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(57) ABSTRACT 

Systems and methods for classifying and/or sorting T cells 
by activation state are disclosed. The system includes a cell 
classifying pathway, a single-cell autofluorescence image 
sensor, a processor, and a non-transitory computer-readable 
memory. The memory is accessible to the processor and has 
stored thereon a trained convolutional neural network and 
instructions. The instructions, when executed by the proces­
sor, cause the processor to: a) receive the autofluorescence 
intensity image; b) optionally pre-process the autofluores­
cence intensity image to produce an adjusted autofluores­
cence intensity image; c) input the autofluorescence inten­
sity image or the adjusted autofluorescence intensity image 
into the trained convolutional neural network to produce an 
activation prediction for the T cell. 
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SYSTEMS AND METHODS FOR 
CLASSIFYING ACTIVATED T CELLS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

[0001] This application is related to, claims priority to, and 
incorporated herein by reference for all purposes U.S. Pro­
visional Patent Application No. 62/886,139, filed Aug. 13, 
2019. 

STATEMENT REGARDING FEDERALLY 
FUNDED RESEARCH 

[0002] This invention was made with govermnent support 
under CA205101 awarded by the National Institutes of 
Health. The govermnent has certain rights in the invention. 

BACKGROUND 

[0003] One new cancer treatment being studied is CART 
cell (Chimeric Antigen Receptor T cell) therapy. CART cell 
therapy uses a patient's own cells and "re-engineers" them 
to fight cancer. It is a very complex treatment. Collecting and 
altering the cells is difficult, and CAR T cell therapy often 
causes very severe side effects. At this time, it is only offered 
at a few major cancer centers. To date, most of the patients 
treated with CAR T cells have been people with blood 
cancers. 
[0004] The procedure starts with removing the patient's 
own T cells from their blood and sending them to a lab 
where they are altered to produce proteins called chimeric 
antigen receptors (CARs) on the surface of the cells. These 
special receptors allow the T cells to help identify and attack 
cancer cells. The "super-charged" T cells are multiplied and 
grown at the lab, then frozen and shipped back to the 
Hospital, where they re-inject these treated CAR T cells 
back into the patient's blood. 
[0005] Current methods to determine T cell activation 
include flow cytometry, immunofluorescence imaging, and 
immunohistochemistry but these methods require contrast 
agents and may require tissue or cell fixation. A need exists 
for systems and methods for classifying and/or sorting T 
cells by activation state in a fashion that allows the sorted T 
cells to be used in subsequent procedures, such as CAR T 
cell therapy. 

SUMMARY 

[0006] In an aspect, the present disclosure provides a T 
cell classifying and/or sorting device. The device includes a 
cell analysis pathway, a single-cell autofluorescence image 
sensor, a processor, and a non-transitory computer-readable 
medium. The cell analysis pathway includes an inlet, an 
observation zone, and outlet, and an optional cell sorter. The 
observation zone is coupled to the inlet downstream of the 
inlet and to the outlet upstream of the outlet. The observation 
zone is configured to present T cells for individual autofluo­
rescence interrogation. The optional cell sorter has a sorter 
inlet and at least two sorter outlets. The optional cell sorter 
is coupled to the observation zone via the sorter inlet 
downstream of the observation zone. The optional cell sorter 
is configured to selectively direct a cell from the sorter inlet 
to one of the at least two sorter outlets based on a sorter 
signal. The single-cell autofluorescence image sensor is 
configured to acquire an autofluorescence intensity image of 
a T cell positioned in the observation zone. The processor is 
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in electronic communication with the single-cell autofluo­
rescence image sensor. The non-transitory computer-read­
able medium is accessible to the processor. The non-transi­
tory computer-readable medium has stored thereon a trained 
convolutional neural network and instruction. The instruc­
tion, when executed by the processor, cause the processor to: 
a) receive the autofluorescence intensity image; b) option­
ally pre-process the autofluorescence intensity image to 
produce an adjusted autofluorescence intensity image; c) 
input the autofluorescence intensity image or the adjusted 
autofluorescence intensity image into the trained convolu­
tional neural network to produce an activation prediction for 
the T cell. 
[0007] In another aspect, the present disclosure provides a 
method of characterizing T cell activation state. The method 
includes: a) optionally receiving a population of T cells 
having unknown activation status; b) acquiring an autofluo­
rescence intensity image for a T cell of the population of T 
cells; c) optionally pre-processing the autofluorescence 
intensity image to provide an adjusted autofluorescence 
intensity image; and d) identifying an activation status of the 
T cell based on an activation prediction, wherein the acti­
vation prediction is computed using the autofluorescence 
intensity image or the adjusted autofluorescence intensity 
image as an input for a trained convolutional neural network. 
[0008] In a further aspect, the present disclosure provides 
a method of sorting and/or classifying T cells. The method 
includes: a) receiving a population of T cells having 
unknown activation status; b) acquiring an autofluorescence 
intensity image for each T cell of the population of T cells, 
thereby resulting in a set of autofluorescence intensity 
images; c) optionally pre-processing the autofluorescence 
intensity images of the set of autofluorescence intensity 
images to provide a set of adjusted autofluorescence inten­
sity images; and either: dl) physically isolating a first 
portion of the population ofT cells from a second portion of 
the population of T cells based on an activation prediction, 
wherein each T cell of the population ofT cells is placed into 
the first portion when the activation prediction exceeds a 
predetermined threshold and into the second portion when 
the activation prediction is less than or equal to the prede­
termined threshold; or d2) generating a report including the 
activation prediction, the report optionally identifying a 
proportion of the population ofT cells having the activation 
prediction that exceeds the predetermined threshold. The 
activation prediction is computed using the autofluorescence 
intensity image from the set of autofluorescence intensity 
images or the adjusted autofluorescence intensity image 
from the set of adjusted autofluorescence intensity images 
corresponding to a given T cell as an input for a trained 
convolutional neural network. 
[0009] In yet another aspect, the present disclosure pro­
vides a method of administering activated T cells to a subject 
in need thereof. The method includes: a) the method of 
sorting and/or classifying T cells as described herein; and b) 
introducing the first portion ( or any portion including a 
sufficient amount of activated T cells) to the subject. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0010] The patent or application file contains at least one 
drawing executed in color. Copies of this patent or patent 
application publication with color drawing(s) will be pro­
vided by the Office upon request and payment of the 
necessary fee. 
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[0011] FIG. 1 is a flowchart illustrating a method, m 
accordance with an aspect of the present disclosure. 
[0012] FIG. 2 is a flowchart illustrating a method, m 
accordance with an aspect of the present disclosure. 
[0013] FIG. 3 is a block diagram of a device, in accor­
dance with an aspect of the present disclosure. 
[0014] FIG. 4 is one exemplary T cell image data process­
ing workflow, as described in the present disclosure and 
Example 1. 
[0015] FIG. 5 is a model summary per donor for three 
different evaluation metrics, as described in Example 1. The 
line graphs display the classifiers' performance across 
donors. The bar graphs display the number of activated and 
quiescent images for each donor, which affects the classifi­
ers' performance. 
[0016] FIG. 6 shows receiver operating characteristic 
(ROC) curves for each type of classifier and donor, as 
described in Example 1. The gray bars to the right display 
the number of activated and quiescent images for each 
donor. 
[0017] FIG. 7 shows precision recall (PR) curves for each 
type of classifier and donor, as described in Example 1. The 
gray bars to the right display the number of activated and 
quiescent images for each donor. 
[0018] FIG. 8 is a performance comparison of fine-tuning 
a different number of layers and the pre-trained CNN 
off-the-shelf model, as described in Example 1. 
[0019] FIG. 9 includes 2D representations of T cell fea­
tures extracted from the pre-trained CNN with fine-tuning, 
as described in Example 1. Dimensions are reduced from 
2048 using UMAP. Data points with thick outlines indicate 
incorrect cell activity state predictions. 
[0020] FIG.10 shows saliency maps of randomly-selected 
cell images from donor 1 (scale bar: 10 µm), as described in 
Example 1. The backpropagation and guided backpropaga­
tion rows show two different techniques for generating 
saliency maps from the same T cell images in the first row. 
[0021] FIG. 11 shows a 5x4 nested cross-validation 
scheme, as discussed in Example 1. For each test donor 
(blue), we used an inner cross-validation loop to optimize 
the hyper-parameters. We trained a model for each hyper­
parameter combination using the training donors' aug­
mented images (yellow) and selected the hyper-parameters 
that performed best on the validation donor's images 
(green). The validation donor is sometimes referred to as a 
tuning donor in cross-validation. Then, we trained a final 
model for each test donor using the selected hyper-param­
eters. 
[0022] FIG. 12 is a visual representation of fine-tuning of 
the Inception v3 CNN to predict T cell activity, as described 
in Example 1. The generic image examples are adapted from 
ImageNet. 

DETAILED DESCRIPTION 

[0023] Before the present invention is described in further 
detail, it is to be understood that the invention is not limited 
to the particular embodiments described. It is also under­
stood that the terminology used herein is for the purpose of 
describing particular embodiments only, and is not intended 
to be limiting. The scope of the present invention will be 
limited only by the claims. As used herein, the singular 
forms "a", "an", and "the" include plural embodiments 
unless the context clearly dictates otherwise. 
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[0024] Specific structures, devices and methods relating to 
modifying biological molecules are disclosed. It should be 
apparent to those skilled in the art that many additional 
modifications beside those already described are possible 
without departing from the inventive concepts. In interpret­
ing this disclosure, all terms should be interpreted in the 
broadest possible manner consistent with the context. Varia­
tions of the term "comprising" should be interpreted as 
referring to elements, components, or steps in a non-exclu­
sive manner, so the referenced elements, components, or 
steps may be combined with other elements, components, or 
steps that are not expressly referenced. Embodiments refer­
enced as "comprising" certain elements are also contem­
plated as "consisting essentially of' and "consisting of' 
those elements. When two or more ranges for a particular 
value are recited, this disclosure contemplates all combina­
tions of the upper and lower bounds of those ranges that are 
not explicitly recited. For example, recitation of a value of 
between 1 and 10 or between 2 and 9 also contemplates a 
value of between 1 and 9 or between 2 and 10. 
[0025] As used herein, the terms "activated" and "activa­
tion" refer to T cells that are CD3+, CD4+, and/or CDS+. 
[0026] As used herein the term "convolutional neural 
network" refers to a type of deep neural network typically 
consisting of a series of convolutional layers that classifies 
images. Convolutional neural networks operate on spatially­
local regions of input images to recognize patterns in those 
regions. Convolutional neural networks can include fully­
connected layers and other types of layers in addition to the 
convolutional layers. 
[0027] As used herein, the term "FAD" refers to flavin 
adenine dinucleotide. 
[0028] As used herein, the term "memory" includes a 
non-volatile medium, e.g., a magnetic media or hard disk, 
optical storage, or flash memory; a volatile medium, such as 
system memory, e.g., random access memory (RAM) such 
as DRAM, SRAM, EDO RAM, RAMBUS RAM, DR 
DRAM, etc.; or an installation medium, such as software 
media, e.g., a CD-ROM, or floppy disks, on which programs 
may be stored and/or data communications may be buffered. 
The term "memory" may also include other types of 
memory or combinations thereof. 
[0029] As used herein, the term "NAD(P)H" refers to 
reduced nicotinamide adenine dinucleotide and/or reduced 
nicotinamide dinucleotide phosphate. 
[0030] As used herein, the term "processor" may include 
one or more processors and memories and/or one or more 
programmable hardware elements. As used herein, the term 
"processor" is intended to include any of types of proces­
sors, CPUs, GPUs, microcontrollers, digital signal proces­
sors, or other devices capable of executing software instruc­
tions. 
[0031] As used herein, the term "training" refers to a 
process that provides labeled data to a classification algo­
rithm to learn to map input data to a category. 
[0032] As used herein, the term "pre-training" refers to 
training a classifier on an initial dataset that is a different and 
typically larger dataset than the target dataset. As used 
herein, pre-training initializes a classifier so that it can by 
trained faster or more accurately on the target dataset. 
[0033] As used herein, the term "fine-tuning" refers to use 
of the pre-trained model weights to initialize parameters of 
a new model and then train a new model on the target 
dataset. 
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[0034] The various aspects may be described herein in 
terms of various functional components and processing 
steps. It should be appreciated that such components and 
steps may be realized by any number of hardware compo­
nents configured to perform the specified functions. 

Methods 

[0035] This disclosure provides a variety of methods. It 
should be appreciated that various methods are suitable for 
use with other methods. Similarly, it should be appreciated 
that various methods are suitable for use with the systems 
described elsewhere herein. When a feature of the present 
disclosure is described with respect to a given method, that 
feature is also expressly contemplated as being useful for the 
other methods and systems described herein, unless the 
context clearly dictates otherwise. 
[0036] Referring to FIG. 1, the present disclosure provides 
a method 100 of sorting T cells. At process block 102, the 
method 100 includes receiving a population of T cells 
having unknown activation status. The population ofT cells 
can itself be contained within a broader population of cells 
that includes some cells that are not T cells, such as red 
blood cells and the like. At process block 104, the method 
100 includes acquiring an autofluorescence intensity image 
for each T cell of the population ofT cells, thereby resulting 
in a set of autofluorescence intensity images. At optional 
process block 105, the method 100 optionally includes 
pre-processing the autofluorescence intensity images of the 
set of autofluorescence intensity images to provide a set of 
adjusted autofluorescence intensity images. At optional pro­
cess block 106, the method 100 optionally includes physi­
cally isolating a first portion of the population ofT cells from 
a second portion of the population of T cells based on an 
activation prediction. At optional process block 108, the 
method 100 optionally includes generating a report includ­
ing an activation prediction. 
[0037] The autofluorescence intensity image acquired at 
process block 104 can be acquired in a variety of ways, as 
would be understood by one having ordinary skill in the 
spectroscopic arts with knowledge of this disclosure and 
their own knowledge from the field. The specific way in 
which the autofluorescence intensity image is acquired is not 
intended to be limiting to the scope of the present invention, 
so long as the autofluorescence intensity images necessary 
for the methods described herein can be suitably measured, 
estimated, or determined in any fashion. One example of a 
suitable autofluorescence intensity image acquisition is 
described below in the examples section. 
[0038] The optional pre-processing of process block 105 
can include various image processing steps for providing 
better consistency of images for introduction to the convo­
lutional neural network. The pre-processing can include 
cropping the autofluorescence intensity image, padding the 
autofluorescence intensity image (i.e., adding black pixels to 
a side of the image to artificially increase the image's size), 
rotating the autofluorescence intensity image, reflecting the 
autofluorescence intensity image (i.e., taking a mirror image 
of the original about a given axis), or a combination thereof. 
[0039] The optional physically isolating of process block 
106 is in response to an activation prediction determined 
from the acquired autofluorescence intensity image. If the 
activation prediction exceeds a predetermined threshold for 
a given T cell, then that T cell is placed into the first portion. 
If the activation prediction is less than or equal to the 
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predetermined threshold for the given T cell, then that T cell 
is placed into the second portion. The result of this physical 
isolation is that the first portion of the population of T cells 
is significantly enriched in activated T cells, whereas the 
second portion of the population of T cells is significantly 
depleted of activated T cells. 
[0040] In some cases, the physically isolating of process 
block 106 can include isolating cells into three, four, five, 
six, or more portions. In these cases, the different portions 
will be separated by a number of predetermined thresholds 
that is one less than the number of portions (i.e., three 
portions=two predetermined thresholds). The portion whose 
activation prediction exceeds all of the predetermined 
thresholds (i.e., exceeds the highest threshold) contains the 
greatest concentration of activated T cells. The portion 
whose activation prediction fails to exceed any of the 
predetermined thresholds (i.e., fails to exceed the lowest 
threshold) contains the lowest concentration of activated T 
cells. Using multiple predetermined thresholds can afford 
the preparation of portions of the population of T cells that 
have extremely high or extremely low concentrations of 
activated T cells. 
[0041] The optional generating a report of process block 
108 can include any form of report generation known to be 
useful in the medical arts, including but not limited to, 
generating a digital report, a display showing results, print­
ing a physical hard copy of a report The report optionally 
identifies a proportion of the population ofT cells having the 
activation prediction that exceeds the predetermined thresh­
old. 
[0042] The activation status is computed using a convo­
lutional neural network. The convolutional neural network 
can be pre-trained with images that are not fluorescence 
intensity images of cells, and then it can be fine-tuned with 
images that are fluorescence intensity images ofT cells with 
a known activation state. 
[0043] The pre-training can include training with standard 
images of objects that are visible to the human eye (i.e., a 
neural network pre-trained to identify dogs as dogs, cats as 
cats, humans as humans, etc.). Various commercially-avail­
able neural networks come pre-trained in this fashion. For 
example, the Inception v3 convolutional neural network 
with pre-trained ImageNet weights discussed below utilizes 
this type of pre-training. 
[0044] The training of the convolutional neural network 
involves inputting a number of autofluorescence intensity 
images for T cells with a known activation state. In some 
cases, the only input for the training of the convolutional 
neural network is the series of autofluorescence intensity 
images for T cells with a known activation state. After this 
training has occurred, the result is a trained convolutional 
neural network, which is ready to receive autofluorescence 
intensity images of T cells that have an unknown activation 
state and to make an activation prediction. The convolu­
tional neural network can be trained with at least 100 
images, at least 200 images, at least 500 images, at least 
1000 images, at least 2500 images, at least 5000 images, or 
more images ofT cells having known activation states. The 
trained convolutional neural network can include at least 5 
layers, at least 6 layers, at least 7 layers, at least 8 layers, at 
least 9 layers, or at least 10 layers. The trained convolutional 
neural network can include at most 100 layers, at most 50 
layers, at most 20 layers, at most 17 layers, at most 15 layers, 
at most 14 layers, at most 13 layers, or at most 12 layers. The 
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convolutional neural network can include segmenting of the 
autofluorescence intensity images. 
[0045] In some cases, the trained convolutional neural 
network can be instrument-specific. It should be appreciated 
that this instrument-specificity can encompass specificity for 
a given specific instrument or specificity for a given model 
of a specific instrument. 
[0046] In some cases, the trained convolutional neural 
network can be patient-specific. In these cases, the convo­
lutional neural network is at least partially trained with T 
cells having a known activation state that come from similar 
patients. Patient similarity can be assessed based on patient 
age, sex, disease subtype, or other characteristics. 
[0047] In some cases, the pre-training and the training can 
both be done without utilizing a cell size attribute (e.g., 
diameter), cell morphology, or either as inputs. 
[0048] The method 100 can sort CD4+, CD3+, and/or 
CDS+ T cells based on activation status. 
[0049] The method 100 can provide surprising accuracy of 
classifying T cells as activated. The accuracy can be at least 
85%, at least 87.5%, at least 90%, at least 92.5%, at least 
95%, at least 96%, at least 97%, or at least 98%. One 
non-limiting example of measuring the accuracy includes 
executing the method 100 on a given cell with unknown 
activation state and then using one of the traditional methods 
for determining activation state (which will typically be a 
destructive method) for a number of cells that is statistically 
significant. 
[0050] The method 100 can be performed without the use 
of a fluorescent label for binding the T cell. The method 100 
can be performed without immobilizing the T cell. 
[0051] In some cases, the method 100 can include a step 
for identifying outlier images. In particular, if the image 
contains no cells at all or contains cells that are not T cells 
(e.g., a red blood cell), then those images can be discarded 
and any cells corresponding to those images can also be 
discarded. 
[0052] Referring to FIG. 2, the present disclosure provides 
a method 200 of administering activated T cells to a subject 
in need thereof. At process block 202, the method 200 
includes the method 100 described above, which results in 
a first portion of the population of T cells enriched for 
activation or a population of T cells for which a report has 
been generated regarding activation status. At optional pro­
cess block 204, the method 200 optionally includes modi­
fying the first portion of the population ofT cells (in the case 
where sorting did occur) or the population ofT cells (in the 
case where the sorting did not occur). At process block 206, 
the method 200 includes administering the first portion of 
the population of T cells or the population of T cells to the 
subject. 

[0053] The T cells can be harvested from the subject to 
which they are administered prior to sorting. The sorted T 
cells or the population of T cells can be either directly 
introduced to the subject or can undergo additional process­
ing prior to introduction to the subject. In one case, the 
sorted T cells or the population of T cells can be modified to 
contain chimeric antigen receptors (CARs). 
[0054] In some cases, the method of administering acti­
vated T cells can include administering an unsorted popu­
lation ofT cells for which the proportion of activated T cells 
is known to be above a given threshold (i.e., if greater than 
a given percentage of a population of T cells has an 
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activation prediction that exceeds the predetermined thresh­
old, then the entire population can be administered to the 
subject). 
[0055] The methods described herein provided surprising 
results to the inventors in at least three ways. First, it was not 
clear at the outset whether the methods would be effective at 
distinguishing activated versus quiescent T cells, because it 
was not clear that autofluorescence intensity images could 
classify accurately. The efficacy itself was surprising, and 
the quality of the classification achieved by the methods was 
even more surprising. Second, the inventors expected that 
training models using features quantified from the images, 
such as cell size and/or cell morphologies, in the input to 
classification algorithms would improve classification, 
because these features are related to activation and common 
features for cell state classification in the microscopy 
domain. It was surprisingly discovered that using this infor­
mation leads to worse classification than using autofluores­
cence intensity images. Third, the degree of classification 
accuracy achieved was surprising. The classification accu­
racy of upward of 85-95% or better that is achieved using a 
convolutional neural network trained only with autofluores­
cence images (this does not exclude pre-training using other 
images) and with autofluorescence images as the lone input 
is surprising. 

Systems 

[0056] This disclosure also provides systems. The systems 
can be suitable for use with the methods described herein. 
When a feature of the present disclosure is described with 
respect to a given system, that feature is also expressly 
contemplated as being combinable with the other systems 
and methods described herein, unless the context clearly 
dictates otherwise. 
[0057] Referring to FIG. 3, the present disclosure provides 
a T cell sorting device 300. The device 300 includes a cell 
analysis pathway 302. The cell analysis pathway 302 
includes an inlet 304, an observation zone 306, and an outlet 
305. The device 300 optionally includes a cell sorter 308. 
The observation zone 306 is coupled to the inlet 304 
downstream of the inlet 304 and is coupled to the outlet 305 
upstream of the outlet 305. The device 300 also includes a 
single-cell autofluorescence image sensor 310. The device 
300 includes a processor 312 and a non-transitory computer­
readable medium 314, such as a memory. 
[0058] The inlet 304 can be any nanofluidic, microfluidic, 
or other cell sorting inlet. A person having ordinary skill in 
the art of fluidics has knowledge of suitable inlets 304 and 
the present disclosure is not intended to be bound by one 
specific implementation of an inlet 304. 
[0059] The outlet 305 can be nanofluidic, microfluidic, or 
other cell sorting outlet. A person having ordinary skill in the 
art of fluidics has knowledge of suitable outlets 305 and the 
present disclosure is not intended to be bound by one 
specific implementation of an outlet 305. 
[0060] The observation zone 306 is configured to present 
T cells for individual autofluorescence interrogation. A 
person having ordinary skill in the art has knowledge of 
suitable observation zones 306 and the present disclosure is 
not intended to be bound by one specific implementation of 
an observation zone 306. 
[0061] The optional cell sorter 308 has a sorter inlet 316 
and at least two sorter outlets 318. The cell sorter is coupled 
to the observation zone 306 via the sorter inlet 316 down-
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stream of the observation zone 306. The cell sorter 308 is 
configured to selectively direct a cell from the sorter inlet 
316 to one of the at least two sorter outlets 318 based on a 
sorter signal. 

[0062] The inlet 304, observation zone 306, outlet 305, 
and optional cell sorter 308 can be components known to 
those having ordinary skill in the art to be useful in flow 
sorters, including commercial flow sorters. The cell analysis 
pathway can further optionally include a flow regulator, as 
would be understood by those having ordinary skill in the 
art. The flow regulator can be configured to provide flow of 
cells through the observation zone at a rate that allows the 
single-cell autofluorescence image sensor 310 to acquire the 
autofluorescence intensity image. A useful review of the 
sorts of fluidics that can be used in combination with the 
present disclosure is Shields et al., "Microfluidic cell sort­
ing: a review of the advances in the separation of cells from 
debulking to rare cell isolation," Lab Chip, 2015 Mar. 7; 
15(5): 1230-49, which is incorporated herein by reference in 
its entirety. 

[0063] The single-cell autofluorescence image sensor 310 
can be any detector suitable for acquiring single-cell auto­
fluorescence images as understood by those having ordinary 
skill in the optical arts. It should be appreciated that these 
images need not be acquired by acquiring all pixels simul­
taneously, so autofluorescence images acquired by point­
and/or line-scanning methods are expressly contemplated. 
Examples of suitable single-cell autofluorescence image 
sensors 310 include, but are not limited to, a camera, a 
photodiode array, a streak camera, a charge capture device 
array, a photodiode, an avalanche photodiode, a photomul­
tiplier tube, combinations thereof, and the like. 

[0064] The single-cell autofluorescence image sensor 310 
can be directly (i.e., the processor 312 communicates 
directly with the detector 310 and receives the signals) or 
indirectly (i.e., the processor 312 communicates with a 
sub-controller that is specific to the sensor 310 and the 
signals from the sensor 310 can be modified or unmodified 
before sending to the processor 312) controlled by the 
processor 312. Fluorescence intensity images can be 
acquired by known imaging methods. The device 300 can 
include various optical filters tuned to isolate autofluores­
cence signals of interest. The optical filters can be tuned to 
the autofluorescence wavelengths ofNAD(P)H and/or FAD. 

[0065] The device 300 can optionally include a light 
source 320 for optically exciting the cells to initiate auto­
fluorescence. Suitable light sources 320 include, but are not 
limited to, lasers, LEDs, lamps, filtered light, fiber lasers, 
and the like. The light source 320 can be continuous wave. 
The light source 320 can be pulsed, which includes sources 
that are naturally pulsed and continuous sources that are 
chopped or otherwise optically modulated with an external 
component. The light source 320 can provide pulses of light 
having a full-width at half maximum (FWHM) pulse width 
of between 1 fs and 10 ns. In some cases, the FWHM pulse 
width is between 30 fs and 1 ns. The light source 320 can 
emit wavelengths that are tuned to the absorption of NAD 
(P)H and/or FAD. 

[0066] The single-cell autofluorescence image sensor 310 
can be configured to acquire the autofluorescence dataset at 
a repetition rate of between 1 kHz and 20 GHz. In some 
cases, the repetition rate can be between 1 MHz and 1 GHz. 
In other cases, the repetition rate can be between 20 MHz 
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and 100 MHz. The light source 320 can be configured to 
operate at these repetition rates. 
[0067] The device 300 can optionally include a cell size 
measurement tool 322. The cell size measurement tool 322 
can be any device capable of measuring the size of cells, 
including but not limited to, an optical microscope. In some 
cases, the single-cell autofluorescence image sensor 310 and 
the cell size measurement tool 322 can be integrated into a 
single optical subsystem. While some aspects of the methods 
described herein can operate by not utilizing the cell size as 
an input to the convolutional neural network, it may be 
useful to measure the cell size for other purposes. 
[0068] The processor 312 is in electronic communication 
with the detector 310 and the cell sorter 308. The processor 
312 is also in electronic communication with, when present, 
the optional light source 320 and the optional cell size 
measurement tool 322. 
[0069] The non-transitory computer-readable medium 314 
has stored thereon instructions that, when executed by the 
processor, cause the processor to execute at least a portion 
of the methods described herein. The trained convolutional 
neural network can be stored in the non-transitory computer­
readable medium 314. The non-transitory computer-read­
able medium 314 can be local to the device 300 or can be 
remote from the device, so long as it is accessible by the 
processor 312. 
[0070] The device 300 can be substantially free of fluo­
rescent labels (i.e., the cell analysis pathway 302 does not 
include a region for mixing the cell(s) with a fluorescent 
label). The device 300 can be substantially free of immo­
bilizing agents for binding and immobilizing T cells. 

Example 1 

[0071] Cell Preparation and Imaging 
[0072] This study was approved by the Institutional 
Review Board of the University of Wisconsin-Madison 
(#2018-0103). Informed consent was obtained from all 
donors. The NAD(P)H intensity images in this study were 
created from a subset of the NAD(P)H fluorescence lifetime 
images acquired in Walsh, A. et al. Label-free Method for 
Classification of T cell Activation. bioRxiv (2019); DOI 
10.1101/536813; ("Walsh et al."), which is incorporated 
herein in its entirety by reference. CD3 and CDS T cells 
were isolated using negative selection methods (RosetteSep, 
Stem Cell Technologies) from the peripheral blood of 6 
healthy donors (3 male, 3 female, mean age=26). The T cells 
were divided into quiescent and activated groups, where the 
activated group was stimulated with a tetrameric antibody 
against CD2, CD3, and CD28 (StemCell Technologies). T 
cell populations were cultured for 48 hours at 37 C, 5% 
CO2, and 99% humidity. 
[0073] NAD(P)H intensity images were created by inte­
grating the photon counts of fluorescence lifetime decays at 
each pixel within the fluorescence lifetime images acquired, 
as described by Walsh et al. Briefly, images were acquired 
using an Ultima (Bruker Fluorescence Microscopy) two­
photon microscope coupled to an inverted microscope body 
(TiE, Nikon) with an Insight DS+ (Spectra Physics) as the 
excitation source. A lOOx objective (Nikon Plan Apo 
Lambda, NA 1.45), lending an approximate field of view of 
110 µm, was used in all experiments with the laser tuned to 
750 nm for NAD(P)H two-photon excitation and a 440/80 
nm bandpass emission filter in front of a GaAsP photomul­
tiplier tube (PMT; H7422, Hamamatsu). Images were 
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acquired for 60 seconds with a laser power at the sample of 
3.0-3.2 mW and a pixel dwell time of 4.6 µs. Grayscale 
microscopy images were labeled with a deidentified donor 
ID and T cell activity state according to the culture condi­
tions: quiescent for T cells not exposed to the activating 
antibodies or activated for T cells exposed to the activating 
antibodies. 

[0074] Image Processing 

[0075] We segmented cell images using CellProfiler, 
which is described in Carpenter, A. E. et al. CellProfiler: 
image analysis software for identifying and quantifying cell 
phenotypes. Genome Biol. 7, Rl00 (2006); DOI 10.1186/ 
gb-2006-7-10-rl00; which is incorporated herein in its 
entirety by reference. Each cell was cropped according to the 
bounding box of its segmented mask. Cell short NAD(P)H 
lifetime was used to filter out other visually indistinguish­
able cells ( e.g., red blood cells) by removing cells with a 
mean fluorescence lifetime less than 200 ps. To remove very 
dim images and images containing no cells, we further 
filtered the segmented images by thresholding the combi­
nation of image entropy and total intensity. The segmented 
images were removed from the dataset if their entropy was 
less than 4 or if their entropy was less than 4.7 and their 
intensity was less than 3500. The threshold values were 
chosen based on the distribution of entropy and intensity 
with a Gaussian approximation. This filter was conservative. 
We manually inspected the removed images to ensure none 
of them contained T cells. 

[0076] Because the classifiers that used image pixels as 
input required uniform size and some required square 
images, we padded all activated and quiescent cell images 
with black borders. The padding size of 82x82 was chosen 
based on the largest image in the dataset after removing 
extremely large outliers. Also, we augmented the dataset by 
rotating each original image by 90; 180; and 270 degrees and 
flipping it horizontally and vertically. We implemented this 
image processing pipeline using the Python package 
OpenCV. Bradski, G. The OpenCV Library. Dr. Dobb 's J. 
Softw. Tools (2000), which is incorporated herein in its 
entirety by reference. 

[0077] Nested Cross-Validation 

[0078] We trained and evaluated eight classifiers of 
increasing complexity (Table 1). We used the same leave­
one-donor-out test principle to measure the performance of 
all models. For example, when using donor 1 as the test 
donor, the frequency classifier counts the positive proportion 
among all images in the augmented dataset from donor 2, 3, 
5, and 6. Then, it uses this frequency to predict the activity 
for all unaugmented images from donor 1. By testing in this 
way, the classification result tells us how well each model 
performs on images from new donors. Donor 4 was not 
included in this cross-validation because we randomly 
selected it as a complete hold-out donor. All images from 
donor 4 were only used after hyper-parameter tuning and 
model selection as a final independent test to assess the 
generalizability of our pipeline to a new donor. 

TABLE 1 

Model Description 

Frequency Classifier Predict class probability using tbe class fre­
quencies in the training set. 
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Model 

Logistic Regression 
witb Pixel Intensity 

Logistic Regression 
witb Total Intensity 
and Size 

Logistic Regression 
witb CellProfiler 
Features 

One-layer Fully 
Connected Neural 
Network 
LeNet CNN 

Pre-trained CNN 
Off-tbe-shelf Model 

Pre-trained CNN 
witb Fine-tuning 
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TABLE I-continued 

Description 

Regularized logistic regression model fitted witb 
tbe image pixel intensity matrix (82 x 82). 
Regularization power "A of 11 penalty is tuned. 
Regularized logistic regression model fitted witb 
two nwnerical values: image total intensity and 
cell mask size. Regularization power "A of 11 

penalty is tuned. 
Regularized logistic regression model fitted witb 
123 features extracted from CellProfiler related to 
intensity, texture, and area. Regularization power 
"A of 11 penalty is tuned. 
Fully connected one-hidden-layer neural network 
with pixel intensity as input. Nwnber of neurons, 
leaming rate, and batch size are tuned. 
CNN witb the LeNet architecture witb pixel 
intensity as input. Learning rate and batch size 
are tuned. 
Freeze layers of a pre-trained Inception v3 CNN. 
Train a final added layer from scratch witb extract­
ed off-tbe-shelf features. Learning rate and batch 
size are tuned. 
Fine-tune tbe last n layers of a pre-trained 
Inception v3 CNN. The layer number n, learning 
rate, and batch size are tuned. 

[0079] Following the leave-one-donor-out test principle, 
we wanted the selection of the optimal hyper-parameters to 
be generalizable to new donors as well. Therefore, we 
applied a nested cross-validation scheme (FIG. 11). For each 
test donor, within the inner loop we performed 4-fold 
cross-validation to measure the average performance of each 
hyper-parameter combination (grid search). Each fold in the 
inner loop cross-validation corresponds to one donor's aug­
mented images. The outer cross-validation loop used the 
selected hyper-parameters from the inner loop cross-valida­
tion to train a new model with the four other donors' 
augmented images. We evaluated the trained model on the 
outer loop test donor. For models requiring early stopping, 
we constructed an early stopping set by randomly sampling 
one-fourth of the unaugmented images from the training set 
and removing their augmented copies. Then, training con­
tinued as long as the performance on images in the early 
stopping set improved. Similarly, we did not include aug­
mented images in the validation set or the test set. 

[0080] No single evaluation metric can capture all the 
strengths and weaknesses of a classifier, especially because 
our dataset was class imbalanced and not skewed in the same 
way for all donors. Therefore, we considered multiple evalu­
ation metrics in the outer loop. Accuracy measures the 
percentage of correct predictions. It is easy to interpret, but 
it does not necessarily characterize a useful classifier. For 
example, when positive samples are rare, a trivial classifier 
that predicts all samples as negative yields high accuracy. 
Precision and recall (sensitivity), on the other hand, consider 
the costs of false positive and false negative predictions, 
respectively. Graphical metrics like the receiver operator 
characteristic (ROC) curve and precision recall (PR) curve 
avoid setting a specific classification threshold. We used area 
under the curve (AUC) to sUlllillarize ROC curves and 
average precision for the PR curves. The ROC curve is 
independent of the class distribution, while the PR curve is 
useful when the classes are imbalanced. See, Lever, J., 
Krzywinski, M. & Altman, N. Points of Significance: Clas­
sification evaluation. Nat. Methods 13, 603-604 (2016); DOI 
10.1038/nmeth.3945; which is incorporated herein in its 
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entirety by reference. For this reason, we used mean average 
precision of the inner loop 4-fold cross-validation to select 
optimal hyper-parameters. 
[0081] During the nested cross-validation, we trained the 
LeNet CNN and pre-trained CNN with fine-tuning using 
GPUs. These jobs ran on GTX 1080, GTX 1080 Ti, K40, 
K80, Pl00, or RTX 2080 Ti GPUs. All other models were 
trained using CPUs. 
[0082] Linear Classifiers 
[0083] We used a trivial frequency classifier as a baseline 
model. This model computes the positive sample percentage 
in the training set. Then, it uses this frequency as a positive 
class prediction score (between 0 and 1) for all samples in 
the test set. 
[0084] Logistic regression with Lasso regularization is a 
standard and interpretable statistical model used to classify 
microscopy images. See, Pavilion, N., Ho bro, A. J., Akira, S. 
& Smith, N. I. Noninvasive detection of macrophage acti­
vation with single-cell resolution through machine learning. 
Proc. Natl. Acad. Sci. 115, E2676-E2685 (2018); DOI 
10.1073/pnas.1711872115, which is incorporated herein in 
its entirety by reference. The Lasso approach reduces the 
number of effective parameters by shrinking the parameters 
ofless predictive features to zero. These features are ignored 
when making a new prediction. We fitted and tested three 
Lasso logistic regression models with different types of 
features using the Python package scikit-leam. See, 
Pedregosa, F. et al. Scikit-learn: Machine Leaming in 
Python. J. Mach. Learn. Res. 12, 2825-2830 (2011), which 
is incorporated herein in its entirety by reference. An image 
intensity matrix with dimension 82x82 and values from 0 to 
255, reshaped into a vector with length 6,724, was used to 
fit the first model. The second model was trained with two 
scalar features, cell size and image total intensity, where cell 
size was computed using the pixel count in the cell mask 
generated by CellProfiler. The last model used 123 features 
relating to cell intensity, texture, and area, which were 
extracted from cell images using a CellProfiler pipeline with 
modules MeaureObjectSizeShape, MeasureObjectintensity, 
and Measure Texture. The Lasso regularization parameter A 
was tuned for all three classifiers with nested cross-valida­
tion (Table 2). We also applied inverse class frequencies in 
the training data as class weights to adjust the imbalanced 
dataset. 

TABLE 2 

Hyper-
Model parameter Candidate 

Logistic Regres- 1c 0.001, 0.01, 0.1, 1, 10, 
sion Models 100, 1000, 10000 
One-layer Fully Learning Rate 0.1, 0.01, 0.001, 0.0001, 0.00001 
Connected Neural Batch Size 8, 16, 32, 64 
Network Neuron Nwnber 16, 64, 128,512, 1024 
LeNet Cnn Learning Rate 0.1, 0.01, 0.001, 0.0001, 0.00001 

Batch Size 8, 16, 32, 64 
Pre-trained CNN Learning Rate 0.01, 0.001, 0.0001, 0.00001 
Off-the-shelf Batch Size 8, 16, 32, 64 
Model 
Pre-trained CNN Learning Rate 0.01, 0.001, 0.0001, 0.00001 
with Fine-tuning Batch Size 8, 16, 32, 64 

n 1, 2, 3,4, 5, 6, ~ 8, ~ 1~ 11 

[0085] Simple Neural Network Classifiers 
[0086] We developed a simple fully-connected neural net­
work with one hidden layer using the Python package Keras 
with the TensorFlow backend. See, Chollet, F. & others. 
Keras (2015); and Martin Abadi et al. TensorFlow: Large­
Scale Machine Leaming on Heterogeneous Systems (2015), 
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both of which are incorporated herein in their entirety by 
reference. The input layer uses the image pixel matrix with 
dimension 82x82. Network hyper-parameters-hidden neu­
ron numbers, learning rate, and batch size-were tuned 
using nested cross-validation (Table 2). The cross-entropy 
loss function was weighted according to the class distribu­
tion in the training set. 
[0087] Also, we trained a CNN with the LeNet architec­
ture (see, Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. 
Gradient-based learning applied to document recognition. 
Proc. IEEE 86, 2278-2324 (1998); DOI 10.1109/5.726791, 
which is incorporated herein in its entirety by reference) 
with randomly initialized weights (no pre-training). The 
LeNet architecture has two convolutional layers and two 
pooling layers. We used the default number of neurons 
specified in the original paper in each layer. The input layer 
was modified to support 82x82 one-channel images, so we 
could train this network with image pixel intensities. Similar 
to the fully-connected neural network, we used nested 
cross-validation to tune the learning rate and batch size 
(Table 2) and applied class weighting. We used early stop­
ping with a patience of 10 for both models, which means we 
stopped training if the loss function failed to improve on the 
early stopping set in 10 consecutive epochs. 
[0088] Pre-Trained CNN Classifiers 

[0089] We developed a transfer learning classifier that 
uses the Inception v3 CNN with pre-trained ImageNet 
weights. See, Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, 
J. & Wojna, Z. Rethinking the Inception Architecture for 
Computer Vision; arXiv: 1512.00567 [cs] (2015); and Deng, 
J. et al. ImageNet: A Large-Scale Hierarchical Image Data­
base. In CVPR09 (2009), both of which are incorporated 
herein in their entirety by reference. Instead of training the 
whole network end-to-end from scratch, we took advantage 
of the pre-trained weights by extracting and modeling off­
the-shelf features or fine-tuning the last n Inception mod­
ules, where n was treated as a hyper-parameter (FIG. 12). 
Inception modules are mini-networks that constitute the 
overall Inception v3 architecture. The first approach is a 
popular practice for transfer learning with Inception v3. We 
freeze the weights of all layers before the output layer and 
use them to extract generic image characteristics. Then, we 
train a light-weight classifier from scratch, specifically a 
neural network with an average pooling layer and a fully 
connected hidden layer with 1024 neurons, using these 
off-the-shelf features. We refer to this model as the pre­
trained CNN off-the-shelf model. An alternative is to fix 
some earlier layers and fine-tune the higher-level n layers by 
initializing them with pre-trained weights and continuing 
training on a new dataset. For this model, we modified the 
output layer to support binary classification, and we did not 
add new layers. In addition, we used the nested cross­
validation scheme to optimize n along with the learning rate 
and batch size (Table 2), creating the pre-trained CNN with 
fine-tuning. 

[0090] To implement these two pre-trained CNN models, 
we resized the padded cell images with bilinear interpolation 
to fit the input layer dimension (299x299x3) and generated 
three-channel images by merging three copies of the same 
grayscale image. For the pre-trained CNN with fine-tuning, 
we first used the resized cell images to generate intermediate 
features ("bottlenecks"). Then, we used these features to 
fine-tune a sub-network. This approach significantly short­
ened the training time. Finally, we used class weighting and 
early stopping with a patience of 10 for both models. We 
implemented these two models using Keras with the Ten­
sorFlow backend. 
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[0091] Pre-Trained CNN Interpretation 

[0092] We implemented multiple approaches for interpret­
ing the pre-trained CNNs. Computing classification confi­
dence on misclassified images can help us understand why 
classifiers make certain errors. The Softmax score is some­
times used as a confidence prediction. Softmax is a function 
that maps the output real-valued number (Logit) from a 
neural network into a score between O and 1, which is then 
used to make a classification as a class probability. However, 
using the Softmax score from a neural network as a confi­
dence calibration does not match the real accuracy. There­
fore, we used temperature scaling to better calibrate the 
predictions. See, Guo, C., Pleiss, G., Sun, Y. & Weinberger, 
K. Q. On Calibration of Modern Neural Networks; arXiv: 
1706.04599 [cs] (2017), which is incorporated herein in its 
entirety by reference. After training, for each donor, we 
optimized the temperature T on the nested cross-validation 
outer loop validation set. Then, we applied T to scale the 
Logit before Softmax computation and used the new Soft­
max score to infer classification confidence. 

[0093] In addition to confidence calibration, we used 
dimension reduction to investigate the high-dimensional 
representations learned by our pre-trained CNN models. 
Dimension reduction is a method to project high-dimen­
sional features into lower dimensions while preserving the 
characteristics of the data. Therefore, it provides a good way 
to visualize how trained models represent different cell 
image inputs. In our study, we choose UMAP (see, Mclnnes, 
L., Healy, J. & Melville, J. UMAP: Uniform Manifold 
Approximation and Projection for Dimension Reduction; 
arXiv: 1802.03426 [cs, stat] (2018); and Mclnnes, L., Healy, 
J., Saul, N. & GroBberger, L. UMAP: Uniform Manifold 
Approximation and Projection. J. Open Source Softw. 3, 861 
(2018); DOI 10.21105/joss.00861, both of which are incor­
porated herein in their entirety by reference) as our dimen­
sion reduction algorithm. UMAP uses manifold learning 
techniques to reduce feature dimensions. It arguably pre­
serves more of the global structure and is more scalable than 
the standard form oft-SNE (see, Maaten, L. v. d. & Hinton, 
G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 
2579-2605 (2008), which is incorporated herein in its 
entirety by reference), an alternative approach. Using 
UMAP, we projected the image features, extracted from the 
CNN layer right before the output layer, from 2048 dimen­
sions to two dimensions. We used the default UMAP param­
eter values: "n neighbors" as 15, "metrics" as "euclidean", 
and "min dist" as 0: 1. Then, we visualized and analyzed 
these projected features of T cell images using 2D scatter 
plots. When comparing UMAP with t-SNE, we used the 
default t-SNE parameters: "perplexity" as 30 and "metric" 
as "euclidean". 

[0094] For the pre-trained CNN with fine-tuning, each test 
donor has different tuned hyper-parameters and a different 
fine-tuned CNN. Therefore, we performed feature extraction 
and dimension reduction independently for each test donor. 
There is no guarantee that these five scatter plots share the 
same 2D basis. In contrast, the image pixel features, Cell­
Profiler features, and off-the-shelf last layer features from a 
pre-trained CNN do not vary by test donor. For these three 
UMAP applications, we performed feature extraction and 
dimension reduction in one batch for all donors simultane­
ously. We excluded donor 4 from the dimension reduction 
analyses. 
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[0095] Finally, we used saliency maps to further analyze 
what morphology features were used in classification. See, 
Simonyan, K., Vedaldi, A. & Zisserman, A. Deep Inside 
Convolutional Networks: Visualising Image Classification 
Models and Saliency Maps; arXiv:1312.6034 [cs](2013), 
which is incorporated herein in its entirety by reference. A 
saliency map is a straightforward and efficient way to detect 
how prediction value changes with respect to a small change 
in the input cell image pixels. It is generated by computing 
the gradient of the output class score with respect to the 
input image. We compared two ways to compute this gra­
dient: standard backpropagation and guided backpropaga­
tion. See, Springenberg, J. T., Dosovitskiy, A., Brox, T. & 
Riedmiller, M. Striving for Simplicity: The All Convolu­
tional Net; arXiv:1412.6806 [cs](2014), which is incorpo­
rated herein in its entirety by reference. Backpropagation is 
a method to calculate the gradient of loss function with 
respect to the neural network's weights. Guided backpropa­
gation is a variant that only backpropagates positive gradi­
ents. We generated saliency maps of the output layer for the 
pre-trained CNN with fine-tuning model for test donor 1 
with a few randomly sampled images from the test set. The 
saliency map interpretations help us assess whether the 
classification basis is intuitive and whether the predictions 
derive from image artifacts instead of cell morphology. 

[0096] Results: Overview 

[0097] Our goal is to classify individual T cells as acti­
vated (positive instances) or quiescent (negative instances) 
using only cropped autofluorescence intensity cell images. 
We explore multiple classification approaches of increasing 
complexity. A frequency classifier uses the frequency of 
positive samples in the training set as the probability of the 
activated label. This naive baseline model assesses how well 
the class skew in the training images can predict the label of 
new images. In addition, we test three Lasso logistic regres­
sion approaches on different featurizations of the cropped T 
cell images. The first uses the image pixel intensities directly 
as features. The second uses only two image summaries as 
features, the cell size and total intensity. The third uses 
attributes calculated with CellProfiler, such as the mean 
intensity value and cell perimeter. 

[0098] We also assess multiple types of neural networks. 
A fully connected neural network (multilayer perceptron) 
generalizes the logistic regression model with pixel inten­
sities by adding a single hidden layer. The LeNet CNN 
architecture learns convolutional filters that take advantage 
of the image structure of the input data. This CNN is simple 
enough to train from random initialization with a limited 
number of images. Finally, we consider two deeper and more 
complex CNNs. Both use transfer learning to initialize the 
Inception v3 CNN architecture with a model that has been 
pre-trained on generic (nonbiological) images. One version 
trains a new fully connected layer from scratch using 
off-the-shelf features extracted from cell images with the 
pre-trained CNN. An alternative fine-tunes multiple layers 
of the pre-trained CNN. 

[0099] The overall workflow for our pre-trained CNN 
model is described in FIG. 4. The original microscopy 
images are segmented, cropped, and padded. We filter 
images that do not contain a T cell and other artifacts, 
leaving the final image counts for each of the six donors 
shown in Table 3. Then we train, evaluate, and interpret the 
machine learning models. FIG. 4 shows the training proce­
dure for the pre-trained CNN as an example. 
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TABLE 3 

Donor 1 Donor 2 Donor 3 Donor 4 Donor 5 

Initial Activated 609 1139 604 789 791 

Initial Quiescent 2184 399 2351 2110 528 

Final Activated 235 647 446 482 683 

Final Quiescent 1551 141 1238 1569 246 

[0100] The T cell microscopy images may vary from 
donor to donor. A trained model must be able to generalize 
to new donors in order to be useful in a practical pre-clinical 
or clinical setting. Therefore, all of our evaluation strategies 
train on images from some donors and evaluate the trained 
models on separate images from a different donor, which is 
referred to as subject-wise cross-validation or a leave-one­
patient-out scheme. We initially assess the classifiers with 
cross-validation across donors. In addition, we hold out all 
images from a randomly selected donor, donor 4, and only 
use them after completing the rest of our study to confirm 
that our model selection and hyper-parameter tuning strat­
egies generalize to a new donor. 
[0101] Results: Cross-Validation Across Donors 
[0102] In order to assess our classifiers' performance on 
cell images from new donors, we design a nested cross­
validation scheme to train, tune, and test all models. Due to 
this cross-validation design, the same model could have 
different optimal hyperparameters for different test donors. 
Therefore, we group the final model performance by test 
donors (FIG. 5). We plot multiple evaluation metrics 
because each metric rewards different behaviors. The area 
under the curve (AUC) and average precision are summary 
statistics of the receiver operating characteristic (ROC) 
curve (FIG. 6) and precision recall (PR) curve (FIG. 7), 
respectively. For all three evaluation metrics, the two pre­
trained CNN models outperform other classifiers. 
[0103] The frequency classifier's average accuracy for all 
test donors is 37.56% (FIG. 5 and Table 4). The low 
accuracy of this simple method implies that the majority 
class in the training and test sets is likely to be different. For 
example, there are more activated cells from donor 1 while 
there are more quiescent cells from the combination of 
donors 2, 3, 5, and 6. This baseline establishes that classifiers 
that fail to use features other than the label count will 
perform poorly. 

TABLE 4 

Donor Accuracy Precision Recall Average Precision AUC 

13.16% 13.16% 100.00% 13.16% 50.00% 

2 17.89% 0.00% 0.00% 82.11 % 50.00% 

3 73.52% 0.00% 0.00% 26.48% 50.00% 

5 26.48% 0.00% 0.00% 78.52% 50.00% 

6 56.75% 0.00% 0.00% 43.25% 50.00% 
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Donor 6 

531 

1007 

442 

580 

[0104] Three logistic regression models using different 
features all give better classifications than the baseline 

model. Logistic regression with the image pixel matrix leads 

to an average accuracy of 78.74% (FIG. 5 and Table 5). 

Among those 6,724 pixel features, 5,822 features on average 

are removed by the Lasso regularization. To interpret this 

model, we plot the exponential of each pixel's coefficient to 
visualize the odds ratios. This model learns the shape of cells 

(see, FIG. Sl of Appendix A of U.S. Provisional Patent 

Application No. 62/886,139, which is incorporated herein in 

its entirety by reference). Larger cells are more likely to be 

classified as activated. Logistic regression using only mask 

size and total intensity as features gives slightly better 

performance with an average accuracy of 79.93% (FIG. 5 

and Table 6). For all test donors, the optimal coefficient of 

cell mask size is negative, whereas the coefficient of total 
intensity is positive. In practice, we expect larger cells to be 

activated, but the negative coefficient indicates the model 

learns the wrong relationship of cell size and activity state. 

This can be explained by the inconsistent cell size distribu­

tion across donors (see, FIG. S2 of Appendix A of U.S. 

Provisional Patent Application No. 62/886,139, which is 

incorporated herein in its entirety by reference) and the 

correlation of cell size and total intensity (multicollinearity). 

Comparing the odds ratio of one standard deviation incre­
ment of each feature, however, shows this logistic regression 

model is much more sensitive to total intensity than cell size. 

Finally, the logistic regression model with CellProfiler attri­

butes yields 87.14% average accuracy (FIG. 5 and Table 7). 

After computing the odds ratio adjusting to the standard 

deviation of each feature, attributes that are related to image 

intensity and cell area have the strongest impact on the 

predictions. 

Activated Count Quiescent Count 

235 1551 

647 141 

446 1238 

683 246 

442 580 
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TABLE 5 

Donor Accuracy Precision Recall Average Precision AUC Activated Count Quiescent Count 

84.60% 43.79% 60.00% 53.90% 82.27% 235 1551 

2 68.02% 94.99% 64.45% 95.38% 81.61% 647 141 

3 79.57% 61.75% 60.09% 68.67% 81.10% 446 1238 

5 80.81% 88.12% 85.42% 95.20% 87.16% 683 246 

6 80.68% 73.43% 86.97% 90.19% 90.59% 442 580 

TABLE 6 

Donor Accuracy Precision Recall Average Precision AUC Activated Count Quiescent Count 

88.13% 55.35% 50.64% 53.67% 79.92% 235 1551 
2 65.99% 96.56% 60.74% 94.46% 79.34% 647 141 
3 81.59% 68.89% 55.61% 68.12% 74.68% 446 1238 
5 80.92% 89.32% 84.11% 95.20% 86.68% 683 246 
6 83.02% 78.17% 84.49% 89.86% 89.02% 442 580 

TABLE 7 

Donor Accuracy Precision Recall Average Precision AUC Activated Count Quiescent Count 

95.74% 86.98% 79.57% 88.85% 95.61% 235 1551 
2 76.65% 91.56% 78.83% 95.24% 82.33% 647 141 
3 92.16% 94.60% 74.66% 93.07% 96.26% 446 1238 
5 81.81 % 81.81 % 96.78% 93.74% 86.70% 683 246 
6 89.33% 82.33% 95.93% 95.97% 97.01% 442 580 

[0105] Non-linear models with image pixels as input have 
accuracies comparable to the logistic regression model with 
CellProfiler features. We tune the learning rate, batch size 
and the number of hidden layer neurons of the simple neural 
network with one hidden layer. Even though its average 
accuracy of 86.48% (FIG. 5 and Table 8) is slightly lower 

than logistic regression with CellProfiler features, it has 
more stable performance across the test donors. In compari­
son, the LeNet CNN has a more complex architecture and 
takes advantage of the image structure of the input data. 
After selecting the best learning rate and batch size, LeNet 
reaches an average accuracy of89.51 % (FIG. 5 and Table 9). 

TABLE 8 

Donor Accuracy Precision Recall Average Precision AUC Activated Count Quiescent Count 

2 

3 

5 

6 

Donor 

2 

3 

5 

6 

88.80% 

82.87% 

88.54% 

84.78% 

87.41 % 

Accuracy 

94.23% 

87.06% 

91.45% 

87.41 % 

87.38% 

55.28% 75.74% 

96.05% 82.69% 

82.14% 72.20% 

85.58% 95.19% 

80.62% 93.48% 

Precision Recall 

78.21% 77.87% 

96.58% 87.33% 

95.76% 70.85% 

87.83% 96.19% 

78.61% 97.29% 

65.40% 

96.60% 

84.59% 

96.48% 

94.44% 

TABLE 9 

Average Precision 

82.15% 

97.86% 

91.55% 

96.40% 

96.70% 

90.55% 

88.78% 

90.34% 

92.05% 

95.36% 

AUC 

95.36% 

91.92% 

94.12% 

92.41 % 

97.36% 

235 

647 

446 

683 

442 

Activated Count 

235 

647 

446 

663 

442 

1551 

141 

1238 

246 

580 

Quiescent Count 

1551 

141 

1238 

246 

580 
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[0106] Our most advanced models using the pre-trained 
CNN outperform all other methods. Both versions of the 
pre-trained CNN use cell images as input and require a 
previously trained CNN. For one version, we use the pre­
trained CNN as a feature extractor and then train a new 
hidden layer with off-the-shelf features. Alternatively, we 
fine-tune multiple higher-level layers of the CNN with T cell 
images. We include the fine-tuned layers as a hyper-param-
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pre-trained CNN with fine-tuning, the most accurate model 
in the previous cross-validation, on images from donor 4. It 
gives an accuracy of 98.83% (Table 12). Out of 2,051 
predictions, there are only 4 false positives and 20 false 
negatives. The performance metrics in Table 12 are substan­
tially higher than their counterparts in Table 11. Having 
training data from five donors instead of four likely con­
tributes to the improved performance. 

TABLE 12 

Donor Accuracy Precision Recall Average Precision AUC Activated Count Quiescent Count 

4 98.83% 99.14% 95.85% 99.79% 99.93% 482 1569 

eter. Specifically, we define n, ranging from 1 to 11, as the 
number of last Inception modules in the pre-trained Incep­
tion v3 CNN to fine-tune. For example, if n=l, we only 
fine-tune the last Inception module, whereas we fine-tune all 
the layers of the Inception v3 CNN when n= 11. After tuning 
n along with the other hyper-parameters, we compare the 
CNN with fine-tuning to the CNN off-the-shelf model in 
order to study the effect of fine-tuning on classifier perfor­
mance. Additionally, we compare the test results of different 
n to analyze how the number of fine-tuned layers affects 
classification. 
[0107] The average accuracy for the pre-trained CNN 
off-the-shelf model is 90.36% (FIG. 5 and Table 10) and 
93.56% for the pre-trained CNN with fine-tuning (FIG. 5 
and Table 11 ). The fine-tuning model uses 11; 10;7; 11; and 8 
layers as the optimal n for the five test donors. However, 
depending on the test donor and the evaluation metric, the 
number of fine-tuned layers does not necessarily have a 
strong effect on the predictive performance (FIG. 8). Dif­
ferent n values yield similar evaluation metrics. Fine-tuning 
all 11 layers also greatly increases the CNN training time 
(see, FIGS. S3 and S4 of Appendix A of U.S. Provisional 
Patent Application No. 62/886,139, which is incorporated 
herein in its entirety by reference). 

TABLE 10 

[0110] Results: Pre-Trained CNN with Fine-Tuning Errors 

[0111] We inspect the T cell images that the pre-trained 
CNN with fine-tuning classifies incorrectly in order to better 
understand its failures and accuracy. We visualize the mis­
classified images for all test donors (see, FIGS. S5-S10 of 
Appendix A of U.S. Provisional Patent Application No. 
62/886,139, which is incorporated herein in its entirety by 
reference) along with the predicted label, the Softmax score 
of the network output layer, and the temperature scaled 
confidence calibration. The majority of misclassified cell 
images are badly cropped, with no cells or multiple cells 
included in the frame. Therefore, using a more progressive 
dim image filter or adding a multiple-cell detector in the 
image processing pipeline could further improve the model 
performance. However, for other images with a clear single 
cell in the frame, the pre-trained CNN tends to give high 
confidence in its misclassification. These scores suggest that 
these errors cannot be easily fixed without a more powerful 
classifier or more diverse training dataset. Temperature 
scaling could either soften the original Softmax score toward 
50% or increase the confidence toward 100%. For the 
misclassified images in our study, temperature scaling 
always drops the Softmax probability. This observation 

Donor Accuracy Precision Recall Average Precision AUC Activated Count Quiescent Count 

94.57% 81.08% 76.60% 86.42% 95.96% 235 1551 
2 90.10% 96.87% 90.88% 99.06% 95.89% 647 141 
3 93.94% 93.22% 83.18% 94.08% 96.66% 446 1238 
5 87.08% 87.09% 96.78% 96.83% 92.81% 683 246 
6 86.11 % 75.95% 99.32% 97.61% 98.49% 442 580 

TABLE 11 

Donor Accuracy Precision Recall Average Precision AUC Activated Count Quiescent Count 

96.81% 92.79% 82.13% 91.71 % 95.70% 
2 91.88% 97.24% 92.74% 99.22% 97.09% 
3 94.42% 96.32% 82.06% 95.75% 97.41 % 
5 89.77% 89.20% 97.95% 97.02% 94.26% 
6 94.91% 92.76% 95.70% 98.20% 98.91% 

[0108] Results: Confirming Generalization with a New 
Donor 
[0109] In order to evaluate our ability to generalize to T 
cell images from a new individual, we completely hold out 
images from donor 4 during the study design, model imple­
mentation, and cross-validation above. We apply the same 
nested cross-validation scheme to train, tune, and test the 

235 1551 
647 141 
446 1238 
683 246 
442 580 

matches Guo et al.' s finding that neural networks with 
higher model capacity are more likely to be overconfident in 
their predictions. 
[0112] Results: Pre-Trained CNN with Fine-Tuning Inter­
pretation 
[0113] Visualizing the T cell dataset in 2D helps us under­
stand why some classifiers perform better than others. We 
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use Uniform Manifold Approximation and Projection 
(UMAP) to project the images into 2D such that similar 
images in the original feature space are nearby in the 2D 
space. Coloring the images with their activity labels shows 
how different input representations or learned representa­
tions separate the activated and quiescent cells. For example, 
in FIG. 9, each dot corresponds to one image based on its 
representation in the last layer of the pre-trained CNNs with 
fine-tuning. UMAP projects the 2048 learned features in the 
last layer of the CNN into 2D. In general, the activated and 
quiescent cells are well-separated in the 2D space, suggest­
ing that the CNN has successfully learned distinct represen­
tations for the two types of T cells. Using t-Distributed 
Stochastic Neighbor Embedding (t-SNE) instead ofUMAP 
for dimension reduction provides qualitatively similar 
results (see, FIG. Sl 1 of Appendix A of U.S. Provisional 
Patent Application No. 62/886,139, which is incorporated 
herein in its entirety by reference). 

[0114] Generating similar UMAP plots for three alterna­
tive image representations shows that the two image classes 
are not as well separated (see, FIGS. Sl2-S14 of Appendix 
A of U.S. Provisional Patent Application No. 62/886,139, 
which is incorporated herein in its entirety by reference). 
When using the raw pixel features (see, FIG. S12 of Appen­
dix A of U.S. Provisional Patent Application No. 62/886, 
139, which is incorporated herein in its entirety by refer­
ence), the two types ofT cells are spread throughout the 2D 
space. This contributes to the lower performance of the 
logistic regression and fully connected neural network mod­
els that operate directly on pixel intensity. Similarly, there is 
only moderate spatial separation when using the CellProfiler 
features (see, FIG. S13 of Appendix A of U.S. Provisional 
Patent Application No. 62/886,139, which is incorporated 
herein in its entirety by reference) or the last layer of the 
CNN before fine-tuning it to predict T cell activity (see, FIG. 
S14 of Appendix A of U.S. Provisional Patent Application 
No. 62/886,139, which is incorporated herein in its entirety 
by reference). These comparisons demonstrate the strong 
effect of fine-tuning the pre-trained CNN and also help 
explain the superior performance of pre-trained CNNs over 
the logistic regression model with CellProfiler features. In 
addition, by labeling misclassified images as outlined dots in 
FIG. 9, we see where the pre-trained CNN with fine-tuning 
makes errors. The incorrect predictions are predominantly 
distributed in the boundary between the two clusters. 

[0115] In addition to visualizing the feature representation 
in the pre-trained CNNs with fine-tuning, we use saliency 
maps to interpret how these models make decisions. We 
generate saliency maps by computing the gradient of the 
CNN class score with respect to a few randomly chosen 
donor 1 images from both the activated and quiescent 
classes (FIG. 10). We use two methods to calculate gradi­
ents: standard backpropagation and guided backpropaga­
tion. In these heat maps, larger values (green or yellow) 
highlight the image regions that cause the most change in the 
T cell activity prediction. Smaller values ( dark blue or 
purple) indicate pixels that have less influence. The uni­
formly dark blue background in both types of saliency maps 
indicates that the pre-trained CNNs with fine-tuning have 
learned to focus on the original cell image instead of the 
black padding. The larger values in the saliency maps with 
guided backpropagation often align with the high-intensity 
regions of the cell images, which correspond to mitochon­
dria and depict metabolic activity. Although the influential 
regions of the guided backpropagation-based saliency maps 
are biologically plausible, this type of saliency map is 
insensitive to random changes of either the input data or 
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model parameters. The saliency maps generated with stan­
dard backpropagation are properly affected by these ran­
domized controls but do not concentrate on the high-inten­
sity regions of the input images. 

DISCUSSION 

[0116] Our study demonstrates that machine learning 
models trained on autofluorescence intensity images can 
accurately classify activated and quiescent T cells across 
donors. Because autofluorescence images are easier to 
acquire with standard commercial microscopes compared to 
fluorescence lifetime images, this workflow has the potential 
to become a widely applicable approach for live T cell 
profiling. Fine-tuning a pre-trained CNN is the most pow­
erful classification approach, outperforming alternative 
machine learning models that are commonly used for 
microscopy image classification over multiple evaluation 
metrics. In particular, this CNN applied directly to cropped 
images has better performance than logistic regression with 
domain-relevant features extracted by CellProfiler. 
[0117] We thoroughly explored the effect of fine-tuning 
more layers of the pre-trained CNN and compared it with the 
off-the-shelf CNN model. The common transfer learning 
approach fixes the CNN parameters of the initial network 
layers, which extract learned features from the images, and 
trains a simple classifier from scratch that predicts the 
domain-specific image labels. Our results indicate that fine­
tuning pre-trained CNN layers yields better performance 
than directly using off-the-shelf features. In addition, 
although fine-tuning more layers tends to give better pre­
dictive performance (FIG. 8), it is generally not worth the 
additional computational time and expense to fine-tune all 
11 layers (see, FIGS. S3 and S4 of Appendix A of U.S. 
Provisional Patent Application No. 62/886,139, which is 
incorporated herein in its entirety by reference). Possible 
reasons include the limited sample size and relatively homo­
geneous cell image representations. Given the extra com­
putational costs and implementation challenges, we recom­
mend fine-tuning only the last few layers of a pre-trained 
CNN for similar autofluorescence microscopy applications. 
In settings that do require fine-tuning additional layers 
because the images are more heterogeneous, we suggest 
taking a larger step size in the layer number hyper-parameter 
optimization. 
[0118] The machine learning models recognize image 
attributes that recapitulate biological domain knowledge. 
Activated T cells are larger in size. In addition, there are 
metabolic differences between quiescent and activated T 
cells, which are evident in the NAD(P)H images. The high 
intensity regions in the images likely correspond to mito­
chondria, where the majority of metabolism occurs. It is 
straightforward to inspect the trained logistic regression 
model that takes total image intensity and mask size as 
inputs and observe that it correctly recognizes the relation­
ship between NAD(P)H intensity and activation state. 
[0119] The parameters of the pre-trained CNN with fine­
tuning are not as directly interpretable as the logistic regres­
sion model. An additional challenge is that different inter­
pretation techniques provide distinct views of the fine-tuned 
CNN. Nevertheless, there are some indications in the 
saliency maps that this CNN also reflects T cell biology. 
Saliency maps help locate which regions of the input image 
influence the classification the most. With guided back­
propagation, the high-intensity regions of the T cell images 
tend to be the focal points in the saliency maps. This 
suggests that the CNN may be sensitive to metabolic dif­
ferences between quiescent and activated cells and not only 
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changes in cell size. However, guided backpropagation and 
other more advanced saliency maps were found to be 
independent of the data, model, and model parameters. The 
standard backpropagation gradient map is sensitive to these 
controls, but it focuses more on general cell morphology 
than the metabolic activity within cells. 
[0120] Each model in our study is only tuned and evalu­
ated once, which limits our ability to assess the statistical 
significance of the performance differences across models. 
Substantial computing time and costs are required for nested 
cross-validation, especially when fine-tuning multiple layers 
of the pre-trained CNN (see, FIGS. S3 and S4 of Appendix 
A of U.S. Provisional Patent Application No. 62/886,139, 
which is incorporated herein in its entirety by reference). 
The fine-tuning jobs took 5,096 hours (212 days) in total to 
train on GPUs. Therefore, we are unable train each model 
multiple times to assess the variability in model performance 
due to random sampling, computer hardware, non-determin­
istic algorithms, and other factors. Slight differences in 
performance should not be over-interpreted. 
[0121] Based on the misclassified images, the perfor­
mance of the pre-trained CNN model with fine-tuning is 
limited by the image cropping quality. Some images contain 
multiple cells. Others do not contain any T cells. Developing 
a better filter to detect images with artifacts and adopting 
state-of-the-art segmentation approaches could further boost 
classification accuracy. 
[0122] Overall, our strong results demonstrate the feasi­
bility of classifying T cells directly from autofluorescence 
intensity images, which can guide future work to bring this 
technology to pre-clinical and clinical applications. 
[0123] The present disclosure also includes the following 
statements: 
1. A T cell classifying device comprising: 
[0124] a cell analysis pathway comprising: 

[0125] (i) an inlet; 
[0126] (ii) an observation zone coupled to the inlet 

downstream of the inlet, the observation zone config­
ured to present T cells for individual autofluorescence 
interrogation; and 

[0127] (iii) an outlet coupled to the observation zone 
downstream of the observation zone; 

[0128] a single-cell autofluorescence image sensor config­
ured to acquire an autofluorescence intensity image of a T 
cell positioned in the observation zone; 
[0129] a processor in electronic communication with the 
single-cell autofluorescence image sensor; and 
[0130] a non-transitory computer-readable medium acces­
sible to the processor and having stored thereon a trained 
convolutional neural network and instructions that, when 
executed by the processor, cause the processor to: 

[0131] a) receive the autofluorescence intensity image; 
[0132] b) optionally pre-process the autofluorescence 

intensity image to produce an adjusted autofluores­
cence intensity image; 

[0133] c) input the autofluorescence intensity image or 
the adjusted autofluorescence intensity image into the 
trained convolutional neural network to produce an 
activation prediction for the T cell. 

2. The T cell classifying device of statement 1, wherein the 
cell analysis pathway comprises a microfluidic pathway or a 
nanofluidic pathway. 
3. The T cell classifying device of statement 1 or 2, the T cell 
classifying device further comprising a flow regulator 
coupled to the inlet. 
4. The T cell classifying device of any one of the preceding 
statements, wherein the flow regulator is configured to 
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provide flow of cells through the observation zone at a rate 
that allows the single-cell autofluorescence imager to 
acquire the autofluorescence image for the T cell when it is 
positioned in the observation zone. 
5. The T cell classifying device of any one of the preceding 
statements, the T cell classifying device further comprising 
a light source. 
6. The T cell classifying device of any one of the preceding 
statements, wherein the light source is a continuous wave 
light source. 
7. The T cell classifying device of any one of the preceding 
statements, wherein the light source emits light having a 
wavelength tuned to excite fluorescence from NAD(P)H 
and/or FAD. 
8. The T cell classifying device of any one of the preceding 
statements, wherein the single-cell autofluorescence image 
sensor is configured to acquire the autofluorescence intensity 
image at a repetition rate of between 1 kHz and 20 GHz. 
9. The T cell classifying device of any one of the preceding 
statements, wherein the single-cell autofluorescence image 
sensor is configured to acquire the autofluorescence intensity 
image at a repetition rate of between 1 MHz and 1 GHz. 
10. The T cell classifying device of any one of the preceding 
statements, wherein the single-cell autofluorescence image 
sensor is configured to acquire the autofluorescence intensity 
image at a repetition rate of 20 MHz and 100 MHz. 
11. The T cell classifying device of any one of the preceding 
statements, wherein the single-cell autofluorescence image 
sensor is configured to acquire the autofluorescence intensity 
image via pixel-by-pixel intensity measurements. 
12. The T cell classifying device of any one of the preceding 
statements, wherein the single-cell autofluorescence image 
sensor is a charge collection device array. 
13. The T cell classifying device of any one of the preceding 
statements, the single-cell autofluorescence image sensor 
comprising a detector-side filter configured to transmit fluo­
rescence signals of interest. 
14. The T cell classifying device of the immediately pre­
ceding statement, wherein the detector-side filter is config­
ured to transmit NAD(P)H fluorescence and/or FAD fluo­
rescence. 
15. The T cell classifying device of any one of the preceding 
statements, the T cell classifying device further comprising 
a cell size measurement tool configured to measure cell size 
and to communicate the cell size to the processor. 
16. The T cell classifying device of any one of the preceding 
statements, the T cell classifying device further comprising 
a cell imager configured to acquire an image of a cell 
positioned within the observation zone and to communicate 
the image to the processor. 
17. The T cell classifying device of any one of the preceding 
statements, wherein the instructions, when executed by the 
processor, cause the processor to: b) pre-process the auto­
fluorescence intensity image to produce an adjusted auto­
fluorescence intensity image; and c) input the adjusted 
autofluorescence intensity image into the trained convolu­
tional neural network to produce the activation prediction 
for the T cell. 
18. The T cell classifying device of the immediately pre­
ceding statement, wherein the pre-processing of step b) 
includes cropping the autofluorescence intensity image, pad­
ding the autofluorescence intensity image, rotating the auto­
fluorescence intensity image, reflecting the autofluorescence 
intensity image, or a combination thereof. 
19. The T cell classifying device of any one of the preceding 
statements, wherein the instructions, when executed by the 
processor, cause the processor to determine if the autofluo-
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rescence intensity image is an outlier and to skip steps b ), c) 
and d) if the autofluorescence intensity image is an outlier. 
20. The T cell classifying device of any one of the preceding 
statements, wherein the cell analysis pathway does not 
include a fluorescent label for binding to the T cell. 
21. The T cell classifying device of any one of the preceding 
statements, wherein the autofluorescence image sensor is 
adapted to measure autofluorescence of T cells without 
requiring the use of a fluorescent label. 
22. The T cell classifying device of any one of the preceding 
statements, wherein the cell analysis pathway does not 
include an immobilization agent for binding and immobi­
lizing T cells. 
23. The T cell classification device of any one of the 
preceding statements, the T cell classification device further 
comprising a cell sorter having a sorter inlet and at least two 
sorter outlets, the cell sorter coupled to the cell analysis 
pathway via the outlet downstream of the observation zone, 
the cell sorter configured to selectively direct a cell from the 
sorter inlet to one of the at least two sorter outlets based on 
a sort signal, the processor in electronic communication with 
the cell sorter, and the instructions, when executed by the 
processor, further cause the processor to provide the sort 
signal to the cell sorter based on the activation prediction. 
24. The T cell classifying device of the immediately pre­
ceding statement, wherein the trained convolutional neural 
network, the processor, and physical dimensions and flow 
rate of the cell analysis pathway are adapted to provide the 
sorter signal to the cell sorter prior to the T cell reaching the 
cell sorter. 
25. The T cell classifying device of any one of the preceding 
claims, wherein the instructions, when executed by the 
processor, further cause the processor to generate a report 
including the activation prediction for T cells having passed 
through the cell analysis pathway. 
26. A method of characterizing T cell activation state, the 
method comprising: 
[0134] a) optionally receiving a population of T cells 
having unknown activation status; 
[0135] b) acquiring an autofluorescence intensity image 
for a T cell of the population of T cells; 
[ 013 6] c) optionally pre-processing the autofluorescence 
intensity image to provide an adjusted autofluorescence 
intensity image; and 
[0137] d) identifying an activation status of the T cell 
based on an activation prediction, wherein the activation 
prediction is computed using the autofluorescence intensity 
image or the adjusted autofluorescence intensity image as an 
input for a trained convolutional neural network. 
27. A method of classifying T cells, the method comprising: 
[0138] a) receiving a population of T cells having 
unknown activation status; 
[0139] b) acquiring an autofluorescence intensity image 
for each T cell of the population ofT cells, thereby resulting 
in a set of autofluorescence intensity images; 
[0140] c) optionally pre-processing the autofluorescence 
intensity images of the set of autofluorescence intensity 
images to provide a set of adjusted autofluorescence inten­
sity images; and 
[0141] either: 
[0142] dl) physically isolating a first portion of the popu­
lation of T cells from a second portion of the population of 
T cells based on an activation prediction, wherein each T cell 
of the population of T cells is placed into the first portion 
when the activation prediction exceeds a predetermined 
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threshold and into the second portion when the activation 
prediction is less than or equal to the predetermined thresh­
old; or 
[0143] d2) generating a report including the activation 
prediction, the report optionally identifying a proportion of 
the population ofT cells having the activation prediction that 
exceeds the predetermined threshold, 
wherein the activation prediction is computed using the 
autofluorescence intensity image from the set of autofluo­
rescence intensity images or the adjusted autofluorescence 
intensity image from the set of adjusted autofluorescence 
intensity images corresponding to a given T cell as an input 
for a trained convolutional neural network. 
28. The T cell classifying device or the method of any one 
of the preceding statements, wherein the autofluorescence 
intensity image is tuned to a wavelength corresponding to 
NAD(P)H fluorescence and/or FAD fluorescence. 
29. The T cell classifying device or the method of any one 
of the preceding statements, wherein at least a portion of the 
trained convolutional neural network is initially pre-trained 
using images that are not fluorescence images of cells. 
30. The T cell classifying device or the method of any one 
of the preceding statements, wherein at least a portion of the 
trained convolutional neural network includes an image 
classification network at least partially pre-trained using 
optical images of objects that are visible to the naked human 
eye. 
31. The T cell classifying device or the method of any one 
of the preceding statements, wherein the trained convolu­
tional neural network utilizes a spatial distribution of fluo­
rescence intensity in producing the activation prediction. 
32. The T cell classifying device or the method of any one 
of the preceding statements, wherein the trained convolu­
tional neural network is trained using only fluorescence 
intensity images as an input. 
33. The T cell classifying device or the method of any one 
of the preceding statements, wherein the trained convolu­
tional neural network is not pre-trained or trained with a cell 
size attribute as an input and does not use the cell size 
attribute as an input to produce the activation prediction. 
34. The T cell classifying device or the method of any one 
of the preceding statements, wherein the trained convolu­
tional neural network is not pre-trained or trained with cell 
morphological features as an input and does not use cell 
morphological features as an input to produce the activation 
prediction. 
35. The T cell classifying device or the method of any one 
of the preceding statements, wherein the trained convolu­
tional neural network is trained on at least 100 images, at 
least 500 images, at least 1000 images, at least 2500 images, 
or at least 5000 images of T cells having known activation 
states. 
36. The T cell classifying device or the method of any one 
of the preceding statements, wherein the trained convolu­
tional neural network segments the autofluorescence inten­
sity image. 
37. The T cell classifying device or the method of any one 
of the preceding statements, wherein the trained convolu­
tional neural network is instrument-specific. 
38. The T cell classifying device or the method of any one 
of the preceding statements, wherein the trained convolu­
tional neural network is patient-specific. 
39. The T cell classifying device or the method of any one 
of the preceding statements, wherein the trained convolu­
tional neural network provides a classification accuracy of at 
least 85%, at least 87.5%, at least 90%, at least 92.5%, at 
least 95%, at least 96%, at least 97%, or at least 98%. 
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40. The T cell classifying device or the method of any one 
of the preceding statements, wherein the trained convolu­
tional neural network includes at least 5 layers, at least 6 
layers, at least 7 layers, at least 8 layers, at least 9 layers, or 
at least 10 layers, and at most 100 layers, at most 50 layers, 
at most 20 layers, at most 17 layers, at most 15 layers, at 
most 14 layers, at most 13 layers, or at most 12 layers. 
41. The T cell classifying device or the method of any one 
of the preceding statements, wherein the T cells whose 
activation prediction is positive are CD3+, CD4+ or CDS+ 
T cells. 
42. The method of any one of statements 26 to the imme­
diately preceding statement, wherein step c) is not optional 
and the activation prediction of step d) is computed using the 
adjusted autofluorescence intensity image. 
43. The method of the immediately preceding claim, 
wherein the pre-processing of step c) includes cropping the 
autofluorescence intensity image, padding the autofluores­
cence intensity image, rotating the autofluorescence inten­
sity image, reflecting the autofluorescence intensity image, 
or a combination thereof. 
44. The method of any one of statements 26 to the imme­
diately preceding statement, the method further comprising 
determining if the autofluorescence intensity image is an 
outlier and skipping step d) if the autofluorescence intensity 
image is an outlier. 
45. The method of any one of statements 26 to the imme­
diately preceding statement, wherein the method does not 
involve use of a fluorescent label for binding to the T cell. 
46. The method of any one of statements 26 to the imme­
diately preceding statement, wherein the method does not 
involve immobilizing the T cell. 
47. A method of administering activated T cells to a subject 
in need thereof, the method comprising: 
[0144] a) the method of any one of statements 27 to the 
immediately preceding statement, wherein the method com­
prises step dl ); and 
[0145] b) introducing the first portion of the population of 
T cells to the subject. 
48. The method of statement 47, wherein the first portion of 
the population of T cells is modified prior to step b). 
49. The method of statement 48, wherein the first portion of 
the population of T cells is modified to include a chimeric 
antigen receptor prior to step b ). 
50. A method of administering activated T cells to a subject 
in need thereof, the method comprising: 
[0146] a) the method of any one of statements 27 to 46, 
wherein the method comprises step d2); and 
[0147] b) in response to the proportion exceeding a second 
predetermined threshold, introducing the population of T 
cells to the subject. 
51. The method of the immediately preceding statement, 
wherein the population ofT cells is modified prior to step b ). 
52. The method of the immediately preceding statement, 
wherein the population of T cells is modified to include a 
chimeric antigen receptor prior to step b). 

We claim: 

1. A T cell classifying device comprising: 
a cell analysis pathway comprising: 

(i) an inlet; 

(ii) an observation zone coupled to the inlet down­
stream of the inlet, the observation zone configured 
to present T cells for individual autofluorescence 
interrogation; and 
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(iii) an outlet coupled to the observation zone down­
stream of the observation zone; 

a single-cell autofluorescence image sensor configured to 
acquire an autofluorescence intensity image of a T cell 
positioned in the observation zone; 

a processor in electronic communication with the cell 
sorter and the single-cell autofluorescence image sen­
sor; and 

a non-transitory computer-readable medium accessible to 
the processor and having stored thereon a trained 
convolutional neural network and instructions that, 
when executed by the processor, cause the processor to: 
a) receive the autofluorescence intensity image; 
b) optionally pre-process the autofluorescence intensity 

image to produce an adjusted autofluorescence inten­
sity image; 

c) input the autofluorescence intensity image or the 
adjusted autofluorescence intensity image into the 
trained convolutional neural network to produce an 
activation prediction for the T cell. 

2. The T cell classifying device of claim 1, wherein the 
autofluorescence intensity image is tuned to a wavelength 
corresponding to NAD(P)H fluorescence and/or FAD fluo­
rescence. 

3. The T cell classifying device of claim 1, wherein at 
least a portion of the trained convolutional neural network is 
initially pre-trained using images that are not fluorescence 
images of cells. 

4. The T cell classifying device of claim 1, wherein at 
least a portion of the trained convolutional neural network 
includes an image classification network at least partially 
pre-trained using optical images of objects that are visible to 
the naked human eye. 

5. The T cell classifying device of claim 1, wherein the 
trained convolutional neural network utilizes a spatial dis­
tribution of fluorescence intensity in producing the activa­
tion prediction. 

6. The T cell classifying device of claim 1, wherein the 
trained convolutional neural network is trained using only 
fluorescence intensity images as an input. 

7. The T cell classifying device of claim 1, wherein the 
trained convolutional neural network is not pre-trained or 
trained with a cell size attribute as an input and does not use 
the cell size attribute as an input to produce the activation 
prediction. 

8. The T cell classifying device of claim 1, wherein the 
trained convolutional neural network is not pre-trained or 
trained with cell morphological features as an input and does 
not use cell morphological features as an input to produce 
the activation prediction. 

9. The T cell classifying device of claim 1, wherein the 
trained convolutional neural network segments the autofluo­
rescence intensity image. 

10. The T cell classifying device of claim 1, wherein the 
trained convolutional neural network provides a classifica­
tion accuracy of at least 85%. 

11. The T cell classifying device of claim 1, wherein the 
instructions, when executed by the processor, cause the 
processor to: b) pre-process the autofluorescence intensity 
image to produce an adjusted autofluorescence intensity 
image; and c) input the adjusted autofluorescence intensity 
image into the trained convolutional neural network to 
produce the activation prediction for the T cell. 

12. The T cell classifying device of claim 11, wherein the 
pre-processing of step b) includes cropping the autofluores­
cence intensity image, padding the autofluorescence inten-
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sity image, rotating the autofluorescence intensity image, 
reflecting the autofluorescence intensity image, or a combi­
nation thereof. 

13. The T cell classifying device of claim 1, wherein the 
instructions, when executed by the processor, cause the 
processor to determine if the autofluorescence intensity 
image is an outlier and to skip steps b ), c) and d) if the 
autofluorescence intensity image is an outlier. 

14. A method of classifying T cells, the method compris­
ing: 

a) receiving a population of T cells having unknown 
activation status; 

b) acquiring an autofluorescence intensity image for each 
T cell of the population of T cells, thereby resulting in 
a set of autofluorescence intensity images; 

c) optionally pre-processing the autofluorescence inten­
sity images of the set of autofluorescence intensity 
images to provide a set of adjusted autofluorescence 
intensity images; and 

either: 
dl) physically isolating a first portion of the population of 

T cells from a second portion of the population of T 
cells based on an activation prediction, wherein each T 
cell of the population of T cells is placed into the first 
portion when the activation prediction exceeds a pre­
determined threshold and into the second portion when 
the activation prediction is less than or equal to the 
predetermined threshold; or 

d2) generating a report including the activation predic­
tion, the report optionally identifying a proportion of 
the population of T cells having the activation predic­
tion that exceeds the predetermined threshold, 
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wherein the activation prediction is computed using the 
autofluorescence intensity image from the set of auto­
fluorescence intensity images or the adjusted autofluo­
rescence intensity image from the set of adjusted auto­
fluorescence intensity images corresponding to a given 
T cell as an input for a trained convolutional neural 
network. 

15. The method of claim 14, wherein step c) is not 
optional and the activation prediction of step dl) or step d2) 
is computed using the adjusted autofluorescence intensity 
image. 

16. The method of claim 15, wherein the pre-processing 
of step c) includes cropping the autofluorescence intensity 
image, padding the autofluorescence intensity image, rotat­
ing the autofluorescence intensity image, reflecting the auto­
fluorescence intensity image, or a combination thereof. 

17. The method of claim 14, the method further compris­
ing determining if the autofluorescence intensity image is an 
outlier and skipping both step dl) and step d2) if the 
autofluorescence intensity image is an outlier. 

18. The method of claim 14, wherein the autofluorescence 
intensity image is tuned to a wavelength corresponding to 
NAD(P)H fluorescence and/or FAD fluorescence. 

19. The method of claim 14, wherein at least a portion of 
the trained convolutional neural network is initially pre­
trained using images that are not fluorescence images of 
cells. 

20. A method of administering activated T cells to a 
subject in need thereof, the method comprising: 

the method of claim 14; and 
introducing the first portion of the population ofT cells to 

the subject. 

* * * * * 


