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(57) ABSTRACT 

In accordance with some embodiments, methods, systems, 
and media for detecting the presence of are provided. In 
some embodiments, a method of detecting an analyte is 
provided, the method comprising: capturing an image of 
liquid crystals; determining one or more features based on 
the brightness of the pixels in the image; providing the one 
or more features to a trained support vector machine, 
wherein the support vector machine was trained using 
images captured of other liquid crystals when exposed to a 
first analyte and the other liquid crystals exposed to a second 
analyte; and receiving an indication from the support vector 
machine indicating whether the liquid crystals have been 
exposed to the first analyte. 
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METHODS, SYSTEMS, AND MEDIA FOR 
DETECTING THE PRESENCE OF AN 

ANALYTE 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

[0001] This application is based on, claims the benefit of, 
and claims priority to U.S. Provisional Application No. 
62/569,187, filed Oct. 6, 2017, which is hereby incorporated 
herein by reference in its entirety for all purposes. 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

[0002] This invention was made with govermnent support 
under DE-SC0014114 awarded by the US Department of 
Energy and DMR1435195 awarded by the National Science 
Foundation. The govermnent has certain rights in the inven­
tion. 

BACKGROUND 

[0003] Reliably detecting the presence of many chemicals 
(e.g., in air, ground water, etc.) at relatively low concentra­
tions often requires expensive lab equipment, and takes 
considerable amounts of time. For example, the U.S. Depart­
ment of Energy Savannah River National Lab processes tens 
of thousands of manually collected groundwater samples at 
a cost of millions of dollars per year (e.g., on the order of 
$100 to $1,000 per sample). Each of these samples must be 
collected and transported to the lab for analysis, which can 
increase the amount of time between collection and analysis, 
and can increase the chances of the integrity of the analysis 
is compromised during collection, transport, storage and/or 
analysis. 

[0004] Accordingly, chemical sensing technologies that 
can be used in-situ and with limited equipment and human 
intervention are desirable. 

SUMMARY 

[0005] In accordance with some embodiments of the dis­
closed subject matter, methods, systems, and media for 
detecting the presence of an analyte are provided. 

[0006] In accordance with some embodiments of the dis­
closed subject matter, a method for detecting the presence of 
an analyte is provided, the method comprising: capturing an 
image of liquid crystals; determining one or more features 
based on the brightness of the pixels in the image; providing 
the one or more features to a trained support vector machine, 
wherein the support vector machine was trained using 
images captured of other liquid crystals when exposed to a 
first analyte and the other liquid crystals exposed to a second 
analyte; and receiving an indication from the support vector 
machine indicating whether the liquid crystals have been 
exposed to the first analyte. 

[0007] In some embodiments, the method further com­
prises determining one or more additional features based on 
the image of the liquid crystals, wherein the one or more 
additional features comprises outputs of a hidden layer of a 
trained object detection deep learning convolution neural 
network that was provided with values of the pixels in the 
image as an input. 
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[0008] In some embodiments, the one or more additional 
features are based on a color image of the liquid crystals, and 
wherein the one or more features are based on a grayscale 
image of the liquid crystals. 
[0009] In some embodiments, the method further com­
prises: converting the RGB image to a grayscale image; 
calculating a plurality of oriented gradients using the gray­
scale image; and calculating a histogram of the plurality of 
oriented gradients, wherein the one or more features com­
prises values from the histogram of the plurality of oriented 
gradients. 
[0010] In some embodiments, the RGB image has a lower 
resolution than the image of the liquid crystals. 
[0011] In some embodiments, the first analyte is a gas 
phase analyte and the second analyte is a non-targeted gas 
phase molecule. 
[0012] In some embodiments, the first analyte is DMMP 
and the second analyte is water vapor. 
[0013] In some embodiments, the analyte to be detected is 
sarm. 
[0014] In some embodiments, the first analyte is a liquid 
phase analyte and the second analyte is a non-targeted liquid 
phase analyte. 
[0015] In some embodiments, the first analyte is a bio­
logical analyte. 
[0016] In some embodiments, the liquid crystals are dis­
posed within a micro-well. 
[0017] In some embodiments, the liquid crystals are m 
contact with self-assembling monomers. 
[0018] In some embodiments, the liquid crystals are m 
contact with a polymerized target of a bioagent. 
[0019] In some embodiments, the liquid crystals form at 
least one droplet suspended in an aqueous phase. 
[0020] In some embodiments, the liquid crystals are dis­
posed within a holding compartment of a substrate over 
which an aqueous solution is being passed. 
[0021] In some embodiments, the liquid crystals are doped 
with a chiral molecule. 
[0022] In some embodiments of the disclosed subject 
matter, a system for detecting the presence of an analyte is 
provided, the system comprising: an image sensor; and a 
processor that is programmed to: cause the image sensor to 
capture an image of liquid crystals; convert the image to 
grayscale; determine one or more features based on the 
brightness of the pixels in the grayscale image; provide the 
one or more features to a trained support vector machine, 
wherein the support vector machine was trained using 
images captured of other liquid crystals when exposed to a 
first analyte and the other liquid crystals exposed to a second 
analyte; and receive an indication from the support vector 
machine indicating whether the liquid crystals have been 
exposed to the first analyte. 
[0023] In some embodiments of the disclosed subject 
matter, a non-transitory computer readable medium contain­
ing computer executable instructions that, when executed by 
a processor, cause the processor to perform a method for 
detecting the presence of an analyte is provided, the method 
comprising: capturing an image of liquid crystals; convert­
ing the image to grayscale; determining one or more features 
based on the brightness of the pixels in the grayscale image; 
providing the one or more features to a trained support 
vector machine, wherein the support vector machine was 
trained using images captured of other liquid crystals when 
exposed to a first analyte and the other liquid crystals 
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exposed to a second analyte; and receiving an indication 
from the support vector machine indicating whether the 
liquid crystals have been exposed to the first analyte. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0024] Various objects, features, and advantages of the 
disclosed subject matter can be more fully appreciated with 
reference to the following detailed description of the dis­
closed subject matter when considered in connection with 
the following drawings, in which like reference numerals 
identify like elements. 
[0025] FIG. 1 shows an example of liquid crystal sensors 
that can be used to detect the presence of an analyte in 
accordance with some embodiments of the disclosed subject 
matter. 
[0026] FIG. 2 shows an example of a system for detecting 
the presence of an analyte in accordance with some embodi­
ments of the disclosed subject matter. 
[0027] FIG. 3 shows an example of hardware that can be 
used to implement the system depicted in FIG. 2 and a 
computing device in accordance with some embodiments of 
the disclosed subject matter. 
[0028] FIG. 4 shows an example of a process for training 
a classification model to classify images of liquid crystal 
sensors to determine whether the image indicates the pres­
ence of a particular chemical in accordance with some 
embodiments of the disclosed subject matter. 
[0029] FIG. 5 shows an example of a process for detecting 
the presence of an analyte using a trained classification 
model in accordance with some embodiments of the dis­
closed subject matter. 
[0030] FIG. 6 shows an example of a process of normal­
izing two different images of micro-wells for feature extrac­
tion in accordance with some embodiments of the disclosed 
subject matter. 
[0031] FIG. 7A shows an example of oriented gradients 
calculated at various points in an image of a micro-well in 
accordance with some embodiments of the disclosed subject 
matter. 
[0032] FIG. 7B shows examples of images of individual 
microwells after exposure to either N2-water or DMMP. 
[0033] FIG. 7C shows examples of the evolution of the 
visual appearance of particular microwells over time after 
either N2-water or DMMP. 
[0034] FIG. 8 shows an example network topology of a 
convolution neural network that can be used to generate 
features for use in accordance with some embodiments of 
the disclosed subject matter. 
[0035] FIGS. 9 to 17 show example results achieved by 
systems implemented in accordance with some embodi­
ments of the disclosed subject matter. 
[0036] FIG. 18 shows an example experimental setup that 
can be used to generate image data for training and/or testing 
of mechanisms for detecting the presence of an analyte. 
[0037] FIG. 19 shows examples of average intensity on 
various color channels over time in images of liquid crystal 
sensors exposed to DMMP and N2 -water over time. 
[0038] FIG. 20 shows examples of average classification 
accuracy on a "test" set of images over time for various 
strategies. 
[0039] FIG. 21 shows a symbolic example of compression 
of the number of samples into clusters that can be used to 
create a sparse preconditioner for training a support vector 
machine using Schur decomposition. 
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DETAILED DESCRIPTION 

[0040] The present disclosure provides mechanisms which 
can, for example, include methods, systems, and/or media, 
for detecting the presence of an analyte. 
[0041] In some embodiments of the disclosed subject 
matter, chemically responsive liquid crystals can be used in 
connection with machine learning techniques to improve 
selectivity and speed of such liquid crystal sensors. For 
example, in some embodiments, feature extraction tech­
niques can be used to characterize complex space-time 
patterns observable in the response of the liquid crystal 
sensors. In a more particular example, various features, such 
as average brightness, oriented brightness gradients, and 
features generated by a deep neural network, can be com­
bined to identify such patterns. In some embodiments, 
combining multiple sources of feature information can 
facilitate more accurate classification. Additionally, in some 
embodiments, different combinations of features can be used 
as there is generally a tradeoffbetween the amount of feature 
information and the number of training samples used to 
generate a model, and the computational complexity of the 
resulting classification models. 
[0042] In some embodiments, machine learning tech­
niques can be used to automatically extract information from 
liquid crystal responses to improve specificity and speed of 
liquid crystal sensors. Additionally, in some embodiments, 
machine learning techniques can facilitate sensing with 
limited human intervention, which can reduce on-site hard­
ware needs. For example, classification models can be 
pre-trained (which can be analogous to calibration of more 
conventional tools) using many experimental samples, and 
new samples can be classified using the pre-trained model in 
real-time. In some embodiments, machine learning tech­
niques can facilitate quantification of the impact of liquid 
crystal design characteristics on the information content of 
the response signals and on the sensor accuracy, which can 
reduce the amount of effort required when designing new 
liquid crystal sensors. 
[0043] In some embodiments, machine learning technique 
can generally be characterized as included various compu­
tational tasks, such as feature extraction, model training, and 
model testing. In some embodiments, feature extraction can 
be used to extract information that can be used by a 
classification model from raw data. For example, raw data in 
the context of liquid crystal responses can be one or more 
images (e.g., time sequences of images) that depict the 
response of the liquid crystals after a particular sample is 
introduced. In general, the quality (e.g., informational con­
tent) and number of the extracted features can impact the 
classification accuracy of a classification model. For 
example, if only non-informative features are used, the 
classification model is unlikely to be able to distinguish 
among different liquid crystal responses. In a more particular 
example, classification is unlikely to be accurate if only 
aggregate metrics (e.g., average brightness of an image of 
the liquid crystal sensor) were used as features characteriz­
ing an image (e.g., because different images can have the 
same average brightness value). While experimental 
researchers often have strong physical insights on which 
features can best describe a liquid crystal response, they 
often lack the ability to quantify the quality of such features. 
Additionally, information can remain hidden to even expe­
rienced observers due to pattern complexity and large 
amounts of data that are generated. Accordingly, measuring 
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the information content of liquid crystal responses can 
facilitate identification of features that are more predictive 
that may have otherwise gone unnoticed. 

[0044] In some embodiments, computer vision features, 
such as histogram of oriented gradients (HOG) and features 
generated by deep neural networks (e.g., Alexnet) can be 
used to train and/or use a classification model to detect the 
presence of chemicals (and/or other analytes) using liquid 
crystal sensors. In some embodiments, HOG features, which 
are indicative of the gradient orientations in localized por­
tions of an image, can be used to detect persistent spatial 
patterns (e.g., as shown in FIG. 7A). In some embodiments, 
features generated by a deep neural network, such as Alexnet 
which is a classification model (implemented as a convolu­
tional neural network) that has been pre-trained using mil­
lions of different images found on the internet, can be used 
to train and/or use a classification model. For example, 
neurons of Alexnet, which implicitly seek to classify a new 
image based on previous knowledge of other images (even 
if these are not necessarily related to the application at 
hand), can be used as image features for another type of 
classification model (e.g., a support vector machine, as 
described below). 

[0045] Note that although the mechanisms described 
herein are generally described in connection with support 
vector machines, this is merely an example, and the tech­
niques can be used in connection with other types of 
classification models, such as logistic regression models, 
and deep neural networks. 

[0046] FIG. 1 shows an example of liquid crystal sensors 
that can be used to detect the presence of an analyte in 
accordance with some embodiments of the disclosed subject 
matter. As shown in FIG. 1, an image 102 of a group of 
micro-wells into which liquid crystals have been deposited. 
The liquid crystal is in an initial state in the absence of a 
chemical that cause an ordering transition of the liquid 
crystal. As shown in a representation 104 of a micro-well 
into which liquid crystals 106 have been deposited, the 
orientation of liquid crystals 106 are generally perpendicular 
to the bottom surface of the micro-well, which causes the 
micro-well to appear dark when image 102 was captured 
between crossed polarizers, as liquid crystals 106 do not 
change the polarization of transmitted light in the orientation 
shown in 104. In some embodiments, a material, such as 
aluminum perchlorate can be deposited at the bottom of 
micro-well 104 to encourage the perpendicular orientation 
shown in 104 in the absence of an interfering chemical ( e.g., 
as described below.) In some embodiments, micro-wells 
shown in image 102 can be created using any suitable 
technique or combination of techniques, and any suitable 
type(s) of liquid crystal. Additionally, any suitable coating 
can be used to encourage a particular orientation of liquid 
crystals in the absence of the chemical to be detected. For 
example, polymeric micro-wells, such as micro-well 104, 
can be formed in a polymeric material deposited on a glass 
surface using photolithography, and 50 microliters (µL) of 
10 millimolar (mM, i.e., 10-3 mol/L) aluminum perchlorate 
salts in ethanolic solution can be deposited within the 
micro-wells by spin-coating (e.g., at about 3,000 rpm for 30 
seconds) onto glass surfaces at the bottom of the polymeric 
micro-wells. In such an example, 2 µL of 5CB (i.e., 
4-Cyano-4'-pentylbiphenyl) can be deposited into the 
formed polymeric micro-wells with a depth of about 5 
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microns (µm) using a micropipette, and excess liquid crystal 
can be removed from the array by wicking into a microcap­
illary. 

[0047] When particular chemicals are introduced into a 
micro-well (e.g., micro-well 104) that includes liquid crys­
tal, the liquid crystal can undergo surface-driven ordering 
transition such that the liquid crystals that were arranged in 
the configuration perpendicular to the bottom surface of the 
micro-well transition to a configuration where the crystals 
are parallel to the bottom surface of the micro-well. For 
example, in response to the presence of chemical species 
such as organophosphonates, chlorine, ammonia, or hydro­
gen sulfide (H2S) the liquid crystal can make such an 
ordering transition. In some embodiments, the optical and/or 
other characteristics (features) of the liquid crystal transi­
tions can be tailored and exploited to design chemical 
sensors that can be used to detect particular types of chemi­
cals. For example, the liquid crystals can assume homeo­
tropic (perpendicular) orientations on surfaces decorated 
with different kinds of metal salts ( e.g., as described above 
in connection with micro-well 104) dependent on the 
strength of coordination interactions between functional 
groups (e.g., nitrile groups, pyridine groups, etc.) and the 
metal cations. In a more particular example, in some 
embodiments, specific chemical species that diffuse into the 
liquid crystals and bind more strongly to the metal cations 
than to the liquid crystal functional groups can trigger a 
transition of the liquid crystal orientation from homeotropic 
to planar (e.g., as shown in FIG. 1). In some embodiments, 
the selectivity and response characteristics (e.g., dynamics) 
of the liquid crystals can be adjusted by tuning the binding 
energies of the liquid crystal functional groups. For 
example, the chemical can bind to the metal cations, dis­
placing the previously bound liquid crystals, which can 
trigger orientation transitions of the liquid crystals. In a more 
particular example, such orientation transitions can be 
caused using liquid crystals fabricated using 4-cyano-4'­
penthylbiphenil (5CB) and surfaces presenting aluminum 
perchlorate salts. 

[0048] As shown in FIG. 1, when such an anchoring 
transition occurs the micro-wells transmit significantly more 
light, which can be observed as a visual indicator of the 
presence of the chemical. Image 110 shows the micro-wells 
of image 102 after dimethyl-methyl-phosphonate (DMMP) 
nitrogen vapor (with a concentration of 10 parts per million 
DMMP) has been introduced, while image 112 shows the 
micro-wells of image 102 after nitrogen-water vapor with a 
relative humidity of about 30% has been introduced. As 
demonstrated by images 110 and 112, commonly occurring 
chemicals ( e.g., water) can cause an anchoring transition that 
results in a similar micro-well appearance to what is caused 
when the chemical of interest is present ( e.g., DMMP in the 
example of FIG. 1). As shown in FIG. 1, the appearance of 
the micro-well cannot be easily distinguished among differ­
ent substances, and a human observer or a simple machine 
vision application ( e.g., that simply detects changes in 
brightness) cannot confidently determine whether it is 
DMMP that has caused the anchoring transition or water 
vapor, and this is problematic for other liquid crystals as 
well. The example shown in FIG. 1 with DMMP and water 
vapors is a particular illustration of the implications of such 
potential confusion, as DMMP is an organophosphate that is 
often used as a sarin gas-simulant for the calibration of 
chemical sensors, and because water (which is prevalent in 
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many environments in which such sensors may be used) can 
interfere with sensing activity. One approach to overcoming 
an inability to distinguish similar liquid crystal responses 
would be through selection of particular surface chemistry, 
liquid crystal chemistry, and/or other parameters. However, 
this process would necessarily involve extensive and labo­
rious experimentation to determine which chemistries, etc., 
cause the liquid crystal responses to be sufficiently distinct 
( especially without the ability to quantify how such changes 
impact the difference in appearance). Additionally, even if 
such a sensor were constructed, the initial state of the liquid 
crystal and of the surface generally exhibits variations from 
sample to sample, which can induce variations in the liquid 
crystal response (e.g., which can introduce sensor noise). 

[0049] FIG. 2 shows an example 200 of a system for 
detecting the presence of an analyte in accordance with 
some embodiments of the disclosed subject matter. As 
shown, system 200 can include a light source 202; an image 
sensor 204; optics 206; a processor 208 for controlling 
operations of system 200 which can include any suitable 
hardware processor (which can be a microprocessor, digital 
signal processor, a microcontroller, a GPU, etc.) or combi­
nation of hardware processors; an input device 210 (such as 
a shutter button, a menu button, a microphone, a touch­
screen, a motion sensor, a etc., or any suitable combination 
thereof) for accepting input from a user and/or from the 
environment; memory 212; and a communication system or 
systems 214 for allowing communication between processor 
208 and other devices, such as a smartphone, a wearable 
computer, a tablet computer, a laptop computer, a personal 
computer, a server, etc., via a communication link. In some 
embodiments, memory 212 can store images of one or more 
liquid crystal sensors 220 ( e.g., one or more micro-wells as 
described above in connection with FIG. 1), one or more 
normalized images, one or more features generated from the 
images, etc. Memory 212 can include a storage device ( e.g., 
a hard disk, a Blu-ray disc, a Digital Video Disk, RAM, 
ROM, EEPROM, etc.) for storing a computer program for 
controlling processor 208. In some embodiments, memory 
212 can include instructions for causing processor 208 to 
execute processes associated with the mechanisms described 
herein, such as processes described below in connection 
with FIGS. 4 and 5. In some embodiments, light source 202 
can be any suitable light source that produces light that is 
reflected or transmitted by planar liquid crystals. Accord­
ingly, although light source 202 is shown as being disposed 
on the same side of liquid crystal sensors 220 as image 
sensor 204, this is merely an example, and light source 202 
can be disposed on a different side of liquid crystal sensors 
220 ( e.g., on the opposite side of liquid crystal sensors 220 
such that light emitted by light source 202 must be trans­
mitted through liquid crystal sensors 220 before being 
received at image sensor 204). For example, light source 202 
can be one or more LEDs, a white light source (e.g., a 
halogen bulb), etc. Note that, in some embodiments, light 
source 202 can be omitted where liquid crystal sensors 202 
are illuminated by another light source ( e.g., one or more 
ambient light sources). In some embodiments, the light 
source is polarized, and in other embodiments the transmit­
ted or reflected light is passed through a second polarizer. 

[0050] In some embodiments, image sensor 204 can be 
any suitable image sensor that can generate an image of 
liquid crystal sensors 220 with sufficient resolution and 
focus to facilitate classification using machine learning 
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techniques. In some embodiments, image sensor 204 can be 
a color sensor, a monochrome sensor, etc. Additionally, in 
some embodiments, image sensor 204 can be any suitable 
type of image sensor, such as a CCD, a CMOS image sensor, 
etc. Additionally, in some embodiments, image sensor 204 
can implemented as an array sensor ( e.g., a two-dimensional 
distribution of pixels), a line sensor (e.g., having a one­
dimensional distribution of pixels), a single pixel sensor, 
and/or using any other arrangement of light sensitive ele­
ments suitable to generate an image of one or more of liquid 
crystal sensors 220. In some embodiments, an image can be 
captured by scanning the liquid crystal sensor with image 
sensor 204 (e.g., by moving image sensor 204 and/or liquid 
crystal sensors 220). For example, an array sensor can be 
scanned in one or more direction relative to liquid crystal 
sensors 220 to capture images of different portions of liquid 
crystal sensors 220. As another example, a line sensor can be 
scanned in one or more direction relative to liquid crystal 
sensors 220 to capture images of different portions of liquid 
crystal sensors 220. In a more particular example, a line 
sensor can capture an image of a linear portion of liquid 
crystal sensors 220 as liquid crystal sensors moves through 
a field of view of the line sensor ( e.g., by moving the line 
sensor and/or by moving liquid crystal sensors 220). As yet 
another example, a single pixel sensor can be raster scanned 
in relation to the liquid crystal sensor to generate a two 
dimensional image of the liquid crystal sensor. In some 
embodiments, image sensor 204 can capture image data in 
the visible portion of the electromagnetic spectrum and/or in 
other portions of the electromagnetic spectrum ( e.g., near­
infrared, infrared, ultraviolet, etc.). Although the mecha­
nisms described herein are generally described in connection 
with visible light images ( e.g., color, grayscale, mono­
chrome, etc.), this is merely an example, and images of 
liquid crystal sensors representing one or more other por­
tions of the electromagnetic spectrum can be used to detect 
the presence of an analyte. 

[0051] In some embodiments, optics 206 can be any 
combination of optics that facilitates image capture of liquid 
crystal sensors 220 by image sensor 204, such as one or 
more lenses, one or more filters (e.g., IR cut filters, a high 
pass filter, a low pass filter, a bandpass filter, a polarizing 
filter, etc.). 

[0052] In some embodiments, system 200 can communi­
cate with a remote device over a network using communi­
cation system(s) 214 and a communication link. Addition­
ally or alternatively, system 200 can be included as part of 
another device, such as a smartphone, a tablet computer, a 
laptop computer, etc. Parts of system 200 can be shared with 
a device within which system 200 is integrated. For 
example, if system 200 is integrated with a smartphone, 
processor 208 can be a processor of the smartphone and can 
be used to control operation of system 200. 

[0053] In some embodiments, system 200 can communi­
cate with any other suitable device, where the other device 
can be one of a general purpose device such as a computer 
or a special purpose device such as a client, a server, etc. Any 
of these general or special purpose devices can include any 
suitable components such as a hardware processor (which 
can be a microprocessor, digital signal processor, a control­
ler, etc.), memory, communication interfaces, display con­
trollers, input devices, etc. For example, another device can 
be configured to receive image data captured by system 200, 
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and can use the image data to determine whether a particular 
chemical is present at liquid crystal sensors 220 based on the 
image data. 
[0054] Communications by communication system 214 
via a communication link can be carried out using any 
suitable computer network, or any suitable combination of 
networks, including the Internet, an intranet, a wide-area 
network (WAN), a local-area network (LAN), a wireless 
network, a digital subscriber line (DSL) network, a frame 
relay network, an asynchronous transfer mode (ATM) net­
work, a virtual private network (VPN). The communications 
link can include any communication links suitable for com­
municating data between system 200 and another device, 
such as a network link, a dial-up link, a wireless link, a 
hard-wired link, any other suitable communication link, or 
any suitable combination of such links. System 200 and/or 
another device (e.g., a server, a personal computer, a smart­
phone, etc.) can enable more reliable detection of particular 
chemicals at liquid crystal sensors 220. 
[0055] It should also be noted that data received through 
the communication link or any other communication link(s) 
can be received from any suitable source. In some embodi­
ments, processor 208 can send and receive data through the 
communication link or any other communication link(s) 
using, for example, a transmitter, receiver, transmitter/re­
ceiver, transceiver, or any other suitable communication 
device. 
[0056] In a particular example, the optical appearance of 
liquid crystal sensors can be characterized using an Olympus 
BX-60 polarizing light microscope in transmission mode 
(available from Olympus Corporation, headquartered in 
Tokyo, Japan). Images of the liquid crystal sensors can be 
captured using conoscopic imaging techniques, including 
inserting a Bertrand lens into the optical path of the polar­
ized-light microscope. As described below in connection 
with FIGS. 4 and 5, image data captured using such an 
imaging device can be used to analyze the homeotropic 
orientation of the liquid crystals. 
[0057] FIG. 3 shows an example 300 of hardware that can 
be used to implement system 200 and a computing device 
320 in accordance with some embodiments of the disclosed 
subject matter. As shown in FIG. 3, in some embodiments, 
system 200 can include processor 208, a display 304, one or 
more inputs 210, one or more communication systems 214, 
and/or memory 214. In some embodiments, display 304 can 
include any suitable display devices, such as a computer 
monitor, a touchscreen, a television, etc. In some embodi­
ments, communication system(s) 214 can communicate with 
computing device 320 (and/or any other suitable computing 
device(s)) over a communication network 306. In some 
embodiments, communication network 306 can be any 
suitable communication network or combination of commu­
nication networks. For example, communication network 
306 can include a Wi-Fi network (which can include one or 
more wireless routers, one or more switches, etc.), a peer­
to-peer network (e.g., a Bluetooth network), a cellular 
network (e.g., a 3G network, a 4G network, etc., complying 
with any suitable standard, such as CDMA, GSM, LTE, LTE 
Advanced, WiMAX, etc.), a wired network, etc. In some 
embodiments, communication network 306 can be a local 
area network, a wide area network, a public network ( e.g., 
the Internet), a private or semi-private network (e.g., a 
corporate or university intranet), any other suitable type of 
network, or any suitable combination of networks. Commu-
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nications links shown in FIG. 3 can each be any suitable 
communications link or combination of communications 
links, such as wired links, fiber optic links, Wi-Fi links, 
Bluetooth links, cellular links, etc. 
[0058] In some embodiments, computing device 320 can 
include a processor 312, a display 314, one or more inputs 
316, one or more communications systems 318, and/or 
memory 320. In some embodiments, processor 312 can be 
any suitable hardware processor or combination of proces­
sors, such as a central processing unit, a graphics processing 
unit, etc. In some embodiments, display 314 can include any 
suitable display devices, such as a computer monitor, a 
touchscreen, a television, etc. In some embodiments, inputs 
316 can include any suitable input devices and/or sensors 
that can be used to receive user input, such as a keyboard, 
a mouse, a touchscreen, a microphone, etc. 
[0059] In some embodiments, communications systems 
318 can include any suitable hardware, firmware, and/or 
software for communicating information over communica­
tion network 306 and/or any other suitable communication 
networks. For example, communications systems 318 can 
include one or more transceivers, one or more communica­
tion chips and/or chip sets, etc. In a more particular example, 
communications systems 318 can include hardware, firm­
ware and/or software that can be used to establish a Wi-Fi 
connection, a Bluetooth connection, a cellular connection, 
an Ethernet connection, etc. 
[0060] In some embodiments, memory 320 can include 
any suitable storage device or devices that can be used to 
store instructions, values, etc., that can be used, for example, 
by processor 312 to present content using display 314, to 
communicate with one or more computing devices (e.g., 
system 800), etc. Memory 320 can include any suitable 
volatile memory, non-volatile memory, storage, or any suit­
able combination thereof. For example, memory 320 can 
include RAM, ROM, EEPROM, one or more flash drives, 
one or more hard disks, one or more solid state drives, one 
or more optical drives, etc. In some embodiments, memory 
320 can have encoded thereon a program for controlling 
operation of computing device 320. In such embodiments, 
processor 312 can execute at least a portion of the program 
to receive information (e.g., image data) from one or more 
imaging devices (e.g., system 200), train a classification 
model to classify images of a liquid crystal sensor as 
showing the presence of a particular chemical, determine 
from an image of a liquid crystal sensor whether a particular 
chemical is present, receive instructions from one or more 
devices ( e.g., a personal computer, a laptop computer, a 
tablet computer, a smartphone, etc.), etc. In some embodi­
ments, computing device 320 can be any type of computing 
device, such as a personal computer, a laptop computer, a 
tablet computer, a smartphone, a server, etc. 
[0061] FIG. 4 shows an example 400 of a process for 
training a classification model to classify images of liquid 
crystal sensors to determine whether the image indicates the 
presence of a particular chemical in accordance with some 
embodiments of the disclosed subject matter. As shown in 
FIG. 4, process 400 can start at 402 by introducing a known 
chemical (e.g., in a known quantity and/or concentration) 
into the presence of one or more liquid crystal sensors ( e.g., 
liquid crystal sensors 220). 
[0062] At 404, process 400 can capture one or more 
images of the liquid crystal sensors in the presence of the 
known chemical to generate images that can be used as 
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training samples and test samples to train a classification 
model to recognize the presence of the known chemical. In 
some embodiments, the images can be captured using any 
suitable image capture device, at any suitable regular or 
irregular intervals ( or only a single image can be captured), 
and can be captured using any technique or combination of 
techniques. For example, in some embodiments, process 400 
can capture video of the liquid crystal sensors, and can 
extract individual still images from the video at any suitable 
regular or irregular intervals. Note that an image can be any 
representation of a spatial distribution of optical information 
corresponding to light received by an image sensor that has 
passed through and/or been reflected from the liquid crystal 
sensor(s ). 
[0063] At 406, process 400 can generate normalized 
images of particular sensors using any suitable technique or 
combination of techniques. For example, in some embodi­
ments, images of individual sensors can be extracted from 
the images, and each image of a sensor can be processed 
such that the images have a common format (e.g., as 
described below in connection with FIG. 6). 
[0064] At 408, process 400 can generate one or more 
features to be used to train the classification model. In some 
embodiments, process 400 can generate any suitable feature 
or combination of features, which may vary based on what 
type of classification model is being trained. In some 
embodiments, any suitable features can be generated from 
the image data to be used to train the classification model 
(and, as described below in connection with FIG. 5, to use 
the trained classification model to detect the presence of an 
analyte). For example, the mean intensity of the image can 
be calculated and used as a feature. As another example, 
multiple oriented gradients can be calculated at different 
points in the image, and a histogram of the oriented gradi­
ents (HOG) can be used as a feature. Such HOG features can 
be calculated using any suitable technique or combination of 
techniques. In a more particular example, the Matlab func­
tion extractHOGfeatures can be used with a cell size [10, 10] 
to extract HOG features. With a 60x60 grayscale image (as 
described below in connection with FIG. 6), this can result 
in 900 individual features per image. 
[0065] As yet another example, output from one or more 
layers of a deep learning neural network can be used as 
features for training a classification model. In a more par­
ticular example, an RGB image of the micro-well can be 
used as input to a well-trained object classification convo­
lution neural network, and the values generated by the last 
hidden layer can be used as features for training the classi­
fication model. In one particular example, the image can be 
submitted to alexnet, which was trained for object detection/ 
classification in images using a portion of the ImageNet 
database. An example showing the general topology of 
alexnet is shown in FIG. 8. As a particular example, this can 
generate 4096 features from a 60x60 RGB image. 
[0066] As still another example, the image can be con­
verted from RGB to a 60x60 grayscale image, and the pixel 
values (i.e., brightness values) of the grayscale image can be 
used as features, which can generate 3,600 features. Note 
that the RGB values can be used as features, but this triples 
the number of features to 10,800, which may lead overfitting 
of the model. 
[0067] At 410, process 400 can reserve a portion of the 
images as testing samples using any suitable technique or 
combination of techniques. For example, if the images 
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captured at 404 each include multiple micro-wells, and 
successive images depict the same micro-wells at different 
times as the chemical was introduced, the micro-wells can 
be partitioned with a portion of the micro-wells assigned as 
test samples, and a portion of the micro-wells assigned as 
training samples. As another example, the entire corpus of 
images of micro-wells can be randomly partitioned, which 
may result in images of the same micro-well at different 
times being in both the training set and the test set. 
[0068] At 412, process 400 can train the classifier using 
the features corresponding to the training samples, and the 
known classification of the images. In some embodiments, 
images of the micro-wells during exposure to different 
chemicals can be used during the training ( e.g., images of 
the micro-wells exposed to DMMP, and images of the 
micro-wells exposed to water vapor). In some embodiments, 
process 400 can train any suitable type of classification 
model, such as a logistic regression model, a support vector 
machine-based model, or a neural network. 
[0069] Distinguishing among liquid crystal responses to 
two different substances ( e.g., I or II) can be characterized as 
a binary classification problem. One approach is to find a 
model or hypothesis f:lR n--;,]R that maps an input vector 
x,ElR n to predict output variables y,E{ 0, 1}. The input 
vector x, is also sometimes referred to as a feature vector 
(where features characterize the liquid crystal response) 
while y, are sometimes referred to as labels (e.g., indicating 
the presence of substance I or II). For example, label y,=1 
can represent the presence of DMMP (e.g., in N2 vapor 
solution and y,=0 can represent the presence of water (e.g., 
in N2 vapor solution). A pair (x,, y,) can represent a sample 
for i=l, ... , m. In some embodiments, a database of m 
samples {(x1 , y 1), ... , (xm, Ym)} that can be used as a 
training set to learn a classifier model. 
[0070] In some embodiments, a logistic regression model 
can be trained that uses a hypothesis function of the follow­
ing form: 

(1) 

where 1 A (Z) can denote the indicator function of set A (i.e., 
IA (Z)=l if ZEA and lA(Z)=0 if Zt/cA). The model param­
eters to be learned from the training set are the weight vector 
for the features wElR n and bElR . The learning process can 
include solving the following optimization problem: 

min-_'._:l:,"_ 1 [y; loj IT ) + (1-y;) log (1- \ )] + 
w,b m ~ l + ew xi-b l + ew xi-b 

(2) 
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The first term of the objective function can measure the 
accuracy of the hypothesis on the training set and the second 
term is a regularization term that can prevent over-fitting. 
The hyperparameter AElR + is a regularization parameter 
that can determine the balance between how well the 
hypothesis fits the training set, and how well the hypothesis 
generalizes to other data. A large value of A may cause 
under-fitting of the model, whereas a small value of A may 
cause overfitting. This hyperparameter can be determined by 
a model selection process described below. The hypothesis 
function of a logistic regression model is convex, so any 
optimal parameter selection provides a global minimizer. 
However, the parameter values may be non-unique. 
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[0071] In some embodiments, a support vector machine 
(SVM)-based model can be trained that uses the same 
hypothesis function as logistic regression. However, SVM 
models solve the following optimization problem to learn w 
and b: 

minC .l:,';1 [y; rnax(O, 1 - wT x; - b) + 
w.b 

(3) 

T l 2 
(1 - y;) rnax(O, -1 + w x; -b)] + 

2
11wll , 

where CElR + is a hyperparameter that can be used to 
prevent over- or under-fitting (e.g., as described above in 
connection with A in the logistic regression model). In some 
embodiments, SVM can introduce nonlinear relations that 
map the original feature vector x,ElR n to a new vector of 
features [K(x,, x1), ... , K(x,, xm)JElR m, where K(-) is a 
kernel function, which can amplify the effect of the features 
on the outputs. In some embodiments, the kernel function 
can be a Gaussian kernel such that K(xi' x,)=exp(-yllxrx,112

, 

which can be viewed as the similarity between features x1 
and x,. In some embodiments, the resulting new transformed 
features can be input to a linear SVM to generate a hypoth­
esis model. For nonlinear SVM, the value of both C and the 
kernel function parameters (e.g., y) can be selected in the 
model selection process described below. 

[0072] In general, an SVM can be trained to find a 
multi-dimensional hyperplane that effectively separates the 
training samples (which are described in terms of their 
features) into two or more classes. For simplicity, only 
techniques for generating hyperplanes for two classes (bi­
nary classification) are described herein. The hyperplane can 
be described by a weighted function of the features. In some 
embodiments, an SVM can be trained by solving an opti­
mization problem to find the feature weights that achieve a 
maximum separation among the training samples. Such a 
classification problem can be represented using the follow­
ing mathematical form: 

s.t. Ys · (wT \O(Xs)-y) 2 1-/;s, s ES 

/;s 2 0 s ES 

(4) 

(5) 

(6) 

where, sES is the index of the sample in the training set S 
(e.g., containing S samples), xs is the vector of features of 
sample s with associated classification label Ys ( e.g., Ys =1 if 
a sample contains N2-DMMP andys=-1 if a sample contains 
N2 -Water), Ss is the classification error, w is the weight 
vector, y is the hyperplane offset, A is a regularization 
parameter that prevents overfitting (e.g., when many fea­
tures are used), and cp(-) is the feature mapping function 
(e.g., cp(xJ=xs for linear classification). A solution of the 
SVM problem can be used to specify model parameters w*, 
y* that can define a trained classification model. 
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[0073] In general, the computational complexity of the 
SVM problem described by EQS. (4) to (6) is high, and 
related to both the number of training samples and the 
number of features used ( e.g., the dimension of vector x,, 
which can be thousands using features described herein). 
Various techniques can be used to tackle such computational 
complexity. For example, a scalable and flexible approach 
includes using interior-point algorithms. These algorithms 
can achieve relatively high accuracies, and can exploit 
underlying mathematical structure at the linear algebra level. 
In such an example, effective structure exploitation strate­
gies can be used to leverage high-performance (parallel) 
computing capabilities. In a more particular example, dif­
ferent solvers, such as IPCluster and PIPS-NLP, can be used 
to solve large-scale structured optimization problems that 
have the same mathematical structure of SVM problems. In 
particular, such solvers can exploit the following arrowhead 
structure of the linear algebra system that can be represented 
as: 

Ks Bs qs 

Bf BI · · · BI Ko qo 

rs 

ro 

(7) 

As used herein, g0 can be a search step associated to the 
feature weights and offset and q, can be the search step for 
the dual variables of the classification constraints and for the 
classification errors in sample sES. The diagonal blocks Ks 
can be sparse matrices that are associated to each training 
sample (e.g., in stochastic programming these can be ran­
dom scenarios). This arrowhead system can be solved in 
parallel computers using a Schur complement decomposi­
tion that can be represented as: 

(Ko - I, BIKs1 Bs)qo = ro - 2, BIKs1 rs, Ksqs = rs - Bsqo, XE s 
SES sES 

(8) 

z 

In some embodiments, using this technique can parallelize 
operations associated with each individual block K,, but 
scalability can be limited by operations with the Schur 
complement matrix Z (which is generally a dense matrix of 
the same dimension as the number of features). This can 
limit the use of SVM to classification problems with few 
thousands of features or less. The use of dense linear algebra 
operations can also be an obstacle that prevents scalability of 
dual algorithms that operate on the sample (kernel) space. In 
some embodiments, scalability bottlenecks of Schur decom­
position can be overcome by IPCluster using adaptive 
clustering techniques, which can identify data redundancies 
in the training samples and exploit these redundancies to 
compress the number of samples into a smaller set of 
clusters C={ci, ... , cc}. In some embodiments, the 
compressed set of samples can then used to create a sparse 
preconditioner that can be used in connection with EQ. (8), 
and which can be represented as: 
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1 
-Kc 
S1 1 

1 
-Kc 
S2 2 

1 
~Kee 

BT 
'C 

Bc1 

Bc2 

B,c 

Ko 

(9) 

q,! ''1 

q,2 r,2 

q,c r,c 

qo ro 

where Ks9.s =r
5
-Bj0 , with sES. Numerical experiments have 

shown that the size of the compressed sample set is typically 
less than about 10% of the size of the original sample space. 
In some embodiments, by utilizing such clustering tech­
niques the amount of dense linear algebra operations to be 
performed can be reduced ( or eliminated), which can avoid 
scalability issues in the number of features. Additionally, in 
some embodiments, such clustering techniques can be 
executed in parallel, which can facilitate linear scaling in the 
number of training samples. The clustering techniques 
described herein share some characteristics of hierarchical 
multi-grid preconditioners used in the solution of partial 
differential equations, and can be generalized to perform 
hierarchical clustering. Note that, as described herein, 
sample compression can be performed at the linear algebra 
level, but the original SVM problem (containing all the 
training samples) is actually solved. In some embodiments, 
the clusters can be constructed by minimizing the distortion 
metric ~sE~iECks ,11Yz-Ys11, where Ys are the features of 
samples. Note that the quality of the preconditioner ( e.g., the 
preconditioner's spectral properties) is generally tightly 
related to the distortion metric, which implies that strong 
data redundancies can yield efficient preconditioners. 
[0074] In some embodiments, an artificial neural network 
(ANN) ( e.g., a convolution neural network as represented in 
FIG. 8) that includes an input layer, one or more hidden 
layers, and an output layer can be trained to classify images. 
In such a neural network, each layer includes several basic 
unit functions, which are sometimes referred to as neurons. 
In some embodiments, the input layer can be features x,, and 
the output layer has one neuron representing the predicted 
probability of y,=1. The total number of layers can be 
denoted as L, and the number of neurons in a particular layer 
./! can be represented as se, and the value of j-th neuron of 
the at t -th layer as at,i•, which can be represented as part 
of a vector ae :=[ ar,1, ... , ae,sc ]. The information oflayer 
./! -1 can be provided to a j-th neuron in layer -C using the 

mapping ae,j,=Bc(wJae_1 +be,J), where Be can be an acti­
vation function of layer -C • In some embodiments, the 
activation function can be the logistic function ( e.g., as used 
in logistic regression). In some embodiments, parameters 
We, ht and a,, can be represented as We:=[ we.1 , ... , 

We,s 1 ], h,,:=[be,1 , ... , ht,sr], and ae=Be(wJae-1+bt), 
respectively. During the training process, parameters 
We and ht can be learned for all t =l, ... , L. Assuming 
that the last layer (i.e., -C =L) uses the logistic function as the 
activation function, the training process can solves the 
following optimization problem: 

l m A L (10) 
min- - ~ [y; log(aL_;) + (1 - y;) log(! - aL_;)] + - ~ llwll2 

wr,hr m i=l 2m L=2 
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where AElR + can be a regularization parameter (e.g., as 
described above in connection with EQ. (2). After param­
eters We and ht are learned, y, (i.e., the likelihood that an 
input belongs to class i) given any new input x, using 
forward propagation as follows: 

a 1~g1(w/x,+b 1
), ... ,a 1~g1(w/x,+b 1

), and .YFl[o.s, 
l)(aL). 

[0075] In some embodiments, given a particular type of 
classification model to be trained, a portion of the images 
captured at 404 can be randomly assigned into a training set, 
and a second portion can be assigned to a test set ( e.g., 80% 
of the samples can be selected for training, and the remain­
ing 20% can be used for testing). The training set can be 
used to determine parameters for the hypothesis model, 
while the test set (sometimes referred to as a hold-out set) 
can be used to assess how well the learned hypothesis model 
generalizes to unknown samples ( e.g., samples that were not 
explicitly used for training). For example, a predicted label 
y1=f (x,) can be computed for a sample input x,, and can be 
compared with a known classification y, of the input sample. 
Note that the accuracy of the test set may depend on the 
initial partition of the training set and test set, and thus the 
process can be repeated multiple times to enhance predict­
ability. 

[0076] In some embodiments, the training process can be 
used to determine values for hyperparameters of the model 
being used (e.g., A for logistic classification, C for linear 
SVM, C and y for nonlinear SVM, A and network layout for 
ANN). This procedure is sometimes referred to as model 
selection. Any suitable model selection technique(s) can be 
used. For example, k-fold cross validation can be used, in 
which the whole training set is split into k equal folders. For 
each specific choice ofhyperparameters, the model is trained 
using k-1 folders, and evaluated with the remaining folder 
as a validation set. This process can be repeated by cycling 
through the training set. Accordingly, for each specific 
choice ofhyperparameters, k models are built and evaluated. 
The performance the specific choice of the hyperparameters 
can evaluated by averaging the accuracy of these k models, 
and the optimal hyperparameters ( of those calculated) can be 
selected by looping over different hyperparameter choices. 

[0077] At 414, process 400 can test the trained classifier 
using at least a portion of the features corresponding to 
images from the test samples with known classifications. For 
example, as described above, a particular model can be 
trained and validated using a training dataset, and process 
400 can use the test dataset to determine the accuracy of the 
model on images that were not used in determining the 
hyperparameters of the model. 

[0078] At 416, process 400 can determine the accuracy of 
the trained model over the test samples, and can determine 
whether to discontinue training ( e.g., because a particular 
level of accuracy has been reached, because the accuracy has 
not improved by a particular amount over a particular 
number of epochs, because the hyperparameters are diverg­
ing rather than converging etc.). 

[0079] If process 400 determines that training is to be 
discontinued ("YES" at 418), process 400 can end at 420. 
Otherwise, if process 400 determines that training is to be 
continued ("NO" at 418), process 400 can return to 412 and 
continue to train the classification model ( e.g., using a 
different partitioning of training and validation samples from 
the training set). 



US 2019/0108421 Al 

[0080] FIG. 5 shows an example 500 of a process for 
detecting the presence of an analyte using a trained classi­
fication model in accordance with some embodiments of the 
disclosed subject matter. At 502, process 500 can capture ( or 
receive) an image of one or more liquid crystal sensors that 
are configured to change orientation in the presence of a 
particular chemical. 
[0081] At 504, process 500 can normalize the image(s) 
using similar techniques to what was used to normalize the 
images during training of the classification model. 
[0082] At 506, process 500 can generate features based on 
the normalized image(s). For example, process 500 can 
generate features corresponding to the features used to train 
the classification model. For example, one or more of the 
features described above in connection with 408 of FIG. 4. 
[0083] At 508, process 500 can provide the features to the 
classification model as input using any suitable technique or 
combination of techniques. For example, process 500 can 
format the features as a vector, and can provide the vector to 
the classification model. In some embodiments, the trained 
classification model can use the trained parameters of the 
classification model (e.g., w* and y*) to predict the classi­
fication label y s given a feature vector xs of a new test sample 
(i.e., a sample not included in the training set). This task 
involves relatively minor computing operations ( extract 
features using the data of the given sample and predict the 
category of the sample). Such operations can be performed 
on the cloud (remotely) and in real-time to keep in situ 
hardware requirements at a minimum. The sensor accuracy 
is measured in terms of the number of correct predictions 
and, in the case of binary classification, we are also often 
interested in the proportion of false positives and negatives. 
[0084] At 510, process 500 can receive an indication from 
the trained classification model of the likelihood that a 
particular chemical is present. For example, the output of the 
classification model can provide one value indicating the 
likelihood that a first chemical (e.g., DMMP) is present, and 
another likelihood indicating the likelihood that a second 
chemical (e.g., water) is present. Based on the individual 
likelihoods, process 500 can determine whether the chemi­
cal of interest (e.g., DMMP, sarin gas, etc.). 
[0085] FIG. 6 shows an example of a process of normal­
izing two different images of micro-wells for feature extrac­
tion in accordance with some embodiments of the disclosed 
subject matter. As shown in FIG. 6, color images received 
can be converted to 60x60 pixel RGB images (e.g., having 
60 colunms, 60 rows, and 3 colors pixel) of individual 
micro-wells. Note that, in some embodiments, conversion to 
an RGB image can include a color space conversion. For 
example, if the received image has a format that represents 
color information using different colors and/or different 
information, such as YCbCr (where Y is a luminance com­
ponent, and Cb and Cr are chrominance components), or a 
color space based on cyan, magenta, and yellow, or any 
other suitable color space, In some embodiments, this can 
involve reducing the resolution when the image of a par­
ticular micro-well is at a higher resolution. In some embodi­
ments, the RGB images can be used to generate grayscale 
images (e.g., 60x60 grayscale images). Note that, in some 
embodiments, the image can be received as a grayscale 
image ( e.g., when a monochromatic image is generated by 
the image sensor, when the image has already been con­
verted to grayscale, etc.). In some embodiments, the gray­
scale image can be used to generate one or more features 
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( e.g., a HOG, a vector or matrix of pixel brightness values, 
mean intensity, etc.). Additionally, RGB image can be used 
to generate one or more additional features ( e.g., mean 
intensity of the image, mean intensity of each color channel, 
features received from an object detection deep learning 
neural network, etc.). In some embodiments, channels other 
than RGB can be used, in addition to or in lieu of red, green, 
and blue channels. For example, YCbCr images can be used 
to generate one or more additional features. 

[0086] FIG. 7A shows an example of oriented gradients 
calculated at various points in an image of a micro-well in 
accordance with some embodiments of the disclosed subject 
matter. As described above, a histogram of such oriented 
gradient values can be used as features for a classification 
model. 

[0087] FIG. 7B shows examples of images of individual 
microwells after exposure to either N2 -water or DMMP. As 
shown, some visual differences may be apparent to human 
observers, but other images look very similar (e.g., the top 
right well that was exposed to water looks very similar to the 
wells at the middle left and bottom right that were exposed 
to DMMP). 

[0088] FIG. 7C shows examples of the evolution of the 
visual appearance of particular microwells over time after 
either N2-water or DMMP. As shown, the wells exposed to 
DMMP appear to change more rapidly in response to 
exposure than the wells exposed to water. 

[0089] FIG. 8 shows an example network topology of a 
convolution neural network that can be used to generate 
features for use in accordance with some embodiments of 
the disclosed subject matter. An example of a particular 
network with a topology represented in FIG. 8 is described 
in more detail in Krizhevsky et al., "ImageNet Classification 
with Deep Convolution Neural Networks," Advances in 
Neural Information Processing Systems 25, 2012, which is 
hereby incorporated herein in its entirety. 

[0090] FIGS. 9-17 show example results achieved by 
systems implemented in accordance with some embodi­
ments of the disclosed subject matter. Six videos were 
created that show the response of liquid crystal sensors 
DMMP-N2, and six other videos were created that show the 
response of the liquid crystal sensors to water-N2. Each 
group of six videos includes the evolution of 391 micro­
wells, and still images were extracted from the videos every 
3.3 seconds. Several different images were generated from 
each frame, with each of those images including information 
of a single micro-well at a specific point in time. Each image 
of an individual micro-well was converted to a 60x60 image, 
with the total number of images generated from the twelve 
videos generated (the total image population) is 75,081. 

[0091] The liquid crystal filled micro-wells were exposed 
to a stream of dry N2 including DMMP at 10 ppmv within 
a flow cell with glass windows that permitted characteriza­
tion of the optical appearance of the LC using a polarized 
optical microscope. The gas containing DMMP was deliv­
ered to the flow cell at 300 mL/min using a rotameter 
(Aalborg Instruments and Control, Orangeburg, N.Y.). 
Nitrogen gas including water vapor at 30% relative humidity 
was delivered to the flow cell at 300 mL/min with the same 
rotameter. The optical appearance of the liquid crystal 
micro-wells were recorded using an Olympus C2040Zoom 
camera (obtained from Olympus Corporation, Melville, 
N.Y.) and WinTV software (Hauppauge, N.Y.). 
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[0092] Classification models were trained using functions 
available in Matlab (version 9.5.0.197613). Akey factor that 
affected the classification accuracy of the classification 
models was the selection of the training set. With a popu­
lation of 75,081 training images available (which capture 
responses for different micro-wells and at different times), 
selection of the training set is tightly connected to the way 
data is collected from experimental equipment to train the 
classifier. For example, it is desirable to be able to use the 
trained classifier to classify a similarly configured micro­
well that was not used to train the classifier ( e.g., a micro­
well produced by another manufacturer, or at a different 
time). To evaluate the effect of data collection procedures, 
two partitioning strategies of the available images were 
compared. The first strategy included selecting images at 
random over the entire image population (i.e., including the 
entire set of micro-wells), while in the second strategy 
included selecting micro-wells at random (i.e., using all of 
images associated with a particular micro-well as training 
images if the micro-well is selected for inclusion in the 
training sample) to create the training set. In general, the 
second approach would be expected to have more redundant 
data, as images of a given micro-well would be expected to 
have more correlation. The second selection strategy, how­
ever, corresponds to a realistic scenario in which data 
availability is constrained. Additionally, the performance of 
the classifiers using different combinations of features was 
evaluated, with different sizes of training sets, and different 
machine learning techniques (i.e., different types of models). 
Additionally, the classifier was trained using different types 
( and combinations) of feature information, with feature 
extraction tasks performed using existing capabilities in 
Matlab (version R2015a). Classification tasks were per­
formed using tools available in Matlab and advanced opti­
mization solvers such as Ipopt, PIPS-NLP, and IPCluster. 
For example, a linear SVM classifier (with an initial hyper­
parameter C=l) was trained using various features, includ­
ing (I) average intensity of RGB channels, (II) HOG fea­
tures, (III) deep learning features ( e.g., outputs of the last 
hidden layer of Alexnet when a 60x60 image of the micro­
well was provided to the input layer), and (IV) individual 
grayscale intensity values. The total number of features 
extracted for the four types of features (I-IV) at each point 
in time was 8,599. Spatial patterns of the RGB channels 
were not captured, as this would raise the number of features 
by nearly a factor of three. However, the HOG (II) and 
grayscale pixel features (IV) capture at least a portion of any 
spatial patterns. In one example, 80% of the total image 
population were selected as the training set, the remaining 
20% were used as the test set. The random selection process 
was repeated five times to ensure reproducibility and per­
formance is summarized in FIG. 9. As seen in FIG. 9, the 
overall classification accuracy (denoted as Test Accuracy) 
was as high as 99.95%. DMMP Accuracy denotes the correct 
classification of DMMP presence, while Water Accuracy 
denotes the correct classification of water presence. Note 
that 1-DMMP Accuracy is sometimes referred to as a type 
II error (i.e., a false negative), while I-Water Accuracy is 
sometimes referred to as a type I error (i.e., a false positive). 
Note that the training accuracy is 100%, which indicates that 
the features used provide enough information to make a 
perfect classification of the images. FIG. 10 shows an 
example ofDMMP accuracy of the trained SVM in classi­
fying the test set, with the results correlated with the time 
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when each image appears in the videos. For example, the 
accuracy result at 3.3 seconds corresponds to the accuracy of 
the SVM in classifying the presence of DMMP across all 
images of micro-wells 3.3 seconds after the chemical was 
introduced. As shown in FIG. 10, the accuracy is nearly 
100% at the first frame (i.e., 3.3 seconds after the flow was 
started). This can have important practical implications, as it 
suggests that classification can be achieved nearly instanta­
neously (i.e., without the need of running a lengthy experi­
ment to record the response of the liquid crystal sensor). 

[0093] In some embodiments, using one or more static 
strategies can overcome certain limitations of dynamic 
counterpart strategies ( described below in connection with 
FIG. 15) by classifying liquid crystal responses based on 
instantaneous time snapshots ( e.g., rather than using a time 
series). For example, such static strategies can operated 
based on differences in spatial patterns that are sufficient to 
identify the presence of DMMP or N2 -water (examples 
showing such differences are described above in connection 
with FIG. 7B), although such differences are generally 
difficult for a human observer to detect (particularly early in 
the responses). In some embodiments, such static strategies 
can be more time (and cost) efficient due to the ability to 
classify the sample using a single sample image, rather than 
capturing a series of images (e.g., over a time period of 
minutes) which can accelerate sensing (and can more effi­
ciently utilize computing resources by analyzing multiple 
samples during the time it would take to analyze a single 
sample using a dynamic strategy). Additionally, such static 
strategies do not accumulate feature information over time 
( e.g., if all sources of feature information described herein 
are used, only 8,599 features are produced per sample). Two 
training set selection cases were evaluated to determine how 
quality of training data may affect sensor accuracy. In one 
particular example (sometimes referred to herein as "static 
(a)"), the entire image population was partitioned at random 
to create a training set and a testing set. In another particular 
example (referred to herein as "static (b )"), the entire image 
population was partitioned by micro-wells. In such an 
example, data from a subset of micro-wells was used for 
training, and data from an independent set of micro-wells 
was used for testing. Note that the static (b) selection 
strategy can be expected to have more spatially correlated 
data (e.g., because it contains more redundancy and less 
information) compared to the static (a) counterpart. This 
comparison can facilitate efforts to quantify impacts of 
quality of the training data. 

An experiment using a dynamic strategy produced accura­
cies of 78% after just 3.3 seconds, which may indicate that 
there is a non-trivial amount of information embedded in the 
early response of a liquid crystal sensor that can be used to 
classify the samples more quickly. This is reinforced when 
using static classification strategies (e.g., as shown in FIGS. 
10 and 12, which show relatively high classification accu­
racy at a first image captured 3.3 seconds after exposure of 
the liquid crystal sensor to a chemical to be detected. 

[0094] In another example, 80% of the micro-wells were 
randomly selected as training wells, and the rest of the wells 
were used as test wells. The random selection process was 
repeated five times and the results are summarized in FIG. 
11. As shown, the overall classification accuracy decreases 
to 95%, which suggests that the use of more correlated (i.e., 
less informative) data in the learning process may result in 
lower accuracy. FIG. 12 shows that the accuracy at 3.3 
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seconds is above 91 % but significant volatility is observed 
at different times. Using more micro-wells to train the 
classifier may increase accuracy, and ultimately reach clas­
sification accuracies above 99%. However, such an 
approach also require more time-consuming data collection. 
[0095] Note that the training classification is relatively 
high (i.e., 99.46%), providing additional evidence that fea­
tures I, II, and III are highly informative. The predicted 
classification accuracy, however, only reached 95% for 
images at t=200 seconds and accuracy reached levels of only 
91 % for images at t=3.3 seconds (as shown in FIG. 12). The 
decreased accuracy may be the result of using more corre­
lated (and thus less informative) data. This can facilitate 
quantification of the effects of using lower quality training 
data in the learning (training) process. 
[0096] FIG. 13 shows the effect of using various numbers 
of samples for training with selection by micro-well. As 
shown in FIG. 13, an accuracy of 95% was achieved if 80% 
of the data (i.e., 312 micro-wells or 60,064 images) were 
used as training samples, whereas, if only 20% of the data 
(i.e., 79 micro-wells or 15,017 images) were used as training 
samples, the accuracy dropped to 87.47%. 
[0097] FIG. 14 shows the effect of using various different 
machine learning classification techniques. As shown in 
FIG. 14, linear SVM (described above) was compared with 
logistic classification, nonlinear SVM, and a neural network 
ANN. The images were partitioned by micro-wells, and 80% 
of the micro-wells were used for training. For nonlinear 
SVM, a Gaussian kernel was used. For the neural network, 
the input layer used the RGB (true color) image, and the 
hidden layers were a sequence of convolution2dLayer, 
maxPooling2dLayer, fullyConnectedLayer, reluLayer, and 
softmaxLayer. The time to solve the optimization problems 
using the various techniques varied significantly. For 
example, logistic classification required about 10 minutes 
for training the classifier, whereas linear SVM required 
about 30 minutes, nonlinear SVM required about 2 hours, 
and the neural network required about 2 days. In addition, in 
the model selection phase, a sequence of classification 
problems were solved, where the number of classification 
problems in each round equaled k (with five used in this 
example) times the number of combinations ofhyperparam­
eters. Four different values for C were tested in linear SVM, 
four different values of A were tested in logistic classifica­
tion, three different values of C and three different value of 
y were tested for nonlinear SVM, and two different values of 
A for the neural network. For the neural network, the process 
was performed only once (k-1) because the solution time 
per classification problem was very long. 
[0098] As shown in FIG. 14, linear SVM was the superior 
technique, achieving classification accuracies above 95%. 
The performance of nonlinear SVM was relatively close to 
that oflinear SVM, but took significantly more time to train. 
Logistic regression only achieved accuracies of about 92%, 
while the neural network only achieved 83% accuracy. Note 
that it may be possible to achieve better accuracy with a 
neural network by better tuning the network layout, but this 
would require a substantial time investment to investigate 
various layouts given the extended training time. 
[0099] FIG. 15 shows examples of classification accuracy 
using color channel information and a dynamic strategy. An 
RGB image (micrograph) collected at a given time instance 
has three channels: red (R), green (G), and blue (B). The 
brightness field in each channel can be represented as a 
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matrix in which each element corresponds to one pixel, and 
this matrix can capture spatial patterns. The spatial field was 
averaged for each channel to obtain a feature for each 
channel (that we call the average RGB intensities), which 
generated three features at each point in time (i.e., every 3.3. 
seconds). The average of the three average intensities were 
also calculated to obtain the average total intensity. 

[0100] In some embodiments, a dynamic strategy can 
classify a response based on average RGB feature informa­
tion (I) that is accumulated during the evolution of the liquid 
crystal sensor response after exposure to a chemical. This 
dynamic strategy can utilize a difference in response speed 
by the liquid crystal sensors to N2-water, which tends to be 
slower, and to DMMP, which tends to be faster. For 
example, as shown in FIG. 7C, when exposed to DMMP, the 
depicted liquid crystal sensors took around 100 to 150 
seconds to change in appearance from a ring to a full moon 
appearance, whereas a similar transition in response to 
N2 -water took over 250 seconds. In light of these differ­
ences, the evolution of average intensity is different in 
response to DMMP and water, which is depicted in FIG. 19 
showing that the evolution of the average RGB channels in 
response to N2-water are smoother than the responses to 
DMMP. Accordingly, it can be expected that the shape of the 
dynamic profiles of the RGB channels can provide valuable 
information to perform classification. However, from the 
nature of the dynamic responses it is apparent that the 
DMMP responses exhibit relatively high variability from 
sample to sample, which can be attributed to differences in 
the initial conditions of the liquid crystal when the DMMP 
was introduced and to variations in the sample and surface, 
which are difficult to control experimentally (as seen in the 
initial states of the RGB channels shown in FIG. 19). It is 
also apparent that, for a given sample, the differences in the 
evolution of the average RGB intensities are not as marked 
suggesting that significant redundancy in these features 
exists. Note that the accuracy of the dynamic classification 
strategy is tied to the slow dynamics of the LC response, and 
the dynamic strategy can accumulate many more features 
than were used in the static strategy described above. For 
example, if all feature information described herein (e.g., 
mean RGB channel brightness, HOG features, deep learning 
features, and grayscale pixel brightness) were accumulated 
during the entire response, each training sample would be 
associated with 524,539 features, which may cause any 
classification models to be intractable and which may also 
lead to overfitting ( overparameterization). 

[0101] In some embodiments, each training sample for the 
dynamic strategy can capture cumulative feature informa­
tion of one micro-well up to a given time t. In one particular 
example, data from 391 samples (micro-wells) was used to 
train a dynamic classifier, of which 80% were randomly 
selected as the training set with the remaining 20% used as 
the test set. This random selection was repeated five times 
(i.e., to produce five different training sets, and five different 
test sets, each of which can be used to train a classification 
model). For each micro-well, the features used to generate 
the results shown in FIG. 15 were the average RGB inten­
sities of multiple images recorded up to time t. For example, 
for a response lasting 200 seconds, feature information from 
61 images (collected every 3.3. seconds) was used with each 
image being associated with three average RGB intensities. 
Accordingly, the total number of features used for a response 
up to time t=3.3 seconds is 3, for t=l00 seconds is 91, and 
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for t=200 seconds is 183. A linear SVM classifier was 
trained using this data, without using other feature informa­
tion (HOG, deep learning, and grayscale pixels) due to the 
extremely large number of features that would be produced. 
However, using only average RGB channel brightness, the 
results show the dynamic response of the liquid crystal 
sensor contains valuable information that can be used to 
conduct classification. 

[0102] FIG. 20 shows that the testing classification accu­
racy achieved after t=3.3 seconds for the dynamic strategy 
that was tested is only 78%, and after t=200 seconds it 
reached 97%. Note that the training accuracy was 100% for 
t=200 seconds (as shown in FIG. 15), which indicates that 
RGB feature information may be sufficient to perfectly 
categorize the images. However, as shown in FIG. 15, there 
is variability in the testing classification accuracy when 
using different training sets (e.g., ranging from 95% to 
100% ), which is likely due to significant variability in the 
dynamic responses ofliquid crystal exposed to DMMP from 
sample to sample, which can increase the important of 
training set selection to insure that it is representative of such 
variability. 

[0103] FIG. 16 shows examples of the effect of feature 
information on classification accuracy. As shown in FIG. 16, 
using different combinations of features can produce clas­
sification models with varying degrees of accuracy. 
Although not shown, it was also determined that combining 
all of features I-IV did not improve this performance, and 
that the use of average total RGB intensity alone provided 
very low accuracies (of around 60%). Note that average 
brightness has been widely used by experimental researchers 
to classify liquid crystal responses, and these results indicate 
that is likely an inferior feature to use alone. The HOG 
feature information (II) likely contribute to increased accu­
racy due to such features capturing spatial patterns that 
develop relatively early in the liquid crystal response. Such 
patterns, however, are not sufficient to achieve high accu­
racies. Features generated by AlexNet (III) likely contribute 
to increased accuracy due to highly evolved features gen­
erated by such a system, such as texture, edges, and blobs. 
Note that it is difficult (or impossible) to ascribe direct 
physical interpretations to such evolved features generated 
by a deep neural network. 

[0104] FIG. 17 shows examples of computational perfor­
mance related to the use of different optimization solvers for 
training a support vector machine instance. As shown in 
FIG. 17, computational performance is compared for differ­
ent optimization solvers for a large linear SVM classification 
instance that comprises 37,540 training samples and 4,997 
features. These experiments were run on a multi-core com­
puting server with 32 cores. As shown, the off-the-shelf 
interior-point solver Ipopt was not able to solve the problem 
because it ran out of memory as the linear algebra system 
became too large to be handled all-at-once. The parallel 
Schur decomposition strategy implemented in PIPS-NLP 
bypassed the memory obstacle, but required more than 
twelve hours to solve the problem to a tolerance of lxl0-5 

due to dense linear algebra operations that are involved. The 
clustering-based preconditioner used in IPCluster reduced 
the solution time to 4.8 minutes and achieved the same 
tolerance of lxl0-5

• Notably, the preconditioner only used 
1 % of the training samples, indicating that high redundancy 
exists in the feature information. Another surprising result is 
that the SMO technique (tailored to SVM problems) only 
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reached a tolerance of lx10- 1 after an hour. These results 
suggest that drastic reductions in computing time and accu­
racy can be achieved with advanced optimization solvers. 

[0105] FIG. 18 shows an example experimental setup that 
can be used to generate image data for training and/ or testing 
of mechanisms for detecting the presence of an analyte. As 
shown in FIG. 18, the experimental setup includes a light 
source that directs light through a liquid crystal sensor 
toward an image sensor (detector) while an N2-DMMP 
mixture or 30% relative humidity sample of air was passed 
over the liquid crystal sensor. Six videos were recorded that 
depict the response ofliquid crystal sensors to N2 -DMMP at 
10 ppm (these videos varied in length from 4 to 13 minutes) 
and six videos were recorded that depict the response of the 
liquid crystal sensors to N2-water (these videos varied in 
length from 7 to 30 minutes). Each video tracked the 
dynamic evolution of multiple independent micro-wells (the 
total number of micro-wells recorded was 391). A frame 
(micrograph) was captured from each video every 3.3 sec­
onds, and each frame was subdivided into several images, 
each depicting the entirety of a single micro-well at a 
specific time. The total number of micro-well images gen­
erated was 75,081 and each image was resized to 60x60 
pixels (e.g., several such images are depicted in FIGS. 7B 
and 7C). 

[0106] The experimental procedure followed to obtain 
liquid crystal response data involved various components 
and procedures. For example, 5CB was purchased from 
HCCH (Jiangsu Hecheng Display Technology Co., LTD). 
The developers SU-8 2050 and SU-8 were purchased from 
MicroChem (Westborough, Mass.). Absolute ethanol (anhy­
drous, 200 proof) and aluminum(III) perchlorate salt in its 
highest available purity form were purchased from Sigma­
Aldrich. (Tridecafluoro-1, 1,2,2-tetrahydrooctyl)-trichlorosi­
lane was purchased from Pfaltz & Bauer (Waterbury, 
Conn.). DMMP in nitrogen at a concentration of 10 ppmv 
was obtained from Airgas (Radnor, Pa.) and used as 
received. Fischer's finest glass slides were purchased from 
Fischer Scientific (Hampton, N.H.). All chemicals and sol­
vents were of analytical reagent grade and were used as 
received without any further purification. All deionized 
water used in the study possessed a resistivity of at least 18.2 
MQcm. 

[0107] As another example, polymeric wells with diam­
eters of 200 µm were fabricated by photolithography to 
create liquid crystal films supported on metal salt surfaces. 
SU-8 2005, which contains 45 wt% bisphenol A novolac 
epoxy, was made by adding cyclopentanone to SU-8 2050, 
which contains 71.65 wt % bisphenol A novolac epoxy, to 
decrease the viscosity of the photoresist. Then, a thin film of 
SU-8 2005 was deposited on a cleaned glass surface by 
spin-coating at 500 rpm for 10 seconds followed by 3,000 
rpm for 30 seconds. The polymer-coated surface was sub­
sequently prebaked on a hot plate at 95° C. for 5 minutes and 
then cooled to room temperature for 10 minutes. After 
prebaking, a photomask with 200 µm-diameter dark circular 
patterns was placed on the polymer coated surface and 
exposed to UV for 70 seconds (X, =254 nm, UV crosslinker, 
Spectronics, Westbury, N.Y.). After UV exposure, the 
sample was post-baked for 7 minutes at 95° C. The SU-8 
film was exposed to an oxygen plasma (250 Watt RF power, 
50 cm3 /min oxygen) and subsequently placed into a desic­
cator to which 25 liters of (tridecafluoro-1,1,2,2-tetrahy­
drooctyl)-trichlorosilane was added (adjacent to the SU-8 
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film). A vacuum was then pulled in the desiccator for 20 
minutes, during which time the organosilane formed a vapor 
and reacted with the surface of the SU-8 film. After the 
surface treatment, the sample was placed in a SU-8 devel­
oper (1-methoxy-2-propyl acetate) and sonicated for 15 
seconds to dissolve the regions of the SU-8 film that were 
not exposed to UV light. The sample was then washed with 
a copious amount of isopropanol and dried under a gaseous 
flow of nitrogen. The depth of the polymeric microwells 
fabricated using the aforementioned procedure was deter­
mined to be 5 µm by surface profilometry. 
[0108] As yet another example, films of liquid crystal 
supported on metal-salt decorated surfaces were deposited 
within the wells. Aluminum perchlorate salts were dissolved 
into dry ethanol to form 10 mM solution, and then 50 µL of 
solution was deposited by spin-coating (at 3000 rpm for 30 
seconds) onto the glass surfaces at the bottom of the poly­
meric microwells. Next, the microwells were filled with 
liquid crystal by depositing 2 µL of liquid crystal onto each 
array of microwells using a micropipette. Excess liquid 
crystal was removed from the array by wicking into a 
microcapillary. 
[0109] As still another example, the LC-filled microwells 
were exposed to a stream of dryN2 containing DMMP (at 10 
ppmv) within a flow cell with glass windows that permitted 
characterization of the optical appearance of the liquid 
crystal using a polarized optical microscope. The gas con­
taining DMMP was delivered to the flow cell at 300 mL/min 
using a rotameter (Aalborg Instruments and Control, 
Orangeburg, N.Y.). For experiments performed to evaluate 
the response of the liquid crystals to water vapor, nitrogen 
containing 30% relative humidity (RH) was delivered to the 
flow cell at 300 mL/min with the same rotameter. The RH of 
the air was controlled using a portable dew point (T DP) 
generator (LI-610, LI-COR Biosciences, Lincoln, Nebr.). To 
generate 30% RH gas stream, the temperature of the gas fed 
to the generator was controlled at 25° C. and the dew point 
was set as 6.2° C. The optical appearance of the liquid 
crystal film was recorded using an Olympus camera (Olym­
pus C2040Zoom, Melville, N.Y.) and WinTV software 
(Hauppauge, N.Y.). 
[0110] In a further example, the optical appearance of the 
liquid crystal was characterized using an Olympus BX-60 
polarizing light microscope in transmission mode (Olympus, 
Japan). Conoscopic imaging of the liquid crystal films was 
performed by inserting a Bertran lens into the optical path of 
a polarized-light microscope to distinguish between homeo­
tropic and isotropic films. 
[0111] FIG. 19 shows examples of average intensity on 
various color channels over time in images of liquid crystal 
sensors exposed to DMMP and N2-water over time. As 
shown, in the presence of the DMMP the average intensity 
on each channel relatively rapidly increased after a relatively 
short period of time (e.g., within one to two minutes), 
whereas in the presence of the N2 -water the average inten­
sity increased much more gradually. 
[0112] FIG. 20 shows examples of average classification 
accuracy on a "test" set of images over time for various 
strategies. The results depict how classification accuracy 
changes as a model receives input data from successive 
images of the same well over the 200 second period. For 
example, the "static (a)" model predicted to which of the two 
classes an image of a microwell belongs with nearly 100% 
accuracy regardless of the length of time between exposure 
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to the chemical and capture of the image. As shown, the 
most accurate model was trained using the "static(a)" strat­
egy, which involved randomly dividing microwells into test 
and training sets, whereas the "static(b )" strategy involved 
randomly dividing the set of all images of microwells into 
test and training sets. By contrast, as described above, the 
dynamic strategy involved training a model using average 
RGB channel intensities over time, rather than instantaneous 
intensity patterns within a single image of the microwell. 
[0113] FIG. 21 shows a symbolic example of compression 
of the number of samples into clusters that can be used to 
create a sparse preconditioner for training a support vector 
machine using Schur decomposition. As shown, samples can 
be grouped based on similarity, and representative samples 
from each group can be used to generate a preconditioner for 
finding a solution to the support vector machine optimiza­
tion problem. 
[0114] Note that although micro-well sensors were 
described herein, various other types of configurations of 
liquid crystals can be used to sense various different types of 
chemicals, and similar techniques can be used to classify the 
responses of those sensors. For example, as described in 
Abbott et al. U.S. Pat. No. 6,284,197 (which is hereby 
incorporated herein by reference in its entirety), a sensor can 
be formed using liquid crystals in contact with self-assem­
bling monomers (SAMs) where the liquid crystals change 
orientation in the presence of certain chemicals. In such an 
example, images of the sensors when exposed to different 
chemicals that cause similar reactions in the sensors can be 
used to train a classification model ( e.g., as described above 
in connection with FIGS. 1-8) to classify which chemical the 
sensor was exposed to. Abbott et al. U.S. Pat. No. 7,135,143 
(which is hereby incorporated herein by reference in its 
entirety), describes other techniques using sensor that can be 
formed using liquid crystals in contact with self-assembling 
monomers (SAMs) where the liquid crystals change orien­
tation in the presence of certain chemicals. 
[0115] As another example, as described in Abbott et al. 
U.S. Pat. No. 7,910,382 (which is hereby incorporated 
herein by reference in its entirety), a sensor can be formed 
using liquid crystals that interface with an aqueous phase at 
a membrane containing a polymerized target of a bioagent, 
where the orientation of the liquid crystals at the aqueous 
phase change when the bioagent is present in the aqueous 
phase. In such an example, images of the sensors when 
exposed to different chemicals that cause similar reactions in 
the sensors can be used to train a classification model (e.g., 
as described above in connection with FIGS. 1-8) to classify 
which chemical the sensor was exposed to. 
[0116] As yet another example, as described in Abbott et 
al. U.S. Pat. No. 7,990,488 (which is hereby incorporated 
herein by reference in its entirety), sensors can be formed 
using liquid crystal in a holding compartment of a substrate 
over which an aqueous solution can be passed. Such sensors 
can detect interactions at biomimetic interfaces with liquid 
crystals, which can cause the appearance of the sensor to 
change. Such sensors can, in a particular example, facilitate 
detection of binding of proteins and/or other biological 
molecules (and their assemblies) to liquid crystal-aqueous 
interfaces. As another particular example, such sensors can 
facilitate detection of other molecular transformations 
effected by biological molecules (e.g., catalytic transforma­
tions that involve the formation or breaking of a covalent 
bond). 
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[0117] As still another example, as described in Abbott et 
al. U.S. Pat. No. 9,080,973 (which is hereby incorporated 
herein by reference in its entirety), sensors can be formed 
using droplets of liquid crystals suspended in an aqueous 
phase that are ordinarily in a bipolar phase, but switch to a 
radial phase in the presence of certain chemicals, which can 
lead to a visual change in appearance of the droplets. In such 
an example, images of the sensors when exposed to different 
chemicals that cause similar reactions in the sensors can be 
used to train a classification model ( e.g., as described above 
in connection with FIGS. 1-8) to classify which chemical the 
sensor was exposed to. 

[0118] As a further example, as described in Abbott et al. 
U.S. Patent Application Publication No. 2016/0178588 
(which is hereby incorporated herein by reference in its 
entirety), sensors can be formed using liquid crystals that are 
doped with a chiral molecule which can induce a helical 
distortion into the liquid crystal. In the presence of certain 
chemicals the chiral doped liquid crystal can self-assemble 
into a cubic lattice, dramatically changing its appearance, 
and in some cases diffracting visible light to cause the lattice 
to appear to change color (e.g., to a blue or green appear­
ance). In such an example, images of the sensors when 
exposed to different chemicals that cause similar reactions in 
the sensors can be used to train a classification model (e.g., 
as described above in connection with FIGS. 1-8) to classify 
which chemical the sensor was exposed to. Note that 
although this disclosure mostly describes mechanisms for 
detecting the presence of a particular chemical, sensors 
using liquid crystals can be configured to change appearance 
with a dose response which can be used to distinguish the 
amount of exposure to a particular chemical (e.g., over a 
period of minutes, hours, days, etc.), and similar techniques 
can be used to distinguish the amount of chemical that has 
been absorbed from the environment, which may otherwise 
be difficult for a human to do. Additionally, although the 
disclosure generally describes detecting the presence of a 
chemical this should not be construed as limiting the dis­
closure to the detection of molecules (or atoms) that are 
typically characterized as "chemicals." Rather, liquid crystal 
sensors can be configured to detect the presence of many 
types of analytes, such as biological substances ( e.g., includ­
ing enzymes), biological organisms, and/or other substances 
which may not typically be described as being a chemical. 

[0119] In some embodiments, any suitable computer read­
able media can be used for storing instructions for perform­
ing the functions and/or processes described herein. For 
example, in some aspects, computer readable media can be 
transitory or non-transitory. For example, non-transitory 
computer readable media can include media such as mag­
netic media (such as hard disks, floppy disks, etc.), optical 
media (such as compact discs, digital video discs, Blu-ray 
discs, etc.), semiconductor media (such as RAM, Flash 
memory, electrically programmable read only memory 
(EPROM), electrically erasable programmable read only 
memory (EEPROM), etc.), any suitable media that is not 
fleeting or devoid of any semblance of permanence during 
transmission, and/or any suitable tangible media. As another 
example, transitory computer readable media can include 
signals on networks, in wires, conductors, optical fibers, 
circuits, or any suitable media that is fleeting and devoid of 
any semblance of permanence during transmission, and/or 
any suitable intangible media. 
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[0120] It should be noted that, as used herein, the term 
mechanism can encompass hardware, software, firmware, or 
any suitable combination thereof. 
[0121] It should be understood that the above described 
steps of the processes of FIGS. 4 to 6 can be executed or 
performed in any order or sequence not limited to the order 
and sequence shown and described in the figures. Also, some 
of the above steps of the processes of FIGS. 4 to 6 can be 
executed or performed substantially simultaneously where 
appropriate or in parallel to reduce latency and processing 
times. 
[0122] Although the invention has been described and 
illustrated in the foregoing illustrative aspects, it is under­
stood that the present disclosure has been made only by way 
of example, and that numerous changes in the details of 
implementation of the invention can be made without 
departing from the spirit and scope of the invention, which 
is limited only by the claims that follow. Features of the 
disclosed embodiments can be combined and rearranged in 
various ways. 

What is claimed is: 
1. A method for detecting the presence of an analyte, the 

method comprising: 
capturing an image of liquid crystals; 
determining one or more features based on the brightness 

of the pixels in the image; 
providing the one or more features to a trained support 

vector machine, wherein the support vector machine 
was trained using images captured of other liquid 
crystals when exposed to a first analyte and the other 
liquid crystals when exposed to a second analyte; and 

receiving an indication from the support vector machine 
indicating whether the liquid crystals have been 
exposed to the first analyte. 

2. The method of claim 1, further comprising determining 
one or more additional features based on the image of the 
liquid crystals, wherein the one or more additional features 
comprises outputs of a hidden layer of a trained object 
detection deep learning convolution neural network that was 
provided with values of the pixels in the image as an input. 

3. The method of claim 2, wherein the one or more 
additional features are based on a color image of the liquid 
crystals, and wherein the one or more features are based on 
a grayscale image of the liquid crystals. 

4. The method of claim 1, further comprising: 
converting the RGB image to a grayscale image; 
calculating a plurality of oriented gradients using the 

grayscale image; and 
calculating a histogram of the plurality of oriented gra­

dients, wherein the one or more features comprises 
values from the histogram of the plurality of oriented 
gradients. 

5. The method of claim 4, wherein the RGB image has a 
lower resolution than the image of the liquid crystals. 

6. The method of claim 1, wherein the first analyte is a gas 
phase analyte and the second analyte is a non-targeted gas 
phase molecule. 

7. The method of claim 6, wherein the first analyte is 
DMMP and the second analyte is water vapor. 

8. The method of claim 7, wherein the analyte to be 
detected is sarin. 

9. The method of claim 1, wherein the first analyte is a 
liquid phase analyte and the second analyte is a non-targeted 
liquid phase analyte. 
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10. The method of claim 9, wherein the first analyte is a 
biological analyte. 

11. The method of claim 1, wherein the liquid crystals are 
disposed within a micro-well. 

12. The method of claim 1, wherein the liquid crystals are 
in contact with self-assembling monomers. 

13. The method of claim 1, wherein the liquid crystals are 
in contact with a polymerized target of a bioagent. 

14. The method of claim 1, wherein the liquid crystals 
form at least one droplet suspended in an aqueous phase. 

15. The method of claim 1, wherein the liquid crystals are 
disposed within a holding compartment of a substrate over 
which an aqueous solution is being passed. 

16. The method of claim 1, wherein the liquid crystals are 
doped with a chiral molecule. 

17. A system for detecting the presence of an analyte, the 
system comprising: 

an image sensor; and 
a processor that is programmed to: 

cause the image sensor to capture an image of liquid 
crystals; 

convert the image to grayscale; 
determine one or more features based on the brightness 

of the pixels in the grayscale image; 
provide the one or more features to a trained support 

vector machine, wherein the support vector machine 

15 
Apr. 11, 2019 

was trained using images captured of other liquid 
crystals when exposed to a first analyte and the other 
liquid crystals when exposed to a second analyte; 
and 

receive an indication from the support vector machine 
indicating whether the liquid crystals have been 
exposed to the first analyte. 

18. A non-transitory computer readable medium contain­
ing computer executable instructions that, when executed by 
a processor, cause the processor to perform a method for 
detecting the presence of an analyte, the method comprising: 

capturing an image of liquid crystals; 

converting the image to grayscale; 

determining one or more features based on the brightness 
of the pixels in the grayscale image; 

providing the one or more features to a trained support 
vector machine, wherein the support vector machine 
was trained using images captured of other liquid 
crystals when exposed to a first analyte and the other 
liquid crystals when exposed to a second analyte; and 

receiving an indication from the support vector machine 
indicating whether the liquid crystals have been 
exposed to the first analyte. 

* * * * * 




