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(57) ABSTRACT 

A neural network processor architecture provides decom­
pression circuitry that can exploit patterns of data in kernel 
weights of a convolutional neural net as flattened to a vector, 
the compression allowing reduced kernel data storage costs 
including on-chip-storage. 
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NEURAL NETWORK PROCESSOR WITH 
ON-CHIP CONVOLUTION KERNEL 

STORAGE 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

[0001] NIA 

CROSS REFERENCE TO RELATED 
APPLICATION 

[0002] NIA 

BACKGROUND OF THE INVENTION 

[0003] The present invention relates generally to computer 
architectures and, in particular, to a computer architecture 
providing improved execution of convolution artificial neu­
ral networks (CNNs). 
[0004] Artificial neural networks (henceforth neural net­
work) are computing systems inspired by the brain. A 
common design of a neural network provides multiple layers 
of "neurons" where each layer has multiple connections to 
preceding and/or succeeding layers. Each of the multiple 
inputs to each neuron is associated with a weight, and the 
neuron provides an output that is a function of the weighted 
sum of the data from the input connections. The final layer 
of the neural network typically provides a classification, for 
example, expressed as an output vector having elements 
associated with different classification possibilities. In a 
common example, a neural network may be trained to 
review image data and classify that image data. In this case, 
the output vector may classify the image according to 
whether it shows a particular subject, for example, an 
automobile or a pedestrian. 
[0005] The weights used by the neurons are obtained by a 
training process in which example data with known classi­
fication is provided in a "training set" to the neural network 
and the weights adjusted iteratively so that the output 
classification converges to the known classification of the 
training set data. This process may be conducted "off-line" 
before the neural network is used. After training, a neural 
network processor loaded with the trained weights may 
proceed to categorize data using those weights by passing 
data through the connections between neurons to the final 
classification layer. 
[0006] A significant benefit to neural network architec­
tures is that specific rules for the classifications of the data 
need not be developed by human programmers; instead, the 
neural network essentially develops its own rules based on 
the training process. 
[0007] A variation in design of neural networks is a 
so-called "convolutional neural net" in which the neural 
network weights are expressed in the form of a kernel 
(typically a matrix of data) that is convolved over the input 
data to provide the values of the next neural network layer. 
A convolutional neural network is a special case of the 
general neural network in which the kernel essentially limits 
the connections of each neuron to a small portion of the 
input data and expresses a common weighting used by all the 
neurons of that layer with the differences between each 
neuron being the subset of the input data which it receives. 
A convolutional neural network may have multiple convo­
lution layers and kernels. 
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[0008] It is important to note that neuron weights and in 
particular convolution kernels are generally not intelligible 
to a human observer. For example, convolution kernels 
generated to identify the subject of images are not images of 
those subjects or particular image classifications. Instead, 
the neuron weights are complex abstracted data representing 
a blending of information about multiple different classifi­
cations and largely unpredictable by the neural network 
designer. 
[0009] Recent advances in neural network processing 
have relied on so-called "deep neural networks" having 
hundreds of layers. Such deep neural networks have 
exceeded human capabilities in many classification tasks but 
present challenges with respect to computational limits and 
data limits. This first challenge, of computational limits, is 
related to large number of computations required for the 
many neurons. This has led to the development of special­
ized processors optimized for the arithmetic operations of 
the neurons (e.g., matrix multiplications). 
[001 OJ The second challenge of data limits is related to the 
large amount of data required to store the necessary kernels. 
Transferring this kernel data between memory and the neural 
network processor is time-consuming and consumes a sig­
nificant proportion of the power needed for the neural 
network calculation. The problem oflarge amounts of kernel 
data has been addressed through the techniques of: (1) 
"pruning" in which connections between neurons having 
low weight values (and those neuron weights) are removed 
from the neural network calculation; (2) "quantizing" in 
which the kernel weights are quantized, for example, by 
turning floating-point values into scalar values or the like; 
and (3) "weight sharing" in which the values for different 
weights are shared, for example, by developing a "code­
book" that compresses common weight values into shorter 
codes that can be looked up in the codebook with a more 
compact index number. 

SUMMARY OF THE INVENTION 

[0011] The prior art techniques of compressing the kernel 
data look at each data element in isolation consistent with an 
expectation that there is no predictable organizational pat­
tern to that kernel data. Nevertheless, although kernel data is 
neither an image nor intelligible as an image, the present 
inventors have determined that there are underlying patterns 
of the kernel data that permit a pattern-based compression 
system. In particular, the present inventors have found that 
by flattening the kernel data into vectors, vector compres­
sion techniques yield substantial compressions of this data 
without countervailing loss of classification accuracy. The 
compression level is high enough to allow the weights to be 
stored on the same integrated circuit as that which does the 
neural network processing by incorporating into those inte­
grated circuits vector decompression circuitry. The result of 
storing kernel data directly on the processing chip radically 
decreases the time and cost of managing weights for com­
mercially significant artificial neural networks. 
[0012] Specifically, then, the present invention provides a 
neural network processor operating to receive data and to 
classify that data and includes an input register holding 
received data for classification. The integrated circuit further 
includes a codebook storage memory holding data permit­
ting a mapping of individual codeword values to patterns of 
multiple kernel weight values related to a kernel of a neural 
network trained to provide a set of classifications, and a 
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codeword memory holding codeword data to provide gen­
eration of a reconstructed kernel by indexing the codebook 
storage memory with codeword data. Arithmetic circuitry 
communicating with the input register, the codebook storage 
memory, and the codeword memory generate output repre­
senting a dot product between the received data and the 
reconstructed kernel to classify the received data according 
to the set of classifications. 
[0013] It is thus a feature ofat least one embodiment of the 
invention to provide sufficient compression of neural net­
work weight values by exploiting hidden patterns in that 
weight data to permit on-chip storage of neural weight 
values for higher processing speeds. 
[0014] The patterns of multiple kernel weight values may 
be contiguous weight values within a matrix of the kernel. 
[0015] It is thus a feature ofat least one embodiment of the 
invention to identify patterns in the raw kernel values 
without extensive preprocessing, for example, application of 
image transformations, etc. 
[0016] The patterns of multiple kernel weight values may 
further be contiguous weight values along a predetermined 
dimension of the kernel data. 
[0017] It is thus a feature of at least one embodiment of the 
invention to identify patterns in the natural organization of 
the kernel data, for example, in rows and colunms. 
[0018] The patterns of multiple kernel weight values may 
have beginning and end of values aligned within the matrix 
of the kernel. 
[0019] It is thus a feature ofat least one embodiment of the 
invention to exploit patterns in the kernel data that are 
naturally registered to edges of the kernel. 
[0020] The beginning and end values may extend at least 
a full dimension of the matrix of the kernel. 
[0021] It is thus a feature ofat least one embodiment of the 
invention to identify patterns that can be extracted through 
a simple flattening of the kernel into vectors. 
[0022] The reconstructed kernel may be a scalar compres­
sion of the kernel of the neural network trained to provide 
the set of classifications. The scalar compression may 
replace a range of kernel data values with a predetermined 
scalar value. 
[0023] It is thus a feature ofat least one embodiment of the 
invention to permit further application of scalar compression 
to the compressed kernel for additional compression. 
[0024] Alternatively, or in addition, the patterns of mul­
tiple kernel weight values may be stored as a product 
quantization of vectors of the kernel of the neural network. 
The product quantization may provide multiple individual 
codeword values associated with different but contiguous 
patterns of multiple kernel weights. 
[0025] It is thus a feature ofat least one embodiment of the 
invention to permit further application of product quantiza­
tion to the compressed kernel for additional compression. 
[0026] The arithmetic circuitry may employ the data of the 
codebook storage memory to precompute a set of multipli­
cations between the received data and data of the codebook 
storage memory to populate a first lookup table and repeat­
edly use the precomputed set of multiplications according to 
data of the codeword memory in generation of the output 
representing a dot product between the received data and the 
reconstructed kernel. 
[0027] It is thus a feature ofat least one embodiment of the 
invention to provide calculation reuse substantially reducing 
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the calculation overhead of neural network processing as is 
made practical by on-chip storage of the neural weights. 
[0028] The arithmetic circuit may further include a second 
lookup table and further operate to populate the second 
lookup table with sums formed using the scalar-quantized 
codewords and the first lookup table, and may use the 
second lookup table and the product-quantized codewords to 
form the dot product. 
[0029] It is thus a feature of at least one embodiment of the 
invention to permit reuse not only of multiplication opera­
tions but also of addition operations. 
[0030] The data of the first and second lookup tables 
maybe stored for reuse between successive received data 
separated by a convolution of the kernel on an input data set. 
[0031] It is thus a feature of at least one embodiment of the 
invention to increase the utilization of limited lookup tables 
by recognizing the regularity of the convolution process. 
[0032] The input register, codebook storage memory, 
codeword memory, and arithmetic circuit may be held on a 
single integrated circuit substrate. 
[0033] It is thus a feature of at least one embodiment of the 
invention to provide for sufficient compression that energy 
costs of transferring data to an integrated circuit can be 
substantially reduced. 
[0034] These particular objects and advantages may apply 
to only some embodiments falling within the claims and thus 
do not define the scope of the invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0035] FIG. 1 is a block diagram of a neural network 
processor of the present invention with a set of successively 
exploded fragmentary details showing compute engines 
each providing a processing element allowing on-chip stor­
age of kernel weights; 
[0036] FIG. 2 is a flowchart showing on-line and off-line 
processing steps for use of the architecture of claim 1; 
[0037] FIG. 3 is a simplified example of programming of 
the neural network processor and its operation according to 
the flowchart of FIG. 2; 
[0038] FIG. 4 is a diagrammatic representation of the 
convolution process of a convolutional neural network 
showing movement of the kernel data over the data to be 
processed; and 
[0039] FIG. 5 is a two-dimensional representation of the 
convolutional process showing data retention for reuse as 
practiced by the present invention. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

Hardware Overview 

[0040] Referring now to FIG. 1, a computer system 10 
may provide for a general-purpose processor 12, for 
example, a van-Neuman type architecture computer execut­
ing a general instruction set and possibly using out-of-order 
and speculative execution of the type commonly used in 
current cell phones and desktop computers. The general­
purpose processor 12 may communicate with memory 14 
optionally including multiple memory technologies 
arranged in a hierarchical fashion including, for example, 
SRAM and DRAM and/or so-called flash memory. 
[0041] The memory 14 and general-purpose processor 12 
may communicate with a special-purpose neural network 
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processor 16 implementing a convolutional neural network 
architecture for processing data, for example, received from 
the memory 14 directly or via the processor 12. 

[0042] The neural network processor 16 may include 
multiple compute engines 18 which together or individually 
maybe fabricated on a single integrated circuit substrate 
using known integrated circuit fabrication techniques. Each 
compute engines 18 receives input data, for example, by 
means of a shared input bus 20 from the general-purpose 
processor 12 for memory 14 and in response provides 
classification output data by means of an output data bus 22, 
this output data, for example, classifying subject matter 
(e.g., pedestrian, automobile, truck, etc.) of those input 
images, such as may be useful in autonomous vehicle 
control. It should be noted that the invention is not intended 
to be limited to a particular type of input data, however, and 
the input data may likewise be any type of input data that 
may be usefully processed by a neural network system 
including other types of image processing, for example, for 
medical imaging or the like, text or spoken translation, etc. 

[0043] Each compute engine 18 provides the capability of 
implementing multiple layers 24 of a convolutional neural 
network 25, including, for example, convolution layers 26 
and pooling layers 28 of a type that are generally understood 
in the art. These convolution layers 26 are each associated 
with a kernel 31 (which is generally different for different 
convolution layers 26) and are comprised of neurons (not 
shown). The convolution layers 26 and the pooling layers 28 
communicating inter-neuron data 29 there between represent 
outputs from the previous layer and inputs to a succeeding 
layer. In one embodiment, each compute engine 18 may 
execute a separate independent convolutional neural net­
work 25 receiving different input data and providing differ­
ent classifications according to different kernels 31. 

[0044] Each convolution layer 26 of a compute engine 18 
may be implemented by a processing element 30 to provide 
rapid execution of a neural network convolution as will now 
be described. 

[0045] Referring still to FIG. 1, a processing element 30 
will typically be implemented entirely on a single integrated 
circuit substrate and in that regard, will provide for an 
on-chip memory 32 for storage of a scalar-quantized code­
book 34, a scalar-quantized codeword list 36, and product­
quantized codeword list 38 as will be discussed in greater 
detail below. These storage structures for the "codebooks," 
for example, may be regarded logically as tables that may be 
indexed by corresponding "codewords." 

[0046] Inter-neuron data 29 may be received by an input 
data register 40 of each processing element 30, the former 
holding a vector of input data generally obtained from a 
multidimensional input data matrix (not shown in FIG. 1 but 
to be discussed below with respect to FIG. 4) that has been 
"flattened" into a vector by a scanning through the matrix of 
input data in a predefined pattern, such as a raster scan, 
through each of its dimensions. 

[0047] Data from the input data register 40 may be 
received by a multiplier array 42 of the processing element 
30 providing vector multiplication of the data of the input 
register 40 with a corresponding vector 35 of the scalar­
quantized codebook 34 whose contents will be described 
below. The result of this multiplication provides a set of 
building block products that will be used (and reused) in 
calculation of the dot product between a convolution kernel 
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31 and the input data from the input data register 40 as will 
be discussed in greater detail below. 
[0048] These products from the multiplier array 42 may be 
buffered by a line buffer 44 or other memory structure for 
providing the data reuse discussed in FIGS. 4 and 5 and used 
to populate a first lookup table 46 generally holding precal­
culated multiplication (product) values. 
[0049] A scalar-quantized codeword 47 from the scalar­
quantized codeword list 36 may then be used to index 
through the lookup table 46 to select certain products to be 
added together by an adder tree 50 to populate a second 
looknp table 52 holding pre-calculated partial sums that will 
also be used in the calculation of the dot product by the 
processing element 30. 
[0050] The second lookup table 52 may be indexed by 
product quantization codewords stored in the product-quan­
tized codeword list 38 to provide partial sums to an adder 
tree 54 which produces a dot product of the received 
inter-neuron data 29 and a convolution kernel 31, the latter 
collectively represented by scalar-quantized codebook 34, 
scalar-quantized codeword list 36, and product-quantized 
codeword list 38 to provide output, inter-neuron data 29'. 

Detailed Operational Description 

[0051] Referring now to FIG. 2, the hardware of FIG. 1 
requires an off-line preparation of neural network kernels 31 
(indicated generally by process blocks in off-line region 56) 
followed by a downloading of this kernel 31 to the hardware 
FIG. 1 (specifically to memory 32) and execution during an 
on-line process (indicated generally by process blocks in 
on-line region 58). 
[0052] At a first off-line process block 60, a convolutional 
neural network 25 (following the architecture implemented 
by compute engines 18 of FIG. 1) may be trained using a 
training set 62 according to conventional training techniques 
for convolutional neural networks. In such training, the 
convolutional neural network 25 is presented with multiple 
sets of input data 63 tagged with classification information 
64 for each particular set. For example, the input data 63 
may be image data having pixel values distributed in an x-y 
plane, each pixel having different colors representing a 
z-dimension of a three-dimensional data matrix. The clas­
sification information 64, for example, may identify a sub­
ject matter of the image, for example, "automobile" or 
"pedestrian" as discussed above. 
[0053] The result of this training is to generate a set of 
kernels 31 providing weights for the convolutional neural 
network 25 so that the convolutional neural network 25 may 
operate with novel image data to successfully identify the 
subject matter of that image data among particular different 
categories of classification information 64. Each of the 
kernels 31 is typically a smaller matrix of data having a 
depth equal to that of the input data 63 but being substan­
tially smaller in the other (x-y) dimensions. 
[0054] At process block 66, the kernel 31 is flattened into 
a set of vectors 68 by effectively unwinding the three­
dimensional data of the kernel 31 in a raster pattern 70. In 
one embodiment, each of vector 68 may comprise one full 
row of data of the kernel 31 with each vector starting at a 
leftmost edge of the matrix of the kernel 31 and preceding 
the full width of that kernel data in left to right order. The 
invention contemplates other methods of flattening the ker­
nel 31 that generally preserve the orientation and alignment 
of the vector data including along colunms or depth values. 
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[0055] At process block 72, the vectors 68 of a single 
kernel 31 are mapped to a multidimensional space 74 having 
a number of dimensions equal to the length of the vectors so 
that each vector may be described by a single data point 76 
in that space. A limited set of centroid values 78 are then 
selected within clusters of the data points 76 in the multi­
dimensional space 74 to minimize the Euclidean distance 
between the data points 76 of that cluster and a given 
centroid 78. The dimension values defining each centroid 78 
may be separated into groupings that describe each centroid 
78 as a product of the dimension values of those groupings. 
In this example, a simplified two-dimensional space 74 is 
shown, and the product is between a first grouping of 
horizontal dimensions and a second grouping of vertical 
dimensions of each centroid 78 that together define the 
centroid 78. The centroids 78 may be aligned along rows and 
colunms so that a limited number of product elements may 
be used to describe a large number of centroids resulting in 
a substantial compression. In this process, the centroids 78 
are effectively quantized to a row or colunm; however, the 
rows and colunms need not be equally spaced in the hori­
zontal or vertical dimensions as will be evident from the 
following example. Clustering techniques using this 
approach are known in the art. 

[0056] Referring now momentarily to FIG. 3, an example 
simplified kernel 31 may provide four input vectors 68 each 
representing one row of an image matrix (for example) as 
follows: 

[0057] 5432 

[0058] 8698 

[0059] 9754 

[0060] 8643 

[0061] Each of these vectors 68 may be represented in 
two-dimensional space 74 as data points 76. In this case, the 
clustering may create centroids 78 quantized along a hori­
zontal axis with values of 86 and 54 (partial vectors) and 
quantized along a vertical axis with values of 98 and 43 
(partial vectors). Generally, a limited number of centroids 78 
will approximate a much larger number of points 76 pro­
viding a first opportunity for compression, and a limited 
number of partial vectors will describe a larger number of 
centroids 78 providing a second opportunity for compres­
s10n. 

[0062] Referring to both FIGS. 2 and 3, at process block 
process block 80 a "product-quantized codebook" 81 is then 
developed using this vector decomposition providing an 
index "codeword" value 82 linked to partial vectors, in this 
example being either the horizontal or vertical values of the 
centroids 78. In this example, a codeword of 1 is linked to 
the partial vector of 54 in the horizontal dimension and to a 
partial vector of 43 in the vertical dimension. Likewise, a 
codeword of 2 is linked to the partial vector of 86 in the 
horizontal dimension and a partial vector of 98 in the vertical 
dimension. These codeword values 82 can be used to create 
a product-quantized codeword list 38 which together with 
the product-quantized codebook 81 could be used to recon­
stitute a compressed kernel 31' providing the following 
values: 

[0063] 5443 

[0064] 8698 

[0065] 8643 

[0066] 8643 
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[0067] It will be seen that this compressed kernel 31' only 
approximates the values of the kernel 31 per the quantization 
shown above of clustering and product quantization. 
[0068] At process block 86 of FIG. 2, the values of the 
compressed kernel 31 may be further compressed by a scalar 
compression in which each digit of the compressed kernel 
31 is compared to a limited set of ranges to provide a further 
compression. In this example, the digits of the partial vectors 
are compressed from ten possibilities (0-9) to two possibili­
ties that best represent the digit before compression. 
[0069] Determining the scalar threshold for this scalar 
quantization may be done, for example, by generating a 
histogram 88 of all of the digits of the compressed kernel 31' 
and providing a threshold value 90 (in this case 4) equally 
partitioning those values into two ranges: (1) a first range for 
values greater than 4 or (2) a second range for values less 
than or equal to 4. Each of these partial vectors within these 
ranges will be associated with a predefined centroid value 
( e.g., 3 or 7) completing the compression in which each digit 
of the partial vector becomes either a 3 or 7. 
[0070] The result is a scalar-quantized codebook 92 
formed at process block 91 and having two codeword values 
of (3, 7). This codebook 92 together with a scalar-quantized 
codeword list 36 of codeword values 93 and a generator 
using the threshold value 90 on the scalar compressed kernel 
31' allows reconstruction of a highly compressed kernel 31" 
as follows: 

[0071] 7333 
[0072] 7777 
[0073] 7733 
[0074] 7733 

[0075] While this simple example substantially modifies 
the highly compressed kernel 31' with respect to the kernel 
31 (shown above), this compression system reduces the 
amount of data necessary to express the kernel 31 to point 
where it can be stored practically on the same integrated 
circuit as implements the neural network. Specifically, only 
the scalar-quantized codebook 34 and the scalar-quantized 
codeword list 36 need to be downloaded to the processing 
element 30, although practically the product-quantized 
codeword list 38 is also downloaded as will be discussed 
below. Practically this represents a substantial compression 
of the kernel 31 for realistic sizes of kernel 31. Consider, for 
example, if the weights of the kernel 31 were each repre­
sented by a 32-bit floating-point value. Even in this simple 
example of a 16-colunm and 16-row kernel 31, that would 
represent over 4000 bits of data. In contrast the scalar 
codebook 92 can be represented with two 32-bit floating­
point values (more typically there is compression to an 
integer value), and the product-quantized codeword list 38 
and scalar-quantized codebook 34 can be represented with 
eight and sixteen additional bits of data respectively for a 
total of 88 bits. 
[0076] Referring now to FIGS. 2 and 3, the scalar-quan­
tized codebook 92, the scalar-quantized codeword list 36, 
and the product-quantized codeword list 38 are downloaded 
into the memory 32 of the processing element 30 engine as 
indicated by process block 100 to begin the processing steps 
of the on-line region 58 implemented by the neural net 
processor 16. 
[0077] Referring now to FIGS. 1, 2, and 3, in overview, 
the processing element 30 receives input data of inter­
neuron data 29 flattened into a vector 98 and takes the dot 
product of this vector 98 with a similar vector formed by 
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flattening the kernel 31. In this simple example, the input 
vector 98 may be represented by the vector (1, 2, 4, 3) 
multiplied by the first row of the kernel 31 being the vector 
(5, 4, 3, 2) in the original kernel 31, or in this case, the highly 
compressed kernel 31" (7, 3, 3, 3 ). It will be understood that 
the desired dot product in this case will be represented by the 
following equation: (7 x 1 )+(3x2 )+(3 x4 )+(3 x3). 
[0078] At process block 102, the scalar-quantized code­
book 92 (3, 7) is multiplied by the current input vector 98 to 
populate the first lookup table 46 with all possible products 
that may be necessary in the dot product to be performed on 
the input, inter-neuron data 29 with the kernel 31. Note that 
the kernel 31" need not in fact be reconstituted or stored in 
the memory 32. By preparing this lookup table 46, time- and 
energy-consuming multiplications can be avoided by reuse 
of previous multiplications as will be seen. 
[0079] At process block 104, the second lookup table 52 
may be populated by using the precalculated product values 
of lookup table 46 applied to the scalar-quantized codeword 
list 36 to produce partial sums. Like the precalculated 
product values oflookup table 46, these precalculated partial 
sums may be reused in dot product calculations. 
[0080] In this example, the top row of the scalar-quantized 
codeword is (2, 1, 1, 1) indicating that the necessary partial 
sums are (7 +6) ( selecting from the second row of the first 
colunm of lookup table 46 and the first row of the second 
colunm of lookup table 46 per the first two digits of the 
scalar-quantized codeword) and (12+9) (selecting from the 
first row of the third colunm of lookup table 46 and the first 
row of the fourth colunm of lookup table 46). 
[0081] At process block 106 these partial products are then 
added together by adder tree 54 to produce the dot product 
providing a portion of the output, inter-neuron data 29. The 
remainder of the output, inter-neuron data 29 will be com­
puted as additional vectors 98 are received associated with 
the remaining rows of the kernel 31". 
[0082] Although not evident in this abbreviated example, 
this process of creating the lookup tables 46 and 52 reduces 
unnecessary arithmetic operations as additional input vec­
tors 98 come in and, for example, are multiplied by the 
second row of the highly compressed kernel 31" for which 
all the necessary multiplications have been completed 
shown in FIG. 3 in a second row of the lookup table 52 
which reuses, for example, the product 7. 
[0083] Referring now to FIGS. 3 and 4, in addition to the 
reuse of multiplications and additions for a given location of 
the kernel 31 with respect to the input data 63, these 
operations can be reused as kernel 31 is convoluted as 
indicated by arrow 108 over the input data 63 ( or previous 
inter-neuron data 29 from an earlier layer) by appropriate 
buffering, shifting, or refreshing of the memories of lookup 
tables 46 and 52. Thus, for example, the lookup table values 
110 (shown in FIG. 5) associated with the lookup table 46 
for the above example of input vector (1, 2, 4, and 3) will 
have relevance as the kernel 31 moves successively right­
ward for up to three successive moves (the width of the 
kernel in the convolution direction). Similarly, some calcu­
lations can be reused for subsequent scans of the kernel 31 
displaced downward from that as depicted. This reuse can be 
selectively performed to implement a trade-off between 
speed and the necessary size of the lookup tables 46 and 52 
or a buffer associated with them. 
[0084] Certain terminology is used herein for purposes of 
reference only, and thus is not intended to be limiting. For 
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example, terms such as "upper", "lower", "above", and 
"below" refer to directions in the drawings to which refer­
ence is made. Terms such as "front", "back", "rear", "bot­
tom" and "side", describe the orientation of portions of the 
component within a consistent but arbitrary frame of refer­
ence which is made clear by reference to the text and the 
associated drawings describing the component under dis­
cussion. Such terminology may include the words specifi­
cally mentioned above, derivatives thereof, and words of 
similar import. Similarly, the terms "first", "second" and 
other such numerical terms referring to structures do not 
imply a sequence or order unless clearly indicated by the 
context. 
[0085] When introducing elements or features of the pres­
ent disclosure and the exemplary embodiments, the articles 
"a", "an", "the" and "said" are intended to mean that there 
are one or more of such elements or features. The terms 
"comprising", "including" and "having" are intended to be 
inclusive and mean that there may be additional elements or 
features other than those specifically noted. It is further to be 
understood that the method steps, processes, and operations 
described herein are not to be construed as necessarily 
requiring their performance in the particular order discussed 
or illustrated, unless specifically identified as an order of 
performance. It is also to be understood that additional or 
alternative steps may be employed. 
[0086] References to "a microprocessor" and "a proces­
sor" or "the microprocessor" and "the processor," can be 
understood to include one or more microprocessors that can 
communicate in a stand-alone and/or a distributed environ­
ment(s ), and can thus be configured to communicate via 
wired or wireless communications with other processors, 
where such one or more processor can be configured to 
operate on one or more processor-controlled devices that can 
be similar or different devices. Furthermore, references to 
memory, unless otherwise specified, can include one or more 
processor-readable and accessible memory elements and/or 
components that can be internal to the processor-controlled 
device, external to the processor-controlled device, and can 
be accessed via a wired or wireless network. 
[0087] It is specifically intended that the present invention 
not be limited to the embodiments and illustrations con­
tained herein and the claims should be understood to include 
modified forms of those embodiments including portions of 
the embodiments and combinations of elements of different 
embodiments as come within the scope of the following 
claims. All of the publications described herein, including 
patents and non-patent publications, are hereby incorporated 
herein by reference in their entireties. 

What we claim is: 
1. A neural network processor operating to receive data 

and to classify that data comprising: 
an input register holding received data for classification; 
a codebook storage memory holding data permitting a 

mapping of individual codeword values to patterns of 
multiple kernel weight values related to a kernel of a 
neural network trained to provide a set of classifica­
tions; 

a codeword memory holding codeword data to provide 
generation of a reconstructed kernel by indexing the 
codebook storage memory with codeword data; and 

arithmetic circuitry communicating with the input regis­
ter, the codebook storage memory, and the codeword 
memory to generate output representing a dot product 
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between the received data and the reconstructed kernel 
to classify the received data according to the set of 
classifications. 

2. The neural network processor of claim 1 wherein the 
patterns of multiple kernel weight values are contiguous 
weight values within a matrix of the kernel. 

3. The neural network processor of claim 2 wherein the 
patterns of multiple kernel weight values are contiguous 
weight values along a predetermined dimension of the 
kernel data. 

4. The neural network processor of claim 3 wherein the 
patterns of multiple kernel weight values have beginning 
and end of values aligned within the matrix of the kernel. 

5. The neural network processor of claim 4 wherein the 
beginning and end values extend at least a full dimension of 
the matrix of the kernel. 

6. The neural network processor of claim 1 wherein the 
reconstructed kernel is a scalar compression of the kernel of 
the neural network trained to provide the set of classifica­
tions. 

7. The neural network processor of claim 6 wherein the 
scalar compression replaces a range of kernel data values 
with a predetermined scalar value. 

8. The neural network processor of claim 1 wherein the 
patterns of multiple kernel weight values are a product 
quantization of vectors of the kernel of the neural network 
trained to provide a set of classifications. 

9. The neural network processor of claim 8 wherein the 
product quantization provides multiple individual codeword 
values associated with different but contiguous patterns of 
multiple kernel weights. 

10. The neural network processor of claim 1 wherein the 
arithmetic circuitry employs the data of the codebook stor­
age memory to precompute a set of multiplications between 
the received data and data of the codebook storage memory 
to populate a first lookup table and repeatedly uses the 
precomputed set of multiplications according to data of the 
codeword memory in generation of the output representing 
a dot product between the received data and the recon­
structed kernel. 

11. The neural network processor of claim 10 wherein the 
arithmetic circuit further includes a second lookup table and 
further operates to populate the second lookup table with 
sums formed using the data of the codeword storage 
memory and the first lookup table and uses the second 
lookup table to form the dot product. 

12. The neural network processor of claim 11 wherein the 
codebook storage memory holds a scalar-quantized code­
book that can be reconstructed into a product-quantized 
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codebook using scalar-quantized codewords of the code­
word memory, and wherein the product-quantized codebook 
can be reconstructed into a kernel using product-quantized 
codewords stored in the codeword memory. 

13. The neural network processor of claim 11 wherein the 
data of the first and second lookup tables are stored for reuse 
between successive received data separated by a convolution 
of the kernel on an input data set. 

14. The neural network processor of claim 1 wherein the 
input register, codebook storage memory, codeword 
memory, and arithmetic circuit are held on a single inte­
grated circuit substrate. 

15. A method of operating a neural network processor 
receiving data to classify that data and having: 

an input register holding received data for classification; 

a codebook storage memory holding data permitting a 
mapping of individual codeword values to patterns of 
multiple kernel weight values related to a kernel of a 
neural network trained to provide a set of classifica­
tions; 

a codeword memory holding codeword data to permit this 
generation of a reconstructed kernel by indexing the 
codebook storage memory data with the codeword 
data; and 

arithmetic circuitry communicating with the input regis­
ter, the codebook storage memory, and the codeword 
memory to generate output representing a dot product 
between the received data and the reconstructed kernel 
to classify the received data according to the set of 
classifications; the method comprising 

(a) training a neural network having weight values; 

(b) decomposing the weight values into vectors and 
compressing the vectors to create a codebook mapping 
individual codeword values to patterns of multiple 
kernel weight values and corresponding codeword data 
allowing reconstruction of the weight values; 

( c) loading the codebook and the codeword data into the 
codebook storage memory and codeword memory 
respectively; 

( d) operating the neural network processor to receive data 
for classification and to generate data representing a dot 
product between the received data and a kernel recon­
structed from data of the codebook storage memory and 
codeword memory to classify the received data accord­
ing to the set of classifications. 

* * * * * 


