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COMPUTER ARCHITECTURE WITH
SYNERGISTIC HETEROGENEOUS

PROCESSORS

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Cross Reference to Related Application

Background ofthe Invention

[0001] The present invention relates to a computer archi-

tecture having multiple, highly specialized processors and in
particular to an architecture capable of switching operating

modes based on anticipated program behavior.

[0002] General-purpose processors, such as out-of-order
processors providing speculative execution, are designed to

efficiently execute a wide range of computer programs.It is
known, however, that improved performance can be

obtained in particular program domains or with particular

program behaviors using specialized computer processors.
For example, “single instruction multiple data” or SIMD

processors have been developed for programs that require
rapid execution of a common instruction on multiple data

elements. Such SIMD processors are beneficial in the
domain of graphics processing, for example, where in an

adjustment of the brightness of an image, multiple data

elements of pixels in the imageare all scaled by a common
factor. Similarly, specialized neural network processors can

provide improved performance in machinelearning orpat-
tern recognition applications.

[0003] The improved performance, measured in energy

consumption and/or speed, provided by these specialized
processors normally disappears as these processors are

required to execute a general-purpose program having a
variety of behaviors and/or spanning different program

domains. For this reason, specialized processors are nor-

mally paired and work under the control of a general-
purpose processor. In this situation, the general-purpose

processor may execute the program until the specialized
processoris invoked through special commandsorinstruc-

tions embedded in the executed program, for example,
instructions accessing an application programmerinterface

(API) associated with the specialized processor.

SUMMARY OF THE INVENTION

[0004] The present inventors have recognized that a prop-
erly selected group of specialized processors can operate

synergistically to provide improved performance (speed
and/or energy efficiency) over a wide range of general-

purpose programs. Importantly, the appropriate set of spe-

cialized processors can provide complementary “affinities”
that cover a significant percentage of the instructions of a

general-purpose program. As a result, the general-purpose
processor can be simplified, providing a net savings in

integrated circuit area or complexity.

[0005] In one embodiment, the complexity of partitioning
a program among multiple specialized processors having

different affinities is handled through a run timeprofiling
process permitting program allocation to be largely trans-

parent to the user/programmer.

[0006] Ina simulation across a wide range ofbenchmarks,
a 2-wide OOOprocessor with three special-purpose proces-

sors selected per the present invention was able to match the
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performance of a conventional 6-wide OOO processor while
using 40 percent lower chip area and being 2.6 times more

energy eflicient.

[0007] Specifically, in one embodiment, the invention

provides a computer architecture employing a set of hetero-

geneous processors providing relatively different perfor-
mances with respect to portions of a program having dif-

ferent degrees of data parallelism. The heterogeneous
processors are controlled by a switch unit alternately switch-

ing between the heterogeneous processors for different por-
tions of the program based on the assessed degree of data

parallelism. The heterogeneous processors include: (a) a

general-purpose processor providing speculative execution;
(b) at least one processor providing higher performance

execution than the general-purpose out-of-order processor
for first given program portions exhibiting a predetermined

level of data parallelism; and (c) at least one processor
providing higher performance execution than the general-

purpose out-of-order processor for second given program

portions exhibiting less data parallelism than the predeter-
mined level of data parallelism.

[0008] In some embodiments, the program may have
different degrees of control flow complexity and the hetero-

geneous processors may further include: (d) at least one

processor providing higher performance execution than the
general-purpose out-of-order processor for third given pro-

gram portions having lower control flow complexity than the
first given program portions.

[0009] In some embodiments, the program may have

different degrees of control bias and the heterogeneous
processors may further include: (e) at least one processor

providing higher performance execution than the general-
purpose out-of-order processor for fourth given program

portions having more biased control flow than the second
given program portions.

[0010] Itis thus a feature ofat least one embodimentofthe

invention to identify specialized processors that can be
synergistically combined to improve processor performance

under the parameters of execution speed, energy consump-
tion, and chip area. The present inventors have determined

that the proper combination of multiple specialized proces-

sors significantly shifts the performance frontier to higher
performance without the need for greater chip area.

[0011] In some embodiments, the invention may use a

combination of program analysis and profiling data from a
previous execution of the program to predict which of the

heterogeneous processors will have the most performance.
Basedon these predictions, the decisions ofwhich processor

to execute on maybestatically determined and encodedinto
the program binary.

[0012] In one embodiment, the invention may provide a

real-time program profiler monitoring execution of different
portions of the program on different of the heterogeneous

processors to assess data parallelism during an earlier execu-
tion of the different portions. The switch unit alternately

switches between the heterogeneous processors for a later

execution of the different portions of the program based on
the assessed degree of data parallelism by the real-time

program profiler during the earlier execution ofthe different
portions. Similarly, the profiler may monitor control flow

complexity and control flow criticality.

[0013] Itis thus a feature ofat least one embodimentofthe
invention to manage the complexity of a processor having

many similar specialized processors with overlapping capa-
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bilities while improving processor performance. Real-time
profiling allows program portions to be allocated in a

mannerthat is largely transparent to the user/programmer,
rendering the architectural complexity tractable.

[0014] The real-time program profiler may monitor data
dependencies in the execution of a given portion of the

program to assess a degree of data parallelism with larger

numbers of dependencies associated with lesser data paral-
lelism. In addition the real-time program profiler may moni-

tor a numberofbranches in the execution of a given portion
of the program to assess the amount of control flow with

larger numbers of branches associated with more control
flow.

[0015] Itis thus a feature of at least one embodimentofthe

invention to provide a simple run time assessment of the
amount of data parallelism and control flow complexity.

[0016] The architecture may include a general-purpose
out-of-order processor providing speculative execution, and

only a single one of the heterogeneousprocessors other than

the general-purpose out-of-order processor may execute at a
time and the remaining processors other than the general-

purpose processor maybe placed in a reduced energy con-
sumption state.

[0017] Itis thus a feature of at least one embodimentofthe
invention to largely eliminate the energy penalty of using

multiple processors.

[0018] The heterogeneous processors may share a same
memory and cache from which instructions and data are

obtained.
[0019] Itis thus a feature of at least one embodimentofthe

invention to provide a limited needfor state transfer between
processors to allow exploitation of relatively short program

portions.

[0020] The heterogeneous processors may include a gen-
eral-purpose processor providing configuration data to other

heterogeneous processors before switching to another het-
erogeneous processor for execution of a program portion.

[0021] Itis thus a feature of at least one embodimentofthe
invention to permit highly simplified special-purpose pro-

cessors that can be assisted in certain functions by a general-

purpose processor.
[0022] These particular objects and advantages may apply

to only some embodimentsfalling within the claims and thus
do not define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] FIG. 1 is a block diagram of a hybrid computer
constructed according to the present invention providing a

general-purpose processor and four special-purpose proces-
sors controlled by a switching unit;

[0024] FIG. 2 is a decision tree showing the allocation of

program portions to different special-purpose processors;

[0025] FIG. 3 is a flowchart of the process of switching

between the different special-purpose processors during
runtime;

[0026] FIG. 4 is a logical representation of a program

showing a mapping of data to program counter values to
control the switching process of FIG. 3;

[0027] FIG. 5 is a detailed flowchart of a profiling step
determining the allocation of special-purpose processors to

program portions of FIG. 3; and

[0028] FIG. 6 is a flowchart showing three methods of
determining the allocation ofprogram portionsto the special

purpose processors.
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DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

[0029] Referring now to FIG. 1, a heterogeneous proces-
sor computer 10 may include a general-purpose processor

12, for example, providing for out-of-order (OOO), specu-

lative execution. The general-purpose processor 12 may
employ a comprehensive instruction set suitable for execu-

tion of general-purpose program types having a wide range
of behaviors and coming from a wide range of program

domains. The general-purpose processor 12 may neverthe-
less be limited in performance, for example, to a two-wide

OOO processor in contrast to a 6-wide OOO, where two-

wide refers to a superscalar processor that can issue two
instructions to the pipeline at once.

[0030] The general-purpose processor 12 communicates

with a cache structure 14 (and memory management unit)
allowing access to a main memory 16. The main memory 16

may employ a variety of different technologies including
volatile and nonvolatile storage and may hold programs and

data including an operating system 18, a compiler for the

present heterogeneous processor computer 10, and a gen-
eral-purpose program 20 for execution.

[0031] In addition to the general-purpose processor, the

heterogeneousprocessor computer 10 employs four special-
purpose processors including: a short vector, single instruc-

tion multiple data processor (SIMD) 22; a data parallel,
course-grained reconfigurable architecture processor (DP-

CGRA)24; a non-speculative data flow processor (NS-DF)
26; and a trace-speculative processor (Trace-P) 28. These

processors are generally highly specialized and may not be

able to execute a full instruction set architecture of the
general-purpose processor 12.

[0032] The SIMD 22 may be any of a variety of well-

known architectures allowing a single instruction to be
applied simultaneously to many data elements, the latter

provided in the form of a vector from the general-purpose
processor 12 over vector line 30 between the general-

purpose processor 12 and the SIMD 22.After transfer of the

vector, the general-purpose processor 12 provides the
instructions to the SIMD 22 that should be applied to the

vector and the SIMD 22performsthe necessary calculations
and returns the modified vector. The SIMD 22 is suitable

only for program portions having a limited amount of
control (branches controlled by calculation results), for

example, finding application in data parallel loops with little

or no control.

[0033] The DP-CGRA 24also provides parallel execution
on data but tolerates additional control. An example of a

DP-CGRA 24 is the Dyser architecture described by Venka-
traman Govindaraju, Chen-Han Ho, Tony Nowatzki, Jatin

Chhugani, Nadathur Satish, Karthikeyan Sankaralingam,
and Changkyu Kim in “Dyser: Unifying functionality and

parallelism specialization for energy efficient computing”,

TEEE Micro, 2012 and the Morphosysarchitecture described
by H. Singh, Ming-Hau Lee, Guangming Lu,F. J. Kurdahi,

N. Bagherzadeh, and E. M. Chaves Filho in: “Morphosys: an
integrated reconfigurable system for data-parallel and com-

putation-intensive applications”, IEEE Transactions on
Computers, 2000, both hereby incorporated by reference.

The DP-CGRA 24 is suitable for parallel loops with sepa-

rable computation and memory access. The DP-CGRA 24
may receive a vector directly from the general-purpose

processor 12 over vector line 30 and may receive configu-
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ration (implementing instructions) and initialization data
from the general-purpose processor 12 over control line 32.

[0034] The NS-DF 26is suitable for program portionsthat

are not data-parallel but still have high potential instruction
level parallelism (ILP) where control flow does notlie on a

critical path (the long chain of computational instructions
that determines the execution time). In this regard the

NS-DF 26 may not provide speculative execution to sim-

plify its construction and boost performancefor this type of
program portion. An example of the NS-DF 26 is the SEED

architecture described by Tony Nowatzki, Vinay Gangadhar,
and Karthikeyan Sankaralingam in: “Exploring the potential

of heterogeneous Von Neumann/Dataflow execution mod-
els, in ISCA, 2015, and the Wavescalar architecture

described by Steven Swanson, Ken Michelson, Andrew

Schwerin, and Mark Oskin in “Wavescalar’ in MICRO,
pages 291 et seq., 2003, both incorporated by reference. The

NS-DF 26 will generally be configured by the general-
purpose processor 12 through the configuration lines 32 and

then will receive a program counter value to communicate
directly through the cache structure 14 to obtain data and

program instructions starting at that program counter value

when activated.

[0035] The Trace-P 28 is suitable for programsthat require

some speculation where the speculation is highly biased

along one “hot path”, for example, through a loop. An
example Trace-P 28 architecture is described in BERET

architecture described by Shantanu Gupta, Shuguang Feng,
Amin Ansari, Scott Mahlke, and David Augustin: “Bundled

execution of recurring traces for energy-efficient general
purpose processing” in MICRO, 2011, and the CCA archi-

tecture described by Nathan Clark, Manjunath Kudlur,

Hyunchul Park, Scott Mahlke, and Krisztian Flautner in:
“Application-specific processing on a general-purpose core

via transparent instruction set customization” in MICRO,
2004, both incorporated by reference. The Trace-P 28 pro-

cessor will generally be configured by the general-purpose
processor 12 and will receive a program counter value over

control line 32 and may communicate directly through the

cache structure 14 to obtain data and program instructions
when activated.

[0036] Generally, it will be appreciated that each of the

specialized processors SIMD 22, DP-CGRA 24, NS-DF26,
and Trace-P 28 share the same virtual memory system and

cache hierarchy (either directly or through the general-
purpose processor 12) allowing fast switching between

processors without the need to migrate state information.

This switching between the general-purpose processor 12
and the specialized processors SIMD 22, DP-CGRA 24,

NS-DF 26, and Trace-P 28 is performed by a switch unit 34
communicating with each of the specialized processors

SIMD 22, DP-CGRA 24, NS-DF 26, and Trace-P 28 to
switch them between an active state in which they may

execute instructions and a dormant state providing low

power consumption. During the dormantstate, the special-
ized processors SIMD 22, DP-CGRA 24, NS-DF 26, and

Trace-P 28 are allowed to lose their architectural state and
thus may be essentially shut down completely for zero

power consumption. When anyofthe specialized processors
SIMD 22, DP-CGRA 24, NS-DF 26, and Trace-P 28 are

operating, the general-purpose processor 12 may be moved

to a low-powerstate but retains architectural state informa-
tion so that it can be reactivated without loss of state

information.
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[0037] Generally, the switch unit 34 and the general-

purpose processor 12 inter-communicate so that the general-

purpose processor 12 may properly initialize each of the

specialized processors SIMD 22, DP-CGRA 24, NS-DF26,

and Trace-P 28 before it is activated and to receive it and

stored data from the SIMD 22, DP-CGRA 24before they are

deactivated.

[0038] Referring nowto FIG.6, three basic strategies can

be usedfor allocating portions of the program 20 to different

onesofthe specialized processors SIMD 22, DP-CGRA 24,

NS-DF26, and Trace-P 28 e. All approaches have the same

basic steps. The first step is finding program “phases”being

regions of the program 20, typically thousandsto millions of

execution-time instructions, where allocation to a particular

one of the specialized processors is indicated. In a second

step, the program phases are characterized for example by

profiling. Next, in a third step, a combination of program

intermediate representation (IR) analysis and/or profiling

information is used to predict which specialized processor

SIMD 22, DP-CGRA 24, NS-DF 26, and Trace-P 28 will
give the highest performance. With that decision made, the

fourth step is to compile or interpret the program IR into the

architectural interface of the chosen specialized processor

(or determine the necessary configuration of the chosen

specialized processor[k1][k2][k3]). The fifth step is to inject

the invocation of the processor into the program execution

of the program 20, so that it can switch on a future

activation.

[0039] For a quasi-static approach, the phase assignment

decisions are made before the execution of the relevant

program begins. Program phases may be identified, for

example as indicated by process block 74, by profiling the

program andtracking the numberofinstructions executed in

loops and functions. Next profiling, per process block 76,
may be used to collect information collected from one or

several previous executions of the identified program
phases, which may use test program inputs and program

instrumentation to discover these properties of the program

phases. For example,the profiling intbrmation collected may
be length ofa critical path through the instructions according

to the program IR. Oneprediction technique, then, involves
the estimation of execution time of the program phases on a

particular specialized processor by formulating this execu-
tion time as the length of the critical path through the

instructions according to the Program IR, in light of

expected instruction execution times and dependences, and
microarchitectural constraints unique to the given special-

ized processor. The specialized processor that has the least
execution time estimation(or alternatively energy) would be

selected per process block 78. Alternatively, a set of rules
and thresholds can be developed based directly on the

properties through empirical testing and validation, and

these rules may be tuned throughstatistical techniques like
regression. For example, the numberof control instructions

may measuredin the profiling may be applied directly to an
empirically derived threshold to decide whether or not

execution on the program phase using a SIMD processor
would be profitable or not. After a specialized processoris

selected, the region of the phase in question would be

compiled, per process block 80, for that specialized proces-
sor using well known code generation techniques. Finally,

special jump instructions would be inserted into the program
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20 at the region entry point which would indicate to the
switch unit to transfer execution to the selected processor,

per process block 82.

[0040] A second approach is to employ a virtual machine
(e.g., Java), which typically interpret instructions in the

virtual machine’s instruction set until frequently executed
regions are found, then compile them into native code. The

virtual machine approach is quite similar to the static
approach, except that the compilation decisions are based on

profiling during the current execution of the program. Thus

at process block 84, loops and functions may be monitored
to identify program phases using the virtual machine soft-

ware. The same process maybe usedat process block 86 to
collect profile data used at process block 88 estimate execu-

tion times and select an appropriate specialized processor.
Compilation of the program phases for the particular pro-

cessor may occur at process block 90 and the necessary

transition instructions inserted per process block 92.

[0041] A final approachis to use hardware-based dynamic

translation. Here, hardware mechanismsare used for detect-

ing program phases. In one example, represented by process
block 94, retiring instructions linked to particular program

counter values can be used to detect program loops and to
invoke an analysis of the program portions holding these

loops once a certain threshold loop count has been reached.
This technique is described, for example in Matthew A.

Watkins, Tony Nowatzki, Anthony Carno, “Software trans-

parent dynamic binary translation for coarse-grain recon-
figurable architectures”, HPCA, 2016, 2016 IEEE Interna-

tional Symposium on High Performance Computer
Architecture (HPCA) pp. 138-150. Similar hardware moni-

toring may be employedto collect data and to determine the
best specialized processorto use for each program phase per

process block 96 and process block 98. Necessary configu-

ration or translation processes may be incorporated into the
architecture of the computer 10 (so that each specialized

processor may work with a common instruction set) as
indicated by process block 100. For example, hardware may

monitor execution of loops or function calls in the pipeline
to detect frequently executed regions and may operate

(optionally using an additional microprocessor) to compile

code to different heterogeneous processors as required.
Hardware in the front-end of the general processor pipeline

maydetect starts of regions and invoke the accelerator.

[0042] Finally, as indicated by process block 102, a hard-
ware system may be used to invoke switching between the

different specialized processors and the general-purpose
processor. This approach will be now described in greater

detail below

[0043] In the dynamic translation embodiment of the
invention, the general-purpose processor 12 may manage an

activation table 36 controlling the switch unit 34. Referring
now to FIG.4, the activation table 36 may logically provide

a table with multiple rows representing portions 40 of the

program 20 executed by the heterogeneous processor com-
puter 10, these different portions 40 such as will be assigned

to different of the specialized processors SIMD 22, DP-
CGRA 24, NS-DF 26, and Trace-P 28. A first column 39 of

each row, for example, may hold a program counter value of
program 20 demarcating a beginning of a portion 40. The

portions 40, for example, may be natural divisions of the

program 20 representing loops or function calls within the
program 20. In the case of nested loops or nested function

calls, the program portions 40 may be the lowest most level
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of loop and function calls, although the invention contem-
plates that portions 40 may be combined (for example, all of

the loops within a loop) if they tend to have the sameaffinity
to a particular specialized processor.

[0044] For each row associated with the program portion

40, a second column 42 will designate a particular core of
the specialized processors SIMD 22, DP-CGRA 24, NS-DF

26, and Trace-P 28 or the general-purpose processor 12
which will be activated to execute the instructions of that

program portion 40. For this purpose the switch unit 34 may

monitor the current program counter of the general-purpose
processor 12 or the various specialized cores that have a

program counter and switch among the cores appropriately
using the guidance of column 42, for example, through the

use of an exception type mechanism.

[0045] In one embodiment, the particular processor used
for a given program portion 40 selected from the specialized

processors SIMD 22, DP-CGRA 24, NS-DF 26, and Trace-P

28 and the general-purpose processor 12 may be determined

by a real-time profiling process. This process may be imple-

mented by special hardware or performed by the general-
purpose processor 12 according to a profiling program 38

executed, for example, as one thread by the general-purpose
processor12.In this profiling process,statistics are collected

with respect to the execution of each program portion
including currentstatistics placed in column 44related to the

current processor executing the portion 40 and historical

statistics in column 47 that may be optionally used in an AB
comparison type process as will be discussed below.

[0046] Referring now to FIG. 2, generally the various

specialized processors SIMD 22, DP-CGRA 24, NS-DF26,
and Trace-P 28 are selected to provide for different com-

parative advantages or affinities 46 in the execution of
program portions 40 of particular domains or behavior.

Ideally, together, the processors provide affinities that span
a substantial portion of a variety of general-purpose pro-

grams 20 and which together with the general-purpose

processor 12 span the entire domain ofmost general-purpose
programs.A distribution ofaffinities 46 may be obtained by

viewing program portions 40 according to a taxonomy 51
that generally considers data parallelism, control complex-

ity, and characteristics such as control consistency and
control criticality.

[0047] First, program portions 40 may be separated

according to program portion as largely data parallel as
indicated by node 50 or not data parallel indicated by node

52. One determination of data parallelism relates to how

much data dependencyexists between data elements within
the program portion 40. Less data dependency between data

elements is associated with greater data parallelism. Gener-
ally data parallelism refers to the ability to independently

operate on the data without data dependency problems. Data
dependency, for example, occurs when data elements modi-

fied by earlier instructions affect the data read at later

instructions (read-after-write dependency) as well as with
other combinations of reading and writing of data that could

change the results of these operations if order is not pre-
served. A variety of techniques may be used to assess data

dependencyincluding, for example, monitoring a pipeline in
the general processor executing the program portion to

evaluate dependencies at a time of memory disambiguation.

This dynamic or profiling information can be incorporated
into analysis ofthe program IR to determinethe total amount

and type of data dependency(e.g. loop iteration dependence
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analysis). If the original program IR is available (in a static
compilation approach for example) variable scoping infor-

mation or operation on distinct data objects may also be used
to determine the degree of data parallelism.

[0048] For program portions 40 that exhibit a high degree

of data parallelism, the program is evaluated with respect to
the degree of control complexity, for example, by counting

branch instructions. Program portions with high data paral-
lelism and low control complexity are markedin activation

table 36 for execution by the SIMD 22. Conversely program
portions with high data parallelism and moderate levels of

control complexity may be executed by the DP-CGRA 24.

Program portions 40 with high data parallelism and high
levels of control complexity remain with the general-pur-

pose processor 12.

[0049] For program portions 40 that do not provide high
levels of data parallelism, as indicated by node 52, in cases

where the control flow is relatively consistent (e.g., biased
along a single hot path) the program portion is marked for

execution by the Trace-P 28. A determination of consistent
control flow may be ascertained by monitoring the per-

instruction branch directions in a given region over time.

[0050] Whenthe control of the program portion 40 is not
highly biased but noncritical, meaning that the control flow

pathis relatively isolated from the critical data flow path, the
program portion may be executed by NS-DF26. The assess-

ment of noncritical control flow maybe by performed with

dataflow analysis on the program IR to determinethecritical
path of instructions (through for example the inner loop of

the region) with estimates of instruction latencies and depen-
dence information from profiling. If the controlis largely off

the estimated critical instruction path, than that would con-
stitute a non-critical control region. Alternatively, a purely

hardware approach can be usedto find the critical path, as

in “Focusing processorpolicies via Critical Path Prediction”
described by Brian Fields, Shai Rubin, and Rastislav Bodik.

Again cases where there is little parallel data but highly
variable control criticality will be executed by the general-

purpose processor 12.

[0051] Each of these determinations may be recorded as
statistics in column 44 of activation table 36 and then

applied to static or dynamically established thresholds to
core identification per column 42 ofactivation table 36 and

used to guide the switching between the various specialized

processors SIMD 22, DP-CGRA 24, NS-DF 26, and Trace-P

28 and the general-purpose processor 12.

[0052] Alternatively or in addition, the switch unit 34 may
experiment with the execution of different program portions

40 on different of the specialized processors SIMD 22,

DP-CGRA 24, NS-DF 26, and Trace-P 28 versus general-
purpose processor 12 to dynamically evaluate which core

provides the best performance which may be usedto set the
core identification of column 42 in activation table 36.

Historical statistics obtained from execution on different
processors SIMD 22, DP-CGRA 24, NS-DF 26, Trace-P 28

and the general-purpose processor 12 may be stored in

column 47 of activation table 36 and used in this comparison
process to evaluate the relative advantages of one core

versus anothercore.
[0053] Referring now to FIG.3, use of the heterogeneous

processor computer 10 of the present invention may option-

ally begin with a static analysis of the program 20 indicated
by process block 54, for example, attempting to evaluate

degrees of data parallelism, control criticality, control com-
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plexity and control variability discussed above with respect
to FIG. 2 to the extent determinable in static analysis. This

analysis may be performed during compilation of the pro-
gram and may optionally make use of tags embeddedin the

program identifying preferred processors for use by particu-
lar program portions 40. Alternatively, initial selections may

be made by the programmer/user or a random initialization

may be used. This statically derived information may be
used to initialize the activation table 36 as indicated by

process block 56 with respect to column 42.

[0054] Program execution is then begun andtransitions

between program portions 40 monitored by switch unit 34 as

indicated by process block 58 by monitoring the program
counter logically shared by the specialized processors SIMD

22, DP-CGRA 24, NS-DF 26, and Trace-P 28 typically
managed by the general-purpose processor 12. At each

transition, as indicated by process block 60, the activation
table 36 is interrogated to see if a processor different from

the currently executing processor should be used. If so, that

processoris then activated.

[0055] At process block 62 profiling may be conducted

(shown as a serial operation but in fact implemented as a
backgroundtask in parallel), for example, by the switch unit

34 in conjunction with the general-purpose processor 12

executing a profiling program 38.

[0056] Referring momentarily to FIG. 4, as discussed

briefly above, profiling of process block 62 may, for
example, count branches as indicated by process block 64

(to determine control complexity), assess data dependency

as indicated by process block 66 (to determine degree of data
parallelism), and measurethecriticality of control per pro-

cess block 68 by monitoring intersections of data flow and
control flow.

[0057] As noted abovestatistics derived from thisprofil-

ing maybestored in column 44 ofthe activation table 36 and
analyzed according to a predetermined mapping indicated

by process block 70 using the taxonomy 51 of FIG. 2. This
mapping process, for example, may establish thresholds

applied against the statistics to select edges of the taxonomy
of FIG.2 to identify a particular processor. At process block

72 the results of this analysis are used to update column 42

of the activation table 36.

[0058] When an A/B comparison is to be used, statistics

for the current processor from column 44 are moved to

column 47 and new profiling of a new processor is con-
ducted for a period of time. After completion of that period

of time, the statistics of columns 44 and 47 are compared to
determine a preferred processor to be identified in column

42.
[0059] The concept of improved performanceas discussed
herein with respect to a computer architecture refers gener-

ally to a position of a frontier describing execution speed as
a function of energy consumption as a function of chip area

in comparison to a similar frontier of a reference architec-
ture.

[0060] Certain terminology is used herein for purposes of

reference only, and thus is not intended to be limiting. For
example, terms such as “upper”, “lower”, “above”, and

“below” refer to directions in the drawings to which refer-
ence is made. Terms such as “front”, “back”, “rear”, “bot-

tom”and “side”, describe the orientation of portions of the

component within a consistent but arbitrary frame ofrefer-
ence which is made clear by reference to the text and the

associated drawings describing the component under dis-
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cussion. Such terminology may include the words specifi-
cally mentioned above, derivatives thereof, and words of

similar import. Similarly, the terms “first”, “second” and
other such numerical terms referring to structures do not

imply a sequence or order unless clearly indicated by the
context.

[0061] When introducing elements or features of the pres-

ent disclosure and the exemplary embodiments,the articles
“a”, “an”, “the” and “said” are intended to mean that there

are one or more of such elements or features. The terms
“comprising”, “including” and “having” are intended to be

inclusive and mean that there may be additional elements or
features other than those specifically noted. It is further to be

understood that the method steps, processes, and operations

described herein are not to be construed as necessarily
requiring their performance in the particular order discussed

or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or

alternative steps may be employed.

[0062] References to “a microprocessor” and “a proces-
sor” or “the microprocessor” and “the processor,” can be

understood to include one or more microprocessors that can
communicate in a stand-alone and/or a distributed environ-

ment(s), and can thus be configured to communicate via
wired or wireless communications with other processors,

where such one or more processor can be configured to

operate on one or more processor-controlled devices that can
be similar or different devices. Furthermore, references to

memory, unless otherwise specified, can include one or more
processor-readable and accessible memory elements and/or

components that can be internal to the processor-controlled
device, external to the processor-controlled device, and can

be accessed via a wired or wireless network.

[0063] Itis specifically intended that the present invention
not be limited to the embodiments and illustrations con-

tained herein and the claims should be understoodto include
modified forms of those embodiments including portions of

the embodiments and combinations of elements of different

embodiments as come within the scope of the following
claims. All of the publications described herein, including

patents and non-patent publications, are hereby incorporated
herein by reference in their entireties.

Whatwe claim is:

1. Acomputer architecture for executing a program com-
prising:

a memory cache;

a set of heterogeneous processors sharing the memory
cache and providing relatively different performances

with respect to different portions of the program; and

a switch unit alternately switching between the heteroge-

neous processors for different portions of the program
based on an assessed comparative advantage of the

heterogeneous processors in executing the different

portions;

wherein the heterogeneous processors include:

(a) a general-purpose processor providing speculative
execution and capable of executing the program

entirely;

(b) a first special purpose processor providing higher
performance execution than the general-purpose pro-

cessor for first given program portions; and

(c) a second special purpose processor providing higher
performance execution than the general-purpose pro-

cessor for second given program portions.
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2. The computer architecture of claim 1 wherein the first
special purpose processor provides higher performance

execution than the general-purpose processor for a first
given program portion having a predetermined level of

control criticality and the second purposeprocessor provides
higher performance execution than the general-purpose pro-

cessor for a second given program portion exhibiting more

control criticality than the first given program portion

3. The computer architecture of claim 2 wherein the

second purpose processor provides higher performance

execution than the general-purpose processorfor the second
given program providing a predetermined level of consis-

tency of control flow and wherein the first special purpose
processor provides higher performance execution than the

general-purpose processor for the first given program por-
tions exhibiting less control consistency than the second

program portion.

4. The computer architecture of claim 3 wherein the
second special purpose processor provides a level of specu-

lation less than a level of speculation provided by the

general-purpose processor.

5. The computerarchitecture of claim 1 whereintheset of

heterogeneous processors includes a specialized processor

not providing speculative execution.

6. The computer architecture of claim 1 further including

a third special purpose processor providing higher perfor-
mance execution than the general-purpose processor for a

third program portion having a predetermined level of data

parallelism and whereinthefirst and second special purpose
processors provide higher performance execution than the

general-purpose processor for the first and second given
programs exhibiting less data parallelism than the third

program portion

7. The computer architecture of claim 6 further including
a fourth special purpose processor providing higher perfor-

mance execution than the general-purpose processor for a
fourth program portion having lower control complexity

than the third program portion wherein the fourth special

purpose processor provides higher performance execution
than the general-purpose processor for the fourth program

portion and the third special purpose processor provides
higher performance execution than the general-purpose pro-

cessor for the third program portion having greater control
complexity than the fourth program portion.

8. The computer architecture of claim 7 wherein the

fourth special purpose processor is a processor executing a
single instruction in parallel on multiple data elements.

9. The computer architecture of claim 8 wherein the third

and fourth special purpose processors are processors accept-
ing a single instruction for execution in parallel on multiple

data elements and providing comparative relative advan-

tages on different lengths of data vectors.

10. The computer architecture of claim 1 wherein the

general-purpose processor provides configuration data to

given other heterogeneous processors before switching to
the given other heterogeneous processors for execution of a

program portion.

11. The computer architecture of claim 1 wherein the
switch unit is controlled by one of the heterogeneous pro-

cessors.

12. The computer architecture of claim 1 wherein only a
single one of the heterogeneous processors other than the

general-purpose processor executes at a time and remaining
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processors other than the general-purpose processor are
placed in a reduced energy consumptionstate.

13. The computer architecture of claim 1 wherein the
general-purpose processor is an out-of-order processor.

14. The computer architecture of claim 1 further includ-
ing:

a real-time program profiler monitoring execution of

different portions of the program on different of the
processors to assess comparative advantages of the

different processors in executing the different portions
during an earlier execution of the different portions;

and
wherein the switch unit alternately switches between the

processors for a later execution of the different portions

of the program based on the assessed comparative
advantage as indicated by the real-time program pro-

filer during the earlier execution of the different por-
tions.

15. The computer architecture of claim 14 wherein the

real-time program profiler monitors execution of a given
portion of the program to assess a degree of control criti-

cality.
16. The computer architecture of claim 14 wherein the

real-time program profiler monitors data dependencies in the
execution of a given portion of the program to assess a

degree of data parallelism with larger numbers of depen-

dencies associated with lesser data parallelism.
17. The computer architecture of claim 14 wherein the

real-time program profiler monitors a numberofbranches in
the execution of a given portion of the program to assess

control flow complexity with larger numbers of branches
associated with more control flow complexity.

18. The computer architecture of claim 14 wherein the

real-time program profiler is executed at least in part on one
of the heterogeneous processors.
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19. A method of executing a program on a computer
architecture having:

a memory cache;

a set of heterogeneous processors sharing the memory
cache and providing relatively different performances

with respect to different portions of the program; and

a switch unit alternately switching between the heteroge-
neous processors for different portions of the program

based on an assessed comparative advantage of the
heterogeneous processors in executing the different

portions;

wherein the heterogeneous processors include:

(a) a general-purpose processor providing speculative
execution and capable of executing the program

entirely;

(b) a first special purpose processor providing higher
performance execution than the general-purpose pro-

cessor for first given program portions; and

(c) a second special purpose processor providing higher
performance execution than the general-purpose pro-

cessor for second given program portions; the method
comprising the steps of:

(a) allocating program portions to different of the hetero-

geneous processors according to a first allocation pat-
tern;

(b) profiling the allocated program portions during execu-

tion on the heterogeneous processors according to the
first allocation pattern; and

(c) based ontheprofiling, reallocate the program portions

to the different heterogeneous processors according to
a secondallocation pattern providing improved perfor-

mance.


