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ABSTRACT 
The present disclosure includes systems and methods for 
creating positron emission tomography (PET) images. The 
method includes receiving at least one PET image of a 
subject created from PET data acquired from the subject, 
creating an attenuation correction map using the at least one 
PET image, and reconstructing PET data using the attenu­
ation correction map and the at least one PET image to 
generate an attenuation corrected PET image. 

502 
_) 

RECEIVE PET DATA 

l r 

CREATE PSEUDO-CT 504 

DAT A FROM PET _) 

DATA 

1' 

CREA TE ATTENUATION _) 
CORRECTION (AC) MAP USING 

06 

PSEUDO-CT DATA 

l r 

508 
RECONSTRUCT PET DATA J 

USING AC MAP 



Patent Application Publication May 2, 2019 Sheet 1 of 9 US 2019/0130569 Al 

100 

\ 1~ 
,----------------------------------------------------·('" __ 
I 

! .- - - - - - - - ~ 
I I 

I 
I 

: 140 

. 
GANTRY 

CONTROLLER 

122 

z 
0 (f) 
- I­I- --::::, 
(f) (_) 

::::, 0::: 
0-
(_) (_) 
<( 

------------- --------------------------------------------

104, 
,----L---------------
1 ...---------, 124 : 
: COINCIDENCE : 

t 
t 
I 
t 
I 
t 
t 
I 
t 
I 
I 

PROCESSING 
UNIT 

SORTER 

126 

: I ---------- _________ , 
,--------- ----------
1 r----'---~128 : 
t t 

: DATA STORE : 
I I 

I ---.---~ t 
t t 
I ...----'---~ 130 I 
I t 
I I 
I PROCESSOR t 
I t 

t ---,---- I 
: t 

1067 ------- ------~;2-' 

COMMUNICATION SYSTEM 

_____ (108 

FIG. 1 

t 
t 

I -------------------1 



200~ 

Acquired PET 
~ From Subject 

202 

Acquired CT or I-- 204 
MR From Subject 

l 

I 

I CTACorMRAC ~ 

,_ ______ ____.I 2oe 

Analysis 

+ 
Corrected PET 

\210 

FIG. 2A 
PRIOR ART 

1--208 

""O 
~ ..... 
('D 

= ..... 
> "e 

"e 
212~ -.... (') 

~ ..... .... 
0 

= Acquired PET I ""O 
214 -i From Subject = O" -.... (') 

~ ..... .... 
0 

= I 

Physics-Based 

~ Algorithm 1
"' 216 ~ 

'-< 
N 
~ 

N 
0 .... 

Analysis 
1,0 

rJJ 
218 =-('D 

('D ..... 
N 
0 .... 

Corrected PET ~ 
1,0 

220 
c 
rJJ 
N 
0 .... 

FIG. 28 1,0 

---0 .... 
(,H 
0 PRIOR ART Ul 
O'I 
1,0 

> .... 



Patent Application Publication May 2, 2019 Sheet 3 of 9 US 2019/0130569 Al 

Acquired PET - Corrected PET 
From Subject 

~ 

/ / 
302 304 

FIG. 3 

400 ~ 

404 
RECEIVE PET DATA __) 

,, 
4 06 

CREATE ATTENUATION lJ 
CORRECTION (AC) MAP USING PET 

DATA 

1' L58 
RECONSTRUCT PET DATA 

USING AC MAP 

FIG. 4 



Patent Application Publication May 2, 2019 Sheet 4 of 9 

500~ 

.---------. 502 

RECEIVE PET DATA 

CREATE PSEUDO-CT 5o4 

DATA FROM PET 
DATA 

CREATE ATTENUATION 
CORRECTION (AC) MAP USING 

PSEUDO-CT DATA 

RECONSTRUCT PET DAT A 
USING AC MAP 

FIG. 5 

506 

508 

US 2019/0130569 Al 



Patent Application Publication 

( 
0 
0 
<D 

( 
N 
0 
<D 

;;{ 

<D 
0 
(0 

~ 
0 
<D 

May 2, 2019 Sheet 5 of 9 US 2019/0130569 Al 

i;.u.U.U . .M .. 

N 
N 
<D 

0 
N 
<D 

00 ...... 
c.o 

c.o ...-
(0 

<O 

<..9 
LL 



Patent Application Publication May 2, 2019 Sheet 6 of 9 

~\ 
: i-,=:~,:'.-.i~.:t - - - ~ 

~: 
:✓1 : 
i r--- l• 

c.o I ·• 
~ i 

~ 
I 
I 

00 
0 
t--

· ... ~.;• 

US 2019/0130569 Al 

. 
(.9 

LL 

\ 



Patent Application Publication 

u 
00 . 
(9 

LL 

co 
00 . 
(9 
LL 

<( 
00 . 
(9 
LL 

0 
00 . 
(9 
LL 

May 2, 2019 Sheet 7 of 9 

w 
00 . 
(9 
LL 

LL 
00 . 
(9 
LL 

t ............ :: 
=!\ 

I~) 
:If 

US 2019/0130569 Al 

(9 
00 . 
(9 
LL 



Patent Application Publication 

u 
O') . 
(9 

LL 

cc 
O') . 
(9 

LL 

<( 
O') . 
(9 

LL 

May 2, 2019 Sheet 8 of 9 US 2019/0130569 Al 



Patent Application Publication May 2, 2019 Sheet 9 of 9 US 2019/0130569 Al 

CD 
LL 



US 2019/0130569 Al 

DEEP LEARNING BASED DATA-DRIVEN 
APPROACH FOR ATTENUATION 

CORRECTION OF PET DATA 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

[0001] This invention was made with government support 
under AR068373 awarded by the National Institutes of 
Health. The government has certain rights in the invention. 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

[0002] Not Applicable 

BACKGROUND 

[0003] The field of the disclosure relates to systems and 
methods for positron emission tomography. More particu­
larly, the present disclosure relates to systems and methods 
for attenuation correction of data acquired with positron 
emission tomography. 
[0004] Positron emission tomography (PET) is a non­
invasive imaging modality that provides direct imaging of 
molecular processes through the use of radiolabeled mol­
ecules, such as 18F-fluorodeoxyglucose (FDG) for glucose 
metabolism. PET activity is observed by detecting pairs of 
coincident gamma rays emitted from the PET tracer, sorted 
into sinograms, and reconstructed into a volumetric image. 
Knowledge about attenuation (typically Compton scatter) 
that gamma rays undergo is crucial to achieve quantitatively 
accurate PET reconstruction. To this end, PET reconstruc­
tion requires an attenuation correction of the raw PET data. 
In traditional PET reconstruction techniques, an attenuation 
map (or µ-map) is obtained by performing additional imag­
ing acquisition via computed tomography (CT) system. CT 
systems are highly-accurate anatomical imaging modalities 
that provide ready attenuation information due to the use of 
x-ray attenuation as the mechanism for determining contrast. 
While attenuation correction using CT data is well estab­
lished and highly effective, it carries the drawback of relying 
on an imaging modality that utilizes ionizing radiation to 
acquire data. The additional dose of ionizing radiation is 
undesirable. For example, when using CT imaging, the 
attenuation coefficients are measured with x-rays (with 
energies often in the neighborhood of 100 keV) and are 
remapped to estimate the attenuation coefficients for the 511 
keV photons encountered in PET. Using CT for attenuation 
correction exposes patients to radiation, usually solely for 
creating the attenuation map or µ-map. Furthermore, acquir­
ing the CT data requires an entirely separate imaging acqui­
sition using a CT system abutted to the PET system. As such, 
image registration can be problematic. 
[0005] In an attempt to overcome these problems with 
using CT data to perform attenuation correction, some have 
tried to use other imaging modalities that provide robust and 
accurate anatomical images, but without the need for the 
undesired ionizing radiation. Specifically, some have used 
magnetic resonance imaging (MRI) systems to acquire ana­
tomical images of the patient to be examined using PET 
imaging. While MRI favorable foregoes use of any ionizing 
radiation, it does not carry with it the inherent attenuation 
information available in CT imaging data. As such, some 
have developed techniques to elicit attenuation information 
from MRI data or, more accurately, to create attenuation 

1 
May 2, 2019 

maps from the MRI data, e.g., through the creation of 
pseudo-CT images. For example, one approach for PET-MR 
attenuation correction is to segment a magnetic resonance 
image volume into different tissue classes and then assign 
the corresponding attenuation coefficients to the segmented 
tissue classes to create a µ-map. Thus, using MR for attenu­
ation correction is complicated, as well as computationally 
intensive and relatively slow. 
[0006] In a manner similar to CT-PET systems, some have 
manufactured MRI-PET systems that arrange the PET sys­
tem about the bore of an MRI system. Of course, these 
combined systems are extremely expensive and result in an 
overall system that is not effective at operating as just one of 
the modalities (i.e., the MRI system in the MRI-PET system 
is limited relative to a stand-alone MRI system, and the CT 
system in the CT-PET system is limited relative to a stand­
alone CT system). 
[0007] Thus, despite the exceptional utility of PET as a 
clinical imaging modality for physiological studies, such as 
cancer localization, function, etc., it continues to be limited 
in clinical applicability due to these complexities. Therefore, 
there continues to be a need for an improved attenuation 
correction system and method for reconstructing PET data. 

SUMMARY 

[0008] The present disclosure overcomes the foregoing 
drawback by providing systems and methods for attenuation 
correction of PET data without requiring additional imaging 
data from a secondary imaging modality to perform attenu­
ation correction of PET data. That is, the present disclosure 
facilitates performing attenuation correction of PET data 
using the PET data and without relying on complex physics 
models that are not adaptable and include assumptions and 
tradeoffs that can undermine attenuation correction of the 
PET data, not to mention become computational over­
whelming and clinically infeasible. 
[0009] In accordance with one aspect of the present dis­
closure, a method is provided for attenuation correction of 
positron emission tomography (PET) data. The method 
includes receiving at least one PET image of a subject 
created from PET data acquired from the subject, creating an 
attenuation correction map using the at least one PET image, 
and reconstructing PET data using the attenuation correction 
map and the at least one PET image to generate an attenu­
ation corrected PET image. 
[0010] In accordance with another aspect of the present 
disclosure, a method is provided for correcting positron 
emission tomography (PET) data for attenuation effects. The 
method includes receiving a first data set of raw PET data of 
a subject, generating at least one PET image from the first 
data set, and generating at least one pseudo-CT image from 
the at least one PET image. The method also includes 
performing an attenuation correction of the first data set 
using the at least one pseudo-CT image to generate a 
corrected first data set and generating a corrected PET image 
from the corrected first data set. 
[0011] In accordance with yet another aspect of the present 
disclosure, a system is provided for generating positron 
emission tomography (PET) images of a subject. The system 
includes a data acquisition system configured to obtain raw 
PET data of a subject and a data processing system config­
ured to receive the raw PET data from the data acquisition 
system, generate pseudo-CT data from the raw PET data, 
correct attenuation corresponding to the raw PET data using 
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the pseudo-CT data, and generate at least one attenuation­
corrected PET image of the subject. 
[0012] The foregoing and other aspects of the invention 
will appear from the following description. In the descrip­
tion, reference is made to the accompanying drawings which 
form a part hereof, and in which there is shown by way of 
illustration a preferred aspect of the invention. Any particu­
lar aspect does not necessarily represent the full scope of the 
invention, however, and reference is made therefore to the 
claims and herein for interpreting the scope of the invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0013] The present disclosure will hereafter be described 
with reference to the accompanying drawings, wherein like 
reference numerals denote like elements. 
[0014] FIG. 1 is a block diagram of an example of a PET 
system that can be configured as a stand-alone PET system 
or as part of an integrated system, according to the present 
disclosure. 
[0015] FIG. 2A is a block diagram of a conventional PET 
attenuation correction system and method. 
[0016] FIG. 2B is a block diagram of another conventional 
PET attenuation correction system and method. 
[0017] FIG. 3 is a block diagram of a PET attenuation 
correction system and method, according to the present 
disclosure. 
[0018] FIG. 4 is a flowchart illustrating an example 
method of correcting PET data, according to the present 
disclosure. 
[0019] FIG. 5 is a flowchart illustrating another example 
method of correcting PET data, according to the present 
disclosure. 
[0020] FIG. 6 is a diagram of an example machine­
learning system, according to the present disclosure. 
[0021] FIG. 7 is a block diagram of an example PET 
attenuation correction system and method, according to the 
present disclosure. 
[0022] FIG. SA is a set of example PET images without 
attenuation correction. 
[0023] FIG. SB is a set of example real CT images. 
[0024] FIG. SC is a set of example pseudo-CT images, 
according to the present disclosure. 
[0025] FIG. SD is an example PET surface image with 
traditional CT-based attenuation correction (using real CT 
images). 
[0026] FIG. SE is an example PET surface image with 
deep-learning attenuation correction, according to the pres­
ent disclosure (using pseudo-CT images). 
[0027] FIG. SF is an example PET bone image with 
traditional CT-based attenuation correction (using real CT 
images). 
[0028] FIG. 8G is an example PET bone image with 
deep-learning attenuation correction, according to the pres­
ent disclosure (using pseudo-CT images). 
[0029] FIG. 9A is a set of example PET images with 
traditional CT-based attenuation correction (using real CT 
images). 
[0030] FIG. 9B is a set of example PET images with 
deep-learning attenuation correction, according to the pres­
ent disclosure (using pseudo-CT images). 
[0031] FIG. 9C is a set of example images showing 
percent-error of the images of FIG. 9B compared to the 
images of FIG. 9A, according to the present disclosure. 
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[0032] FIG. 10 is a set of example images comparing PET 
reconstruction with traditional CT-based attenuation correc­
tion and PET reconstruction with deep-learning attenuation 
correction, according to the present disclosure. 

DETAILED DESCRIPTION 

[0033] Described herein are systems and methods for 
performing attenuation correction on positron emission 
tomography (PET) data using an attenuation correction map 
(µ-map) created from the PET data. As described herein, 
attenuation correction is generally used to adjust pixel 
intensity for coincidence events that are "lost" due to 
excessive scatter. On the other hand, scatter correction 
rejects measured coincidences whose lines of responses 
were altered due to Compton scattering, and are thus no 
longer spatially related to the annihilation event. 
[0034] The present disclosure provides systems and meth­
ods for reconstructing PET data without the need for data 
from additional imaging modalities or physics models. In 
some aspects, attenuation correction may be performed 
using PET data. In some non-limiting examples, an attenu­
ation correction map may be generated from a pseudo-CT 
image that is derived via one or more algorithms from the 
PET data. As used herein, the term "pseudo-CT" can be used 
to refer to data and/or images that has properties often 
attributed to CT images, such attenuation information, but 
are derived without the use of a CT imaging system. In some 
aspects, a deep learning framework may be trained from 
existing PET-CT data sets. 
[0035] Before the systems and methods of the present 
disclosure are described in further detail, it is to be under­
stood that the disclosure is not limited to the particular 
aspects described. It is also to be understood that the 
terminology used herein is for the purpose of describing 
particular aspects only, and is not intended to be limiting. 
The scope of the present invention will be limited only by 
the claims. As used herein, the singular forms "a", "an", and 
"the" include plural aspects unless the context clearly dic­
tates otherwise. 
[0036] It should be apparent to those skilled in the art that 
many additional modifications beside those already 
described are possible without departing from the inventive 
concepts. In interpreting this disclosure, all terms should be 
interpreted in the broadest possible manner consistent with 
the context. Variations of the term "comprising", "includ­
ing", or "having" should be interpreted as referring to 
elements, components, or steps in a non-exclusive manner, 
so the referenced elements, components, or steps may be 
combined with other elements, components, or steps that are 
not expressly referenced. Aspects referenced as "compris­
ing", "including", or "having" certain elements are also 
contemplated as "consisting essentially of' and "consisting 
of' those elements, unless the context clearly dictates oth­
erwise. It should be appreciated that aspects of the disclosure 
that are described with respect to a system are applicable to 
the methods, and vice versa, unless the context explicitly 
dictates otherwise. 
[0037] Aspects of the present disclosure are explained in 
greater detail in the description that follows. Aspects of the 
disclosure that are described with respect to a method are 
applicable to aspects related to systems and other methods of 
the disclosure, unless the context clearly dictates otherwise. 
Similarly, aspects of the disclosure that are described with 
respect to a system are applicable to aspects related to 
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methods and other systems of the disclosure, unless the 
context clearly dictates otherwise. 
[0038] Referring now to FIG. 1, an example of a positron 
emission tomography ("PET") system 100 is illustrated. The 
PET system 100 generally includes an imaging hardware 
system 102, a data acquisition system 104, a data processing 
system 106, and an operator workstation 108. In some 
configurations, the PET system 100 corresponds to a stand­
alone PET system; however, it will be appreciated by those 
skilled in the art that the PET system 100 can also be 
integrated in a combined imaging system, such as a com­
bined PET and x-ray computed tomography ("CT") system, 
or a combined PET and magnetic resonance imaging 
("MRI") system. 
[0039] The imaging hardware system 102 generally 
includes a PET scanner having a radiation detector ring 
assembly 110 that is centered about the bore 112 of the PET 
scanner. The bore 112 of the PET scanner is sized to receive 
a subject 114 for examination. Prior to imaging, the subject 
114 is administered a radioisotope, such as a radionuclide or 
radiotracer. Positrons are emitted by the radioisotope as it 
undergoes radioactive decay. These positrons travel a short 
distance before encountering electrons at which time the 
positron and electron annihilate. The positron-electron anni­
hilation event 116 generates two photons that travel in 
opposite directions along a generally straight line 118. 
[0040] The radiation detector ring assembly 110 is formed 
of multiple radiation detectors 120. By way of example, 
each radiation detector 120 may include one or more scin­
tillators and one or more photodetectors. Examples of pho­
todetectors that may be used in the radiation detectors 120 
include photomultiplier tubes ("PMTs"), silicon photomul­
tipliers ("SiPMs"), or avalanche photodiodes ("APDs"). The 
radiation detectors 120 are thus configured to produce a 
signal responsive to the photons generated by annihilation 
events 116. The signal responsive to the detection of a 
photon is communicated to a set of acquisition circuits 122. 
The acquisition circuits 122 receive the photon detection 
signals and produce signals that indicate the coordinates of 
each detected photon, the total energy associated with each 
detected photon, and the time at which each photon was 
detected. These data signals are sent the data acquisition 
system 104 where they are processed to identify detected 
photons that correspond to an annihilation event 116. 
[0041] The data acquisition system 104 generally includes 
a coincidence processing unit 124 and a sorter 126. The 
coincidence processing unit 124 periodically samples the 
data signals produced by the acquisition circuits 122. The 
coincidence processing unit 124 assembles the information 
about each photon detection event into a set of numbers that 
indicate precisely when the event took place and the position 
in which the event was detected. This event data is then 
processed by the coincidence processing unit 124 to deter­
mine if any two detected photons correspond to a valid 
coincidence event. 
[0042] The coincidence processing unit 124 determines if 
any two detected photons are in coincidence as follows. 
First, the times at which two photons were detected must be 
within a predetermined time window, for example, within 
6-12 nanoseconds of each other. Second, the locations at 
which the two photons were detected must lie on a line 118 
that passes through the field of view in the PET scanner bore 
112. Each valid coincidence event represents the line 118 
connecting the two radiation detectors 120 along which the 
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annihilation event 116 occurred, which is referred to as a 
line-of-response ("LOR"). The data corresponding to each 
identified valid coincidence event is stored as coincidence 
data, which represents the near-simultaneous detection of 
photons generated by an annihilation event 116 and detected 
by a pair of radiation detectors 120. 
[0043] The coincidence data is communicated to a sorter 
126 where the coincidence events are grouped into projec­
tion images, which may be referred to as sinograms. The 
sorter 126 sorts each sinogram by the angle of each view, 
which may be measured as the angle, 8, of the line-of­
response 118 from a reference direction that lies in the plane 
of the detector ring assembly 102. For three-dimensional 
images, the sorter 126 may also sort the sinograms by the tilt 
of each view. The sorter 126 may also process and sort 
additional data corresponding to detected photons, including 
the time at which the photons were detected and their 
respective energies. 
[0044] After sorting, the sinograms are provided to the 
data processing system 106 for processing and image recon­
struction. The data processing system 106 may include a 
data store 128 for storing the raw sinogram data. Before 
image reconstruction, the sinograms generally undergo pre­
processing to correct the sinograms for random and scatter 
coincidence events, attenuation effects, and other sources of 
error. The stored sinogram data may thus be processed by a 
processor 130 located on the data processing system 106, by 
the operator workstation 108, or by a networked workstation 
132. 
[0045] The operator workstation 108 typically includes a 
display 134; one or more input devices 136, such as a 
keyboard and mouse; and a processor 138. The processor 
138 may include a commercially available programmable 
machine running a commercially available operating sys­
tem. The operator workstation 108 provides the operator 
interface that enables scan prescriptions to be entered into 
the PET system 100. In general, the operator workstation 
108 may be in communication with a gantry controller 140 
to control the positioning of the detector ring assembly 110 
with respect to the subject 114 and may also be in commu­
nication with the data acquisition system 104 to control 
operation of the imaging hardware system 102 and data 
acquisition system 104 itself 
[0046] The operator workstation 108 may be connected to 
the data acquisition system 104 and data processing system 
106 via a communication system 142, which may include 
any suitable network connection, whether wired, wireless, or 
a combination of both. As an example, the communication 
system 142 may include both proprietary or dedicated 
networks, as well as open networks, such as the internet. 
[0047] The PET system 100 may also include one or more 
networked workstations 132. By way of example, a net­
worked workstation 132 may include a display 144; one or 
more input devices 146, such as a keyboard and mouse; and 
a processor 148. The networked workstation 132 may be 
located within the same facility as the operator workstation 
108, or in a different facility, such as a different healthcare 
institution or clinic. Like the operator workstation 108, the 
networked workstation 132 can be programmed to imple­
ment the methods and algorithms described here. 
[0048] The networked workstation 132, whether within 
the same facility or in a different facility as the operator 
workstation 108, may gain remote access to the data pro­
cessing system 106 or data store 128 via the communication 
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system 142. Accordingly, multiple networked workstations 
132 may have access to the data processing system 106 and 
the data store 128. In this manner, sinogram data, recon­
structed images, or other data may exchanged between the 
data processing system 106 or the data store 128 and the 
networked workstations 132, such that the data or images 
may be remotely processed by a networked workstation 132. 
This data may be exchanged in any suitable format, such as 
in accordance with the transmission control protocol 
("TCP"), the internet protocol ("IP"), or other known or 
suitable protocols. 
[0049] As described above, PET reconstruction requires 
an attenuation correction of the raw PET data. In traditional 
PET scanners, an attenuation map (or µ-map) is obtained by 
performing additional imaging via CT ( e.g., a PET-CT 
system) or via MR (e.g., a PET-MR system). However, 
PET-CT systems expose the patient to radiation to create the 
attenuation map, and PET-MR systems are computationally 
intensive and time consuming to use. 
[0050] In addition to the radiation exposure, PET-CT 
systems estimate the attenuation map using a single snapshot 
in time, which does not reflect motion of a patient during a 
PET scan or between the PET and CT acquisitions. 
[0051] In simultaneous PET/MR systems, an attenuation 
map is estimated based on MR images, which is particularly 
challenging because bone (the tissue with the largest attenu­
ation coefficient) is not visible with positive contrast under 
typical MR acquisition. Consequently, bone is often ignored 
or estimated using atlas registration methods. 
[0052] Attenuation correction is beneficial in producing 
clinically-useful PET images. Loss of counts due to attenu­
ation increases image noise, image artifacts, and image 
distortion. Without attenuation correction, significant arti­
facts may occur on PET scans, including: prominent activity 
at body surface edges due to relative lack of attenuation at 
the surfaces compared to deeper structures, distorted appear­
ance of areas of intense activity ( e.g. urinary bladder) due to 
variable degrees of attenuation in different directions of 
activity originating from these areas, and diffuse, relatively 
increased activity in tissues of relatively low attenuation 
(e.g. lungs). Accordingly, attenuation correction of data is 
generally necessary for accurate qualitative and quantitative 
measurements of radiolabeled molecule activity. 
[0053] Referring to FIG. 2A, a conventional method for 
attenuation correction of PET data is shown. Process 200 
includes an input 202, and the input 202 is generally 
acquired PET data from a subject. A second input 204 
includes acquired CT or MR data, from the same subject, 
and is then used for attenuation correction at process block 
206. At process block 208, additional analysis may be done 
to correct the acquired PET data to produce an output 210. 
The output 210 of the process 200 corresponds to attenua­
tion-corrected PET data. Accordingly, conventional systems 
and methods use CT or MR data to correct for attenuation in 
acquired PET data. 
[0054] Referring to FIG. 2B, another method for attenu­
ation correction of PET data is shown. Process 212 includes 
an input 214, and the input is generally acquired PET data 
from a subject. The acquired PET data is then used in a 
physics-based algorithm at process block 216. The physics­
based algorithm may be based on MR or other data, and is 
used to estimate an attenuation map. At process block 218, 
additional analysis may be done to correct the acquired PET 
data based on the estimated attenuation map. At process 
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block 220, an output corresponds to attenuation-corrected 
PET data. The use of physics-based algorithms to create the 
attenuation map introduces assumptions and estimations that 
may lead to increased error in the corrected PET data. 
Specifically, assumptions regarding the non-movement of 
subjects during the acquiring of PET data and what con­
straints can be deemed "constant" may introduce error into 
the attenuation-corrected PET data. As will be described, the 
systems and methods of the present disclosure are superior 
for a variety of reasons, including that do not rely on data 
from other imaging modalities and do not require man-made 
physics models that are built upon assumptions that are not 
adaptable and may include errors or be ill fit to a given 
situation. 

[0055] FIG. 3 is a process 300 for correcting PET data 
without additional imaging of the subject, such as with MR 
or CT imaging. In this non-limiting implementation, one 
input 302 may be used to produce an output 304. The input 
302 may include raw PET data, and the output 304 may 
include attenuation corrected PET data and no man-made 
physics model is used to generate the output 304. Rather, in 
some situations, data-driven correction may be used to alter 
the raw PET data to correct for attenuation. Further, deep­
learning or machine-learning algorithms may be used to 
transform the acquired raw PET data to attenuation cor­
rected PET data. 

[0056] Referring to FIG. 4, a method 400 is shown. The 
method 400 may be used to correct attenuation of PET data 
to produce meaningful PET data and images. At process 
block 404, PET data may be received. In some situations, the 
PET data may be raw PET data. In some non-limiting 
configurations, the PET data may be received from an 
imaging system, such as FIG. 1 as previously described. In 
some situations, it may be beneficial to modify the PET data 
prior to processing for attenuation correction. Specifically, it 
may be beneficial to segment PET data and/or generate PET 
images from the raw PET data. In some non-limiting con­
figurations, the raw PET data may not be modified prior to 
attenuation correction. 

[0057] At process block 406, an attenuation correction 
(AC) map may be created, using the modified PET data. The 
AC map may be created directly from the modified PET 
data. In some situations, the AC map may be created using 
the modified PET data and a reference data set. The refer­
ence data set may not be from the same subject that the PET 
data was acquired from. In some situations however, exist­
ing reference data from the same subject may be used (e.g., 
from previous imaging). Next, at process block 408, the PET 
data may be reconstructed using the AC map. The PET data 
may include a PET image. 

[0058] Referring to FIG. 5, a method 500 is shown. The 
method 500 may be used to correct attenuation of PET data 
to produce meaningful PET data and images. At process 
block 502, PET data may be received. In some situations, the 
data may be raw PET data. In some non-limiting configu­
rations, the PET data may be received from an imaging 
system, such as FIG. 1 as previously described. 

[0059] At process block 504, the PET data may be used to 
create pseudo-CT data. The pseudo-CT data may be created 
using a combination of the received PET data and reference 
CT data or CT images. At process block 506, an attenuation 
correction (AC) map may be created using the pseudo-CT 
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data. Next, at process block 508, the PET data may be 
reconstructed using the AC map. The PET data may include 
a PET image. 
[0060] Now referring to FIG. 6, a diagram of an example 
machine-learning system is shown. A machine learning 
system 600 may be used to generate pseudo-CT data using 
reference CT images and PET images. The machine learning 
system 600 may include a deep convolutional auto-encoder 
(CAE) or convolutional encoder-decoder (CED) network 
602. The CED network 602 may include an encoder network 
604 and a decoder network 606. The encoder network 604 
may include a start layer (SL) 610. Each SL 610 may 
correspond to an insert layer (IL) 612 within the decoder 
network 606. 
[0061] Still referring to FIG. 6, the SL 610 and the IL 612 
may include a convolution layer 614, a batch normalization 
(BN) layer 616, a rectified-linear unit (ReLU) activation 
layer 618, a pooling layer 620, and/or an upsampling layer 
622. 
[0062] The deep convolutional encoder-decoder (CED) 
network 602, may be configured to map a non-attenuation 
corrected (NAC) PET image into a pixel-wise continuously 
valued CT image. The encoder network 604 may be 
designed to compress input image data while detecting 
robust and spatially invariant features. As one non-limiting 
example, the encoder network 604 may be a VGG16 net­
work, as described by Simonyan K, Zisserman A. (Simo­
nyan K, Zisserman A. Very Deep Convolutional Networks 
for Large-Scale Image Recognition. arXiv Prepr. 2014;1-
10). In particular, the VGG 16 network has been proven to be 
efficient in capturing image features in object recognition, 
and to be effective in CED based medical image applica­
tions. 
[0063] Each unit layer of the encoder network 604 may 
include a 2D convolution layer 614 with a set of 2D filters, 
batch normalization (BN) layer 616, rectified-linear unit 
(ReLU) activation layer 618, followed by a max-pooling 
layer (the pooling layer 620) for reduction of data dimen­
sions. The unit layer may be repeated multiple times to 
achieve sufficient data compression. 
[0064] To reconstruct pixelwise continuously-valued CT 
images, the decoder network 606 may be applied directly 
after the encoder network 604. This decoder network 606 
may be the reverse process of the encoder network 604, and 
may include "mirrored" layers from the encoder network 
604. Specifically, the pooling layer 620 in the decoder 
network 606 may be replaced by an un-pooling layer (i.e., 
upsampling) where the image features may be upsampled 
using a bilinear interpolation method. At the end of the 
decoder network 606, an additional 2D convolutional layer 
614 with one 2D filter may be added to synthesize output 
pseudo-CT images based on the decoded image features 
from the upstream decoder network 606. 
[0065] According to the present disclosure, the CED net­
work 602 may also feature shortcut connections (SC) which 
may be used to forwardly pass image features from the 
encoder network 604 to the decoder network 606. Notably, 
synthesis of continuously valued CT images may benefit 
from preservation of richer image features, for which the 
added shortcut connection may valuable in maintaining. As 
shown in FIG. 6, the shortcut connections may occur sym­
metrically in multiple layers in the networks and link feature 
maps by adding ones from the encoder network 604 to the 
ones in the decoder network 606 element-wise. As shown, 
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for example, a total of 4 shortcut connections may be created 
between the network layers and one additional shortcut 
connection may also be generated from input image directly 
to output image. For each shortcut connection, the insertion 
of the layer may follow the strategy described by He K, 
Zhang X, Ren S, Sun J. (He K, Zhang X, Ren S, Sun J. 
Identity Mappings in Deep Residual Networks. 2016). 
[0066] The CED network 602 may be used within a deep 
attenuation correction system 700, as shown, for example, in 
FIG. 7. The deep attenuation correction system 700 may 
include a training phase 704 and a reconstruction phase 702. 
Some aspects of the training phase 704 and the reconstruc­
tion phase 702 may be similar. 
[0067] Regarding the training phase 704, raw PET data 
706 may be used as an input to process block 708. Process 
block 708 may be configured to reconstruct a PET image 
710 without attenuation correction (i.e. non-attenuation cor­
rected (NAC) PET images). The PET image 710 may then 
be used as an input to the CED network 602. The CED 
network 602 may function as described with respect to FIG. 
6. 
[0068] A second input may be used for the training phase 
704. Reference CT images 712 may be used as an input to 
process block 714. The reference CT images 712 may come 
from a database of CT images. Process block 714 may 
provide an input to the CED network 602. The CED network 
602 may iteratively estimate and output continuous CT 
images, and compare them to the reference CT images 712. 
The data consistency between each estimated and reference 
CT image 712 may be ensured by using Mean Squared Error 
(MSE) as an image loss objective function where the loss 
may be calculated in a mini-batch images in each iteration 
(at process block 714). 
[0069] Still referring to the deep attenuation correction 
system 700, the output of the CED network 602 may be 
input into decision block 720. If still within the training 
phase 704, the CED output may be compared to the refer­
ence CT images 712, at process block 714. If the training 
phase 704 is complete, the CED output may be used as a 
pseudo-CT image 716. 
[0070] Referring to the reconstruction phase 702, the raw 
PET data 706 may be used as a direct input to process block 
718. The generated pseudo-CT image 716 may be used as a 
second input to process block 718. At process block 718, the 
pseudo-CT image 716 may be used to reconstruct PET data, 
via an AC map. The raw PET data 706 may be mapped using 
the pseudo-CT image 716. Subsequently, process block 718 
may output reconstructed PET data that has undergone 
attenuation correction. The reconstruction phase 702 may 
therefore output an attenuation corrected (AC) PET image 
722, using just PET data from the imaged subject. 
[0071] The present disclosure includes systems and meth­
ods for producing attenuation corrected PET images. In 
some configurations, the corrected PET images may be 
obtained in less than one minute. The speed of producing the 
corrected images may be very beneficial in clinical settings. 
The present disclosure may produce quantitative PET imag­
ing without any application of CT, which may have a 
substantial impact on CT dose reduction and resilience to 
patient motion in PET studies. 
[0072] In some configurations, the present disclosure may 
be implemented in software and may be applied to existing 
systems. In addition, it may result in significantly less 
expensive equipment (e.g., a PET-only system). 
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[0073] Overall, the present disclosure may improve the 
accuracy of PET, PET/CT and PET/MR as well as have 
potential applications for treatment planning for radiation 
therapy. 

Experiments 

[0074] In one non-limiting example, two independent 
phases for training retrospective data and reconstructing new 
data were implemented. In the training phase, the training 
data for the CED network included NAC PET images as 
inputs, as well as reference non-contrast enhanced CT data. 
[0075] For each training dataset, NAC PET and co-regis­
tered CT images were scaled by pixel intensity of 6000 
(Bq/ml) and 2000 (HU), respectively, which were deter­
mined empirically and used for all data. 
[0076] 3D NAC PET and CT images were cropped to 
enclose the image object and remove redundant background 
prior to deep learning training. 2D axial slices from the 3D 
volumetric NAC and CT images were used as inputs to the 
deep learning network. 
[0077] All 2D input images were first transformed pixel­
wise using a Softsign activation function and then resampled 
to a matrix of size 200x180 using bilinear interpolation 
before being used as input to the CED. The encoder and 
decoder network weights were initialized using an initial­
ization scheme described by He K, Zhang X, Ren S, Sun J. 
(He K, Zhang X, Ren S, Sun J. Delving Deep into Rectifiers: 
Surpassing Human-Level Performance on ImageNet Clas­
sification. ArXiv e-prints. 2015.) and updated using an 
gradient-based optimization algorithm based on adaptive 
estimates of lower-order moments with a fixed learning rate 
of 0.001. 
[0078] The CED network iteratively estimated outputs of 
continuous CT images, and compared them to the reference 
CT data (i.e. real CT data). The data consistency between 
estimated and real CT image was ensured by using Mean 
Squared Error (MSE) as an image loss objective function 
where the loss was calculated in a mini-batch of 12 images 
in each iteration. 
[0079] Once the training phase was complete, the CED 
network at the epoch with least image loss was fixed and was 
used for generating continuous pseudo-CT for new PET 
data, which were subsequently used for PET reconstruction. 
[0080] In this non-limiting example, the CED network 
was coded with Tensorflow deep learning libraries, as dis­
cussed by Abadi M, Agarwal A, Barham P, et al. (Abadi M, 
Agarwal A, Barham P, et al. TensorFlow: Large-Scale 
Machine Leaming on Heterogeneous Distributed Systems. 
2016). 

Results 

[0081] Several non-limiting examples of acquired NAC 
PET images, real CT images, and deepAC pseudo CT 
images for a subject are shown in FIGS. SA through 8G. 
Referring to FIG. SA, several NAC PET images are shown. 
FIG. SB shows several real CT images and FIG. SC shows 
several pseudo-CT images, according to the present disclo­
sure. 

[0082] Referring to FIG. SD, a surface image is shown that 
was generated using the NAC PET images from FIG. SA, 
and corrected for attenuation using the real CT images from 
FIG. SB. 
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[0083] In comparison, FIG. SE shows a surface image that 
was generated using the NAC PET images from FIG. SA, 
and corrected for attenuation using the pseudo-CT images 
from FIG. SC, according to the present disclosure. It may be 
appreciated that the surface images of FIG. SD and FIG. SE 
are substantially similar, however the resulting surface 
image of FIG. SE (using the pseudo-CT images) was created 
without additional imaging (i.e. CT imaging) of the subject. 
[0084] Referring to FIG. SF, a bone image is shown that 
was generated using the NAC PET images from FIG. SA, 
and corrected for attenuation using the real CT images from 
FIG. SB. 
[0085] In comparison, FIG. 8G shows a bone image that 
was generated using the NAC PET images from FIG. SA, 
and corrected for attenuation using the pseudo-CT images 
from FIG. SC, according to the present disclosure. Notably, 
the bone images of FIG. SF and FIG. 8G are substantially 
similar. As previously indicated, however, the resulting bone 
image of FIG. 8G (using the pseudo-CT images) was created 
without additional imaging (i.e. CT imaging) of the subject. 
[0086] Still referring to FIGS. SA through 8G, the total 
training phase took approximately 23 hours, whereas gen­
erating a single pseudo-CT image using the trained model 
took approximately 0.5 minutes. It may be appreciated that 
the generation of the pseudo-CT image was substantially 
less than the time required to obtain real CT images from the 
subject. As shown, the deep attenuation correction system 
was able to identify air, skull, and soft tissue in the NAC 
PET images and synthesize continuous CT values for dis­
tinct tissue types. 
[0087] Referring to FIGS. 9A through 9C, output PET 
images were compared to determine percent error. FIG. 9A 
shows resulting PET reconstructed images that were cor­
rected for attenuation using real CT images from the subject. 
In contrast, FIG. 9B shows resulting PET reconstructed 
images that were corrected for attenuation using pseudo-CT 
images, according to the present disclosure. FIG. 9C pro­
vides images illustrating the pixel-wise PET error percent­
age when comparing the images of FIG. 9B to the images of 
FIG. 9A. As shown, the PET images reconstructed via 
pseudo-CT images result in PET error of less than 1 % in 
most of the subject's brain regions. 
[0088] Referring to FIG. 10, images are shown to a subject 
having significant right and frontal skull abnormality. Image 
800 shows a pseudo-CT image, according to the present 
disclosure. Image 802 shows a reconstructed PET image, 
using the image 800 for attenuation correction. In contrast, 
image 806 shows a real CT image from the subject, and 
image 808 shows a reconstructed PET image using the 
image 806 for attenuation correction. 
[0089] Still referring to FIG. 10, image 804 shows the PET 
error percentage when comparing image 802 to image 808. 
The average reconstructed PET error for the subject is 
1.51 %. Notably, the generated pseudo-CT was able to pre­
dict parts of missing skull in the forehead which were 
apparent in the real CT image (indicated by arrows). Accord­
ingly, despite significant skull abnormalities relative to typi­
cal subjects, PET reconstruction error was maintained at low 
level utilizing the methods of the present disclosure. 
[0090] As described, the systems and methods of the 
present disclosure can be utilized to perform attenuation 
correction. However, the µ-maps or other means for per­
forming corrections described herein can be used for addi­
tional corrections beyond attenuation corrections. 
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[0091] The foregoing merely illustrates the principles of 
the disclosure. Various modifications and alterations to the 
described aspects will be apparent to those skilled in the art 
in view of the teachings herein. It will thus be appreciated 
that those skilled in the art will be able to devise numerous 
systems, arrangements and methods which, although not 
explicitly shown or described herein, embody the principles 
of the disclosure and are thus within the spirit and scope of 
the present disclosure. Further, the exemplary aspects 
described herein can operate together with one another and 
interchangeably therewith. In addition, to the extent that the 
prior art knowledge has not been explicitly incorporated by 
reference herein above, it is explicitly being incorporated 
herein in its entirety. All publications referenced herein 
above are incorporated herein by reference in their entireties. 

1. A method for correcting positron emission tomography 
(PET) data for attenuation effects, the method comprising 
the steps: 

(a) receiving at least one PET image of a subject created 
from PET data acquired from the subject; 

(b) creating an attenuation correction map using the at 
least one PET image; and 

( c) reconstructing PET data using the attenuation correc­
tion map and the at least one PET image to generate an 
attenuation corrected PET image. 

2. The method of claim 1, wherein creating the attenuation 
correction map includes generating pseudo-CT data. 

3. The method of claim 2, further comprising generating 
the pseudo-CT data using a reference data set. 

4. The method of claim 3, wherein the reference data set 
includes CT data from at least a second subject. 

5. The method of claim 4, wherein the reference data set 
includes CT data from a database of subjects. 

6. The method of claim 3, further comprising comparing 
the pseudo-CT data to the reference data set and calculating 
a loss value of the pseudo-CT data. 

7. The method of claim 1, wherein steps (a) and (b) occur 
in less than 1 minute. 

8. The method of claim 1, wherein steps (a) and (b) occur 
in 30 seconds or less. 

9. A method for correcting positron emission tomography 
(PET) data for attenuation effects, the method including 
steps comprising: 

(a) receiving a first data set of raw PET data of a subject; 
(b) generating at least one PET image from the first data 

set; 
( c) generating at least one pseudo-CT image from the at 

least one PET image; 
( d) performing an attenuation correction of the first data 

set using the at least one pseudo-CT image to generate 
a corrected first data set; and 

( e) generating a corrected PET image from the corrected 
first data set. 
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10. The method of claim 9, wherein step (c) includes 
applying the at least one PET image to a machine-learning 
module to generate the at least one pseudo-CT image. 

11. The method of claim 9, wherein step (c) further 
comprises: 

(i) receiving reference CT data; 
(ii) generating a pseudo-CT image from the at least one 

PET image; 
(iii) comparing the pseudo-CT image to the reference CT 

data and determining a loss value; 
(iv) determining if the loss value is within a predeter­

mined range; and 
(v) repeating steps (ii)-(iv) until the loss value is within 

the predetermined range. 
12. The method of claim 11, wherein the reference CT 

data does not correspond to the subject. 
13. The method of claim 11, wherein step (c) is performed 

in less than 24 hours. 
14. The method of claim 9, wherein step (d) further 

comprises creating an attenuation correction map using the 
first data set and the at least one pseudo-CT image. 

15. The method of claim 9, wherein step ( c) is performed 
in less than 1 minute. 

16. A system for generating (PET) data, the system 
comprising: 

a data acquisition system configured to obtain raw PET 
data of a subject; and 

a data processing system configured to: 
receive the raw PET data from the data acquisition 

system; 
generate pseudo-CT data from the raw PET data; 
correct attenuation corresponding to the raw PET data 

using the pseudo-CT data; and 
generate at least one attenuation-corrected PET image 

of the subject. 
17. The system of claim 16, further comprising a 

machine-learning module configured to generate the 
pseudo-CT data. 

18. The system of claim 16, further comprising a 
machine-learning module configured to generate the 
pseudo-CT data by performing steps comprising: 

(i) generating a pseudo-CT image from the raw PET data; 
(ii) comparing the pseudo-CT image to reference data and 

determining a loss value; 
(iii) determining if the loss value is within a predeter­

mined range; and 
(iv) repeating steps (i)-(iii) until the loss value is within 

the predetermined range. 
19. The system of claim 18, wherein the reference data is 

accessed from a database and corresponds to CT data from 
a plurality of subjects. 

20. The system of claim 18, wherein steps (i)-(iv) are 
performed in less than 24 hours. 

* * * * * 


