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ABSTRACT 

Systems and methods for identifying sequence information 
from measurements made on single nucleic acid molecules 
are disclosed. The systems and methods can include binding 
portions of nucleic acid molecules with marker molecules, 
such as fluorescent molecules and/or intercalating mol­
ecules. The marker molecules provide a detectable signal 
that includes information about the underlying genomic 
information of the location on the nucleic acid molecule 
where a given marker molecule is bound. A profile of the 
detectable signal along a position of the nucleic acid is 
acquired for multiple different nucleic acid molecules. The 
PRIMR algorithm processes the data to provide a consensus 
profile from which a consensus underlying genomic infor­
mation can be determined. 
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SYSTEMS AND METHODS FOR 
IDENTIFYING SEQUENCE INFORMATION 

FROM SINGLE NUCLEIC ACID MOLECULE 
MEASUREMENTS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

[0001] This application is related to, claims priority, and 
incorporates herein by reference in its entirety U.S. Provi­
sional Patent Application No. 62/594,385, filed Dec. 4, 
2017. 

STATEMENT REGARDING FEDERALLY 
FUNDED RESEARCH 

[0002] This invention was made with govermnent support 
under CA182360 and HG000225 awarded by the National 
Institutes of Health. The government has certain rights in the 
invention. 

BACKGROUND 

[0003] Nucleic acid molecule analysis is of significant 
important to the biological sciences. New methods are 
needed to quickly and effectively analyze the underlying 
genomic information in nucleic acid molecules. It would be 
beneficial to provide methods that can analyze single nucleic 
acid molecules or groups of single nucleic acid molecules 
and provide relevant information about the underlying 
genomic information. 

SUMMARY 

[0004] In one aspect, the present disclosure provides a 
method of acquiring data associated with a nucleic acid 
molecule. The method includes the following steps: a) 
binding a plurality of marker molecules to at least a portion 
of the nucleic acid molecule, each of the plurality of marker 
molecules providing a detectable signal, the detectable sig­
nal including underlying genomic information about the 
nucleic acid molecule; b) acquiring the detectable signal 
from a plurality of locations along the at least a portion of 
the nucleic acid molecule; and c) generating an output signal 
or a report including the detectable signal. 
[0005] In another aspect, the present disclosure provides a 
method of analyzing detectable signals acquired from a 
plurality of nucleic acid molecules. The method includes the 
following steps: a) receiving a data set comprising profiles 
of detectable signal intensity versus position, the detectable 
signal intensity acquired from a plurality of marker mol­
ecules bound to substantially identical portions of the plu­
rality of nucleic acid molecules; b) extracting underlying 
genomic information from the data set; and c) generating an 
output signal or a report including the underlying genomic 
information. 
[0006] In yet another aspect, the present disclosure pro­
vides a method including the following steps: a) binding at 
least a portion of each of a plurality of nucleic acid mol­
ecules with a plurality of fluorescent molecules, the plurality 
of fluorescent molecules providing a detectable fluorescence 
signal, the detectable fluorescence signal comprising under­
lying genomic information about a given portion of a nucleic 
acid molecule to which a given fluorescent molecule is 
bound, the at least a portion of each of the plurality of 
nucleic acid molecules having overlapping regions with 
substantially identical features; b) acquiring the detectable 
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fluorescence signal versus position for the at least a portion 
of each of the plurality of nucleic acid molecules, thereby 
resulting in a data set comprising profiles of the detectable 
fluorescence signal versus position; c) identifying outliers of 
the profiles of the detectable signal versus position, thereby 
producing outlier profiles; d) computing a median profile 
from the profiles of the detectable signal versus position that 
were not identified as outlier profiles in step c ); e) computing 
a weighted mean profile by estimating a similarity index 
between the profiles of the detectable signal versus position 
that were not identified as outlier profiles in step c) and the 
median profile of step d), then taking a weighted average of 
the profiles of the detectable signal versus position that were 
not identified as outlier profiles in step c) by weighting 
according to the similarity index, thereby producing a tem­
plate; f) registering the profiles of the detectable signal 
versus position to the template, thereby producing registered 
profiles of the detectable signal versus position; g) identi­
fying outliers of the registered profiles of the detectable 
signal versus position, thereby producing outlier registered 
profiles; h) computing a median registered profile from the 
registered profiles of the detectable signal versus position 
that were not identified as outlier registered profiles in step 
g); i) computing an updated weighted mean profile by 
estimating a registered similarity index between the regis­
tered profiles of the detectable signal versus position that 
were not identified as the outlier registered profiles in step g) 
and the median registered profile, then taking a weighted 
average of the registered profiles of the detectable signal 
versus position that were not identified as outlier registered 
profiles in step g) by weighting according to the registered 
similarity index, thereby producing a registered template; i) 
registering the registered profiles of the detectable signal 
versus position to the registered template, thereby producing 
second registered profiles of the detectable signal versus 
position, the registering of step i) a lower penalty parameter 
than the registering of step f); j) computing an average 
similarity between the registered profiles of the detectable 
signal versus position and the registered template; k) repeat 
steps g), h), i), and j) using a second penalty parameter that 
is lower than the lower penalty parameter until a difference 
between the average similarity for consecutive iterations of 
the repeating is lower than a threshold value, thereby pro­
ducing final registered profiles of the detectable signal 
versus position; 1) identifying outliers of the final registered 
profiles of the detectable signal versus position from the 
final iteration of step k), thereby producing outlier final 
registered profiles; m) computing a median final registered 
profile from the final registered profiles of the detectable 
signal versus position that were not identified as outlier final 
registered profiles in step l); and n) computing a final 
weighted mean profile by estimating a final registered simi­
larity index between the final registered profiles of the 
detectable signal versus position that were not identified as 
the final outlier registered profiles in step 1) and the median 
final registered profile, then taking a final weighted average 
of the final registered profiles of the detectable signal versus 
position that were not identified as outlier final registered 
profiles in step 1) by weighting according to the final 
registered similarity index, thereby producing a consensus 
profile of the detectable signal versus position. 

[0007] In a further aspect, the present disclosure provides 
a non-transitory computer readable medium having stored 
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thereon instructions that, when executed by a processor, 
cause the processor to execute one of the methods described 
herein. 
[0008] In yet a further aspect, the present disclosure pro­
vides a system including a processor and the non-transitory 
computer-readable medium described elsewhere herein. 
[0009] In an additional aspect, the present disclosure pro­
vides a system including a fluorescence microscope, a 
processor, and a memory. 

BRIEF DESCRIPTIONS OF THE DRAWINGS 

[0010] FIG. 1 is a flowchart showing the steps of a 
method, in accordance with an aspect of the present disclo­
sure. 
[0011] FIG. 2 is a flowchart showing the steps ofa method, 
in accordance with an aspect of the present disclosure. 
[0012] FIG. 3 is a flowchart showing the steps of a 
method, in accordance with an aspect of the present disclo­
sure. 
[0013] FIG. 4 is a schematic representation of a system, in 
accordance with an aspect of the present disclosure. 

DETAILED DESCRIPTION 

[0014] Before the present invention is described in further 
detail, it is to be understood that the invention is not limited 
to the particular embodiments described. It is also under­
stood that the terminology used herein is for the purpose of 
describing particular embodiments only, and is not intended 
to be limiting. The scope of the present invention will be 
limited only by the claims. As used herein, the singular 
forms "a", "an", and "the" include plural embodiments 
unless the context clearly dictates otherwise. 
[0015] Specific structures, devices and methods relating to 
modifying biological molecules are disclosed. It should be 
apparent to those skilled in the art that many additional 
modifications beside those already described are possible 
without departing from the inventive concepts. In interpret­
ing this disclosure, all terms should be interpreted in the 
broadest possible manner consistent with the context. Varia­
tions of the term "comprising" should be interpreted as 
referring to elements, components, or steps in a non-exclu­
sive manner, so the referenced elements, components, or 
steps may be combined with other elements, components, or 
steps that are not expressly referenced. Embodiments refer­
enced as "comprising" certain elements are also contem­
plated as "consisting essentially of' and "consisting of' 
those elements. When two or more ranges for a particular 
value are recited, this disclosure contemplates all combina­
tions of the upper and lower bounds of those ranges that are 
not explicitly recited. For example, recitation of a value of 
between 1 and 10 or between 2 and 9 also contemplates a 
value of between 1 and 9 or between 2 and 10. 
[0016] The various aspects may be described herein in 
terms of various functional components and processing 
steps. It should be appreciated that such components and 
steps may be realized by any number of hardware compo­
nents configured to perform the specified functions. 

Methods 

[0017] This disclosure provides a variety of methods. It 
should be appreciated that various methods are suitable for 
use with other methods. Similarly, it should be appreciated 
that various methods are suitable for use with the systems 

2 
Oct. 7, 2021 

described elsewhere herein. When a feature of the present 
disclosure is described with respect to a given method, that 
feature is also expressly contemplated as being useful for the 
other methods and systems described herein, unless the 
context clearly dictates otherwise. 
[0018] Referring to FIG. 1, the present disclosure provides 
a method 100 of acquiring data associated with a nucleic 
acid molecule. At process block 102, the method 100 
includes binding at least a portion of the nucleic acid 
molecule with a plurality of marker molecules. Each of the 
plurality of marker molecules provides a detectable signal 
that includes underlying genomic information about the 
nucleic acid molecule. At process block 104, the method 100 
includes acquiring the detectable signal from a plurality of 
locations along the at least a portion of the nucleic acid 
molecule. At process block 106, the method 100 can include 
generating an output signal or a report including the detect­
able signal. 
[0019] At optional process block 108, the method 100 can 
include binding at least a second portion of the nucleic acid 
molecule with a second plurality of marker molecules. Each 
of the second plurality of marker molecules provide the 
detectable signal. At optional process block 110, the method 
100 can include receiving the detectable signal at a second 
plurality of locations along the at least a second portion of 
the nucleic acid molecule. 
[0020] In some cases, the method 100 can include repeat­
ing process blocks 102 and 104 a second time replacing the 
nucleic acid molecule with a second nucleic acid molecule. 
The nucleic acid molecule and the second nucleic acid 
molecule can have substantially the same sequence. The 
nucleic acid molecule and the second nucleic acid molecule 
can have different sequences. As used herein, "substantially 
the same sequence" refers to nucleic acid sequences that are 
indistinguishable using the methods of the present disclo­
sure. Nucleic acid molecules having substantially the same 
sequence can harbor the following differences: (a) single 
nucleotide polymorphisms (SNPs) or single nucleotide 
variations (SNVs)-a single basepair difference in 
sequence; (2) small insertions and delections (INDELs)­
short 1-100 bp insertions or deletions; and (3) methylations, 
such as C-me and A-me. As used herein, "different 
sequence" refers to nucleic acid sequences that are distin­
guishable using the methods of the present disclosure. 
[0021] In some cases, the method 100 can include repeat­
ing process blocks 102 and 104 a plurality of additional 
times replacing the nucleic acid molecule with a different 
one of a plurality of additional nucleic acid molecules each 
of the plurality of additional times. The nucleic acid mol­
ecule and the plurality of additional nucleic acid molecules 
can have substantially the same sequence. The at least a 
portion of the nucleic acid molecule and the at least a portion 
of the different one of the plurality of additional nucleic acid 
molecules can at least partially overlap. 
[0022] Referring to FIG. 2, the present disclosure provides 
a method 200 of analyzing detectable signals acquired from 
a plurality of nucleic acid molecules. At process block 202, 
the method 200 includes receiving a data set. The data set 
includes profiles of detectable signal intensity versus posi­
tion. The detectable signal intensity is acquired from a 
plurality of marker molecules bound to substantially iden­
tical portions of the plurality of nucleic acid molecules. At 
process block 204, the method 200 includes extracting 
underlying genomic information from the data set. At pro-
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cess block 206, the method 200 includes generating an 
output signal or a report including the underlying genomic 
information. 
[0023] In any of the methods, the detectable signal can 
contain the underlying genomic information as a result of 
the marker molecules preferentially binding to one sequence 
relative to another. For example, a marker molecule or 
fluorescent molecule that preferentially binds to GC-rich 
segments relative to AT-rich segments can provide informa­
tion regarding the amount of GC versus AT in the underlying 
genomic information. 
[0024] The plurality of marker molecules can comprise a 
plurality of fluorescent molecules. In cases involving fluo­
rescent molecules, the fluorescent molecule can be a fluo­
rescent molecule capable of binding a nucleic acid molecule, 
including but not limited to, {1,1'-(4,4,8,8-tetramethyl-4,8-
diazaundecamethylene )bis[ 4-[ (3-methylbenzo-1,3-oxazol-
2-yl)methylidene ]-1,4-dihydroquinolinium] tetraiodide} 
(YOYO-1) ethidium bromide, oxazole yellow (YOYO fluor 
monomer), SYTOX Orange, SYTOX green, SYBR gold, 
YO-Pro-1, POPO-3, DAPI, or the like. 
[0025] The plurality of marker molecules can include a 
plurality of first fluorescent molecules and plurality of 
second fluorescent molecules. The plurality of marker mol­
ecules can also include a plurality of third fluorescent 
molecules, a plurality of fourth fluorescent molecules, a 
plurality of fifth fluorescent molecules, and so on, up to a 
plurality of nth fluorescent molecules. Each of these differ­
ent fluorescent molecules can interact with one another to 
provide the detectable signal. Each of these different fluo­
rescent molecules can have different emission characteris­
tics, such as emission wavelength, emission waveform, and 
the like. Each of these different fluorescent molecules can 
have different absorption characteristics, such as absorption 
wavelength, absorption coefficient, and the like. Each of 
these different fluorescent molecules can have different 
binding characteristics. 
[0026] The methods described herein can also include 
binding any of the nucleic acid molecules or at least a 
portion of any of the nucleic acid molecules with a plurality 
of quencher molecules. The quencher molecules can modu­
late emission from the plurality of marker molecules to 
provide the detectable signal. 
[0027] The plurality of marker molecules can include a 
plurality of donor molecules and a plurality of acceptor 
molecules. The plurality of marker molecules can include a 
plurality of protein markers, including intercalating fluores­
cent proteins, such as those described in Lee, S., Oh, Y., Lee, 
J., Choe, S., Lim, S., Lee, H. S., ... Schwartz, D. C. (2016). 
DNA binding fluorescent proteins for the direct visualization 
oflarge DNA molecules. Nucleic Acids Research, 44(1 ), e6. 
doi:10.1093/nar/gkv834, the entire contents of which are 
incorporated herein by reference. 
[0028] Referring to FIG. 3, the present disclosure provides 
a method 300. The method 300 is one specific implemen­
tation of a combination of methods 100 and 200. The 
description of method 300 should not be interpreted as 
limiting the interpretation of the methods 100 and 200. 
Aspects of the method 300 can utilize aspects of the methods 
100 and 200 and vice versa. At process block 302, the 
method 300 includes binding at least a portion of each of a 
plurality of nucleic acid molecules with a plurality of 
fluorescent molecules. It should be appreciated that the 
exemplary fluorescent molecules are merely one example of 
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the marker molecules described above and other marker 
molecules are contemplated. The plurality of fluorescent 
molecules provide a detectable fluorescence signal that 
includes underlying genomic information about a given 
portion of a nucleic acid molecule to which a given fluo­
rescent molecule is bound. The at least a portion of each of 
the plurality of nucleic acid molecules have overlapping 
regions with substantially identical features. 

[0029] At process block 304, the method 300 includes 
acquiring the detectable fluorescence signal versus position 
for the at least a portion of each of the plurality of nucleic 
acid molecules. The acquiring of process block 304 results 
in a data set including profiles of the detectable fluorescence 
signal versus position. 

[0030] At process block 306, the method 300 includes 
identifying outliers of the profiles of the detectable signal 
versus position, thereby producing outlier profiles. A person 
having ordinary skill in the imaging arts would appreciate a 
variety of methods exist for eliminating images of poor 
quality. In one non-limiting example, a sophisticated image 
quality assessment method was developed, to identify high 
quality images for subsequent analysis. This image quality 
assessment method includes the following steps: 1. For each 
molecule in an image frame we analyzed the integrated 
fluorescence intensity measurements (IFI) of up to three 
pixels surrounding the molecule. 2. Bayesian Information 
Criteria (BIC) and Gaussian mixture model (GMM) to 
cluster the IFI's. In good quality molecule images had one 
cluster of IFI's. 3. In case of multiple clusters, distance 
between the centers of farthest centroids of clusters was used 
as one of the factors to build the quality score. The other 
factors were cluster quality measures such as Dunn index 
and Connectivity Index (see Brock, Guy, Vasyl Pihur, 
Susmita Datta, Sonmath Datta, et al. 2011. clvalid, an r 
package for cluster validation. Journal of Statistical Soft­
ware (Brock et al., March 2008), the entire contents of which 
are incorporated herein by reference). 4. A training set of300 
images was manually labeled as "high" and "low" quality. A 
logistic regression model was fit using the factors described 
in step (3). 5. Using cross-validation an optimal probability 
cutoff was obtained, to detect an image as "high" quality by 
minimizing type-II error. 

[0031] Additional data processing can be performed. For 
instance, the profiles can be normalized. As another 
example, the profiles can be selected to ensure that data for 
DNA molecules fall within a given range of stretch values 
(such as +/-10% of the median stretch). AS yet another 
example, the scans can be smoothed using methods known 
to those having ordinary skill in the art, such as B-spline De 
Boor (De Boor, Carl. 1978. A practical guide to splines, vol. 
27. Springer-Verlag New York, the entire contents of which 
are incorporated herein by reference) smoothing methods. 
Some pre-processing steps are described in greater detail 
below in Example 1. 

[0032] At process block 308, the method 300 includes 
computing a median profile from the profiles of the detect­
able signal versus position that were not identified as outlier 
profiles in process block 306. The median profile can be 
computed using functional data depth measures that are 
understood to those having ordinary skill in the art, includ­
ing but not limited to, the Fraiman and Muniz depth, the 
h-modal depth, the random projection depth, the random 
Tukey depth, and the like. 
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[0033] At process block 310, the method 300 includes 
computing a weighted mean profile, thereby producing a 
template including the weighted mean profile. The weighted 
mean profile is computed by estimating a similarity index 
between the profiles of the detectable signal versus position 
that were not identified as outlier profiles in process block 
306 and the median profile of process block 308, then taking 
a weighted average of the profiles of the detectable signal 
versus position that were not identified as outlier profiles in 
process block 306 by weighting according to the similarity 
index. 
[0034] At process block 312, the method 300 includes 
registering the profiles of the detectable signal versus posi­
tion to the template, thereby producing registered profiles of 
the detectable signal versus position. In some cases, the 
registering of process block 312 can include curve registra­
tion, described as follows. Let n functions (or curves) f1, .. 
. , fn be defined on a close real interval [0,S]. Let h,(x) be a 
transformation of the abscissa x for curve i. Without ampli­
tude noise, let the observed functions f,(x) be a result of 
warping a true curve fc(x) as f,(x)=fclh,(x)]. The warping 
function is often referred to as 'time warping' as time is a 
common abscissa in problems with phase noise, In the 
context of the present disclosure, the abscissa is DNA 
molecule backbone. The warping functions should satisfy 
the following: 

[0035] h,(0)=0 and h,(S)=S, i=l, ... , n, 
[0036] The timings of events remain in the same order 

regardless of the timescale entails that h,, the time­
warping function, should be strictly increasing, i.e., 
h,(x1)>h,(x2 ) for x1>x2 , where Xi, x2E[0,S]. 

[0037] h,-1=[h,(x)]=l, ... , n 
The objective of curve registration is that the registered 
functions fl (h1-1(x)), ... , fnChn -lex)) will have no phase 
n01se. 
[0038] At process block 314, the method 300 includes 
identifying outliers of the registered profiles of the detect­
able signal versus position, thereby producing outlier reg­
istered profiles. Identifying outliers of the registered profiles 
can include functional data depth measures. Examples of 
suitable functional data depth measures include, but are not 
limited to, the Fraiman and Muniz depth, the h-modal depth, 
the random projection depth, the random Tukey depth, and 
the like. 
[0039] Depth and outlyingness are inverse notions, so that 
if an outlier is in the data set, the corresponding curve will 
have a significantly low depth. One exemplary procedure for 
functional outlier detection in a data set of curves fi, ... , 
fn is as follows: 

[0040] 1. Obtain the function depths Dn(f1), ... , Dn(fn), 
(This could be any depth defined above: FMD, MD, 
RPD or RTD) 

[0041] 2. Let fil, ... , f1k be the k curves such that 
Dn(f,k)sC, for a given cutoff C. Then assume that fil, . 
.. , f,k are outliers and delete them from sample. 

[0042] 3. Then, come back step 1 with the new data set 
after deleting the outliers found in step 2. Repeat this 
until no mere outliers found. 

[0043] To ensure type-I error of detecting outliers is under 
some small threshold a, C is chosen such that 

IF (Dn)if;)"C)~a, i~I, ... ,n 

[0044] However, since the distribution of the functional 
depth statistics are usually unknown, they are estimated 
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using a bootstrap procedure introduced in Febrero et al. 
(Febrero, Manuel, Pedro Galeano, and Wenceslao Gonzalez­
Manteiga. 2008. Outlier detection in functional data by 
depth measures, with application to identify abnormal nox 
levels. Environmetrics 19( 4):331-345, the entire contents of 
which are incorporated herein by reference) and imple­
mented in R-packagefda.usc (Febrero-Bande, M, and M 
Oviedo de la Fuente. 2012a. fda.usc: Functional data analy­
sis and utilities for statistical computing (fda.usc ). R pack­
age version 0.9 7, and Febrero-Bande, Manuel, and Manuel 
Oviedo de la Fuente. 2012b. Statistical computing in func­
tional data analysis: the r package fda. usc. Journal of 
Statistical Software 51(4):1-28, the entire contents of both 
are incorporated herein by reference). The smoothed boot­
strap procedure based on trimming runs as follows: 

[0045] Obtain the functional depths Dn(f1), ... , Dn(fn), 
for any one of the functional depths. 

[0046] Obtain B standard bootstrap samples of size n 
from the data set of curves obtained after deleting the 
a% least deepest curves. The bootstrap samples are 
denoted by f,6, for i=l, ... , n and b=l ... , B. 

[0047] 3. For each bootstrap set b=l, ... , B, obtain C6 

as the empirical 1 % percentile of the distribution of the 
depths, D(f/). 

[0048] 4. Take C as the median of the values ofC6
, b=l, 

... 'B. 
[0049] The level a used can be chosen as the proportion 
of suspicious outliers in the sample. In the Fscan data sets, 
a=0.15 since around 15% of images were expected to have 
unusable intensity profiles, based on quality score measure­
ment. 
[0050] Selecting a function data depth measure can be 
done by simulating noisy curves and outliers and selecting 
the measure that best identifies outliers. In some cases, the 
functional data depth measure can be a combination of 
FM-depth and RP-depth, as discussed below. 
[0051] At process block 316, the method 300 includes 
computing a median registered profile from the registered 
profiles of the detectable signal versus position that were not 
identified as outlier registered profiles in process block 314. 
The computing of process block 316 can be achieved by the 
same or similar methods as described above with respect to 
the computing of process block 308. 
[0052] At process block 318, the method 300 includes 
computing an updated weighted mean profile, thereby pro­
ducing a registered template including the weighted mean 
profile. The updated weighted mean profile is computed by 
estimating a registered similarity index between the regis­
tered profiles of the detectable signal versus position that 
were not identified as the outlier registered profiles of 
process block 314 and the median registered profile, then 
taking a weighted average of the registered profiles of the 
detectable signal versus position that were not identified as 
outlier registered profiles in process block 314 by weighting 
according to the registered similarity index. The computing 
of process block 318 can be achieved by the same or similar 
methods as described above with respect to the computing of 
process block 310. 
[0053] At process block 320, the method 300 includes 
registering the registered profiles of the detectable signal 
versus position to the registered template, thereby producing 
second registered profiles of the detectable signal versus 
position. The registering of process block 320 can be 
achieved by the same or similar methods as described above 
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with respect to the registering of process block 312. The 
registering of process block 320 has a lower penalty param­
eter than the registering of process block 312. 

[0054] At process block 322, the method 300 includes 
computing an average similarity between the registered 
profiles of the detectable signal versus position and the 
registered template. The computing of process block 322 can 
be achieved using the same or similar methods as described 
below with respect to the PRIMR algorithm. 

[0055] At process block 324, the method 300 includes 
repeating process blocks 316, 318, 320, and 322 using a 
second penalty parameter that is lower than the lower 
penalty parameter. The repeating of process block 300 
continues until a difference between the average similarities 
for consecutive iterations of the repeating is lower than a 
threshold value. The products of the repeating of process 
block 300 are the final registered profiles. 

[0056] At process block 326, the method 300 includes 
identifying outliers of final registered profiles of the detect­
able signal versus position from the final iteration of process 
block 324, thereby producing outlier final registered profiles. 
The identifying of process block 326 can be achieved using 
the same or similar methods as described above with respect 
to the computing of process block 314. 

[0057] At process block 328, the method 300 includes 
computing a median final registered profile from the final 
registered profiles of the detectable signal versus position 
that were not identified as outlier final registered profiles at 
process block 326. 

[0058] At process block 330, the method 300 includes 
computing a final weighted mean profile, thereby producing 
a consensus profile of the detectable signal versus time. The 
final weighted mean profile is computed by estimating a 
final registered similarity index between the final registered 
profiles of the detectable signal versus position that were not 
identified as the final outlier registered profiles in process 
block 326 and the median final registered profile, then taking 
a final weighted average of the final registered profiles of the 
detectable signal versus position that were not identified as 
the final outlier registered profiles in process block 326 by 
weighting according to the final registered similarity index. 
Individual profiles are sometimes referred to as Fscans 
herein. The consensus profile is also sometimes referred to 
as a cFscan herein. 

[0059] One example of the steps of process blocks 306 to 
330 is the PRIMR algorithm. The PRIMR algorithm 
described herein iteratively uses minimum second eigen­
value method (MSEV) to register noisy Fscans. PRIMR 
differs from MSEV in three aspects. First, PRIMR uses 
outlier detection using Fraiman and Muniz (FM) depth and 
Random projection (RP) depth, discussed below. Second, 
PRIMR estimates the consensus (or average) of Fscans by 
first estimating an LI-Median and then estimating a 
weighted average of the Fscans. The LI-Median is estimat­
ing by the algorithm proposed by Vardi and Zhang in Vardi 
and Zhang (2000), "The multifvariate LI-median ans asso­
ciated data depth," Proceedings of the national Academy of 
Sciences 97(4):1423-1426, the entire contents of which are 
incorporated herein by reference, implemented in R-package 
robustX (Stahel, Werner, Martin Maechler, Maintainer Mar­
tin Maechler, and MASS Suggests. 2009, the entire contents 
of which are incorporated herein by reference) where 
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n 

~ llf; - fmll where f; E [RP, i = 1, ... , n and 
i=l 

llull = ✓ 
1
~

1 
u7 

(1) 

Finally, in PRIMR, we use three values of the penalty 
parameter A. We start at 0.001, lower it to 0.0005 after first 
iteration and then to 0.0001 for all subsequent iterations. A 
plays an important role in registering nearby features of the 
Fscans. For a higher value of A, distant features will get 
registered, and for lower values of A only the features that 
are close by will be registered. The lowering of A in PRIMR 
ensures that we gradually increase our confidence in the 
consensus estimation. 

[0060] After convergence (iteration T) the registered 
curves r 1 CI), ... , rn (I) are run through steps 1 and 2, to update 
the template one last time to fc (T+l)(x) which serves as the 
consensus Fscan (or cFscan) of this set of Fscans. The 
average similarity P;;,n (T+l) is a measure of the quality of 
registration. Higher values of P;;,n imply less noise in the 
registered Fscans. 

Algorithm Partial Re-weighted Iterated MSEV Registration (PRIMR) for 
cFscans 

For any genomic interval where there are n molecular intervals aligned, 
let the preprocessed Fscans be represented as f 1(X ), ... , fn(X ), X E 
[l, p], where p denotes the stretch of the Fscans in pixels. Let the 
registered Fscans at iteration t be represented as r/'l (X ), ... , r}'l(X ). 
At t = 0, r/0> (X) = f;("< ), i = 1, ... , n. 
At iteration t, t ;,;: 1, do 
Step 1: Outlier detection For the Fscans r 1 (,-l) (X ), ... , rn (,-l) (X ), 
detect outliers using FM-depth and RP-depth and tag the union of two sets 
as the outliers of this set of Fscans. 
Step 2: Template compute/update: When t = 1, compute the template f}1l. 
Fort> 1, update the template (f}'l). To compute/update the template, we 
employ a 2-step approach. Do 

1. Median: Here we ensure that the L 1-Median, fm (t) is estimated only 
from the Fscans not tagged as "functional outliers" in Step 1. 

2. Weighted mean: Estimate the similarity index between the Fscans 
and the median pt> = p(r?-1>, fm (t)), i = 1, ... , n and estimate the 
template f/l as the weighted average of the Fscans, with the weights 

1 n 

being these similarity indices. J}'\x) = -~ p)0 ·r)'-1\x) 
n i=l 

Step 3: Registration: We use the MSEV method to register the original 
Fscans f1, ... , fn to the template f}t) and obtain registered Fscans 
r/'l, ... , rn<O. The penalty parameter is ,_(O) = 0.001, ,_(l) = 0.0005, ,_U) = 

0.0001 'ef t ;e, 2. 
Step 4: Convergence of iteration: The objective of iterated registration is 
to maximize the average similarity to the consensus: 

We iterate steps 1-4, until IP.rc(t>,n(t) - P.rc<t-1),n(t-I)I < 'fl for some 
predetermined 17. We use 17 = 0.001. 

[0061] Fraiman and Muniz were among the first to intro­
duce a functional data depth. Let F n)f,(x)) be the empirical 
cumulative distribution function of the values of the curves 
f1 (x), ... , fn(x) at any xE[ a,b], given by 
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) n 
Fnx(f;(x)) = - "7 jj_ {Ji (x) ,S f;(x)) , nL, 

k=l 

and, the univariate depth of a point f1 (x) is given by 

Dn(J;(x))~!-1½-Fnjf;(x))I 

(2) 

(3) 

Then, the Fraiman and Muniz functional depth (FMD), or a 
curve f, with respect to the set f1 (x), , , , , fn(x) is given by 

b 

FMDn(f;) = f Dn(fi(x))dx 

(4) 

b 

= fi-1~-Fn,x(f;(x))I 

Higher values ofFMD implies deeper curve; lower values of 
FMD implies more distant from the deepest curve, 
[0062] Random projection depth is based on measuring 
the depth of the functional data and their derivatives under 
projections, The basic idea is to project each curve and its 
first derivative along a random direction, and defining a 

point in JR 2 , Now, a data depth in JR provides an order of 
the projected points, Using a large number of random 
projects, the mean value of the depths of the projected points 
defines a depth for functional data, Given the set of curves 
fr, , , , , fn and a direction v that belongs to an independent 
direction process 

b 

V(, ), T;,, = (v, f;) = f v(x)f;(x)dx, 

Similarly, T, v'=( v, f,') is the project of the first derivative 
f,'(x) in the direction v, Therefore, the pair (T,,v, T v,,') is a 

point in JR 2 , Now, ifv1,,,,, vP are p independent random 
directions, then the random projection depth of a curve f, is 
defined as: 

(5) 

For example, Dn(•) could be modal depth in JR 2 , 

[0063] The method 300 can further include generating a 
predicted consensus profile, The predicted consensus profile 
can be generating by the SUBAGGING algorithm described 
below, The predicted consensus profile can be generated by 
varying the underlying predicted genomic information, The 
predicted genomic information can be varied to minimize 
the difference between the predicted consensus profile and 
the consensus profile, Generating the predicted consensus 
profile can use random forest (RF), gradient boosting (GF), 
or both, 
[0064] In the MM Fscan datasets discussed below in 
Example 1, there were 30,560 intervals, each 50 pixels long, 

6 
Oct. 7, 2021 

that satisfied the selection criteria of PRIMR. cFscans of all 
the intervals were estimated using PRIMR. For each inter­
val, its cFscan is a smooth curve over 50 data points, each 
data point corresponding to the expected fluorescence inten­
sity measurements of 206 bp of genomic subsequence, The 
counts of genomic elements in these 206 bp subsequences 
are used as features and the cFscans as the responses of the 
prediction models, The features were counts of nucleotides 
G, C, A, T's, counts of all possible 2-mers GG, GC, GA, , 
, , , TT's, all possible 3-mers, 4-mers and 5-mers in 206 bp 
subsequences, There are 16 (42

) 2-mers, 64 (43
) 3-mers, 256 

(44
) 4-mers and 1,024 (45

) 5-mers, Including the counts of 
G, C, A, and T's this adds up to 1,364 features, Additionally, 
a Gaussian kernel was used along the backbone of a DNA 
molecule, to account for the point spread function of the 
emitters (fluorescent dyes intercalated with bases), Conse­
quently, contribution from two additional 206 bp subse­
quences on each side of a pixel was incorporated, accounting 
for a total of -1 kb genomic subsequence contributing to the 
integrated fluorescence intensity measurement of one pixel, 
The Gaussian kernel was incorporated as additional features, 
The total number of features was 6,820 (1,364x5), The 
length of the response vector was 1,528,000 pixels (30,560 
intervalsx50), Corresponding to a pixel point j on the cFscan 
the counts of k-mers in window j, along with counts of 
k-mers in windows j+ and j++ are used as features, Each 
window is of 206 bp, For example, the feature at is counts 
of the 2-mer "at" in corresponding windows, the feature at+ 
is counts of"at" in windows j+ and the feature at++ is counts 
of "at" in windows j++. 

[0065] RF is a relatively recent tree-based machine learn­
ing tool that has enjoyed increasing popularity with the 
proliferation of big data analytics, Ever since its introduction 
(Breiman, L 2001, Random forests, Machine learning 
45(1):5-32, the entire contents of which are incorporated 
herein by reference), RF has been increasingly used in 
regression and classification settings (Efron, Bradley, and 
Trevor Hastie, 2016, Computer age statistical inference, voL 
5, Cambridge University Press, the entire contents of which 
are incorporated herein by reference), RF is particularly 
appealing in high-dimensional settings and in prediction 
involving features with multicollinearity, RF combines the 
concepts of adaptive nearest neighbors and bagging (Bre­
iman, Leo, 1996, Bagging predictors, Machine learning 
24(2):123-140, the entire contents of which are incorporated 
herein by reference) for effective data-adaptive prediction 
and inference (Chen, Xi, and Hemant Ishwaran, 2012, 
Random forests for genomic data analysis, Genomics 99(6): 
323-329, the entire contents of which are incorporated 
herein by reference), "Boosting" methods were originally 
used for improving performance of "weak learners" in 
binary classification problems Efron and Hastie (2016), by 
re-sampling training point, and giving more weight to the 
misclassified ones, Friedman in Friedman, Jerome H, 2001, 
Greedy function approximation: a gradient boosting 
machine, Annals of statistics 1189-1232, the entire contents 
of which are incorporated herein by reference, proposed 
"gradient boosting machine" for additive expansions based 
on several different fitting criteria, Boosting iteratively adds 
basis functions in a greedy fashion such that each additional 
basis function reduces the selected loss function, In the 
context of trees, boosting involves repeatedly growing shal­
low trees, each growing on the residuals of the previous tree 
and build up an additive model consisting of a sum of trees 
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Efron and Hastie (2016). Balmann and Yu in Balmann Peter, 
and Bin Yu. 2003. Boosting with the 12 loss: regression and 
classification. Journal of the American Statistical Associa­
tion 98(462):324-339, the entire contents of which are 
incorporated herein by reference, investigate boosting with 
L2 loss. We used random forest and stochastic gradient 
boosting assuming Gaussian distribution of the error, mini­
mizing squared-error loss and built a prediction model 
between sequence compositions and cFscans. 

[0066] RF models were fit using R-package "randomFor­
est" (Liaw, Andy, and Matthew Wiener. 2002. Classification 
and regression by randomforest. R news 2(3):18-22), the 
entire contents of which are incorporated herein by refer­
ence. GB models were fit using R-package "gbm" (Ridge­
way, Greg, et al. 2006. gbm: Generalized boosted regression 
models. R package version l (3):55), the entire contents of 
which are incorporated herein by reference. 

[0067] In one non-limiting example, the model in the 
following equation was fit: 

(6) 

based on the data (X,Y), where X is the d-dimensional 
predictor variable (genomic sequence composition counts) 
and Y is univariate response of length (N=l,528,000). To 
avoid overfitting, and to fit the models efficiently (compu­
tational efficiency) using the parallelized framework of 
CHTC running HTCondor 2, a Subagging algorithm was 
implemented (3) to fit the prediction function h. Subagging 
is a sobriquet for subsample aggregating, where sub-samples 
of the data are used instead of bootstrap for aggregation (in 
Bagging). Buchlmann and Yu (2002) argue in favor of 
subagging since it is computationally economical while still 
being approximately as accurate as bagging. The subagging 
algorithm developed for predicting pFscans is described 
below. 

[0068] After fitting prediction models, the relative impor­
tance of features can be analyzed using methods known to 
those having ordinary skill in the art. For example, for RF 
models, the total decrease in node implurities from splitting 
on a features, averages over all trees, gives a notion of 
feature important. Node impurity can be measured by 
residual sum of squares. The higher decrease in node impu­
rity of a feature, the more important it is for prediction. As 
another example, to estimate feature importance from GB 
models, the definition approximate measure of relative influ­
ence in decision trees, from Breiman, et al. (Breiman, Leo, 
Jerome Friedman, Charles J Stone, and Richard A Olshen. 
1984. Classification and regression trees. CRC press, the 
entire contents of which are incorporated herein by refer­
ence) can be used. 

Algorithm SUBAGGING for pFscan prediction using RF and GB 

Separate the data into training (90%) (X,., Yr) and testing sets (10%) (%, 
YJ 
Step 1: Fork= 1, ... , K (e.g. K = 1000), do 

Generate a random sample (X,.\ Y/), by randomly drawing without 
replacement p columns and 20 p rows from Xr· Xrk : (p x 20 p ), Y/ : 
(1 X 20 p) 
Compute the sub-sampled estimator using random forest, on (X/, Y /) 

f'(.) : )RP - JR 
Compute the sub-sampled estimator using gradient boosting, (:x,/, Y /) 

fl(.) : )RP - JR 
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-continued 

Algorithm SUBAGGING for pFscan prediction using RF and GB 

Step 2: Average the sub-sampled estimators to approximate 

Step 3: For prediction using sub-sampled estimators, for j = 1, ... , T, 
T K, do 

'£,,<If.= fi(xJ prediction using random forest only 
Y,,1gf = g(x_,) prediction using gradient boosting only 
Y,,(hi = ½ (Ji (x,) + g(x,) prediction using both 

Step 4: Average the sub-sampled predictions 

' 1 T ,j 
Y,,(fl = T ~ f (X,) prediction using random forest only 

k=l 

' 1 T . 
Y,,(gl = T ~ i/(X,) prediction using gradient boosting only 

k=l 

, 1 f, 1 ( ,j . ) 
Y,,(hl =TL, 2 f (X,) + i/(X,) prediction using both 

k=l 

[0069] In any of the methods, any nucleic acid molecule(s) 
can be linearly stretched. In any of the methods, at least a 
portion of any of the nucleic acid molecule(s) can be 
confined within a nanoslit. 
[0070] The binding of process block 102 or process block 
302 can be via various types of bonds, including but not 
limited to, covalent bonds, ionic bonds, polar bonds, hydro­
gen bonds, or a combination thereof. The binding of process 
block 102 or process block 302 can involve intercalating the 
marker molecules between bases of the nucleic acid mol­
ecule. For example, YOYO-1 intercalates itself between 
DNA bases. The binding of process block 102 or process 
block 302 can utilize YOYO-1 or other similar dyes, as 
would be appreciated by a person having ordinary skill in the 
art. 
[0071] YOYO-1 (oxazole yellow) exhibits a very large 
degree of fluorescence enhancement on binding to nucleic 
acids. Previous studies have observed a 2-fold quantum 
yield increase when switching from AT-rich regions to 
GC-rich regions. Other studies observe that fluorescence 
intensity depends on the base sequence. This suggests that 
quantum yield and fluorescence lifetime for YOYO com­
plexed with GC-rich DNA sequences are about twice as 
large as those complexed with AT-rich sequences. As a 
result, the probability of dye molecules intercalating 
between DNA bases and fluorescing is non-uniform. 
[0072] The detectable signals described herein can be 
optical signals. The optical signals can be optical fluores­
cence signals. The detectable signals can be initiated by an 
external stimulus, such as electromagnetic radiation. Detect­
able signals could be: (1) speech patterns or other sound 
waves; (2) any dynamical process evolving over time; (3) 
2-D images; or other signals sharing relevant characteristics 
with those listed. The detectable signals can include elec­
trical signals, such as changes in local electrical polarizabil­
ity, magnetic fields (i.e., ferromagnetic nanoparticles conju­
gated to dyes or other binding moieties), or the like. 
[0073] The receiving the detectable signal of process 
block 104 and/or the acquiring the detectable fluorescence 
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signal versus pos1t10n of process block 304 can include 
acquiring an image, such as a fluorescence image, of a 
nucleic acid molecule that has been bound by the marker 
molecules and/or the fluorescent molecule. The receiving 
the detectable signal of process block 104 and/or the acquir­
ing the detectable fluorescence signal versus position of 
process block 304 is described at pages 1-10 of Nandi, 
Subrangshu (submitted 2007, publication embargoed), "Sta­
tistical Learning Methods for Fluoroscanning", doctoral 
dissertation, University of Wisconsin-Madison, which is 
incorporated herein in its entirety by reference. 

[0074] One example of extracting the underlying genomic 
information of process block 204 can be found at pages 
11-114 ofNandi, Subrangshu (submitted 2007, publication 
embargoed), "Statistical Learning Methods for Fluoroscan­
ning", doctoral dissertation, University of Wisconsin-Madi­
son, which is incorporated herein in its entirety by reference. 
In some cases, the extracting of process block 204 can 
include the same or similar steps as those described in 
process blocks 306 to 330. 

[0075] In some cases, the extracting of process block 204 
can include eliminating outliers from the data set. Eliminat­
ing outliers in process block 204 and other places described 
herein can use Fraiman and Muniz (FM) depth and random 
projection (RP) depth. 

[0076] In some cases, the extracting of process block 204 
can include normalizing the profiles of detectable signal 
intensity versus position. The extracting of process block 
204 can include excluding the profiles of detectable signal 
intensity versus position corresponding to nucleic acid mol­
ecules that have a stretch falling outside a predetermined 
range of acceptable stretch values. The extracting of process 
block 204 can include smoothing the profiles of detectable 
signal intensity versus position. The smoothed profiles can 
be renormalized following smoothing. 

[0077] The extracting of process block 204 can include 
generating a consensus profile of detectable signal intensity 
versus position. A consensus profile is also sometimes 
referred to as a cFscan herein. Generating the consensus 
profile can include correcting for amplitude variability 
between the profiles of detectable signal intensity versus 
position. Generating the consensus profile can include cor­
recting for phase variability between the profiles of detect­
able signal intensity versus position. 

[0078] Generating the consensus profile can include an 
iterated registration process. Generating the consensus can 
include an iterative process having the following steps: (i) 
detecting outliers; (ii) computing a template on a first 
iteration and updating the template on subsequent iterations; 
(iii) register the profiles of detectable signal intensity versus 
position to the template; and (iv) compute an average 
similarity between the profiles of detectable signal intensity 
versus position and the template, wherein the iterative 
process is repeated until the average similarity is maxi­
mized, the registered profiles from step (iii) of the final 
iteration of the iterative process are subjected to steps (i) and 
(ii) and the updated template of step (ii) is the consensus 
profile. 

[0079] The methods described herein can include corre­
lating the consensus profile to one or more features of the 
underlying genomic information. As used herein, a feature 
of the underlying genomic information can include any 
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smallest detectable unit of underlying genomic information. 
In some cases, this smallest detectable unit can be a 2-mer, 
a 3-mer, a 4-mer, or a 5-mer. 
[0080] In some cases, the extracting of process block 204 
can include generating a predicted data set using predicted 
underlying genomic information, and minimizing a differ­
ence between the data set and the predicted data set by 
varying the predicted underlying genomic information, 
wherein the underlying genomic information is the predicted 
underlying genomic information that minimizes the differ­
ence. 

Systems 

[0081] This disclosure also provides systems. The systems 
can be suitable for use with the methods described herein. 
When a feature of the present disclosure is described with 
respect to a given system, that feature is also expressly 
contemplated as being combinable with the other systems 
and methods described herein, unless the context clearly 
dictates otherwise. 
[0082] Referring to FIG. 4, a system 400 can include a 
computer 402 with a processor 404 and/or a CPU and a 
memory 406. The system 400 can also include a spectros­
copy system 408. The spectroscopy system 408 can include 
a fluorescence microscope 410. The computer 402 can be 
configured to control the spectroscopy system 408 and/or the 
fluorescence microscope 410. 
[0083] The processor 404 and/or CPU can be configured 
to read and perform computer-executable instructions stored 
in the memory 406. The computer-executable instructions 
can include all or portions of the methods described herein. 
[0084] The memory 406 can include one or more com­
puter readable and/or writable media, and may include, for 
example, a magnetic disc (e.g., a hard disk), an optical disc 
(e.g., a DVD, a Blu-ray, a CD), a magneto-optical disk, 
semiconductor memory (e.g., a non-volatile memory card, 
flash memory, a solid state drive, SRAM, DRAM), an 
EPROM, an EEPROM, and the like. The memory can store 
the computer-executable instructions for all or portions of 
the methods described herein. 

Example 1 

[0085] M. forum are members of the class Mollicutes, a 
large group of bacteria that lack a cell wall and have a 
characteristically low GC content). These diverse organisms 
are parasites in a wide range of hosts, including humans, 
animals, insects, plants, and cells grown in tissue culture). 
Aside from their role as potential pathogens, M. forum are of 
interest because of their extremely small genome size. The 
M. forum genome is 793 kb. 
[0086] DNA samples were prepared from purified CD138 
plasma cells (MM-Sand MM-R sample) and paired cultured 
stromal cells (normal) from a 58-year old male Multiple 
Myeloma (MM) patient with International Staging System 
(ISS) Stage IIIb disease. MM is the malignancy of B 
lymphocytes that terminally differentiate into longlived, 
antibody-producing plasma cells. Although it is a cancer 
genome, substantial portions of it are still identical to the 
reference human genome. This genome was comprehen­
sively analyzed to characterize its structure and variation by 
integrating findings from optical mapping with those from 
DNA sequencing-based genomic analysis (see Gupta et al. 
(2015)). 
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[0087] High molecular weight DNA (500 ng) was 
extracted from washed cells by embedding in a 20 µI agarose 
gel insert; followed by dialysis in a mix comprising 
10xNEB3 buffer (4.0 µ!), (each, 100 µm final concentration: 
dATP, dCTP, dGTP and dTTP) on ice for 1 hr. Endogenous 
nicks were then healed by addition of: 1 µI of 10 U/µl E. coli 
ligase (10 U/µl NEB E. coli ligase) for 2 hrs (16° C.). 
Followed by addition of 1 µI of Pol I (5 U/µl Roche E. coli 
DNA Pol I nuclease free) for 4 hrs (16° C.); total volume=40 
µI. Reaction was stopped by decanting solution and adding 
930 µ11 xTE and 70 µI of0.5 M EDTA (pH 8) with overnight 
incubation at 4 ° C. Solution was decanted, followed by 
insert dialysis steps (2x): 1 hr, against 1 xTE (1.0 ml) and 0.5 
M EDTA (70 µ!; pH=8.0). Insert was then transferred for 
additional pre-treatment: 10.7 µI H2O, 4 µI NEB3 buffer, 0.8 
µI (1 mM) Alexafluor 64 7-dUTP (20 µm final concentration; 
Molecular Probes) 0.8 µI (1 mM each: dATP, dCTP, dGTP; 
20 µMeach final concentration), and 2.7 µI dTTP (1.5 µM; 
0.1 µm final concentration-placed on ice for 1 hr. Treated 
insert DNA was then labeled by adding 1 µI Pol I (5 U/µl); 
incubated at 16° C. for 1 hr; stopped with 930 µI lxTE and 
70 µI EDTA (0.5 M; pH=8.0). Nanocode labeled DNA was 
electroluted and diluted for imaging. 
[0088] Fluorochrome-labeled nucleotides at cognate nick 
sites placed fluorescent tags on the genomic DNA, which 
were then imaged and analyzed using in-house image pro­
cessing software INCA. The DNA backbones were tracked 
by detecting the pixel with maximum intensity in a one pixel 
wide vertical window of predefined size and linking these 
pixels via a standard shortest path algorithm. Punctate 
"blobs" were detected using the ratio of the eigenvalues of 
the local 2-by-2 Hessian matrix. The punctates were local­
ized on the backbone using the registration information 
between the backbone and punctate images. The Nmaps 
were extracted as an ordered sequence of distances (along 
the backbone) between adjacent punctates. In addition to 
obtaining Nmaps, INCA provides the integrated fluores­
cence intensities of image pixels along the DNA backbone, 
or Fscans. 
[0089] To obtain the M. forum dataset, single-molecule 
Nmaps were aligned to an in silica restriction map derived 
from M. forum reference sequence 3 and to obtain the MM 
dataset, single-molecule Nmaps were aligned to an in silica 
restriction map derived from human reference sequence 
(NCBI Build 37) using an in-house alignment software 
called Software for Optical Mapping Analysis (SOMA). 
SOMA grouped similar Nmaps to the genomic regions 
where they aligned. Single Nmaps usually have experimen­
tal errors comprising false extra cuts, false missing cuts, and 
sizing issues, which were modeled with different probabi­
listic error models. 
[0090] Acquired images were processed using the image 
quality assessment method described above to eliminate 
outliers. The cross validation average type-II error was 
3.52%. 
[0091] Two large data-sets were prepared from samples of 
(1) M.forum, and (2) Human genome. Each dataset clearly 
identified groups of Fscans that aligned to the same refer­
ence intervals. While the M. forum Fscan data-sets provided 
depth (large number ofFscans aligned to the same reference 
interval), the human Fscan data-sets provided width (large 
number of intervals) but not as deep as M. forum. 
[0092] The M. forum genome presents 39 intervals, which 
ranged in size from 2.111 kb to 81.621 kb. AM. florum 
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Nmap dataset was created using previously described pro­
tocols and image analysis (see Jo, Kyubong, Dalia M 
Dhingra, Theo Odijk, Juan J de Pablo, Michael D Graham, 
Rod Runnheim, Dan Forrest, and David C Schwartz. 2007. 
A single-molecule barcoding system using nanoslits for dna 
analysis. Proceedings of the National Academy of Sciences 
104(8):2673-2678 and Kounovsky-Shafer, Kristy L, Juan P 
Hernandez-Ortiz, Kyubong Jo, Theo Odijk, Juan J de Pablo, 
and David C Schwartz. 2013. Presentation of large dna 
molecules for analysis as nanoconfined dumbbells. Macro­
molecules 46(20):8356-8368, the entire contents of which 
are incorporated herein by reference). The reference interval 
lengths are calculated in image pixels: 1 pixel=209 bp of 
YOYO-1 stained, B-DNAat 0.34 mn/bp. Interval sizes (kb) 
are calculated from the Nt.BspQI in silica digest of the 
genome sequence. 

[0093] Fluorescence intensity profiles (or Fscans) of 12 
DNA molecular intervals that were aligned to interval 15 of 
the M. forum genome. The reference interval is 11.119 kb 
long and each pixel of the captured images correspond to 
209 base pairs on the genome. So, we expect each of these 
Fscans to be 53 pixels long. However, due to reasons 
described elsewhere herein, the Fscan lengths to not per­
fectly math that of the reference. Table 1 shows the vari­
ability of lengths of Fscans aligned to same reference 
intervals. For example, in interval 19 if M.forum dataset, the 
longest Fscan is 13.6% longer and the shortest Fscan is 
21.6% shorter than the average length of all Fscans aligned 
to that interval. Table 1 also shows the depth of M. forum 
dataset. For example, there are 1,200 Fscans for interval 7 of 
M. forum. On an average, there are 626 Fscans per M. forum 
interval. The sheer size of the M. forum dataset is encour­
aging for any statistical analysis. At the same time, it also 
presents unique challenges with regards to the different 
types of variability. 

TABLE 1 

Nmap Coverage of the M Florum Genome 

Nt. BspOI Reference Intervals M (forum Nmap dataset 

size min avg max 
Interval pixels (kb) molecules (kb) (kb) (kb) 

0 391 81.62 66 65.67 81.07 92.79 
89 18.68 208 13.27 18.64 21.55 

2 284 59.4 467 43.92 59.24 69.39 
3 67 13.94 734 9.59 13.86 17.34 
4 43 9.03 895 6.47 8.99 11.48 
5 24 5.04 849 2.14 5.02 5.9 
6 59 12.34 939 6.58 12.29 15.55 
7 49 10.24 1200 6.74 10.2 12.22 
8 72 15.02 965 11.13 15 19.48 
9 122 25.45 751 20.52 25.45 30.91 

10 19 3.89 784 2.4 3.9 4.94 
11 100 20.89 898 14.35 20.83 26.42 
12 75 15.57 883 9.97 15.43 19.24 
13 49 10.21 855 6.21 9.98 13.72 
14 45 9.47 731 6.84 9.19 12.79 
15 53 11.12 631 5.69 10.42 13.94 
16 24 4.99 203 1.46 4.24 7.99 
17 66 13.73 151 8.29 12.97 16.76 
18 126 26.28 377 21.17 25.66 31.02 
19 183 38.28 551 29.91 38.14 43.33 
20 10 2.11 488 1.46 2.14 3.18 
21 148 31.02 572 18.48 31.12 35.62 
22 91 19.1 712 14.66 19.12 24.44 
23 17 3.62 918 1.04 3.61 6.37 
24 154 32.19 947 25.89 32.24 37.16 
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TABLE I-continued 

Nmap Coverage of the M. Florum Genome 

Nt. BspQI Reference Intervals M tf:.orum Nmap dataset 

size min avg max 
Interval pixels (kb) molecules (kb) (kb) (kb) 

25 198 41.3 876 30.39 41.2 48.77 
26 47 9.76 824 4.62 9.74 13.15 
27 78 16.38 835 10.5 16.34 20.35 
28 75 15.69 666 11.18 15.96 18.9 
29 30 6.28 653 4.07 5.86 7.36 
30 175 36.5 881 29.11 36.34 42.61 
31 88 18.31 795 12.95 18.24 21.9 
32 153 32.07 668 25.75 31.81 38.11 
33 100 20.95 431 15.15 20.86 23.97 
34 16 3.28 334 1.25 3.03 4.6 
35 68 14.26 295 11.32 14.16 16.37 
36 245 51.31 191 36.6 50.81 59.52 
37 77 15.99 103 12.06 15.9 18.12 
38 86 17.88 68 15.04 17.68 20.14 

[0094] While the M. forum genome only had 39 Nmap 
intervals, the human MM genome had thousands. Table 2.2 
lists the number of intervals in each chromosome as part of 
the MM dataset. Each of these intervals had a minimum 
depth of 15 Fscans, i.e., the number of genomic DNA 
molecules aligned to these intervals. And, each reference 
interval was at least 50 pixels long (""10.3 kb). Chromosome 
1 had the largest number of intervals (1,880) and chromo­
some 13 had the fewest (148). In all, there were 21,972 
intervals in the MM dataset. The average lengths of the 
intervals were 22.15 kb (std. dev. 7.911 kb), the longest 
being 110.60 kb (between base pairs 183,309,223 and 183, 
419,842 in chromosome 3) and the shortest being 14.32 kb 
(between base pairs 43,855,328 and 43,869,645 in chromo­
some 5). The MM dataset that was analyzed covered 486.66 
Mb (or 15.04%) of the human genome. 

TABLE 2 

Number of Intervals in MM Dataset 

Chromosome Number of Intervals 

chrl 1880 
chr2 1702 
chr3 1851 
chr4 1484 
chr5 1264 
chr6 1740 
chr7 1169 
chr8 1051 
chr9 787 
chrl0 1074 
chrll 1290 
chr12 1000 
chr13 148 
chr14 796 
chr15 819 
chr16 838 
chr17 727 
chr18 826 
chr19 326 
chr20 574 
chr21 334 
chr22 292 

[0095] The scans were subjected to the following pre­
processing steps: 1. normalizing; 2. limiting stretch; and 3. 
smoothing. 
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[0096] Normalizing: The intensity values of the scans 
ranged between 6,000 and 20,000. Some of them are not of 
the best image quality. They are removed by the quality 
score thresholding. Then, we divide each Fscan intensity by 
the median value of an interval after truncating 10 pixels 
from either end of the Fscan intervals for excluding mol­
ecule regions surrounding labeled nick sites. By design, 
these regions support FRET (Fluorescence Resonance 
Energy Transfer) excitation of the labeled nick sites and 
consequently present attenuated pixel grey levels. 
[0097] Limiting stretch: Images of molecules aligned to 
the same location on the genome were of different lengths 
(or stretch). We ensured uniform stretch in final Fscan 
data-sets by constraining Nmap alignments by length to be 
within +/-10% of the median stretch. 
[0098] Smoothing: We used B-spline De Boor (1978) to 
smooth each of intensity profile individually. For Fscan f(x), 
with p observed points xi, ... , xp, we used p/3 breakpoints, 
with 4th order basis functions. We used generalized cross 
validation (GCV) measure to estimate the roughness penalty 
A* for each Fscan f. A *=arg minx GCV(A *), for e-5 se5

. This 
way, we retained maximum signal-to-noise information. 
Smoothing serves dual purpose. First, it reduces the mea­
surement noise at the pixels and second, it allows interpo­
lation of Fscans at regular intervals ensuring they are all of 
the same length as the reference interval, in terms of pixels. 
After smoothing, all curves are normalized so they have a 
mean zero for subsequent analysis. 
[0099] After preprocessing, the M. forum Fscans were 
analyzed to confirm that Fscans reflect underlying genomic 
sequence compositions. To do this, we first identified a set 
of equi-length (50 pixels) sub-Nmap-intervals from M. 
forum. There are 19 Nmap intervals in the M. forum genome 
that were at least 50 pixels long. Two separate statistical 
methods: one non-parametric, one parametric were 
employed. There were between 42 and 516 Fscans in these 
19 sub-intervals, the average being 258. When two sub­
intervals with different Fscan counts were compared, to 
reduce bias in favor of the sub-interval with more Fscans, a 
random matching step was added. In this step, a random set 
of Fscans from the sub-interval with the larger count was 
withdrawn to match the count of the sub-interval with the 
smaller count. Then pairwise tests were conducted between 
these two sets of same Fscan counts. For interval pairs with 
mismatch, random matching was repeated 50 times and the 
p-values were averaged. 
[0100] A non-parametric permutation t-type test was con­
ducted pairwise, to test the null hypothesis that Fscans from 
two distinct genomic sub-intervals were from the same 
distribution. 
[0101] A functional Anderson-Darling test (FAD-test) was 
conducted pairwise on the same sub-intervals. 
[0102] The p-values from both these tests are close to zero. 
Since FAD-Test has more power, the p-values are smaller 
and discernible differences between Fscans are detected. 
From the results of FT-Test and FAD-Test we conclude that 
preprocessed Fscans belonging to the same sub-intervals 
have higher resemblance to each other and less so with 
Fscans belonging to other sub-intervals. This is evidence 
that Fscans represent signature profiles of genomic regions. 
[0103] The methods described above including the 
PRIMR algorithm were implemented on the acquired Fscans 
to produce cFscans. PRIMR successfully reduced noise in 
the Fscan datasets and more accurately estimated the 
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cFscans of genomic intervals. cFscans exhibited striking 
similarity with QC-profiles. Using two different statistical 
methods it is confirmed that cFscans were strongly associ­
ated with QC-profiles, in the sense that intervals with 
dissimilar QC-profiles have dissimilar cFscans and intervals 
with similar QC-profiles have similar cFscans. This allowed 
us to verify the fluoroscanning hypothesis that fluorescence 
intensity signals were strongly associated with genomic 
sequence composition. 
[0104] Analysis of differentially stretched Fscans of the 
M. jlorum datasets revealed that cFscans are reasonably 
robust to stretch. 
[0105] While the above detailed description has shown, 
described, and pointed out novel features as applied to 
various embodiments, it will be understood that various 
omissions, substitutions, and changes in the form and details 
of the devices or algorithms illustrated can be made without 
departing from the spirit of the disclosure. As will be 
recognized, certain embodiments of the disclosures 
described herein can be embodied within a form that does 
not provide all of the features and benefits set forth herein, 
as some features can be used or practiced separately from 
others. The scope of certain disclosures disclosed herein is 
indicated by the appended claims rather than by the fore­
going description. All changes which come within the mean­
ing and range of equivalency of the claims are to be 
embraced within their scope. 

We claim: 
1. A method of acquiring data associated with a nucleic 

acid molecule, the method comprising: 
a) binding a plurality of marker molecules to at least a 

portion of the nucleic acid molecule, each of the 
plurality of marker molecules providing a detectable 
signal, the detectable signal comprising underlying 
genomic information about the nucleic acid molecule; 

b) acquiring the detectable signal from a plurality of 
locations along the at least a portion of the nucleic acid 
molecule; and 

c) generating an output signal or a report comprising the 
detectable signal. 

2. The method of claim 1, wherein the at least a portion 
of the nucleic acid molecule is linear. 

3. The method of claim 2, wherein the at least a portion 
of the nucleic acid molecule is confined within a nanoslit. 

4. The method of any one of the preceding claims, 
wherein the detectable signal contains the underlying 
genomic information as a result of preferentially binding to 
one sequence relative to another. 

5. The method of any one of the preceding claims, 
wherein the plurality of marker molecules comprises a 
plurality of fluorescent molecules. 

6. The method of claim 5, wherein the plurality of marker 
molecules comprises a plurality of { 1, 1 '-( 4,4,8,8-tetram­
ethyl-4,8-diazaundecamethylene )bis[ 4-[ (3-methylbenzo- l, 
3-oxazol-2-yl)methylidene]-1,4-dihydroquinolinium] tet­
raiodide} (YOY0-1) molecules. 

7. The method of any one of the preceding claims, 
wherein the plurality of marker molecules comprises a 
plurality of first fluorescent molecules and a plurality of 
second fluorescent molecules 

8. The method of claim 7, wherein the first and second 
fluorescent molecules interact with one another to provide 
the detectable signal. 

11 
Oct. 7, 2021 

9. The method of claim 7, wherein the first and second 
fluorescent molecules have different emission characteris­
tics. 

10. The method of claim 7, wherein the first and second 
fluorescent molecules have different absorption characteris­
tics. 

11. The method of claim 7, wherein the first and second 
fluorescent molecules have different binding characteristics. 

12. The method of any one of the preceding claims, the 
method further comprising binding a plurality of quencher 
molecules to the at least a portion of the nucleic acid 
molecule, each of the plurality of quencher molecules modu­
lating emission from the plurality of marker molecules to 
provide the detectable signal. 

13. The method of any one of claims 1 to 4, wherein the 
plurality of marker molecules comprises a plurality of donor 
molecules and a plurality of acceptor molecules. 

14. The method of any one of the preceding claims, 
wherein the binding of step a) is via covalent bonds, ionic 
bonds, polar bonds, hydrogen bonds, or a combination 
thereof. 

15. The method of any one of the preceding claims, 
wherein the binding of step a) involves intercalating each of 
the plurality of marker molecules between bases of the 
nucleic acid molecule. 

16. The method of any one of the preceding claims, the 
method comprising: 

d) binding a second plurality of marker molecules to at 
least a second portion of the nucleic acid molecule, 
each of the second plurality of marker molecules pro­
viding the detectable signal; and 

e) acquiring the detectable signal from a second plurality 
of locations along the at least a second portion of the 
nucleic acid molecule. 

17. The method of any one of the preceding claims, the 
method comprising repeating steps a) and b) a second time 
using a second nucleic acid molecule instead of the nucleic 
acid molecule. 

18. The method of claim 17, wherein the nucleic acid 
molecule and the second nucleic acid molecule have sub­
stantially the same sequence. 

19. The method of claim 18, wherein the at least a portion 
of the nucleic acid molecule and the at least a portion of the 
second nucleic acid molecule at least partially overlap. 

20. The method of claim 17, wherein the nucleic acid 
molecule and the second nucleic acid molecule have differ­
ent sequences. 

21. The method of any one of the preceding claims, the 
method comprising repeating steps a) and b) a plurality of 
additional times using a different one of a plurality of 
additional nucleic acid molecules each of the plurality of 
additional times instead of the nucleic acid molecule. 

22. The method of claim 21, wherein the nucleic acid 
molecule and the plurality of additional nucleic acid mol­
ecules have substantially the same sequence. 

23. The method of claim 22, wherein the at least a portion 
of the nucleic acid molecule and each one of the at least a 
portion of the different one of the plurality of additional 
nucleic acid molecules at least partially overlap. 

24. The method of any one of the preceding claims, 
wherein the nucleic acid molecule is a single-stranded DNA 
molecule, a double-stranded DNA molecule, a single­
stranded RNA molecule, or a double-stranded RNA mol­
ecule. 
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25. The method of any one of claim 17 to the immediately 
preceding claim, wherein the second nucleic acid molecule 
is a single-stranded DNA molecule, a double-stranded DNA 
molecule, a single-stranded RNA molecule, or a double­
stranded RNA molecule. 

26. The method of any one of claim 21 to the immediately 
preceding claim, wherein the plurality of additional nucleic 
acid molecules is a plurality of single-stranded DNA mol­
ecules, a plurality of double-stranded DNA molecules, a 
plurality of single-stranded RNA molecules, or a plurality of 
double-stranded RNA molecules. 

27. The method of any one of the preceding claims, 
wherein the detectable signal is an optical signal and the 
acquiring of step b) comprises detecting the optical signal. 

28. The method of claim 27, wherein the detectable signal 
is an optical fluorescence signal and the acquiring of step b) 
comprises detecting the optical fluorescence signal. 

29. The method of claim 27 or 28, wherein the optical 
signal is detected by a microscope. 

30. The method of 28, wherein the optical fluorescence 
signal is detected by a fluorescence microscope. 

31. The method of claim 30, wherein the fluorescence 
microscope is a near-field microscope. 

32. The method of any one of the preceding claims, 
wherein the detectable signal is initiated by an external 
stimulus. 

33. The method of claim 32, wherein the external stimulus 
is electromagnetic radiation. 

34. The method of any one of the preceding claims, the 
acquiring of step b) comprising extracting the detectable 
signal from an image. 

35. The method of claim 34, the method further compris­
ing assessing quality of the image and excluding any images 
that fail to meet a quality threshold. 

36. The method of claim 35, wherein the assessing quality 
comprises: x) analyzing the detectable signals in a prede­
termined number of pixels surrounding the nucleic acid 
molecule in the image, thereby producing integrated inten­
sity measurements; y) clustering the integrated intensity 
measurements; and z) scoring the image based on one or 
more factors selected from the group consisting of a number 
of clusters in the image, a distance between clusters in cases 
where there were two or more clusters, a cluster quality 
measure, and combinations thereof. 

37. A method of analyzing detectable signals acquired 
from a plurality of nucleic acid molecules, the method 
comprising: 

a) receiving a data set comprising profiles of detectable 
signal intensity versus position, the detectable signal 
intensity acquired from a plurality of marker molecules 
bound to substantially identical portions of the plurality 
of nucleic acid molecules; 

b) extracting underlying genomic information from the 
data set; and 

c) generating an output signal or a report comprising the 
underlying genomic information. 

38. The method of claim 37, wherein the extracting of step 
b) comprises eliminating outliers from the data set. 

39. The method of claim 38, wherein the eliminating 
outliers uses Fraiman and Muniz (FM) depth and random 
projection (RP) depth. 
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40. The method of any one of claim 37 to the immediately 
preceding claim, wherein the extracting of step b) comprises 
normalizing the profiles of detectable signal intensity versus 
position. 

41. The method of any one of claim 37 to the immediately 
preceding claim, wherein the extracting of step b) comprises 
excluding the profiles of detectable signal intensity versus 
position corresponding to nucleic acid molecules that have 
a stretch value falling outside a predetermined range of 
acceptable stretch values. 

42. The method of any one of claim 37 to the immediately 
preceding claim, wherein the extracting of step b) comprises 
smoothing the profiles of detectable signal intensity versus 
position. 

43. The method of claim 42, wherein the extracting of step 
b) comprises renormalizing the smoothed profiles of detect­
able signal intensity versus position. 

44. The method of any one of claim 37 to the immediately 
preceding claim, the method further comprising generating 
a consensus profile of detectable signal intensity versus 
position. 

45. The method of claim 44, wherein the generating the 
consensus profile comprises correcting for amplitude vari­
ability between the profiles of detectable signal intensity 
versus position. 

46. The method of claim 44 or 45, wherein the generating 
the consensus profile comprises correcting for phase vari­
ability between the profiles of detectable signal intensity 
versus position. 

47. The method of any one of claim 44 to the immediately 
preceding claim, wherein the generating the consensus pro­
file comprises an iterated registration process. 

48. The method of any one of claim 44 to the immediately 
preceding claim, wherein the generating the consensus pro­
file comprises an iterative process comprising the following 
steps: (i) detecting outliers; (ii) computing a template on a 
first iteration and updating the template on subsequent 
iterations; (iii) register the profiles of detectable signal 
intensity versus position to the template; and (iv) compute 
an average similarity between the profiles of detectable 
signal intensity versus position and the template, wherein 
the iterative process is repeated until the average similarity 
is maximized, the registered profiles from step (iii) of the 
final iteration of the iterative process are subjected to steps 
(i) and (ii) and the updated template of step (ii) is the 
consensus profile. 

49. The method of claim 48, the method further compris­
ing correlating the consensus profile to a feature of the 
underlying genomic information. 

50. The method of any one of claim 37 to the immediately 
preceding claim, wherein the plurality of marker molecules 
comprises a plurality of fluorescent molecules. 

51. The method of claim 50, wherein the plurality of 
marker molecules comprises a plurality of {1,1'-(4,4,8,8-
tetramethyl-4,8-diazaundecamethylene )bis[ 4-[ (3-methyl­
benzo-1,3-oxazol-2-yl)methylidene ]-1,4-dihydroquino­
linium] tetraiodide} (YOY0-1) molecules. 

52. The method of any one of claim 37 to the immediately 
preceding claim, wherein the plurality of nucleic acid mol­
ecules is a plurality of single-stranded DNA molecules, a 
plurality of double-stranded DNA molecules, a plurality of 
single-stranded RNA molecules, or a plurality of double­
stranded RNA molecules. 
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53. The method of any one of claim 37 to the immediately 
preceding claim, wherein the extracting of step b) comprises 
generating a predicted data set using predicted underlying 
genomic information, and minimizing a difference between 
the data set and the predicted data set by varying the 
predicted underlying genomic information, wherein the 
underlying genomic information is the predicted underlying 
genomic information that minimizes the difference. 

54. The method of any one of claim 37 to the immediately 
preceding claim, wherein the data set comprising the profiles 
of detectable signal intensity versus position were generated 
by the method of any one of claims 1 to 36. 

55. A method comprising: 
a) binding at least a portion of each of a plurality of 

nucleic acid molecules with a plurality of fluorescent 
molecules, the plurality of fluorescent molecules pro­
viding a detectable fluorescence signal, the detectable 
fluorescence signal comprising underlying genomic 
information about a given portion of a nucleic acid 
molecule to which a given fluorescent molecule is 
bound, the at least a portion of each of the plurality of 
nucleic acid molecules having overlapping regions 
with substantially identical features; 

b) acquiring the detectable fluorescence signal versus 
position for the at least a portion of each of the plurality 
of nucleic acid molecules, thereby resulting in a data set 
comprising profiles of the detectable fluorescence sig­
nal versus position; 

c) identifying outliers of the profiles of the detectable 
signal versus position, thereby producing outlier pro­
files; 

d) computing a median profile from the profiles of the 
detectable signal versus position that were not identi­
fied as outlier profiles in step c ); 

e) computing a weighted mean profile by estimating a 
similarity index between the profiles of the detectable 
signal versus position that were not identified as outlier 
profiles in step c) and the median profile of step d), then 
taking a weighted average of the profiles of the detect­
able signal versus position that were not identified as 
outlier profiles in step c) by weighting according to the 
similarity index, thereby producing a template; 

f) registering the profiles of the detectable signal versus 
position to the template, thereby producing registered 
profiles of the detectable signal versus position; 

g) identifying outliers of the registered profiles of the 
detectable signal versus position, thereby producing 
outlier registered profiles; 

h) computing a median registered profile from the regis­
tered profiles of the detectable signal versus position 
that were not identified as outlier registered profiles in 
step g); 

i) computing an updated weighted mean profile by esti­
mating a registered similarity index between the reg­
istered profiles of the detectable signal versus position 
that were not identified as the outlier registered profiles 
in step g) and the median registered profile, then taking 
a weighted average of the registered profiles of the 
detectable signal versus position that were not identi­
fied as outlier registered profiles in step g) by weighting 
according to the registered similarity index, thereby 
producing a registered template; 

i) registering the registered profiles of the detectable 
signal versus position to the registered template, 
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thereby producing second registered profiles of the 
detectable signal versus position, the registering of step 
i) a lower penalty parameter than the registering of step 
f); 

j) computing an average similarity between the registered 
profiles of the detectable signal versus position and the 
registered template; 

k) repeat steps g), h), i), and j) using a second penalty 
parameter that is lower than the lower penalty param­
eter until a difference between the average similarity 
for consecutive iterations of the repeating is lower than 
a threshold value, thereby producing final registered 
profiles of the detectable signal versus position; 

1) identifying outliers of the final registered profiles of the 
detectable signal versus position from the final iteration 
of step k), thereby producing outlier final registered 
profiles; 

m) computing a median final registered profile from the 
final registered profiles of the detectable signal versus 
position that were not identified as outlier final regis­
tered profiles in step l); and 

n) computing a final weighted mean profile by estimating 
a final registered similarity index between the final 
registered profiles of the detectable signal versus posi­
tion that were not identified as the final outlier regis­
tered profiles in step 1) and the median final registered 
profile, then taking a final weighted average of the final 
registered profiles of the detectable signal versus posi­
tion that were not identified as outlier final registered 
profiles in step 1) by weighting according to the final 
registered similarity index, thereby producing a con­
sensus profile of the detectable signal versus position. 

56. The method of claim 55, the method further compris­
ing identifying the substantially identical features using the 
consensus profile of the detectable signal versus position. 

57. The method of claim 55 or 56, wherein the plurality 
of nucleic acid molecules are linearly stretched. 

58. The method of claim 55 to the immediately preceding 
claim, wherein the plurality of nucleic acid molecules are 
confined within a nanoslit. 

59. The method of claim 55 to the immediately preceding 
claim, wherein the plurality of fluorescent molecules pref­
erentially bind to one sequence relative to another. 

60. The method of claim 55 to the immediately preceding 
claim, wherein the plurality of marker molecules comprises 
a plurality of { 1,1 '-( 4,4,8,8-tetramethyl-4,8-diazaundecam­
ethylene )bis[ 4-[ (3-methylbenzo-1,3-oxazol-2-yl)methyl­
idene ]-1,4-dihydroquinolinium] tetraiodide} (YOY0-1) 
molecules. 

61. The method of claim 55 to the immediately preceding 
claim, wherein the binding of step a) is via covalent bonds, 
ionic bonds, polar bonds, hydrogen bonds, or a combination 
thereof. 

62. The method of claim 55 to the immediately preceding 
claim, wherein the binding of step a) involves intercalating 
the marker between bases of the nucleic acid molecule. 

63. The method of claim 55 to the immediately preceding 
claim, wherein the plurality of nucleic acid molecules is a 
plurality of single-stranded DNA molecules, a plurality of 
double-stranded DNA molecules, a plurality of single­
stranded RNA molecules, or a plurality of double-stranded 
RNA molecules. 
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64. The method of claim 55 to the immediately preceding 
claim, wherein the acquiring of step b) is achieved via a 
fluorescence microscope. 

65. The method of claim 55 to the immediately preceding 
claim, wherein the acquiring of step b) is achieved via a 
near-field microscope. 

66. The method of claim 55 to the immediately preceding 
claim, the acquiring of step b) comprising acquiring an 
image and extracting the profiles of detectable signal versus 
position from the image. 

67. The method of claim 66, the method further compris­
ing assessing quality of the image and excluding any images 
that fail to meet a quality threshold. 

68. The method of claim 67, wherein the assessing quality 
comprises: x) analyzing the detectable signals in a prede­
termined number of pixels surrounding the nucleic acid 
molecule in the image, thereby producing integrated inten­
sity measurements; y) clustering the integrated intensity 
measurements; and z) scoring the image based on one or 
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more factors selected from the group consisting of a number 
of clusters in the image, a distance between clusters in cases 
where there were two or more clusters, a cluster quality 
measure, and combinations thereof. 

69. A non-transitory computer-readable medium having 
stored thereon instructions that, when executed by a proces­
sor, cause the processor to execute the method of any one of 
claims 37 to 52. 

70. A system comprising a processor and the non-transi­
tory computer-readable medium of claim 69. 

71. A system comprising a fluorescence microscope, a 
processor, and a memory, the fluorescence microscope con­
figured to acquire the detectable fluorescence signal of step 
b) and the memory having stored thereon instructions that, 
when executed by the processor, cause the processor to 
execute steps c) to n) of the method of any one of claims 55 
to 68. 

* * * * * 


