer
system. Such storage media can include, but is not limited

to, optical media (e.g., compact disc (CD), digital versatile

disc (DVD), Blu-Ray disc), magnetic media (e.g., floppy
disc, magnetic tape, or magnetic hard drive), volatile

memory (e.g., random access memory (RAM)or cache),
non-volatile memory (e.g., read-only memory (ROM) or

Flash memory), or microelectromechanical systems
(MEMS)-based storage media. The computer readable stor-

age medium may be embedded in the computing system

(e.g., system RAM or ROM),fixedly attached to the com-
puting system (e.g., a magnetic hard drive), removably

attached to the computing system (e.g., an optical disc or
Universal Serial Bus (USB)-based Flash memory), or

coupled to the computer system via a wired or wireless
network (e.g., network accessible storage (NAS)).

[0072] Note that not all of the activities or elements

described above in the general description are required, that
a portion of a specific activity or device may notbe required,

and that one or more further activities may be performed, or
elements included, in addition to those described. Still

further, the order in which activities are listed are not

necessarily the order in which they are performed. Also, the
concepts have been described with reference to specific

embodiments. However, one of ordinary skill in the art
appreciates that various modifications and changes can be

made without departing from the scope of the present
disclosure as set forth in the claims below. Accordingly, the

specification and figures are to be regardedin anillustrative

rather than a restrictive sense, and all such modifications are
intended to be included within the scope of the present

disclosure.

[0073] Benefits, other advantages, and solutions to prob-

lems have been described above with regard to specific

embodiments. However, the benefits, advantages, solutions
to problems, and any feature(s) that may cause any benefit,

advantage,or solution to occur or become more pronounced
are not to be construed as critical, required, or essential

feature of any or all the claims. Moreover, the particular
embodiments disclosed above are illustrative only, as the

disclosed subject matter may be modified and practiced in

different but equivalent manners apparent to those skilled in
the art having the benefit of the teachings herein. No

limitations are intended to the details of construction or
design herein shown, other than as described in the claims

below.It is therefore evidentthat the particular embodiments
disclosed above may be altered or modified and all such

variations are considered within the scope of the disclosed

subject matter. Accordingly, the protection sought herein is
as set forth in the claims below.

Whatis claimed is:

1. A method for characterizing a sample, comprising:

acquiring a trace signal for the sample;

generating a set of configurations for defining modeling

signals to model the trace signal, wherein each mod-
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eling signal is defined by a plurality of model param-
eters, and each configuration represents an associated

modeling signal having a locally optimal score for
fitting the trace signal;

defining a classification cluster in a parameter domain

defined by the plurality of model parameters, the clas-
sification cluster having an associated class type; and

determining that the sample has the class type associated
with the classification cluster responsive to determining

that at least one of the configurations in the set is
proximate the classification cluster.

2. The method of claim 1, wherein the sample comprises

a tissue sample, and the class type comprises malignant
tissue.

3. The method of claim 2, wherein the class type com-

prises ductal carcinoma.

4. The methodof claim 1, wherein the plurality of model

parameters defines a Gaussian mixture.

5. The method of claim 1, wherein the classification

cluster comprises an ellipsoid defined in the parameter

space.
6. The method of claim 5, wherein theellipsoid is defined

using a singular value decomposition matrix.

7. The method of claim 1, further comprising:

defining a plurality of classification clusters in the param-

eter domain having the class type; and

determining that the sample hasthe class type responsive

to determining that at least one of the configurations in

the set is proximate any ofthe plurality ofclassification
clusters.

8. The method of claim 1, wherein the trace signal

comprises a Fourier Transform Infrared energy absorption
spectrum signal.

9. The method of claim 7, wherein the trace signal is
associated with one ofa plurality of pixels generated for the

sample, and the method comprises:

repeating the generating of the set of configurations and
the determining that the sample has the class type for

each of the plurality of pixels; and

determining a count of pixels having the class type
associated with the classification cluster.

10. The method of claim 1, wherein determining that at
least one of the configurations in the set is proximate the

classification cluster comprises determining that at least one

of the configurations in the set has a distance from the
classification cluster less than a threshold.

11. A methodfor detecting malignancyin a tissue sample,
comprising:

acquiring a set of Fourier Transform Infrared (FTIR)

spectroscopy data for the tissue sample, the FTIR data
including an energy absorption spectrum signal for

each of a plurality of pixels;

generating a diagnostic set of configurations for defining
modeling signals to model the energy absorption spec-

trum signal for a selected pixel, wherein each modeling
signal is defined by a plurality of model parameters,

and each configuration represents an associated mod-

eling signal having a locally optimal score for fitting
the energy absorption spectrum signal;

defining a classification cluster in a parameter domain
defined by the plurality of model parameters;

determining that the selected pixel is associated with

malignanttissue responsive to determining thatat least
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one of the configurations in the diagnostic set is proxi-
mate the classification cluster; and

repeating the generating of the diagnostic set of configu-

rations and the determining of the proximity to the
classification cluster for each of the pixels.

12. The method of claim 11, further comprising classify-

ing the tissue sample as being malignant based on a count of
the pixels associated with malignanttissue.

13. The method of claim 11, further comprising:

generating a screening set of configurations for defining

modeling signals to model the energy absorption spec-
trum signal for the selected pixel using a first number

of random seeds;

defining a screening cluster in the parameter domain; and

generating the diagnostic set of configurations using a
second number of random seeds greater than thefirst

numberresponsive to determining that at least one of
the configurations in the screening set is within the

screening, cluster.

14. The method of claim 11, wherein the plurality of
model parameters defines a Gaussian mixture.

15. The method of claim 11, wherein the diagnostic

cluster comprises an ellipsoid defined in the parameter

space.

16. The method of claim 15, wherein the ellipsoid is
defined using a singular value decomposition matrix.
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17. The method of claim 11, further comprising:
defining a plurality of diagnostic clusters in the parameter

domain; and
determining that the selected pixel is associated with

malignanttissue responsive to determining thatat least
one of the configurations in the diagnostic set is proxi-
mate any of the plurality of diagnostic clusters.

18. The method of claim 11, wherein determining that at
least one of the configurations in the set is proximate the
classification cluster comprises determining that at least one
ofthe configurationsin the diagnostic set has a distance from
the classification cluster less than a threshold.

19. A system, comprising:
a memory to store a plurality of instructions; and
a processor to execute the instructions to acquire a trace

signal for a sample, generate a set of configurations for
defining modeling signals to model the trace signal,
wherein each modeling signal is defined by a plurality
of model parameters, and each configuration represents
an associated modeling signal having a local maximum
score forfitting the trace signal, define a classification
cluster in a parameter domain defined by the plurality
of model parameters, the classification cluster having
an associatedclassification type, and determinethat the
sample has the classification type associated with the
classification cluster responsive to determining that at
least one of the configurations in the set is proximate
the classification cluster.

* * * * *


