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(57) ABSTRACT 
A machine learning architecture employs two machine 
learning networks that are joined by a statistical model 
allowing the imposition of a predetermined statistical model 
family into a learning process in which the networks trans­
late between and data types. For example, the statistical 
model may enforce a Gaussian conditional probability 
between the latent variables in the translation process. In one 
application, MRI images may be translated into PET images 
with reduced mode collapse, blurring, or other "averaging" 
type behaviors. 
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DUAL FLOW GENERATIVE COMPUTER 
ARCHITECTURE 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

[0001] This invention was made with government support 
under AG040396 awarded by the National Institutes of 
Health and 1252725 awarded by the National Science Foun­
dation. The government has certain rights in the invention. 

[0002] 

CROSS REFERENCE TO RELATED 
APPLICATION 

BACKGROUND OF THE INVENTION 

[0003] The present invention relates to computer architec­
tures for machine learning and in particular to an architec­
ture providing an improved latent variable characterization 
in a machine learning architecture. 
[0004] Machine learning systems, for example, artificial 
neural networks, have been applied to a wide variety of 
image processing tasks including, importantly, problems of 
classification where images are analyzed to classify their 
contents, for example, identifying cars and pedestrians for 
controlling autonomous vehicles, or cancerous lesions for 
medical diagnosis. 
[0005] Recent work has investigated the ability of 
machine learning to generate images (for example, using 
Generative Adversarial Networks) based on a seed variable 
or the like. These image generation techniques can be useful 
in so-called "modality transfer" where a medical image 
taken by a first imaging modality (for example, magnetic 
resonance imaging (MRI)) is used as a seed variable in 
machine learning to generate a comparable image as if 
acquired with a second imaging modality (for example, CT 
imaging). Such modality transfer to a second modality can 
provide novel information that was not apparent in the first 
modality data. This is in essence 'free' information that 
otherwise was not apparent in the first modality. 
[0006] PET (positron emission tomography) imaging 
offers the possibility of capturing diagnostic information 
beyond that which can be obtained from other image 
modalities (e.g. MRI or CT). This additional diagnostic 
information comes from the introduction of a radioactive 
tracer ( e.g., FDG (fluorodeoxyglucose )) into the patient 
(e.g., FDG can provide metabolic information of tissue and 
target and highlight differences in tissue metabolism that 
might otherwise be indistinguishable). PET imaging can be 
costly in terms of the equipment, the radioactive tracer, and 
imaging logistics as well as the needed high levels of skilled 
technical support. These costs, as well as medical guidelines 
that recommend limiting patient exposure to the necessary 
radioactive tracers, serve to limit the availability of PET in 
many cases clinically as well as in research. Some large­
scale medical trials may provide PET images only to a small 
subset of participants who are otherwise imaged using MRI 
(magnetic resonance imaging) which, in contrast to PET, is 
relatively inexpensive and is considered quite safe. 
[0007] Overall, the ability to get novel information (ob­
taining data of both modalities using data acquired from one 
modality), cost savings, limiting patient exposure to radia­
tion, and availability of these different image modalities has 
motivated investigation into whether MRI images can be 
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translated into clinically significant PET images using 
machine learning, a process called "modality transfer." 
While the underlying mechanics of the MRI and PET 
imaging are radically different-MRis are obtained using 
strong magnetic fields, magnetic field gradients, and radio 
waves to generate images of the organs in the body and do 
not involve the use of ionizing radiation/radionucleotide, 
which distinguishes it from PET scans-the hope is that 
there are some other hidden or unknown linking variables 
between these image types that would allow this transfer in 
important diagnostic situations. 

[0008] Existing modality transfer methods for MRI to PET 
conversion have made use of CNNs (convolutional neural 
nets) or GANs (generative adversarial networks). A draw­
back to the direct use of CNN s for this task is that they may 
produce blurry output images when compared to results 
obtained via modality transfer with a generative model such 
as GAN s which attempts to characterize (rather, estimate the 
parameters of) the probability distribution from which the 
set of training images are sampled. GAN s, on the other hand, 
produce sharper images but tend to suffer from a problem 
termed "mode collapse" that produces one of a limited set of 
output images for a much larger set of input images. GANs 
may also be computationally difficult to train. 

[0009] In both cases, the concern is that the machine 
learning system has essentially trained itself to produce a 
few "average" or representational PET images, images that 
would be mathematically close to an image produced by an 
actual PET scan but at the expense of eliminating small 
underlying diagnostic differences intended to be revealed. 

SUMMARY OF THE INVENTION 

[0010] The present invention provides a machine learning 
architecture that appears to overcome the problems ofCNNs 
and GANs with respect to modality transfer and which may 
have important application in converting MRI images to 
PET images as well as other similar applications. Generally, 
the invention provides for two machine learning networks 
that are joined by a statistical model allowing the imposition 
of a predefined statistical model family. During training, 
training information flows inward through each of the net­
works toward the statistical model and trains the model as 
well as generates errors for back-propagation training the 
networks. In one example, the statistical model may be a 
conditional probability between the output of the networks 
when they are trained with corresponding MRI and PET 
images. Through this architecture, the network learning 
process is constrained by the statistical model in a way that 
is believed to empirically help prevent mode collapse, 
blurring, and other "averaging" type behaviors. 

[0011] Specifically, in one embodiment, the invention pro­
vides a computer architecture having: (1) a first machine 
learning network receiving input data and propagating the 
input data in a first flow direction through the first machine 
learning network according to first weight values to produce 
first output data at a first network interface; (2) a statistical 
variable converter receiving the first output data and apply­
ing it to a statistical model to provide second output data; 
and (3) a second machine learning network receiving the 
second output data at a second network interface and propa­
gating the second output data in a first flow direction through 
the second machine learning network according to second 
weight values to provide output data. 
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[0012] The first and second weights and the statistical 
model are trained values produced by: (a) applying training 
set data to the first machine network to propagate in the first 
flow direction to the statistical variable converter; and (b) 
applying corresponding training set data to the second 
machine network to propagate in a second flow direction 
opposite the first flow direction to the statistical variable 
converter. Based on the propagation of the training set data 
the statistical variable converter: (a) modifies the statistical 
model; and (b) provides error values for backpropagation to 
the first machine learning network and second machine 
learning network based on the current state of the statistical 
model. 
[0013] It is thus a feature ofat least one embodiment of the 
invention to provide an improved network architecture for 
tasks such as modality transfer between image modality 
types that can steer the training away from results that 
produce an overly generalized or averaged image. 
[0014] The statistical variable converter may provide a 
function of lower dimension than the dimension of the first 
output data. For example, when the statistical variable 
converter provides a conditional probability function that 
conditional probability may be expressed as a set of prob­
ability moments for a given distribution type such as Gauss­
ian mean and Gaussian variance. 
[0015] It is thus a feature ofat least one embodiment of the 
invention to allow control over the dimensionality of the 
conversion process such as can improve training conver­
gence and reduced computational burden while preserving 
data relevant to diagnostic distinctions. 
[0016] In one example, the statistical variable converter 
may provide conditional probabilities between the first out­
put data and the second output data. 
[0017] It is thus a feature of at least one embodiment of the 
invention to allow the imposition of a mathematically well­
understood concept of conditional probability into the 
modality transfer process. 
[0018] The second output data may be produced from the 
conditional probability by randomly selecting a value on the 
conditional probability identified by the first output data 
according to the weighting of the conditional probability. 
[0019] It is thus a feature ofat least one embodiment of the 
invention to provide a simple method of incorporating 
conditional probability into a machine learning network 
architecture. 
[0020] The first network may provide a set of branches 
dividing data passing in the first flow direction in the first 
machine learning network among the branches to provide a 
first output for each branch at the first network interface, and 
the statistical variable converter may provide separate sta­
tistical models for each branch in turn providing separate 
second output data for each branch, and the second network 
may provide a set of branches combining data in the first 
flow direction through the second machine learning network 
to produce the output data combining the separate second 
output data. 
[0021] It is thus a feature ofat least one embodiment of the 
invention to provide a hierarchical structure to provide 
improved processing speed and easier integration of side 
information (e.g., age, gender) associated with a given MRI 
image into the modality transfer process. 
[0022] With respect to this side information, the first 
machine learning network may include a given statistical 
variable converter not associated with a branch of the first 

2 
Nov. 26, 2020 

machine learning network but associated with the branch of 
the second machine learning network, and the given statis­
tical variable converter may receive side information related 
to the input data. In this case, the given statistical converter 
may use a statistical model that is trained by training the first 
machine learning network and second machine learning 
network also with respect to side information but isolating 
side information-based weighting to only a given branch of 
the first machine learning network associated with the given 
statistical variable converter. 
[0023] It is thus a feature of at least one embodiment of the 
invention to provide for the integration of side information 
into the modality transfer process while minimizing training 
the system on the correlated features of the side information 
and the main data thereby preventing these correlated fea­
tures from being overemphasized in the modality transfer 
process. 
[0024] The process of isolating the side information-based 
weighting may use side information machine learning net­
works on branches of the first machine learning network 
other than the given branch having gradient reversal layers, 
the side information machine learning networks receiving 
the side information and operating in parallel with the 
statistical variable converters during training. 
[0025] It is thus a feature of at least one embodiment of the 
invention to provide a method of isolating training of 
weights in an architecture of this type. 
[0026] These particular objects and advantages may apply 
to only some embodiments falling within the claims and thus 
do not define the scope of the invention. 

BRIEF DESCRIPTION OF THE FIGURES 

[0027] FIG. 1 is a block diagram of the machine learning 
architecture according to the present invention configured in 
a training mode using a training set of MRI, PET, and side 
information data, showing two networks linked by an 
explicit variable converter, in this case, a conditional prob­
ability model and showing the introduction of side informa­
tion on ancillary networks; 
[0028] FIG. 2 is a block diagram similar to that of FIG. 1 
of the machine learning architecture configured for use in 
modality transfer after training to convert MRI data to PET 
data; and 
[0029] FIG. 3 is a block diagram of computer hardware 
providing for the implementation of the architectures of 
FIGS. 1 and 2. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

[0030] Referring now to FIG. 1, a machine learning net­
work architecture 10 per the present invention may provide 
a training mode to receive training set data 12 held in a 
memory 14 for the purpose of training the machine learning 
network architecture 10. In the example of modality transfer, 
the training set data 12 may include multiple training 
elements 15 (indicated diagrammatically by rows) each 
providing one MRI image 16a linked with respect to a given 
patient and diagnostic state with corresponding PET images 
16b of that same patient. Each element 15 of the training set 
data 12 may also be associated with side information 18, for 
example, describing other characteristics of the patient in the 
diagnostic state of the images 16, such as age, sex, disease 
status, genotype, etc. Linking this data by the diagnostic 
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state should be understood simply as a requirement that the 
MRI image 16a, PET image 16b, and side information 18 of 
a given training element 15 be acquired within an interval in 
which the patient's medical condition remains substantially 
unchanged. 
[0031] The MRI image 16a of each element 15 will be 
provided to a first network 20 at a network input 22 and the 
corresponding PET image 16b of that element will be 
applied to a second network 24 at network input 27. 
[0032] The networks 20 and 24 may be artificial neural 
networks having network components 26 of types well 
known in the art of convolutional network design. These 
components 26 may, for example, include convolution lay­
ers, deconvolution layers, fully connected layers, and the 
like. Generally, the network 24 must be invertible meaning 
that it will operate in either of two directions in the pro­
cessing of data. For simplicity, the networks 20 and 24 may 
be identical. 
[0033] The network components 26 of the networks 20 
and 24 may be arranged in a hierarchical form such that the 
outputs of a first network component 26a in each of net­
works 20 and 24 directly receiving training set data 12 may 
be separated into different flow paths 28, one passing to 
branches 30a (via additional network components 26) and 
the other passing to later network components 26b. This 
separation process sends different data along each flow path 
28, for example, by taking a data vector and sending the first 
half along one flow path 28 and the second half along a 
second flow path 28. While simple networks 20 and 24 are 
shown for clarity, the number of network components 26 and 
branches 30 may be arbitrarily scaled. 
[0034] In a similar manner, the output from succeeding 
network components 26b may be separated into different 
flow paths 28, one passing to branches 30b (via additional 
network components 26) and the other passing to later 
network component 26c. 
[0035] The output of network components 26 proceeds 
directly to downstream components 26 and whose output 
forms branch 30c. 
[0036] For network 20, each of the branches 30 is con­
nected to a corresponding splitter 32 which sends the 
associated data in an identical form to two locations, the first 
location being a side information network 34, as will be 
discussed further below, and the second location being a 
conditional probability model 36. 
[0037] For network 24, the first two branches 30 (30a and 
30b) provide their data directly to a corresponding condi­
tional probability model 36 without diversion by a splitter. 
Branch 30c, however, provides its data to a splitter 32d 
sending the associated data in the identical form to two 
locations of a side information network 34d and a condi­
tional probability model 36c. 
[0038] This branching reduces the computational expense 
of making all data pass through all network components 26 
and incurs insubstantial loss in quality. 

[0039] It will be understood that the conditional probabil­
ity models 36 receive values from both of the networks 20 
and 24 during the training process and these values serve to 
refine the separate conditional probability models 36 on an 
iterative basis to build a conditional probability model that 
best matches the training set. The conditional probability 
models 36 may be initialized to an arbitrary conditional 
probability to aid in this convergence process, for example, 
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a spherical Gaussian conditional probability with dimen­
sions equal to dimensions of the data of the training set along 
the particular flow path 28. 

[0040] As is understood in the art, a conditional probabil­
ity will establish a probability distribution of an output value 
(values from network 24) based on a given input value 
(values from network 20). 

[0041] The conditional probability models 36 will itera­
tively build a conditional probability model for the condi­
tional probability of the training set data 12 by observing the 
values from the networks 20 and 24, for example, by a fitting 
process. For each given set of received data from the 
networks 20 and 24, however, an error value may be 
established between that existing model and that given set of 
received data. These error values will be propagated back­
ward through the networks 20 and 24 to provide training of 
the weights of the network components 26 per standard 
network error propagation processes (sometimes termed 
back projection). In this way, both the conditional probabil­
ity models 36 and the weights of the network components 26 
are trained together. 

[0042] This error value used for error propagation uses the 
current data points applied to a mapping of the current 
probability function, for example, an invertible mapping. 
The error value so deduced may be identical for the net­
works 20 and 24. The error value in the objective function 
comes from maximizing the log-likelihood of these condi­
tional distributions, as typically understood in the art. 

[0043] The conditional probability models 36 operate to 
steer the training process by allowing the imposition of a 
particular statistical family (e.g., Gaussian) on the condi­
tional probability relationship. This is done, for example, by 
storing only moments (e.g., mean, variance) of the condi­
tional probabilities essentially forcing them into a Gaussian 
model. In one embodiment only two moments are stored for 
each dimension of the conditional probability being mean 
and variance. Although the inventors do not wish to be 
bound by a particular theory, it is believed that this a priori 
imposition of a conditional probability model helps prevent 
averaging or mode collapse discussed above. 

[0044] Referring still to FIG. 1, during the development of 
the conditional probabilities models 36, the weights of the 
networks 20 and 24 in the network components 26 may also 
be affected by the side information 18. In particular, the side 
information 18 may be provided at the outputs of the side 
information networks 34a-34d which use this side informa­
tion 18 to create their own back-propagated errors which 
will be added to the errors from the conditional probability 
models 36 through the splitters 32 thus affecting the weights 
of the respective networks 20 and 26. Importantly, side 
information networks 34a and 34b include not only a 
standard classifier network 40 (attempting to classify the 
given input images 16a and 16b, respectively, with respect 
to the given side information 18) but also a gradient reversal 
layer 42. Gradient reversal layers 42 suitable for use with the 
present invention are described in Ganin, Y., Lempitsky, V., 
2014 "Unsupervised domain adaptation by back projection", 
arXiv, preprint arXiv:1409.7495. 

[0045] The effect of the gradient reversal layer 42 is to 
essentially remove any "learning" in the weights of network 
components 26 (associated with branches 30a and 30b) that 
is predictive of the side information 18. In this way, these 
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network components receive training focused on the data 
that can be derived from the MRI images 16a uncorrelated 
with the side information 18. 
[0046] This approach is switched with respect to branch 
30c. The side information network 34c of this branch for 
both network 20 and network 24 does not have the gradient 
reversal layer 42. As a result the conditional probability 
models 36c provide a conditional probability dependent in 
part on the side information 18c. 
[0047] During the training process of the conditional prob­
ability models 36, the training may be regularized to prevent 
trivial solutions such as mapping everything to zero by 
controlling the marginal distribution of the function or other 
similar techniques. In addition, additional side information 
18 may be incorporated into the machine learning architec­
ture 10 by adding additional branches 30 dedicated to that 
side information 18 (with side information networks 34 
without gradient reversal layers 42) and adding comparable 
side information networks 34 with gradient reversal layers 
42 on the remaining branches 30 following this approach. 
[0048] Referring now to FIG. 2, after training, the 
machine learning architecture 10 may receive a given MRI 
image 46 and associated side information 18 for which there 
is no corresponding PET image. The MRI image 46 is 
provided to neural component 26a and the side information 
18 is provided directly to the conditional probability model 
36c instead of information from the final branch 30c. Effec­
tively, neural component 26c and the remainder of branch 
30c are eliminated together with the splitters 32 and the side 
information networks 34 which are used only for training. 
[0049] Outputs from branches 30a and 30b of network 20 
proceed as before to their respective conditional probability 
models 36a and 36b. 
[0050] Data from branches 30a and 30b and the side 
information 18 input to the models 36 provide outputs from 
the models 36 in a sampling process that indexes a table 
describing the probability model to identify corresponding 
conditional probabilities and randomly selecting a value 
within the range of the identified conditional probabilities 
weighted according to those identified conditional probabili­
ties. That is, output values of the sampling process tend to 
favor values associated with higher conditional probabili­
ties. 
[0051] These sample-driven values are then provided to 
network 24 where they pass "backward" through that net­
work 24, being received by network components 26 asso­
ciated with each branch 30, and then move upward through 
network components 26a-26c, respectively, combining at 
each flow path to ultimately produce an output value from 
network component 26a providing generated PET image 50. 
The combining follows the exact inverse of the splitting that 
was performed in the flow paths 28 of network 20 during the 
training. This generated PET image 50 will reflect the 
previous training of the networks 20 and 22 carried in the 
network weights and the values of the models in conditional 
probability models 36 captured in corresponding tables and 
the values of MRI image 16a and side information 18. 
[0052] Referring now to FIG. 3, the components of the 
machine learning network architecture 10 described above 
are demanding of computational resources and accordingly 
practically require the use of a special purpose computer 60 
suitable for machine learning tasks. Such a computer 60 may 
include a general processor 62 (CPU) working in tandem 
with an array of special purpose processors 64 for imple-
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menting machine learning systems, for example, comprised 
of one or more GPUs (graphic processor units). The indi­
vidual GPUs may execute Tensorflow, an open-source pro­
gram that is widely distributed and supported by Alphabet, 
Inc., a California company that is the parent of Google. 
[0053] These special purpose computers 60 may include 
memory 14 holding training set data 12 (images 16a, 16b 
and side information 18) as well as input MRI images 46 and 
side information 48 where a mode transfer is desired and the 
resulting generated PET image 50. This latter generated PET 
image 50 may be displayed on a diagnostic quality terminal 
74 communicating with the computer 60 which may also 
provide for receipt of operator commands and the provision 
of other operator data. 
[0054] The memory 14 may also include an operating 
program 68 implementing the blocks of FIGS. 1 and 2 as 
described above. Standard computer components such as 
network communication circuits and the like may be pro­
vided for the purpose of receiving and outputting data to and 
from the computer 60. 
[0055] Certain terminology is used herein for purposes of 
reference only, and thus is not intended to be limiting. For 
example, terms such as "upper", "lower", "above", and 
"below" refer to directions in the drawings to which refer­
ence is made. Terms such as "front", "back", "rear", "bot­
tom" and "side", describe the orientation of portions of the 
component within a consistent but arbitrary frame of refer­
ence which is made clear by reference to the text and the 
associated drawings describing the component under dis­
cussion. Such terminology may include the words specifi­
cally mentioned above, derivatives thereof, and words of 
similar import. Similarly, the terms "first", "second" and 
other such numerical terms referring to structures do not 
imply a sequence or order unless clearly indicated by the 
context. 
[0056] When introducing elements or features of the pres­
ent disclosure and the exemplary embodiments, the articles 
"a", "an", "the" and "said" are intended to mean that there 
are one or more of such elements or features. The terms 
"comprising", "including" and "having" are intended to be 
inclusive and mean that there may be additional elements or 
features other than those specifically noted. It is further to be 
understood that the method steps, processes, and operations 
described herein are not to be construed as necessarily 
requiring their performance in the particular order discussed 
or illustrated, unless specifically identified as an order of 
performance. It is also to be understood that additional or 
alternative steps may be employed. 
[0057] References to "a microprocessor" and "a proces­
sor" or "the microprocessor" and "the processor," can be 
understood to include one or more microprocessors that can 
communicate in a stand-alone and/or a distributed environ­
ment(s ), and can thus be configured to communicate via 
wired or wireless communications with other processors, 
where such one or more processor can be configured to 
operate on one or more processor-controlled devices that can 
be similar or different devices. Furthermore, references to 
memory, unless otherwise specified, can include one or more 
processor-readable and accessible memory elements and/or 
components that can be internal to the processor-controlled 
device, external to the processor-controlled device, and can 
be accessed via a wired or wireless network. 
[0058] It is specifically intended that the present invention 
not be limited to the embodiments and illustrations con-



US 2020/0372384 Al 

tained herein and the claims should be understood to include 
modified forms of those embodiments including portions of 
the embodiments and combinations of elements of different 
embodiments as come within the scope of the following 
claims. All of the publications described herein, including 
patents and non-patent publications, are hereby incorporated 
herein by reference in their entireties 
[0059] To aid the Patent Office and any readers of any 
patent issued on this application in interpreting the claims 
appended hereto, applicants wish to note that they do not 
intend any of the appended claims or claim elements to 
invoke 35 U.S.C. 112(f) unless the words "means for" or 
"step for" are explicitly used in the particular claim. 

What we claim is: 
1. A computer architecture comprising: 
a first machine learning network receiving input data and 

propagating the input data in a first flow direction 
through the first machine learning network according to 
first weight values to produce first output data at a first 
network interface; 

a statistical variable converter receiving the first output 
data and applying it to a statistical model to provide 
second output data; and 

a second machine learning network receiving the second 
output data at a second network interface and propa­
gating the second output data in a first flow direction 
through the second machine learning network accord­
ing to second weight values to provide output data; 

wherein the first and second weights and the statistical 
model are trained values produced by: 

(a) applying training set data to the first machine network 
to propagate in the first flow direction to the statistical 
variable converter; and 

(b) applying corresponding training set data to the second 
machine network to propagate in a second flow direc­
tion opposite the first flow direction to the statistical 
variable converter; 

wherein based on the propagation of the training set data, 
the statistical variable converter: 

(a) modifies the statistical model; and 
(b) provides error values for backpropagation to the first 

machine learning network and second machine learn­
ing network based on a current state of the statistical 
model. 

2. The computer architecture of claim 1 wherein the 
statistical variable converter provides a predetermined sta­
tistical function and the modification of (a) modifies param­
eters of the predetermined statistical function. 

3. The computer architecture of claim 2 wherein the 
statistical variable converter provides a conditional prob­
ability between the first output data and the second output 
data. 

4. The computer architecture of claim 3 wherein the 
second output data is produced by randomly selecting a 
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value on a conditional probability identified by the first 
output data according to the weighting of the conditional 
probability. 

5. The computer architecture of claim 3 wherein the 
conditional probability function is stored as values of prob­
ability moments for a given distribution type. 

6. The computer architecture of claim 5 wherein the 
probability moments are Gaussian mean and Gaussian vari­
ance. 

7. The computer architecture of claim 1 wherein the first 
network provides a set of branches dividing data passing in 
the first flow direction in the first machine learning network 
among the branches to provide a first output for each branch 
at the first network interface, and wherein the statistical 
variable converter provides separate statistical models for 
each branch which provide separate second output data for 
each branch, and wherein the second network provides a set 
of branches combining data in the first flow direction 
through the second machine learning network to produce the 
output data combining the separate second output data. 

8. The computer architecture of claim 7 wherein the first 
machine learning network further includes a given statistical 
variable converter not associated with a branch of the first 
machine learning network but associated with the branch of 
the second machine learning network, and wherein the given 
statistical variable converter receives side information 
related to the input data; 

and wherein the given statistical converter uses a statis­
tical model that is trained by training the first machine 
learning network and second machine learning network 
also with respect to side information but isolating side 
information-based weighting to only a given branch of 
the first machine learning network associated with the 
given statistical variable converter. 

9. The computer architecture of claim 8 wherein the 
process of isolation uses side information machine learning 
networks on branches of the first machine learning network 
other than the given branch having gradient reversal layers, 
the side information machine learning networks receiving 
the side information and operating in parallel with the 
statistical variable converters during training. 

10. The computer architecture of claim 9 wherein the 
process of isolation uses side information machine learning 
on the given branch of the first machine learning network 
and second machine learning network during training with­
out gradient reversal layers. 

11. The computer architecture of claim 8 wherein the 
training set data includes corresponding MRI images and 
PET images of given patients and wherein the input data is 
an MRI image of a patient output data that is a simulated 
PET image of the patient. 

12. The computer architecture of claim 11 wherein the 
training set data further includes side information associated 
with the patient selected from the group consisting of age 
and gender. 

* * * * * 




