
US 20180095773A1

as) United States

a2) Patent Application Publication 10) Pub. No.: US 2018/0095773 Al

Akella et al. (43) Pub. Date: Apr. 5, 2018

(54) STATE EXTRACTOR FOR MIDDLEBOX (52) U.S. Cl.

MANAGEMENT SYSTEM CPC viceeereceees GO06F 9/45558 (2013.01); GO6F

200945595 (2013.01); HO4L 67/42 (2013.01);
(71) Applicant: Wisconsin Alumni Research HOAL 67/14 (2013.01)

Foundation, Madison, WI (US)

(72) Inventors: Srinivasa Aditya Akella, Middleton, (67) ABSTRACT

(us),SsJunaidKhalid. Madison, WI A method of automatically identifying state information in

Gember-Jacobson, Madison, WI (US) different middlebox programs first identifies relevant pro-
gram portions by expanding outward from a packet process-

(21) Appl. No.: 15/282,130 ing loop to statements dependent either by control or data
dependency on that packet processing loop. Persistent vari-

(22) Filed: Sep. 30, 2016 ables in the statements are then collected and optionally

oo. . . winnowed by whether they are “used” or modified by those
Publication Classification statements. The identified state variables may be segregated

(51) Int. CL according to flow-spaces and/or output function so that a
GO6F 9/455 (2006.01) request for state data may be tailored precisely to the

HOAL 29/08 (2006.01) necessary state data greatly reducing network burdenin state
FOAL 29/06 (2006.01) data transfer.

40

44 750
t 3

4a"
154
A

54 58
é

Ae 60
aeaa

Apr. 5, 2018 Sheet 1 of 3 US 2018/0095773 A1Patent Application Publication

ef%
y
o
m

é
Z

A
y

P
o

e
r
r
s

mrs
grag

aaa
mneis

nemg
mame

maa
nal

n
a
i

t
e
s
e
a

t
e

ae
o
t

it
t
I

E
L

¢
iz

Ey
y
e

bot
o
p

g
f

=
|

if
py

p
e

o
r

ere
E
f

bO™
tt

if
f
t

fot
bp

{
h
m
m
m
a

o
m

f
e
t
e
s

ok
h
m
e

a
n
b
s

i
eee
T
T

P
N
e
m
s

~
~

p
r

T
7
T
T

o
o

e
a
e
c
o
o
p

‘

i
t
t

t
t

b
e
s

A
pi

derte
sh

tp
pip

t
t

s
t

1
s
t

=
php

meg
ELT

E
R
E

fg
m
a
d

!
$
3

b
a

i!
A
e
n
e

fe
ae

B
e
a
e

o
n

s
s

u
m
a
t

1
D

4
i

2
L
s

{
c
a

f
e
m
m
e
m
y
r
T

t
e

sy
r
o
m
w
m

a
f

5

44
bod

t
f

i]
m

ee
e
e

SI
u

o
o

_
i2

r
m

ii
1
4

1
4

ty
r
y

ot
be

owes
ot

b
m

me
n
e

FIG. 7

4

PIG,

Patent Application Publication Apr.5, 2018 Sheet 2 of 3 US 2018/0095773 A1

54
~ 4 62

IDENTIFY PERSISTENT VARIABLES L/

REMOVE UNUSED VARIABLES

64

SEGREGATE y FLOW SPACE J.

SEGREGATE BY MIDDLE BOX FUNCTION /

Fics. 3

. ne oe

FING PACKET
PROCESSING LOOP

COLLECT INSTRUCTIONS
WITH CONTROL

 OR DATA DEPENDENCY

FIND GLOBAL/

STATIC VARIABLE

wer” MARIABLE OS_YES
atee
2
Suge

THO oy
we

ed
we” POINTS. SS.

<~ TO-SET FOR LHS
VARIABLE wo

7 oe
aa

 yy

FIG. 5

6 c _
NY DISCARD “RETAIN

De aa eeee eee se

Patent Application Publication Apr.5, 2018 Sheet 3 of 3 US 2018/0095773 Al

WOOtmoo
No IDENTIFY PHF VARIABLES aan:] & aes

ee) a
504T FIND TLV STRUCT/CONVARIABLES |} FLOW STATE

k

\
“4 EIND CHOP FOR EACH PHE106 : !
+ ISOLATE TLV- STATE IN EACH CHOP

&6 my————— =Pe

 L 3“IDENTIFY QUTPUT CALLS PRng ,
110, FUNCTION] STATE >“
NA SLICE BY CALL ! OG

i

 } j

2, ISOLATE TLV STATE
. IN EACH SLICE

68 “4

NOT

LOGGING

RECEIVE REDISTRIBUTION (116 yo88
REQUEST L

FLOW YES

 _ 120
aQUIPUT“yes

SPECIFIED - EERny
Nall

coe

oo 126
‘TNO yo)

PROVIDE ALL 1a PROVIDE INTERSECTION
STATE _ OF STATE SUBSET

| |

FiG.9

US 2018/0095773 Al

STATE EXTRACTOR FOR MIDDLEBOX
MANAGEMENT SYSTEM

STATEMENT REGARDING FEDERALLY

SPONSORED RESEARCH OR DEVELOPMENT

[0001] This invention was made with governmentsupport

under CNS1330308 and CNS1302041 awarded by the
National Science Foundation. The governmenthascertain

rights in the invention.

CROSS REFERENCE TO RELATED
APPLICATION

[0002] --

BACKGROUND OF THE INVENTION

[0003] The present invention relates to cloud-based com-

puting, in which computer resources are provided in a
scalable fashion as virtual machines executing on an array of

computers, and in particular to a method of implementing

“middlebox” functionality in such cloud-based systems with
flexible scaling in a manner consistent with cloud-based

computing.

[0004] “Middleboxes” are important components oflarge

computerinstallations and service provider networks having

multiple computers executing applications such as Web
servers, application servers,file servers or databases or the

like (enterprises). In this environment, middleboxes provide
networkrelated functions such as protecting the network and

its applications from attacks (e.g., intrusion detection sys-
tems (IDS) andfirewalls) and enhancing network efficiency

(e.g., load balancers, WAN optimizers, and the like).

[0005] Most simply, middleboxes may be directly wired in
the path of data to the enterprise computers with which they

are associated. Middleboxes may be similarly installed by
programming network switches used to control interconnec-

tions on the network joining the middleboxes and applica-

tion computers.

[0006] Cloud computing provides a computer system

architecture in which computing resources are provided
on-demandin the form ofvirtual and/or actual machinesthat

are flexibly allocated to multiple users as demand requires.

A cloud application manages the machines so that users of
the cloud can acquire additional machinesat periods of high

demandandreturn those machines when the demand drops.
By aggregating many users, significant economy of scale

maybe realized in terms of maintenance of the hardware,
provision of physical resources such as power and cooling,

and smoothing of peak demands.

[0007] Itis known how to implement middlebox functions
on virtual machinesin a cloud computing system. Unlike the

scaling of other processes, however, it can be difficult to
scale middlebox functions in a waythat satisfies perfor-

mance standards (“service level agreements”) and mini-
mizes operating costs without adversely affecting the accu-

racy of the middlebox functions.

[0008] U.S. Pat. No. 9,104,492 entitled “Cloud-Based
Middlebox Management System’, assigned to the assignee

of the present application and hereby incorporated byref-
erence, describes a method for automatic scaling of middle-

box functionality in the environment of cloud computing. In

this system virtual middlebox functions are transferred,
created or destroyed (collectively termed redistribution) and

traffic is redistributed among the virtual middlebox func-

Apr. 5, 2018

tions, so that the processing of packets is substantially
uninterrupted, meaning that the output provided by the

middleboxes immediately after the redistribution is equiva-
lent to the output that would have occurred if the redistri-

bution had not occurred. This is possible by a buffering
system capturing incoming packets during the redistribution

and a system of transferring state information between

middleboxes that allows uninterrupted operation. The state
information transferred from the middleboxreflects a history

of processing of earlier packets such as can affect current
packets.

SUMMARY OF THE INVENTION

[0009] The previously described scaling system requires
that each middlebox be able to output, on command,state

information that captures the knowledge obtained by the

middlebox from previous packet processing. This feature is
not available natively in most middlebox programs and must

be created after the fact, for example, by manualinspection
of the middlebox programs. This process can be laborious

and require sophisticated understanding of the middlebox
program and the possibly proprietary operation of each

middlebox program. The problem of making state output

available for a set of diverse middlebox programs, desirable
in a cloud computing architecture, is a significant obstacle in

providing cloud architecture with scalable middlebox func-
tions.

[0010] The present invention provides a computer pro-

gram that can extract state information from a wide range of
different middlebox programs with little or no programmer

input or without a detailed understanding of the middlebox
program. The invention exploits the insight that state infor-

mation can be identified as variables that persist outside of
a standard packet processing “loop”and identifies strategies

for automatically identifying these variables which are then

further winnowed into a compact set suitable for real-time
transmission through the cloud architecture. In this latter

regard, state variables may be associated with particular
flow-spaces so that a request for state indicating a flow-

space may require only the transmission of the value of a
subset of state variables necessary for that flow-space.

Sunilarly state variables may be associated with particular

middlebox functions (for example, logging or packet output
and these functions may be identified in a request for state

so that only the value of state variables associated with this
function need to be transmitted. By providing a compactset

of state variables, real-time monitoring of the modification
of the state variables since the last state transfer can be

performed further reducing the transmission burden on the

network particularly when a middlebox is operated in a
backup capacity.

[0011] More specifically, the invention provides, in one
embodiment, a method of extracting state variables from a

middlebox program in a cloud computing architecture by

executing a program on electronic computer to: (a) receive
a middlebox program; and (b) identify in the middlebox

program set of top-level variables including state variables
by selecting variables persistent after a packet processing

loop, the packet processing loop executing for each packet
received by the middlebox program and where these top-

level variables are modified bya first execution of the packet

processing loop receiving first packet and persistent during
a second subsequent execution of the packet processing loop

receiving a second packet. The program then (c) generates a

US 2018/0095773 Al

program portion that interacts with the middlebox program
to provide the top-level variables in response to a request to

the middlebox program for state data during use of the given
middlebox program in a cloud computing architecture.

[0012] Itis thus a feature of at least one embodimentofthe

invention to provide an improved method of modifying a
variety of different middlebox programs to permit automatic

redistribution of network traffic in a manner consistent with
reallocation of execution resources underlying cloud com-

puting architectures. The system allows rapid identification

of state variables with reduced effort and without the need
for detailed understanding of the middlebox program.

[0013] Step (b) may identify the top-level variables by

identifying control-flow-linked statements called directly or
indirectly by the packet processing loop.

[0014] Itis thus a feature of at least one embodimentofthe
invention to isolate a portion of the program likely to hold

persistent state variables modified by a given packet pro-

cessing.

[0015] Step (b) may further refine top-level variables by

identifying data-dependency-linked statements having a

data dependency with variables of the control-flow-linked
statements.

[0016] Itis thus a feature of at least one embodimentofthe

invention to capture statements that may generate state
without direct control flow connection, for example, work-

ing with data that has been enqueued by control flow
statements thus creating a data dependency without control

flow dependency.

[0017] The data-dependency-linked statements may
include those statements having a data dependency with an

alias of variables of the control-flow-linked statements.

[0018] Itis thus a feature of at least one embodimentofthe
invention to capture cases where a value has multiple names.

[0019] Step (b) may select top-level variables from static

and global variables accessed by the data-dependency-
linked statements and control-flow-linked statements.

[0020] Itis thus a feature of at least one embodimentofthe

invention to quickly identify variables that can be persistent
to hold state data between packets.

[0021] Step (b) may select as the top-level variables

data-dependency-linked variables and control-flow-linked
variables only if they are subject to modification by state-

ments.

[0022] Itis thus a feature of at least one embodimentofthe
invention to substantially reduce the amount of data that

needs to be transmitted as state data by removing persistent
variables that are not modified.

[0023] The method may further identify top-level vari-

ables to include loop-procedure variables used by statements
within a packet processing procedure holding the packet

processing loop and configuring andinitializing the packet

processing loop.

[0024] Itis thus a feature of at least one embodimentofthe
invention to include some local variables preceding the

packet processing procedure that can represent persistent
state.

[0025] The packet processing loop may beidentified using

a standard library name of a library providing a packet
processing loop.

[0026] Itis thus a feature of at least one embodimentofthe

invention to leverage the use of standard libraries in iden-

Apr. 5, 2018

tifying a packet processing loop (and hencestate variables)
cross a wide variety of different middlebox types and

architectures.

[0027] The method may further associate the top-level
variables with a flow-space, the flow-space being a param-

eter of packets received by the packet processing loop and
step (c) may generate program elements interacting with the

middlebox program to provide the top-level variables, in

response to the request to the middlebox program for state
data of a given flow-space during use of the middlebox

program in a cloud computing architecture, for top-level
variables associated with the given flow-space.

[0028] Itis thus a feature ofat least one embodimentofthe

invention to permit state to be linked to flow-space so that
only a subset of state needs to be transmitted in certain

instances of middlebox redistribution greatly reducing the
time and burden on the cloud architecture network in such

redistribution.

[0029] The step of associating the top-level variables with
a flow-space may identify flow-space related statements

associated with variables holding parameters of packets

defining a flow-space and partition the top-level variables
according to variables used by the flow-spacerelated state-

ments.

[0030] Itis thus a feature ofat least one embodimentofthe
invention to provide an automatic method of associating

state to different flow-space through the partitioning of
statements according to their association with standard vari-

ables denoting flow-space such as those denoting packet

source address, packet destination address, packet source
port, and packet destination port.

[0031] The method may further include the step ofparti-

tioning the top-level variables according to an output of the
middlebox; and wherein step (c) generates program ele-

ments interacting with the middlebox program to provide the
top-level variables, in response to the request to the middle-

box program for state data of a middlebox function during
use of the middlebox program in a cloud computing archi-

tecture, for top-level variables associated with the middle-

box function.

[0032] Itis thus a feature ofat least one embodimentofthe

invention to provide even more winnowing ofstate data in

the case where only selected middlebox functions are
required, for example, packet control without logging.

[0033] These particular objects and advantages may apply

to only some embodimentsfalling within the claims and thus
do not define the scope of the invention.

BRIEF DESCRIPTION OF THE FIGURES

[0034] FIG. 1 is a simplified representation of an array of

computers interconnected by switches, for example, in a
cloud-based processing network such as may provide a set

of virtual machines organized in enterprises, each virtual

machine providing a virtual processor and memory as man-
aged by a cloud application in real time;

[0035] FIG. 2 is a block diagram ofan electronic computer

that can receive a middlebox program and execute the state
identification process ofthe present invention for identifying

state of that middlebox program;

[0036] FIG. 3 is a top-level flowchart of the state identi-
fication process of the present invention providing steps of

identification of persistent variables, winnowing of those

US 2018/0095773 Al

variables to remove unmodified variables, segregating vari-
ables by flow-space and segregating variables by middlebox

function;
[0037] FIG. 4 is a detailed flowchart of the first step of

FIG. 3 showing identification of persistent variables repre-
senting top-level variables;

[0038] FIG. 5 is a figure similar to FIG. 4 showing a

detailed flowchart of the second step of FIG. 3;
[0039] FIG. 6 is a detailed flowchart showingthe third step

of FIG. 3 in generation of a flow-space table used by the
middleboxes during operation;

[0040] FIG. 7 is a detailed flowchart of the fourth step of
FIG. 3 showingthe generation of a middlebox function table

used by middleboxes during operation;

[0041] FIG. 8 is a diagrammatic representation of a taint
table that may be used by the middleboxes according to the

present invention: and
[0042] FIG. 9 is a flowchart showing the operation of a

modification of the middlebox in responding to a state

request.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

[0043] Referring now to FIG.1, a cloud-computing facil-
ity 10 mayprovide for a set of server racks 12 each holding

multiple electronic computers 14 intercommunicating on a
network 16. The network 16, for example, may be managed

by network switches 18 represented here as an intervening
matrix in dotted lines. The network switches 18 may connect

with one or more routers 19 to an external network such as

the Internet 21 or the like. Generally, the cloud computer
facility may, for example, provide “Infrastructure as a Ser-

vice” (Jaas) functionality.

[0044] Asis understood in the art, each of the electronic

computers 14 may provide a processor 20 having one or
more cores, a memory system 22 including RAM anddisk

or other memory, and a network card 24 for interconnecting

to the network 16. The memory system 22 may include an
operating system 26, for example, allowing virtualization,

and virtual machine software 28, for example, implementing
a virtual application computer or, as shown, implementing a

virtual middlebox using a middlebox program 29.

[0045] The middlebox programs 29 implemented by the
virtual machine software 28 may provide network functions

(NF) such as, but not limited to, an intrusion detection
system (IDS), a proxy server, a wide area network (WAN)

optimizer, and a load balancer. Generally each virtual
middlebox will be on a separate virtual electronic computer

appearing as if it has its own processor 20 and dedicated

memory system 22 by virtue of a virtualizing operating
system such as a hypervisor.

[0046] As is generally understood in the art, a WAN
optimizer middlebox may implementa variety of optimiza-

tion techniques to increase data transmission efficiencies

over the network to the electronic computers 14, for
example, by eliminating redundant data transfer, compres-

sion of data, caching and the like. An IDS middlebox may
monitortraffic flowing over the network to detect malware

or network intrusionsor the like. A load balancer middlebox
may distribute requests by users to the various application

machines while preserving consistent communication

threads with any given user. A proxy server may fetch web
objects on behalf of web clients and cache these objects to

serve later web requests. In order to operate, an IDS may

Apr. 5, 2018

generate a state extracted from multiple packets of the given
flow, for example, to create a signature and to compare that

signature against a whitelist or blacklist. Other middlebox
functions such as proxy servers, WAN optimizers, and load

balancers, extract states from flows of packets in order to
associate new packets with a given flow and, for example,

destination.

[0047] The middlebox program 29 mayinclude a redis-
tribution portion 30 used for the redistribution (creation,

destruction, duplication, and transfer) ofmiddlebox function

according to the techniques in the above described patent
application. In this regard, the redistribution portion 30 may

receive a middlebox redistribution statement 32 imple-
mented by a standard application programmer interface

(API) recognized by the redistribution portion. The redistri-
bution portion operates to implement a portion of the

redistribution in a mannerdescribed in the above referenced

°492 patent allowing seamless redistribution of middlebox
functionality.

[0048] In this regard, the redistribution statement 32 may

contain information about the type of redistribution (cre-
ation, destruction, duplication, and transfer) as well as a

flow-space implicated in the redistribution and identification
of a middlebox function implicated in the redistribution. The

redistribution portion 30 respondsto flow-space information
and middlebox function in the redistribution statement 32

information using flow-space table 34 identifying state vari-

ables of the middlebox program 29 with respect to different
flow-spaces and a middlebox function table 36 identifying

state variables of the middlebox program 29 with respect to
different output functions of the program associated with the

state variables. In addition the redistribution portion 30 may
respondto the redistribution statement 32 (especially when

it indicates the creation or updating of a backup) using taint

table 37 which identifies whether the state variables of the
middlebox program 29 have been updated since a previous

event, for example, a time or previous transferof state data.
In response to the redistribution statement 32, the redistri-

bution portion 30 will output state data that can be used
according to the above described patent application to

flexibly change the configuration of virtual middlebox pro-

grams in a cloud architecture.

[0049] Referring now also to FIG. 2, generation of state

data needed for the middlebox program 29 and necessary for

redistribution may be performed on an automatic basis using
an electronic computer 40. Such a computer 40 as is

understood in the art may have a processor 42 communi-
cating with a memory system 44 and with standard periph-

erals such as a user terminal 46 for accepting user commands
and providing outputs to a user, and a network circuit 48

providing communication with the internet 21 or equivalent

network, removable media, or the like.

[0050] The memory system 44 may contain operating

system 50 as well as an unprocessed middlebox program 29

that will eventually be incorporated with the redistribution
portion 30 described above for implementation by virtual

machine software 28. For this purpose, the operating system
50 may execute a state analyzer program 54 that identifies

state variables of the middlebox program 29 and that asso-
ciates identified state variables or portions of those variables

with different flow-spaces and middlebox function to create

the flow-space function 34 and middlebox function table 36.
For this purpose, the state analyzer program 54 uses a

number of data tables including a standard flow-space

US 2018/0095773 Al

variable name table 56, a standard packet processing library
nametable 58, and a standard middlebox function table 60

as will be discussed below.

[0051] Referring now to FIG.3, the state analyzer pro-
gram 54 can be broken into four primary execution steps

each of will be discussed in more detail below. Thefirst
execution step, indicated by process block 62, identifies a

packet processing loop that is invokedforthe receipt of each

packet by the middlebox program 29 and that operates to
forward the packet and/or information about the packet to

necessary processing code in other portions of the middle-
box program 29.

[0052] The packet processing loop is used as a key to

identify with other portions of the middlebox program 29
having connections to the packet processing loop which in

turn will identify variables that can be persistent between

executions of the packet processing loop and thus which can
represent state variables. This focus on persistence between

executions of the packet processing loop reflects the basic
insight that only information derived from a given packet

that is persistent to affect future packets can properly be
considered state data of the type necessary to transfer for the

processing of future packets by a new middlebox.

[0053] At a next step indicated by process block 64, this

set of variables is winnowed to removethose variables, for
example, that are read-only variables and thus, while per-

sistent, are not used for the storage of state data.

[0054] At succeeding process block 66, the program 54
links the remaining variables to particular flow-space keys

denoting particular flow spaces. The flow space keys iden-
tify variables or portions of variables (for example fields)

that relate to a given flow space allowing a function to be

developed that receives a flow space and by using the
appropriate flow space key, identifies top-level variables or

portions of those variables that are relevant to the flow
space. An example flow space might be a range of source

addresses of received packets. In this case, the flow space
key mightidentify a field, for example, in a “black list” table

of packet source addresses identifying the black list rules

(e.g. block, route, log) to numeric ranges of packet source
addresses. The function would then take a flow space

denoted, for example, by a range of source addresses and
review those fields indicated by the flow space key to

identify rows of the black list table relevant to that flow
space. Those identified rows would then be transmitted in

their entirety in response to the request designating a range

of IP source addresses. This developed flow space function
allows the middle box to filter state information that is

needed and not neededforparticular packet processing tasks
required of a new middle box instance.

[0055] At succeeding block 68, a similarassociation ofthe

state data is performed with respect to the function of the

middlebox using that state data. Generally somestate vari-
ables will be used for logging purposes and somestate

variables will be used for control of packet processing, for
example, routing or blocking of packets.

[0056] When only consistency in the output of this latter

function is required in the new middlebox, for example, state
data only associated with this function is transmitted in the

redistribution, saving network bandwidth and speeding the

redistribution process. This information relating state data to
middlebox function is ultimately enrolled in middlebox

function table 36.

Apr. 5, 2018

[0057] Different functions can have overlap in the set of
variable associated with them.

[0058] Referring now also to FIG. 4, this first process
block 62 which identifies a set of possible state variable

values (termed top-level values) may begin as indicated by

process block 70 by reviewing the packet processing library
name table 58 to identify the name of standard packet

reading/writing libraries holding a packet processing loop.
These standard packet reading/writing libraries will identify

within the middlebox program 29 statements associated with
a middlebox procedure 72 holding a packet processing loop

74. For example, identified packet-reading calls (system

calls or library functions) in the standard packet reading/
writing libraries may be used to identify the packet process-

ing loop 74. Example standard libraries for packet process-
ing include: “peap_next”’, or “recv”. A packet processing

loop 74 is a set of statements that repeatedly loops to: (1)

check for the existence of a new packet received by the
middlebox program 29; and (2) pass the received packet to

packet processing routines for processing according to the
middlebox function. Precise identification of the packet

reading calls for each of the standard reading/writing librar-
ies, used to identify the packet processing loop 74, may also

be enrolled in the packet processing library nametable 58.

Generally the middlebox procedure 72 includes initializa-
tion and configuration code that may be distinguished from

the code of the packet processing loop 74.

[0059] Once the packet processing loop 74 is identified,

additional procedures called or dependent on the packet

processing loop 74 are also identified. These procedures can
generate variable values dependent on a current processed

packet that can persist to affect the next processed packet.
Thefirst identified procedures are “called-procedures” 76a

that are called by the packet processing loop 74 directly or
indirectly (e.g., via a previously called procedure) and

“data-dependent procedure” 765 where there is a data

dependency between variables of the packet processing loop
and the called-procedure 76a without direct control flow.

Data dependency, for example, can occur without a call
whendata is enqueued for later processing.

[0060] The called-procedures 76a and the data-dependent

procedure 765 may be determined by preparing a system
dependence graph consisting of multiple program depen-

dence graphs for each procedure. Each program dependence
graph hasvertices for each statement along with the data and

control dependency edges. A data dependency edgeis cre-

ated between statements if there is an execution path
between them and one statement may update a value which

the other statement reads. A control dependency edge is
created if one statement is a conditional statement determin-

ing whether or not the other statement executes. This tech-
nique is described in S. Horwitz, T. Reps, and D. Binkley,

“Interprocedural slicing using dependence graphs”, PLDI

°88, Proceedings ofthe ACM SIGPLAN 1988 conference on
Programming language design and implementation, Pages

35-46, ACM, New York, N-Y.

[0061] Using the system dependence graph, a forward

program slice is computed for the variable which stores the

received packet at the packet processing loop 74. All pro-
cedures associated with the statements in the slice are

collected in a state procedures group 80 per process block
82.

[0062] At process block 84, the state procedures group 80

is then analyzedto identify all global andstatic variables that

US 2018/0095773 Al

are used or accessed within the state procedures group 80 to
provide a top-level variable group 86. To this group of

identified variables are added local variables of the middle-
box procedure 72 which are also persistent outside of the

packet processing loop 74. Together these variables provide
a top-level variable group 86 which represents a superset of

state variables.

[0063] Referring now to FIGS.3 and 5,the variables ofthe

top-level variable group 86 are then analyzedstatically to
see if they are in fact modified and thus could actually store

dynamic state. At decision block 90 each variable of the

top-level variable group 86 is analyzedto see it if it is on the
left-hand side of an assignmentstatement within at least one

ofthe proceduresin state procedures group 80 such as would
indicate the possibility that its value could be modified.If so,

it is retained in the top-level variable group 86 as indicated
by process block 92. If not, at decision block 94 a “points-

to-set” of variables is established for the particular variable

being analyzed. A variable’s “points-to-set” contains all the
variables whose associated storage locations are reachable

from the variable being analyzed and thus addresses the fact
that some variables have multiple effective names. If at

decision block 94 there is no “points-to-set variable” for the
variable being analyzed on the left-hand side of an assign-

ment statement(that is, if the intersection of the “points-to-

set” of the variables on the left-hand side of an assignment
statement and the “points-to-set” of the top level variables is

empty) within at least one of the procedures in state proce-
dures group 80 then that variable being analyzed is dis-

carded (removed from the top-level variable group 86) as
indicated by process block 96. Otherwise the variable being

analyzed is retained in the top-level variable group 86 per

process block 92.

[0064] Referring now to FIGS.1, 2 and 6, the operation of
process block 66 of FIG. 3 which associates state data with

flow-space, as indicated by process block 100, begins by

identifying variable namesusedto identify particular packet
fields (packet header field (PHF) variables), for example,

such as hold different portions of the received packet as
received by the packet processing loop. These packet header

field variable names may be pre-stored in the packet pro-
cessing library name table 58 andare identified to different

flow-spaces, for example, the flow-space of the packet

source IP address, the packet destination IP address, the
packet source input port, the packet destination output port

and the packet protocol. Standard packetfield names include
for example: src_ip, dest_ip, src_port, dest_port, and proto.

[0065] Once these PHF variables have been identified, the

top-level variable group 86 is reviewed at process block 102

to find data structures such as might represent a mechanism
used to steer packet processing to particular portions of the

program based on those fields. Only those structures or
pointers in statements that accept as arguments PHF vari-

ables are considered. Such data structures may be a hash

table or linked list. For each such identified structure, a
“chop” of the program 54 is computed between the packet

received function and a point where the value of each PHF
variable is accessed within the state procedures group 80

(shown in FIG. 4) to provide a set of statements invoked in
the processing of each PHF variable. This is shown by

process block 104.

[0066] These statements are then reviewed to segregate

the top-level variables according to PHF variable per pro-

Apr. 5, 2018

cess block 106. In this way distinct sets of state variables
maybeidentified to each flow-space associated with a packet

field name.

[0067] The flow-state function 34 may then be created that

operates with index linking in rows standardized flow-space

keys (in a first column) andrelatedto a particular flow space,
to state variables or portions of state variables (for example

fields related to the PHF variable names)(listed in a second
column) that relate to a flow space of the flow space key. As

discussed above with respect to FIG. 1, this allows the
redistribution statement 32 to designate a particular flow-

space (by a standardized flow-space name). The flows-state

function 34 then identifies the flow space key and the state
variables or portions of the state variables to search those

state variables or portions of state variables for values
related to that flow space.

[0068] Referring now to FIGS.1 and 7, an additional but

similar analysis may be performedon the top-level variables
to associate them with middlebox output function to create

output function table 36 so that the redistribution statement
32 may request only state data relevant to a particular

middlebox output function when the consistency require-

ments on middlebox output will be limited. In one example
the middlebox output functions may include logging infor-

mation about the packets (that is, recording the operation of
the middlebox) and active control of packet processing such

as routing, filtering or the like. This segregation is performed
as indicated at process block 108 by first identifying stan-

dard libraries associated with these different functions such

as provide outputs from packet processing. In this regard,
the middlebox function table 60 (shown in FIG. 2) may be

used to identify standard names for these programs to
identify the relevant code sections for different standard

middlebox functions.

[0069] At process block 110, a slice of program 54 is
computed backward from each output call site (where the

output routine is called) and the top-level variables found in
that slice identified per process block 112. These variables

may be used to populate output function table 36 (in a
second column) linked by rowsto the identified middlebox

output functions (in a first column) determined at process

block 108. Using this function table 36, the redistribution
statement 32 may designate a subset of the state variables

associated with a particular middlebox output function (for
example, all output functions other than logging) to greatly

reduce the bandwidth of transmitted state data.

[0070] Referring now to FIGS. 1 and 8, the present
invention’s ability to accurately identify state variables and

to reduce the numberof such variables permits the middle-
box to also provide a “taint analysis” during middlebox

operation. This taint analysis monitors state data to identify

state data that has changedsincethelast transmission of the
state data so that only the change to state data need be

transmitted. In the case of generating a new update of a
backup or redundant middlebox, this taint analysis can

greatly reduce the amount of state data that needs to be
transmitted repetitively at each update interval. For the

purpose of discussion herein, the updating of a redundant

middlebox will be considered a redistribution creating a new
middlebox that is updated.

[0071] This taint analysis is performedby the redistribu-

tion portion 30 having received state data extracted as
described above and simply instruments the middlebox

program 29 to set a bit in a taint table 114 associated with

US 2018/0095773 Al

each state variable when that state variable is modified.
Whenstate data is transmitted each of these bits is reset.

[0072] The amount of instrumentation code needed to
update the taint table 114 may be reduced by identifying

state data that will be updated at the same time (on a single

control path) so that a single instrumentation statement can
provide an updating that updates multiple bits in the taint

table 114. Such opportunities for multiple updates using a
single statement can be assessed by creating a control flow

graph of a fully instrumented middlebox program 54 (e.g.,
having an instrumentation statement for each bit in the taint

table 114). Starting from the bottom of the graph (depth-

first) the bits that have updating instrumentation statements
are tracked. When a new updating instrumentation statement

is arrived at, if every incoming edge has previously updated
that state bit, this updating statement may be pruned.

[0073] Referring now to FIG. 1 and whena redistribution

statement 32 is received by the middlebox program 29, as
indicated by process block 116, the redistribution portion 30

determines whether there is a flow-space specified by the
redistribution statement 32 at decision block 118.If not, at

decision block 120, the redistribution statement 32 is

checked to see whether it has a middlebox function “output”
specified. If not, at next process block 122 determination is

made as to whether the middleboxstate has previously been
requested as part of a regular updating of a backup middle-

box and thus can be winnowedbythetaint table 114. If not,
identified state variables are provided in response to the

redistribution statement 32 as indicated by process block

124.

[0074] Ifat any of these decision blocks 118, 120, and 122

the redistribution statement 32 includes a qualification of the
state, the intersection of a subset of the states identified by

decision blocks 118, 120, and 122 is determined at process

block 126 and only this commonstate data is returned for
instantiating or updating a new middlebox.

[0075] Certain terminology is used herein for purposes of

reference only, and thus is not intended to be limiting. For
example, terms such as “upper”, “lower”, “above”, and

“below” refer to directions in the drawings to which refer-
ence is made. Terms such as “front”, “back”, “rear”, “bot-

tom”and “side”, describe the orientation of portions of the
component within a consistent but arbitrary frame of refer-

ence which is made clear by reference to the text and the

associated drawings describing the component under dis-
cussion. Such terminology may include the words specifi-

cally mentioned above, derivatives thereof, and words of
similar import. Similarly, the terms “first”, “second” and

other such numerical terms referring to structures do not
imply a sequence or order unless clearly indicated by the

context.

[0076] When introducing elements or features of the pres-
ent disclosure and the exemplary embodiments,the articles

“a”, “an”, “the” and “said” are intended to mean that there

are one or more of such elements or features. The terms
“comprising”, “including” and “having” are intended to be

inclusive and mean that there may be additional elements or
features other than those specifically noted. It is further to be

understood that the method steps, processes, and operations
described herein are not to be construed as necessarily

requiring their performance in the particular order discussed

or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or

alternative steps may be employed.

Apr. 5, 2018

[0077] References to “a machine”and“a virtual machine”
or “a computer” and “a processor,” can be understood to

include one or more virtual machines or underlying proces-
sors that can communicate in a stand-alone and/ora distrib-

uted environment(s), and can thus be configured to commu-
nicate via wired or wireless communications with other

processors, where such one or more processor can be

configured to operate on one or more processor-controlled
devices that can be similar or different devices. The term

virtual machine should be understood broadly to include
virtual containers and the like which provide alternative

methods of virtualization. Furthermore, references to
memory, unless otherwise specified, can include one or more

processor-readable and accessible memory elements and/or

components that can be internal to the processor-controlled
device, external to the processor-controlled device, and can

be accessed via a wired or wireless network.

[0078] Itis specifically intended that the present invention
not be limited to the embodiments and illustrations con-

tained herein and the claims should be understood to include
modified forms of those embodiments including portions of

the embodiments and combinations of elements of different
embodiments as come within the scope of the following

claims. All of the publications described herein, including

patents and non-patent publications are hereby incorporated
herein by reference in their entireties.

What we claim is:

1. A method of extracting state variables from a middle-

box program of a type used in a cloud computing architec-
ture implementing virtual machines and controlled by a

cloud application that dynamically allocates virtual
machinesto different enterprises and monitors costs of the

virtual machines against an account for each enterprise, the

virtual machines including application virtual machines
executing application programs to implement an application

for the enterprise and middlebox virtual machines executing
middlebox programs enforcing rules relatedto a transport of

data between application virtual machines,

the method comprising the steps of executing a program
on an electronic computerto:

(a) receive a middlebox program;

(b) identify in the middlebox program set of top-level
variables including state variables by selecting vari-

ables persistent after a packet processing loop, the

packet processing loop executing for each packet
received by the middlebox program, where the top-

level variables are modified by a first given loop of the
packet processing loop receiving a first packet and

persistent during a second subsequentgiven loop of the
packet processing loop receiving a second packet; and

(c) generating program portions interacting with the

middlebox program to provide the top-level variables
in response to a request to the middlebox program for

state data during use of the given middlebox program

in a cloud computing architecture.

2. The method of claim 1 wherein step (b) identifies the

top-level variables by identifying control-flow-linked state-

ments called directly or indirectly by the packet processing
loop.

3. The method of claim 2 wherein step (b) further iden-

tifies top-level variables by identifying data-dependency-
linked statements having a data dependency with variables

of the control-flow-linked statements.

US 2018/0095773 Al

4. The method of claim 3 wherein the data-dependency-
linked statements include statements having a data depen-

dency with an alias of variables of the control-flow-linked
statements.

5. The method of claim 3 wherein step (b) wherein

top-level variables are selected from static and global vari-
ables accessed by the data-dependency-linked statements

and control-flow-linked statements

6. The method of claim 4 wherein step (b) wherein the
top-level variables include data-dependency-linked vari-

ables and control-flow-linked variables only if they are

subject to modification by statements.

7. The method of claim 4 wherein step (b) wherein the

top-level variables further include loop-procedure variables

used by statements within a packet processing procedure
holding the packet processing loop and configuring and

initializing the packet processing loop.

8. The method of claim 1 wherein the packet processing
loop is identified using a standard library nameofa library

providing a packet processing loop.

9. The method of claim 1 further including the step of
establishing a function receiving a flow space identifier and

identifying top-level variables or portions of top-level vari-

ables associated with a flow space of the flow space iden-
tifier; and wherein step (c) generates statements interacting

with the middlebox program to provide the top-level vari-
ables or portions of the top level variables associated with a

given flow space in responseto the request to the middlebox
program forstate data of the given flow-space during use of

the middlebox program in a cloud computing architecture

for top-level variables associated with the given flow-space.

10. The method of claim 9 wherein the function identifies
flow-space related statements associated with variables

holding parameters of packets defining a flow-space to
identify top-level variables or portions of top-level variables

associated a flow space of the flow space related statements.

11. The method of claim 10 wherein the flow-space is
selected from the group consisting of packet source address,

packet destination address, packet source port, and packet

destination port or a range of such addresses or ports.

12. The method of claim 1 further including the step of

associating the top-level variables to middlebox output

functions of the middlebox program; and wherein step (c)
generates statements interacting with the middlebox pro-

gram to provide the top-level variables, in response to the
request to the middlebox program for state data of a middle-

box output function during use of the middlebox program in

a cloud computing architecture, to provide for top-level
variables associated with the middlebox output function.

13. The methodofclaim 12 wherein the middlebox output

functions are selected from the group consisting of packet
control and middlebox function logging.

14. Acomputing system comprising a plurality ofnetwork

connected computers implementing virtual machines and
controlled by a cloud application that dynamically allocates

virtual machinesto different enterprises and monitors costs
of the virtual machines against an account for each enter-

prise; the virtual machinesfor at least one enterprise includ-

ing:

(1) application virtual machines executing application
programs to implement an application for the enter-

prise;

Apr. 5, 2018

(2) middlebox virtual machines executing middlebox pro-
grams enforcing rules related to transport of data

between application virtual machines; and
wherein a given middlebox virtual machine receiving a

given data stream having first and second flow-space
further executes a state-output statement to output state

data needed for an instantiation of a new instance ofthe

given middlebox, wherein the state-output statement
designates a given flow-space of the first and second

flow-space in the given middlebox virtual machine; and
wherein in response to the state-output statement to

identify the state relevant to the given flow-space to
output the state of the given flow-space; and

wherein the output state data allows a new instance of the

given middlebox to maintain output equivalents in a
processing of the given data stream in the given flow-

space after creation of the new middlebox instance.

15. The computing system of claim 14 wherein the output
state data does not allow the new instance of the given

middlebox to maintain output equivalent in the processing of
the given data stream outside of the given flow-space.

16. The computing system of claim 14 wherein the
state-output statement designates a middlebox function of

the given middle program and wherein the given middlebox

virtual machine in response to the state-output statement
identifies the state relevant to the designated middlebox

function to output the state required by the given middlebox
function.

17. The computing system of claim 14 wherein the

state-output statement designates instantiation ofnew updat-
ing of a middlebox backup ofthe given middlebox program

and wherein the given middlebox virtual machine in
responseto the state-output statementidentifies the state that

has been modified since a last updating of the middlebox
backup and outputs the identified state.

18. The computing system of claim 14 wherein the given

middlebox program does not output state that has not been
modified since a last updating of the middlebox backup.

19. An electronic computer operable in a plurality of
network connected computers implementing virtual

machines and controlled by a cloud application that dynami-

cally allocates virtual machines to different enterprises and
monitors costs ofthe virtual machines against an account for

each enterprise; the virtual machines for at least one enter-
prise including:

(1) application virtual machines executing application

programs to implement an application for the enter-
prise; and

(2) middlebox virtual machines executing middlebox pro-
grams enforcing rules related to transport of data

between application virtual machines;

the electronic computer executing a program stored in
non-transient medium to:

(a) receive a given data stream havinga first and second
flow-space to execute a middlebox program on the data

stream; and

(b) in response to a state-output statement, output state
data needed for an instantiation of a new instance ofthe

given middlebox, wherein the state-output statement
designates a given flow-space of the first and second

flow-space in the given middlebox virtual machine; and

wherein in response to the state-output statement identi-
fying state relevant to the given flow-space to output

state of the given flow-space; and

US 2018/0095773 Al Apr. 5, 2018

wherein the output state data allows a new instance of the
given middlebox to maintain output equivalents in a

processing of the given data stream in the given flow-
space after creation of the new middlebox instance.

* * * * *

