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ABSTRACT 

A system and method for material decomposition of a single 
energy spectrum x-ray dataset includes accessing the single 
energy spectrum x-ray dataset, receiving a user-selection of 
a desired energy for decomposition, and decomposing the 
single energy spectrum x-ray dataset into material bases as 
a linear combination of energy dependence function of 
selected basis materials and the corresponding spatial depen
dence material bases images. 
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SYSTEM AND METHOD FOR SPECTRAL 
COMPUTED TOMOGRAPHY USING SINGLE 

POLYCHROMATIC X-RAY SPECTRUM 
ACQUISITION 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

[0001] NIA 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

[0002] NIA 

BACKGROUND 

[0003] The present disclosure relates to systems and meth
ods for medical image data preparation, acquisition, and/or 
reconstruction. More particularly, systems and method are 
provided for generating spectrally-resolved images from 
single polychromatic x-ray spectrum computed tomography 
(CT) data. 
[0004] In traditional computed tomography systems, an 
x-ray source projects a beam that is collimated to lie within 
an X-Y plane of a Cartesian coordinate system, termed the 
"imaging plane." The x-ray beam passes through the object 
being imaged, such as a medical patient, and impinges upon 
an array of radiation detectors. The intensity of the radiation 
received by each detector element is dependent upon the 
attenuation of the x-ray beam by the object and each detector 
element produces a separate electrical signal that relates to 
the attenuation of the beam. The linear attenuation coeffi
cient is the parameter that describes how the intensity of the 
x-rays changes when passing through an object. Often, the 
"mass attenuation coefficient" is utilized because it factors 
out the dependence of x-ray attenuations on the density of 
the material. The attenuation measurements from all the 
detectors are acquired to produce the transmission map of 
the object. 
[0005] The source and detector array in a conventional CT 
system are rotated on a gantry within the imaging plane and 
around the object so that the projection angle at which the 
x-ray beam intersects the object constantly changes. A group 
ofx-ray attenuation measurements from the detector array at 
a given angle is referred to as a "view" and a "scan" of the 
object. These views are collected to form a set of views 
made at different angular orientations during one or several 
revolutions of the x-ray source and detector. In a two 
dimensional (2D) scan, data are processed to construct an 
image that corresponds to a 2D slice taken through the 
object. The prevailing method for reconstructing an image 
from 2D data is referred to in the art as the filtered back
projection (FBP) technique. This process converts the 
attenuation measurements from a scan into integers called 
"CT numbers" or "Hounsfield units", which are used to 
control the brightness of a corresponding pixel on a display. 
[0006] The term "generation" is used in CT to describe 
successively commercially available types of CT systems 
utilizing different modes of scanning motion and x-ray 
detection. More specifically, each generation is character
ized by a particular geometry of scanning motion, scanning 
time, shape of the x-ray beam, and detector system. 
[0007] The first generation utilized a single pencil x-ray 
beam and a single scintillation crystal-photomultiplier tube 
detector for each tomographic slice. The second generation 
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of CT systems was developed to shorten the scanning times 
by gathering data more quickly. In these units a fan beam is 
utilized, which may include anywhere from three to 52 
individual collimated x-ray beams and an equal number of 
detectors. 

[0008] To obtain even faster scanning times it is necessary 
to eliminate the complex translational-rotational motion of 
the first two generations. Third generation scanners there
fore use a much wider, "divergent" fan beam. In fact, the 
angle of the beam may be wide enough to encompass most 
or all of an entire patient section without the need for a linear 
translation of the x-ray tube and detectors. As in the first two 
generations, the detectors, now in the form of a large array, 
are rigidly aligned relative to the x-ray beam, and there are 
no translational motions at all. The tube and detector array 
are synchronously rotated about the patient through an angle 
of 180-360 degrees. Thus, there is only one type of motion, 
allowing a much faster scanning time to be achieved. After 
one rotation, a single tomographic section is obtained. 

[0009] Fourth generation scanners also feature a divergent 
fan beam similar to the third generation CT system. How
ever, unlike in the other scanners, the detectors are not 
aligned rigidly relative to the x-ray beam. In this system only 
the x-ray tube rotates. A large ring of detectors are fixed in 
an outer circle in the scanning plane. The necessity of 
rotating only the tube, but not the detectors, allows faster 
scan time. Each x-ray projection view becomes a cone-beam 
shape instead of a fan-beam shape. 

[0010] In addition to this "generational" evolution, dual
energy x-ray imaging systems have been created to acquire 
images of the subject at two different x-ray energy spectra. 
This can be achieved with a conventional third or fourth 
generation CT system by alternately acquiring views using 
two different x-ray tube anode voltages. Alternatively, two 
separate x-ray sources with associated detector arrays may 
be operated simultaneously during a scan at two different 
x-ray energy spectra. In either case, two registered images of 
the subject are acquired at two prescribed energy spectra. As 
will be described, multi-energy acquisitions are clinically 
advantageous because it allows for resolution of spectral 
information and material decomposition. Unfortunately, it 
also subjects the patient to an appreciably increased radia
tion dose, which is clinically undesirable and substantially 
limits the viability of acquiring the information, even 
beyond the substantial cost of the hardware needed to 
acquire such data. 

[0011] The measurement of an x-ray transmission map 
attenuated by a subject at two distinct energy bands is often 
used to determine material-specific information of an 
imaged subject. This is based upon that fact that, in general, 
attenuation is a function of x-ray energy according to two 
attenuation mechanisms: photoelectric absorption and 
Compton scattering. These two mechanisms differ among 
materials of different atomic numbers. For this reason, 
measurements at two energies can be used to distinguish 
between two different basis materials. Dual energy x-ray 
techniques can be used, for example, to separate bony tissue 
from soft tissue in medical imaging, to quantitatively mea
sure bone density, to remove plaque from vascular images, 
and to distinguish between different types of kidney stones. 

[0012] To determine the effective atomic number and 
density of a material, the linear attenuation coefficient of the 



US 2021/0161487 Al 

material, µ(r,E), can be expressed as a linear combination of 
the mass attenuation coefficients of two so-called basis 
materials, as follows: 

µ(r, E) = (!::) (E) · PI (r) + (!::) (£) · p2(r); 
p ! p 2 

(1) 

[0013] where r is the spatial location at which a measure
ment is made, E is the energy at which a measurement is 
made, p,(r) is the decomposition coefficient of the i th basis 
material, and 

is the mass attenuation coefficient of the i th basis material. 

Thus, this method is commonly referred to as the basis
material method. In this method, CT measurements must be 
acquired using at least two energy levels (high and low) to 
solve the two unknowns p1(r) and pir). However, in prac
tice, the detected signals comprised of a weighted summa
tion over a wide range of x-ray energies due to the use of 
polychromatic x-ray sources in data acquisitions. The 
detected signals can be expressed as: 

(2) 

[0014] where Sk (E) is the x-ray spectrum which accounts 
for the number of x-ray photons for the k th x-ray energy, 
D(E) is the detector energy response, L1=Jdl·p 1(r), and 
L2=Jdl·pir), which represent the line integral of the densi
ties of the two basis materials, respectively. 

[0015] Accordingly, the basis-material method is a prac
tical method to employ in a clinical setting when using 
dual-energy spectral CT. The decomposition coefficients, 
p,(r), can be interpreted as components in a two-dimensional 
vector space, with the basis materials defining the basis 
vectors. Fundamentally, decomposition and the creation of 
spectral information requires at least two data sets acquired 
using at least two distinct energies. This constraint severely 
limits clinical availability of spectrally-resolved CT data 
because one must have access to the specialized hardware 
and software required to acquire the multiple, registered 
datasets and because the patient must be subjected to addi
tional radiation doses. 

[0016] Thus, it would be desirable to have systems and 
methods that provide the ability to perform material decom
position without the drawbacks of needing to purchase 
specialized hardware and subjecting the patient to extra 
doses of radiation. 

SUMMARY 

[0017] The present disclosure provides systems and meth
ods that allow material decomposition using one, single 
polychromatic x-ray spectrum CT acquisition, thereby 
avoiding additional radiation doses for the patient or the 
need for specialized hardware. In particular, the systems and 
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methods provided herein allow for basis material analysis 
from a single polychromatic x-ray spectral CT dataset. 

[0018] In accordance with one aspect of the disclosure, 
system is provided for performing material decomposition 
using a single spectrum x-ray dataset. The system includes 
a material basis generator configured to decompose the 
single spectrum CT dataset into at least two material basis 
images, an en-chroma generator configured to regularize the 
material basis generator by enforcing an effective energy 
constraint, and a sinogram generator configured to generate 
projection data for the at least two material basis images. 

[0019] In accordance with another aspect of the disclo
sure, a method is provided for performing a material decom
position using a single polychromatic spectrum x-ray CT 
dataset. The method includes accessing the single spectrum 
x-ray dataset and decomposing the single spectrum x-ray 
dataset into a linear combination of energy dependence 
function, biE), and corresponding expansion coefficients 

,aix\ wherein ~ is a selected spatial location in the 
single-energy x-ray dataset, Eis an x-ray energy in the single 
spectrum x-ray dataset at the selected spatial location, and 
k=l,2, ... , K, to an index that labels material basis that is 

selected for decomposition and wherein ai~)=~1akJei~), 

ei~) is an expanded image voxel basis function, where j 
E[l,N] and N=NxN~

2 
is a total number of image voxels in 

an image formed from the single-energy x-ray dataset. 

[0020] In accordance with one other aspect of the disclo
sure, a method is provided for performing a material decom
position of a single energy spectrum x-ray dataset. The 
method includes accessing the single energy spectrum x-ray 
dataset, receiving a user-selection of a desired energy for 
decomposition, and decomposing the single energy spec
trum x-ray dataset into a linear combination of energy 
dependence function using the desired energy for decom
position. 

[0021] In accordance with still another aspect of the 
disclosure, a medical imaging system is provided that 
includes an x-ray source configured to deliver x-rays to an 
imaging patient at a single, selected x-ray energy spectrum. 
The medical imaging system also includes a controller 
configured to control the x-ray source to acquire a single 
energy spectrum x-ray dataset from the imaging patient at 
the single, selected x-ray energy spectrum and a material 
decomposition image reconstruction system. The material 
decomposition image reconstruction system includes a 
material basis generator configured to decompose the single 
energy spectrum x-ray dataset into at least two material basis 
images, an en-chroma generator configured to regularize the 
material basis generator by enforcing an effective energy 
constraint, and a sinogram generator configured to generate 
projection data for the at least two material basis images. 

[0022] The foregoing and other aspects and advantages of 
the invention will appear from the following description. In 
the description, reference is made to the accompanying 
drawings which form a part hereof, and in which there is 
shown by way of illustration a preferred embodiment of the 
invention. Such embodiment does not necessarily represent 
the full scope of the invention, however, and reference is 
made therefore to the claims and herein for interpreting the 
scope of the invention. 
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BRIEF DESCRIPTION OF THE DRAWINGS 

[0023] FIG. 1 is a schematic diagram of an example 
computer system that can be configured to implement the 
methods described herein. 
[0024] FIG. 2A is a schematic diagram of a C-arm x-ray 
computed tomography (CT) imaging system configured in 
accordance with the present disclosure. 
[0025] FIG. 2B is a perspective view of an example of an 
x-ray computed tomography (CT) system. 
[0026] FIG. 2C is a block diagram of CT system, such as 
illustrated in FIG. 2B. 
[0027] FIG. 3 is a block diagram of an image processing 
and/or reconstruction architecture in accordance with the 
present disclosure that may be utilized with or within the 
systems of FIGS. l-2C and/or other imaging systems. 
[0028] FIG. 4 is a schematic diagram of one non-limiting 
example of a material basis generator system in accordance 
with the present disclosure. 
[0029] FIG. 5 is a schematic diagram of one non-limiting 
example of an En-Chroma generator system in accordance 
with the present disclosure. 
[0030] FIG. 6 is a schematic diagram of one non-limiting 
example of a sinogram generator system in accordance with 
the present disclosure. 

DETAILED DESCRIPTION 

[0031] Referring now to FIG. 1, a block diagram of an 
example system 10 is provided that can be configured to 
carry out techniques, methods, and processes accordance 
with the present disclosure. The system may include an 
imaging system 12 that is coupled to a computer system 14. 
The coupling of the imaging system 12 to the computer 
system 14 may be a direct or dedicated network connection, 
or may be through a broad network 16, such as an intranet 
or the Internet. 
[0032] The computer system 14 may be a workstation 
integrated with or separate from the medical imaging sys
tems 12 or a variety of other medical imaging systems, 
including, as non-limiting examples, computed tomography 
(CT) system, magnetic resonance imaging (MRI) systems, 
positron emission tomography (PET) systems, single photon 
emission computed tomography (SPECT) systems, and the 
like. Furthermore, the computer system 14 may be a work
station integrated within the medical imaging system 12 or 
may be a separate workstation or mobile device or comput
ing system. To this end, the following description of par
ticular hardware and configurations of the hardware of the 
example computer system 14 is for illustrative purposes. 
Some computer systems may have varied, combined, or 
different hardware configurations. 
[0033] Medical imaging data acquired by the medical 
imaging system 12 or other imaging system can be provided 
to the computer system 14, such as over the network 16 or 
from a storage device. To this end, the computer system 14 
may include a communications port or other input port 18 
for communication with the network 16 and system coupled 
thereto. Also, the computer system 14 may include memory 
and storage capacity 20 to store and access data or images. 
[0034] In some configuration, computer system 14 may 
include one or more processing systems or subsystems. That 
is, the computer system 14 may include one or more 
physical or virtual processors. As an example, the computer 
system 14 may include one or more of a digital signal 
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processor (DSP) 22, a microprocessor unit (MPU) 24, and a 
graphics processing unit (GPU) 26. If the computer system 
14 is integrated into the medical imaging system, a data 
acquisition unit 28 may be connected directly to the above
described processor(s) 22, 24, 26 over a communications 
bus 30, instead of communicating acquired data or images 
via the network 16. As an example, the communication bus 
30 can be a group of wires, or a hardwire used for switching 
data between the peripherals or between any component, 
such as the communication buses described above. 
[0035] The computer system 14 may also include or be 
connected to a display 32. To this end, the computer system 
14 may include a display controller 34. The display 32 may 
be a monitor connected to the computer system 14 or may 
be integrated with the computer system 14, such as in 
portable computers or mobile devices. 
[0036] Referring to FIG. 2A, one, non-limiting example of 
the imaging system 12 of FIG. 1 is provided. Specifically, in 
this example, a so-called "C-arm" x-ray imaging system 100 
is illustrated for use in accordance with some aspects of the 
present disclosure. Such an imaging system is generally 
designed for use in connection with interventional proce
dures. Such systems stand in contrast to, for example, 
traditional computed tomography (CT) systems 200, such as 
illustrated in FIG. 2B, which may also serve as an example 
of the imaging system 12 of FIG. 1. 
[0037] Referring again to FIG. 2A, the C-arm x-ray imag
ing system 100 includes a gantry 102 having a C-arm to 
which an x-ray source assembly 104 is coupled on one end 
and an x-ray detector array assembly 106 is coupled at its 
other end. The gantry 102 enables the x-ray source assembly 
104 and detector array assembly 106 to be oriented in 
different positions and angles around a subject 108, such as 
a medical patient or an object undergoing examination, 
which is positioned on a table 110. When the subject 108 is 
a medical patient, this configuration enables a physician 
access to the subject 108. 
[0038] The x-ray source assembly 104 includes at least 
one x-ray source that projects an x-ray beam, which may be 
a fan-beam or cone-beam of x-rays, towards the x-ray 
detector array assembly 106 on the opposite side of the 
gantry 102. The x-ray detector array assembly 106 includes 
at least one x-ray detector, which may include a number of 
x-ray detector elements. Examples of x-ray detectors that 
may be included in the x-ray detector array assembly 106 
include flat panel detectors, such as so-called "small flat 
panel" detectors. Such a detector panel allows the coverage 
of a field-of-view of approximately twelve centimeters. 
[0039] Together, the x-ray detector elements in the one or 
more x-ray detectors housed in the x-ray detector array 
assembly 106 sense the projected x-rays that pass through a 
subject 108. Each x-ray detector element produces an elec
trical signal that may represent the intensity of an impinging 
x-ray beam and, thus, the attenuation of the x-ray beam as 
it passes through the subject 108. In some configurations, 
each x-ray detector element is capable of counting the 
number of x-ray photons that impinge upon the detector. 
During a scan to acquire x-ray projection data, the gantry 
102 and the components mounted thereon rotate about an 
isocenter of the C-arm x-ray imaging system 100. 
[0040] The gantry 102 includes a support base 112. A 
support arm 114 is rotatably fastened to the support base 112 
for rotation about a horizontal pivot axis 116. The pivot axis 
116 is aligned with the centerline of the table 110 and the 
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support arm 114 extends radially outward from the pivot 
axis 116 to support a C-arm drive assembly 118 on its outer 
end. The C-arm gantry 102 is slidably fastened to the drive 
assembly 118 and is coupled to a drive motor (not shown) 
that slides the C-arm gantry 102 to revolve it about a C-axis, 
as indicated by arrows 120. The pivot axis 116 and C-axis 
are orthogonal and intersect each other at the isocenter of the 
C-arm x-ray imaging system 100, which is indicated by the 
black circle and is located above the table 110. 

[0041] The x-ray source assembly 104 and x-ray detector 
array assembly 106 extend radially inward to the pivot axis 
116 such that the center ray of this x-ray beam passes 
through the system isocenter. The center ray of the x-ray 
beam can thus be rotated about the system isocenter around 
either the pivot axis 116, the C-axis, or both during the 
acquisition of x-ray attenuation data from a subject 108 
placed on the table 110. During a scan, the x-ray source and 
detector array are rotated about the system isocenter to 
acquire x-ray attenuation projection data from different 
angles. By way of example, the detector array is able to 
acquire thirty projections, or views, per second. 

[0042] The C-arm x-ray imaging system 100 also includes 
an operator workstation 122, which typically includes a 
display 124; one or more input devices 126, such as a 
keyboard and mouse; and a computer processor 128. The 
computer processor 128 may include a commercially avail
able progrannnable machine running a commercially avail
able operating system. The operator workstation 122 pro
vides the operator interface that enables scanning control 
parameters to be entered into the C-arm x-ray imaging 
system 100. In general, the operator workstation 122 is in 
communication with a data store server 130 and an image 
reconstruction system 132. By way of example, the operator 
workstation 122, data store sever 130, and image recon
struction system 132 may be connected via a communication 
system 134, which may include any suitable network con
nection, whether wired, wireless, or a combination of both. 
As an example, the communication system 134 may include 
both proprietary or dedicated networks, as well as open 
networks, such as the Internet. 

[0043] The operator workstation 122 is also in communi
cation with a control system 136 that controls operation of 
the C-arm x-ray imaging system 100. The control system 
136 generally includes a C-axis controller 138, a pivot axis 
controller 140, an x-ray controller 142, a data acquisition 
system (DAS) 144, and a table controller 146. The x-ray 
controller 142 provides power and timing signals to the 
x-ray source assembly 104, and the table controller 146 is 
operable to move the table 110 to different positions and 
orientations within the C-arm x-ray imaging system 100. 

[0044] The rotation of the gantry 102 to which the x-ray 
source assembly104 and the x-ray detector array assembly 
106 are coupled is controlled by the C-axis controller 138 
and the pivot axis controller 140, which respectively control 
the rotation of the gantry 102 about the C-axis and the pivot 
axis 116. In response to motion commands from the operator 
workstation 122, the C-axis controller 138 and the pivot axis 
controller 140 provide power to motors in the C-arm x-ray 
imaging system 100 that produce the rotations about the 
C-axis and the pivot axis 116, respectively. For example, a 
program executed by the operator workstation 122 generates 
motion commands to the C-axis controller 138 and pivot 
axis controller 140 to move the gantry 102, and thereby the 
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x-ray source assembly 104 and x-ray detector array assem
bly 106, in a prescribed scan path. 
[0045] The DAS 144 samples data from the one or more 
x-ray detectors in the x-ray detector array assembly 106 and 
converts the data to digital signals for subsequent process
ing. For instance, digitized x-ray data is communicated from 
the DAS 144 to the data store server 130. The image 
reconstruction system 132 then retrieves the x-ray data from 
the data store server 130 and reconstructs an image there
from. The image reconstruction system 130 may include a 
commercially available computer processor, or may be a 
highly parallel computer architecture, such as a system that 
includes multiple-core processors and massively parallel, 
high-density computing devices. Optionally, image recon
struction can also be performed on the processor 128 in the 
operator workstation 122. Reconstructed images can then be 
communicated back to the data store server 130 for storage 
or to the operator workstation 122 to be displayed to the 
operator or clinician. 
[0046] The C-arm x-ray imaging system 100 may also 
include one or more networked workstations 148. By way of 
example, a networked workstation 148 may include a dis
play 150; one or more input devices 152, such as a keyboard 
and mouse; and a processor 154. The networked workstation 
148 may be located within the same facility as the operator 
workstation 122, or in a different facility, such as a different 
healthcare institution or clinic. 
[0047] The networked workstation 148, whether within 
the same facility or in a different facility as the operator 
wor0kstation 122, may gain remote access to the data store 
server 130, the image reconstruction system 132, or both via 
the communication system 134. Accordingly, multiple net
worked workstations 148 may have access to the data store 
server 130, the image reconstruction system 132, or both. In 
this manner, x-ray data, reconstructed images, or other data 
may be exchanged between the data store server 130, the 
image reconstruction system 132, and the networked work
stations 148, such that the data or images may be remotely 
processed by the networked workstation 148. This data may 
be exchanged in any suitable format, such as in accordance 
with the transmission control protocol (TCP), the Internet 
protocol (IP), or other known or suitable protocols. 
[0048] Similarly, referring to FIG. 2B and 2C, the imaging 
system 12 may include a traditional CT system 200, which 
includes a gantry 202 that forms a bore 204 extending 
therethrough. In particular, the gantry 202 has an x-ray 
source 206 mounted thereon that projects a fan-beam, or 
cone-beam, of x-rays toward a detector array 208 mounted 
on the opposite side of the bore 204 through the gantry 202 
to image the subject 210. 
[0049] The CT system 200 also includes an operator 
workstation 212, which typically includes a display 214; one 
or more input devices 216, such as a keyboard and mouse; 
and a computer processor 218. The computer processor 218 
may include a commercially available programmable 
machine running a commercially available operating sys
tem. The operator workstation 212 provides the operator 
interface that enables scanning control parameters to be 
entered into the CT system 200. In general, the operator 
workstation 212 is in communication with a data store server 
220 and an image reconstruction system 222 through a 
communication system or network 224. By way of example, 
the operator workstation 212, data store sever 220, and 
image reconstruction system 222 may be connected via a 
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communication system 224, which may include any suitable 
network connection, whether wired, wireless, or a combi
nation of both. As an example, the communication system 
224 may include both proprietary or dedicated networks, as 
well as open networks, such as the Internet. 
[0050] The operator workstation 212 is also in communi
cation with a control system 226 that controls operation of 
the CT system 200. The control system 226 generally 
includes an x-ray controller 228, a table controller 230, a 
gantry controller 231, and a data acquisition system (DAS) 
232. The x-ray controller 228 provides power and timing 
signals to the x-ray module(s) 234 to effectuate delivery of 
the x-ray beam 236. The table controller 230 controls a table 
or platform 238 to position the subject 210 with respect to 
the CT system 200. 
[0051] The DAS 232 samples data from the detector 208 
and converts the data to digital signals for subsequent 
processing. For instance, digitized x-ray data is communi
cated from the DAS 232 to the data store server 220. The 
image reconstruction system 222 then retrieves the x-ray 
data from the data store server 220 and reconstructs an 
image therefrom. The image reconstruction system 222 may 
include a commercially available computer processor, or 
may be a highly parallel computer architecture, such as a 
system that includes multiple-core processors and massively 
parallel, high-density computing devices. Optionally, image 
reconstruction can also be performed on the processor 218 
in the operator workstation 212. Reconstructed images can 
then be communicated back to the data store server 220 for 
storage or to the operator workstation 212 to be displayed to 
the operator or clinician. 
[0052] The CT system 200 may also include one or more 
networked workstations 240. By way of example, a net
worked workstation 240 may include a display 242; one or 
more input devices 244, such as a keyboard and mouse; and 
a processor 246. The networked workstation 240 may be 
located within the same facility as the operator workstation 
212, or in a different facility, such as a different healthcare 
institution or clinic. 
[0053] The networked workstation 240, whether within 
the same facility or in a different facility as the operator 
workstation 212, may gain remote access to the data store 
server 220 and/or the image reconstruction system 222 via 
the communication system 224. Accordingly, multiple net
worked workstations 240 may have access to the data store 
server 220 and/or image reconstruction system 222. In this 
manner, x-ray data, reconstructed images, or other data may 
be exchanged between the data store server 220, the image 
reconstruction system 222, and the networked workstations 
212, such that the data or images may be remotely processed 
by a networked workstation 240. This data may be 
exchanged in any suitable format, such as in accordance 
with the transmission control protocol (TCP), the Internet 
protocol (IP), or other known or suitable protocols. 
[0054] Using the above-described systems, the structural 
information of an image object is encoded into the x-ray 
beam when the x-ray photons penetrate through the image 
object and are attenuated via physical interaction processes. 
The value of the x-ray attenuation coefficients is dependent 
on both the material's elemental composition and the energy 
of the x-ray beam. The present disclosure recognizes that, 
due to the use of polychromatic x-ray sources in current 
medical CT imaging, x-ray photons with a wide range of 
energies are actually used to encode structural information 
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of the image object into the measured data. In other words, 
the spectral information for a given image object is already 
encoded in the measured sinogram data even if the mea
surements are performed with a single polychromatic x-ray 
spectrum. 
[0055] Even when the polychromatic nature of so-called 
"single energy spectrum" or "non-dual energy spectra" 
system was recognized, there was no mechanism to extract 
this spectral information for any use. To the contrary, the 
polychromatic nature of x-ray sources has generally been 
viewed as undesirable. As such, methods have been devised 
to suppress the spectral effects, for example, including 
algorithms to reduce beam hardening artifacts, which is one 
of the most pronounced spectral effects in conventional 
single energy spectrum CT imaging. 
[0056] Breaking from these understandings, the present 
disclosure provides systems and methods to decode spectral 
information in single energy spectrum or single-kV acqui
sitions when energy integration detectors are used and to 
create spectrally-resolved images, such as to differentiate 
objects with different elemental compositions. That is, the 
present disclosure breaks the historical understanding that 
CT-based material decomposition or spectral encoding 
requires at least two data sets acquired using at least two 
distinct energies. 
[0057] In conventional single energy spectrum CT acqui
sitions, an x-ray source emits a polychromatic spectrum of 
x-ray photons. When polychromatic x-rays pass through an 
image object, the value of x-ray attenuation coefficients 
depends on material composition and the photon energy. 
This physical process can be modeled by the polychromatic 
Beer-Lambert law: 

(3); 

[0058] where, y, denotes the line integral value for the i-th 
integral line, Emax denotes the maximal energy determined 
by the tube potential, Q(E) denotes the joint contribution of 
the energy distribution of entrance photons and energy 

response of the detector µ(x, E) denotes the energy depen
dent linear attenuation coefficients of interest, which can be 
represented as a line integral of the linear attenuation 
coefficient of image object along the i-th integral line. 
[0059] According to the mean value theorem in calculus, 
for any measured signal, there exists an effective energy, E,, 
which is somewhere between zero and the maximal energy 
Em=' such that: 

y,~-Jn [exp (-fzdl µ(:,', e;))[0Em=deQ(e)]~fzdl µ(:,', 
E;) ' ' (4); 

[0060] where, E,, denotes the beam effective energy for i-th 
x-ray path. Here, Q(E) is assumed to be normalized. 
[0061] Over the diagnostic x-ray energy range (20 keV to 
140 keV), photoelectric absorption and Compton scattering 
are the two dominant x-ray photon processes. Since inter
actions between material and x-ray photons are independent 
to the property of material, the energy dependent attenuation 
coefficient of interest can be decomposed as a linear com
bination of a limited number of products of spatially
dependent and energy-dependent components: 

(5); 

[0062] where, C 1 (x) denotes the spatial distribution of 

photoelectric coefficients, cix) denotes the spatial distri-
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bution of Compton coefficients, b 1 ( E,)denotes the energy
dependent photoelectric component, and bi E,)denotes the 
energy-dependent Compton component. 

[0063] Based on the linear signal model of equation 5, 
equation 4 can be simplified as: 

y,~f1,dlµ(x', e;)~f1,dl [c1(x')b 1(e)+c2 ( 

x')b2( E) ]~p 1,,bi E;)+P2,,b2( E;) (6); 

[0064] where, Pll2,, denotes the line integral value of cl/2( 

x) along i-th x-ray path. 

[0065] The effective energy for each x-ray beam, E,, can be 
defined by solving the following minimal-norm problem: 

i':; =argmin[p1,; b1(1o;)+p2,; b2(1o;)-y;]2. 
s; 

(7) 

[0066] The above optimization problem can be solved for 
each individual x-ray path to determine the effective energy 
for each measured datum. For each ray i, all possible 
E,E[0,Emaxl can be searched, for example, using a 0.01 keV 

interval. Each possible value of E,,Cllix) can be deter
mined from numerical simulation or experimental studies, 
where the ground truth material maps are provided. With 
this, the line integral along i-th x-ray path can be determined 
numerically. Thus, E, can be found, such that, the modeled 
line integral value with a specific value of E, provides the 
closest value to the measured line integral y,. 

[0067] PROBLEM FORMULATION 

[0068] Quantitative material basis imaging in CT imaging 
can be formulated under the maximum-a-posterior (MAP) 
framework. The basis of MAP image reconstruction meth
ods depends on the knowledge of photon statistics and prior 
information of ideal image representation. For an ideal 
photon counting detector derived in this model, the number 
of photons received by a given detector element i follows the 
Poisson statistics: 

-N -

P(X = N,) = N, 'exp(-N,) 
Ni! 

(8) 

[0069] where N, denotes the number of photons received 
at detector element i and N, denotes the mean photon number 
at the detector element i. The measurements at different 
detector elements can be assumed to be statistically inde
pendent and, thus, the joint probability of the measured data 
set is given by: 

(9). 

[0070] Again, using the Beer-Lambert law in x-ray attenu
ation in matter with a linear attenuation coefficient distribu-

tion function µ(x, E) at spatial location X and x-ray energy 
E, the mean photon number at i-th measurement is given by: 

(10); 

[0071] where Na, denotes the initial photon number at the 
i-th measurement before the photons enter the image object, 
Q( E) is a normalized energy spectral function of photons that 
included the impact of both the entrance x-ray energy 
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spectral distribution and the detector energy response func
tion, and Emax denotes the maximal energy determined by 
the tube potential. 
[0072] The energy dependent linear attenuation coefficient 
of the image object can be decomposed as a linear combi
nation of energy dependence function bk (E) and the corre-

sponding expansion coefficients aix), as follows: 

(11); 

[0073] where index k= 1,2, ... , K labels the material basis 
that is selected for the above decomposition. Since the 
energy dependence for each chosen material basis is known 

a priori, the linear attenuation coefficients µ(x, E) can be 
generated at any desired energy, provided that the spatial 

location dependent coefficients (i.e., { aix)}b/) are 
known. With this context in place, the present disclosure 
recognizes provides a basis for spectral CT imaging using a 
single-energy source by determining these spatial location 
dependent coefficients. 
[0074] To obtain the conventional voxel representation for 

the basis image, aix), the basis image can be expanded into 

the image voxel basis functions e/x) as follows: 

(12); 

[0075] where j E [1,N] and N=NxN~
2 

is the total number 
of image voxels. Using this voxel representation, the line 
integral of a material basis can be written as: 

f1dx' ak(x')<E.1ak,fz, dx' e)x')~L_r4,,ak,~[Aak]; (13); 

[0076] where the MxN matrix A E!R MxN denotes the 
system matrix andA,J the (i, j)-matrix element of A. ak is the 

digitized and vectorized material basis image aix). 
[0077] In x-ray CT, so-called sinogram projection data, y,, 
is obtained by the log-transform of the measured data N, and 
Na, as follows: 

(14) 

[0078] the corresponding statistical mean is defined as: 

- 1 No,; 
Yi= Il--=--. 

N; 

using the developed image digitized representation, one can 
readily obtain: 

y,:~f([Aa 1];, [Aa2];, ... , [Aak];, Q)~-In [L
0
Q(e) exp 

(-Lkbk(e) [Aak];)] (15). 

[0079] In other words, 

(16); 

[0080] where all of the image object specific information 
ah image object independent information (such as basis 
energy dependence function biE)), scanner and scanning 
protocol specific function Q(E), and the system matrix 
information are explicitly contained in y, as shown in equa
tion 15. Using the above mathematical formulation, a sta
tistical learning problem is presented that, as will be 
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described, can be solved using systems and methods referred 
to herein as the Deep-En-Chroma framework or system. 
[0081] STATISTICAL LEARNING PROBLEM FOR
MULATION 
[0082] More particularly, from a set of measured data {N1 , 

N2 , ... }, the joint probability function P(N)=P(N1 , N2 , .. 

. )=II, P(N,) described above is the limit of the known 
information. The desired image object basis image vectors ak 
are the statistical parameters, as set forth in equation 1. 
Therefore, the learning problem to be addressed by the 
Deep-En-Chroma system is to learn the statistical param
eters akfrom the observed data set {Ni, N2 , ... }. In practice, 
although the entrance x-ray spectrum from x-ray tube may 
be experimentally determined, it is hard to determine the 
energy response function at each detector element. As a 
result, it is hard to experimentally determine the energy 
dependent function Q(E). Therefore, for the statistical prob
lem formulation, a more ambitious learning objective is to 
also learn the energy dependent function Q(E) from the 
measured data set {Ni, N2 , ... }. 

[0083] In accordance with the present disclosure, a statis
tical inference method is provided to solve the above sta
tistical learning problem. According to one non-limiting 
example, a Bayes method may be used. In this case, the 
following posterior probability can be solved according to a 
Bayesian statistical inference principle: 

P(N I 0:1, 0:2, ... , lYK, fl) (17) 

P(a:1, 0:2, ... , lYK, fl) 

P(N) 

[0084] Namely, given the measured data set {N,, N2 , ... }, 

the statistical parameters 8={a1 , a2 , ... , aD Q} and the 
corresponding uncertainty in parameter estimation must be 
determined. To perform the above parameter estimation 
task, the prior P(a1 , a2 , ... , aK, Q) could be explicitly 
introduced and then the parameters 8 to maximize the 
posterior probability could be searched. Namely, the statis
tical parameters can be estimated via solving the following 
optimization problem: 

e~{ut, llz, . .. , UK, Q}~argmax {Zn P (Nia 1, 

a2, ... , aK, Q)+In P(a1, a2, . . aK, Q)} (18). 

[0085] Unfortunately, even for K=2, the above optimiza
tion problem is highly ill-posed as can be illustrated by 
considering the number of unknowns and available mea
surements. That is, there are KN unknowns but there are 
only M measurements and it is often the case KN>>M in 
practice. Some have tried to use empirical rules to reduce the 
instances where the problem cannot be solved. However, 
these empirical rules do not provide reliable and robust 
results that approach clinical needs. The major challenge 
encountered is the justification of prior and further con
straints used in the attempts to reduce the ill-posedness of 
the problem. 
[0086] DEEP-EN-CHROMA SYSTEM 
[0087] Instead, the present disclosure overcomes these 
shortcomings by designing an appropriate prior for solving 
the statistical parameter estimation problem using a super
vised learning scheme. Since the ultimate learning objective 
is to estimate 8={ a1 , a2 , ... , aD Q} from the measured data, 
the learning objective is to estimate the posterior probability 
distribution function P (a1 , a2 , ... , aK, QIN). 
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[0088] A deep neural network, which forms part of the 
Deep-En-Chroma system, has been designed and trained to 
learn the feed forward mapping :F : N >----> 8, such that, the 
output, Q (a1 , a2 , ... , aK, QIN; F ), of the Deep-En-Chroma 
can provide a good approximation for the desired posterior 
distribution P (ai, a2 , ... , aD QIN). 
[0089] As will be described with respect to FIG. 3, the 
Deep-En-Chroma system 300 can be represented as includ
ing three specific modules with specifically defined pur
poses. In FIG. 3, solid arrows show the forward path and 
dash arrows show the backpropagation path. 
[0090] The first module is the material basis generator 
302. The material basis generator 302 is designed to decom
pose an input color-blind CT image 304 from a single
energy CT data acquisition into two material basis images 
306, 308, such that the CT images at any given x-ray energy 
can be readily generated from the basis images and the 
corresponding energy dependent function as shown in equa
tion 11. That is, the material basis generator 302 creates a 
color-resolving capability that has always been lost to 
single-energy CT systems. 
[0091] The En-Chroma generator 310 is the second mod
ule. The En-Chroma generator 310 extracts the effective 
energy from each of the measured datum, which includes the 
material basis images 306, 308, an input measured sinogram 
312, and effective energy information 314. Note that, due to 
the polychromaticity ofx-ray spectrum function Q(E) used 
in data measurement, each measured data carries its own 
spectral information and this specific feature is characterized 
by the effective energy which will be further described. It is 
the difference in effective energy of the measured data that 
can be exploited to help differentiate two objects with same 
CT number. 
[0092] The third module is the sinogram generator 316. 
The sinogram generator 316 processes the sinogram data 
and ensures that the obtained material basis images 306, 308 
can indeed be used to generate the measured projection data 
using equation 15. 
[0093] In terms of the language used in game theory in 
economics, the three modules represent three players that 
form a grand coalition in the game. The players have their 
specific request in gain sharing as dictated by the corre
sponding loss function. The model training process can thus 
be viewed as the negotiation process among the players to 
seek for an agreement such that their contributions and gains 
in the game are settled with maximal degree of satisfaction. 
[0094] After the training of Deep-En-Chroma network is 
complete, it is the material basis generator that is used to 
generate two material basis images from a single color-blind 
CT images since the characteristic spectral information 
buried into the measured data has been extracted and 
encoded into the generative material basis generator module. 
[0095] More particularly, referring to FIG. 4, the material 
basis generator 302 'B takes a color-blind CT image with the 
dimension ofNxN as its input to generate K material basis 
images with the dimension of NxN via a 23-layer deep 
neural network. In this non-limiting example, there may be 
three types of convolutional layers used in the material basis 
generator 302. The first type 400, uses 3x3 convolutional 
kernels with stride 1 and dented as (Cony, 3x3, Sl) followed 
by a batch normalization operation (Bnorm) and the leaky 
rectified linear unit (LReLu) as its activation function. The 
second type 402, uses 3x3 convolutional kernels with stride 
2, i.e., (Cony, 3x3, S2), followed by Bnorm and LReLu. 
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Leaky parameter used in LReLu was set to be 0.2. The third 
type 404, uses lxl convolutional kernels with stride 1, i.e., 
(Cony, lxl, Sl), followed by linear function as activation. 

[0096] All layers were designed with their corresponding 
bias terms as well. Convolutional operations in all convo
lutional layers were performed with padding to maintain the 
dimensionality to be the same. Up-sampling layers 406 were 
designed with 2x2 kernel size (Up-sample 2x2) and bi-linear 
interpolation kernels were used in all up-sampling layers. 
Skip and concatenation connections 408 were used to facili
tate the training process through backpropagation. Kernels 
in convolutional layers were initialized as Glorot uniform 
distributed random numbers and the bias terms were initial
ized as zeros. In batch normalization layers, the momentum 
parameter was set to be 0.99 and the epsilon parameter was 
set to be 0.001. Beta terms were initialized as zeros and 
gamma terms were initialized as normal distributed random 
numbers with zero mean value and 0.01 standard deviation. 
Moving mean terms were initialized as zeros and moving 
variance terms were initialized as ones. Mean centering and 
variance scaling were used for all batch normalization 
layers. In this non-limiting example of a detailed design of 
the material basis generator 302, The number below each 
output tensor denotes the number of channels of the output 
tensor. 

[0097] Referring now to FIGS. 3 and 5, one non-limiting 
example of an implementation for the En-Chroma generator 
310 ( C) takes the estimated line integrals of the two 
material basis images from the material basis generator 306, 
308 and the measured sinogram 312 as its inputs to generate 
the effective energy distribution via a 4-layer deep neural 
network including a frozen forward projection layer 500 
followed by three trainable convolutional layers 502, 504, 
506. In the illustrated configuration, the En-Chroma genera
tor 310 predicts the effective energy for each measured 
datum individually. The first convolutional layer 502 
encodes the input with dimension of 3xl to a feature space 
with the dimension of 128x256 along two channel direc
tions. The second convolutional layer 504 transforms the 
hidden layer activations to another feature space with the 
dimension of 256x512. The third convolutional layer 506 
transforms the hidden layer outputs to the feature space of 
effective energy with dimension of lxl. After each convo
lutional layer, hyperbolic tangent function (tanh) was used 
as its activation function. Weights in convolutional layers 
were initialized as Glorot uniform distributed random num
bers and bias terms were initialized as zeros. During the 
training process, the predicted effective energy from esti
mated material basis maps (the output of module 1) was 
compared against to the ground true effective energy gen
erated from true spectral CT data acquisitions. The differ
ence between the predicted effective energy and ground true 
effective energy was backpropagated to regularize parameter 
updates in the material basis generator. 

[0098] In conventional single-kV CT acquisitions, an 
x-ray source emits a polychromatic spectrum of x-ray pho
tons. When polychromatic x-rays pass through an image 
object, the value ofx-ray attenuation coefficients depends on 
material composition and the photon energy. This physical 
process can be modeled by the polychromatic Beer-Lambert 
law described above in equation 11. 
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[0099] According to the mean value theorem for definite 
integrals, Vi, there exists an energy E,E[0, Emaxl, such that: 

y,~-Jn[exp (-fz,dlµ(x, E;)) Jlm= deQ(e)]~fz,dlµ(x,e), (19); 

[0100] where, E, denotes the beam effective energy for i -th 
x-ray path nd Emaxdenotes the maximal energy determined 
by the tube potential. 
[0101] As described above, the energy dependent attenu
ation coefficient of the image object can be decomposed as 
linear attenuation of limited number of products of spatial-

dependent and energy-dependent components: µ(x, 

E)=~0ix)biE). Based on this linear signal model, the 
above formulae can be simplified as: 

(20); 

[0102] where, Pki denotes the line integral value ofaix) 
along i-th x-ray path. Therefore, the effective energy for 
measured projection data can be estimated by solving the 
following minimal-norm problem: 

(21). 

[0103] The above optimization problem can be solved for 
each individual x-ray path to determine the effective energy 
for each measured datum. For each ray i, we search for all 
possible E, E[0, Emaxl on a 0.01 keV interval. For each 

possible value of E,, { aix)} are known from numerical 
simulation or experimental studies where the ground truth 
material maps are provided from dual-energy data acquisi
tion. Once this is accomplished, the line integral along i-th 

x-ray path can be determined numerically. Thus, E, can be 
found, such that, the modeled line integral value with a 
specific value of E, provides the closest value to the mea
sured line integral y,. For example, the effective energy 
calculation method can be used to generate ground true 
effective energy distributions for training the En-Chroma 
generator 310. 
[0104] Referring to FIGS. 3 and 6, the sinogram generator 
316 ( S) takes the estimated K material basis images 306, 
308 with dimension of NxN as its input to generate the 
estimated polychromatic sinogram with the dimension of 
NcxNv via a 4-layer deep neural network 600. The first layer 
602 in the sinogram generator 316 performs the forward 
projection for each output channel of the material basis 
generator 302 individually. The second 604 and the third 
layer 606 generate a series of spectral-resolved monochro
matic line integrals from the output o0f the first layer 602. 
The final convolutional layer 608, with lxl kernel size and 
linear activation, learns a linear combination to generate the 
estimated polychromatic sinogram. In the final convolu
tional layer, the learned weights approximate the energy 
response of the experimental data acquisition including 
x-ray tube spectrum and detector energy responses. The 
sinogram generator aims to ensures the predicted polychro
matic sinogram approximates measured projection data. 
[0105] DEEP-EN-CHROMA SYSTEM OPERATION 
[0106] With this basic framework for the modules of the 
Deep-En-Chroma system 300, the interaction of the modules 
and function of the overall system can be described. The 
desired mapping ( :F) to generate material basis maps 
( { ak} k~bi 1 from input CT image and measured sinogram is 
approximated by a deep neural network representation by a 
multi-layer composition of a series of nonlinear mappings, 
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i.e., a=F (z),,,F (z)=h(L) 
0 

h(L-l)o ... o h(llo ... hC 1l(z). Here 
I E{ 1,2, ... ,L} denotes the layer index and L denotes the 
total number of layers and "o" denotes the function com
position. To simplify the notation, a compact notation with
out subscript indices is introduced to denote the input-output 
relationship at the I-th layer as zC1l=h(l-ll(z(l-ll). 

[0107] Using the mean least square error as the goodness 
metric, a loss function can be designed to optimize for the 
unknown parameters ( 'B, C, S) by solving the following 
optimization problem: 

(22) 

[0108] where, i E{l,2, ... , NJ denotes the index of 
training samples, Ns denotes the total number of training 
samples, µ·lb denotes the L2-norm of a given vector, ll·IIF 
denotes the Frobenius norm of a given matrix, a=[a1 , a2 , .. 

. , aK] denotes the compact notation that concatenates each 
basis channel of the ground true material basis map, x 
denotes the input CT image, and y denotes the input mea
sured sinogram data. Three hyperparameters A1 , A2 , and A3 

control the relative weights of the effective energy fidelity 
term (the second term in the above loss function) and the 
data fidelity term (the third term in the above loss function). 
By empirically selecting the value of A2 and A3 , encoded 
information in image domain, measured data domain and 
hidden spectral information (represented by effective energy 
of each measured datum) are jointly utilized to exact the 
needed spectral information from a conventional single-kV 
CT acquisition. 

[0109] To perform the backpropagation procedure for 
optimizing the model parameters, the gradients in each layer 
can be defined. Most of the gradient computation is similar 
to other well-known convolutional neural networks. How
ever, some new operations are needed for the forward 
projection operation used in the material basis generator 302 
and the En-Chroma generator 310 (the L24 layer). 

[0110] Let .£ denote the loss function and eC1l denote the 
unknowns to be learned at the I-th layer. The associated 
gradient 

can De outainea tnrougn tne backpropagation as: 

8£. 8zC1+11 8zu+21 8zCLl 8£. (23) 

80(/) 80(/) 8zu+11 · · · 8z(L-11 8z(Ll · 

[0111] Here three types of gradients are needed: 

8zC1+1) 8hU\zC0) (24) 

80(/) 80(/l 
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-continued 
8zC1+2) 8h(/+l\z(/+l)) 

8zU+11 8zU+11 

8£. T 8£. 

8 ze2,1 = A 8 ze241 · 

[0112] The first two gradients can be calculated using the 
standard numerical routines, such as those provided by 
Tensorflow. In equation 24, compared to the matrix A, which 
performs the forward projection at the output of L23 in the 
feedforward path, its gradient, AT performs the direct back
ward projection of the derivative of loss function with 
respect to the output of L24 in the backpropagation path to 
form the gradient at the L24. Here A denotes the forward 
projection operation and AT denotes the backward projection 
operation. Both A and AT can be implemented in compute 
unified device architecture (CUDA) and then incorporated 
as custom operations into numerical routines for calculating 
the first two gradients, such as using Tensorflow. 
[0113] The En-Chroma generator 310 has an impact on the 
material basis generator 302. Due to the use of polychro
matic x-ray sources in current medical CT imaging, the 
spectral information of the image object has already been 
encoded in the measured data even if the measurements are 
performed with a single polychromatic x-ray spectrum. In 
the past, it was not known how to extract this spectral 
information to be used for good, and in fact, many methods 
have been designed to discard the encoded spectral infor
mation. Due to the variation of effective energy carried by 
each measured datum, the acquired data set demonstrates 
spectral inconsistency and this spectral inconsistency is the 
root cause of beam hardening image artifacts in the recon
structed CT images. Therefore, the efforts to reduce beam 
hardening in the past is essentially to discard the encoded 
spectral information in measured data. 

[0114] To illustrate how the trained En-Chroma generator 
310 actually improves the material decomposition accuracy, 
one can observe follow the data path of FIG. 3 forward from 
the material basis generator 302. If the performance of the 
material basis generator 302 is suboptimal, it will predict a 
pair of inaccurate basis images 306, 308. With a pair of 
inaccurate material basis pairs 306, 308 (Loss #1) sent to the 
En-Chroma generator 310, the predicted effective energy 
map would also be inaccurate (Loss #2), compared to the 
ground true effective energy map generated from dual
energy data acquisition. This difference is reflected in its 
contribution to the final training loss. During the backpropa
gation process, the L2 norm difference between predicted 
and ground true effective energy maps is propagated through 
the backpropagation path of the En-Chroma generator 310 to 
fine-tune the learnable parameters in material basis genera
tor 302. This backpropagation process is accomplished by 
using the gradient at the frozen forward projection layer 
(L24) that has been defined, for example, manually. In 
summary, the functionality of the En-Chroma generator 310 
is to regularize the process of material basis generation by 
the material basis generator 302 by enforcing the effective 
energy constraint. 
[0115] The sinogram generator 316 also has an impact on 
the material basis generator 302. The functionality of the 
sinogram generator 316 can be understood from two differ
ent aspects. On the one hand, when the performance of the 
material basis generator 302 is suboptimal, then the material 
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basis generator 302 predicts a pair of inaccurate basis maps 
306, 308 (Loss #1). The pair of inaccurate material basis 
pairs 306, 308 will then be sent to the sinogram generator 
316 to produce inaccurate sinogram data when it is com
pared to the measured sinogram (Loss #2). In the error 
backpropagation process, the L2 norm difference between 
predicted and measured sinogram is propagated through the 
backpropagation path of the sinogram generator 316 to tune 
the leamable parameters in material basis generator 302. 
[0116] On the other hand, when the performance of the 
material basis generator 302 is nearly optimal (Loss #1 is 
minimal) and, thus, the predicted material basis maps 306, 
308 are nearly accurate, the difference between predicted 
and measured sinogram (Loss #3) may still be significant 
because the sinogram generator 316 may have learned an 
inaccurate energy response function. As previously 
explained, learnable parameters in the last layer in the 
sinogram generator (i.e. the L30) approximate the joint 
impact of entrance x-ray spectrum and detector energy 
response function. If the learned joint energy response 
deviates from that used in numerical simulation or experi
mental data acquisition, the difference between predicted 
and measured sinogram (Loss #3) may still be significant. 
During the backpropagation process, the L2 norm difference 
between predicted and measured sinogram is propagated 
through the backpropagation path of the sinogram generator 
316 to fine-tune the learnable parameters in L30. In the end, 
the learned joint energy response approximates that used 
experiment data acquisitions. 
[0117] TRAINING 
[0118] To configure the Deep-En-Chroma system 300 to 
operate at best performance, a variety of non-limiting train
ing strategies were developed for the system. The acquired 
training data set included basis images, effective energy for 
each measured projection datum, and the sinogram projec
tion data. These prepared training data were used to train the 
entire Deep-En-Chroma system 300 in two stages: 
[0119] Stage 1: Pretraining of three individual modules 
[0120] To pretrain the material basis generator 302, the 
training loss was obtained by setting A_l=l,A_2=A_3=0 in 
equation 9. Similarly, to pretrain the En-Chroma generator 
310, the training loss was obtained by setting A_2=1,A_l =A_ 
3=0 in equation 9. 
[0121] Stage 2: End-to-end training all three modules 
together 
[0122] Following the pre-training of each individual mod
ule, an end-to-end global training is performed using the 
above two inputs (Sinogram and DICOM CT image) and all 
three outputs (basis image output, effective energy output, 
and sinogram output) in a weighted combination of the three 
training loss functions. In the global end-to-end training 
phase, an empirical two-step alternating training strategy 
was been employed. Within each training epoch, the entire 
training dataset was randomly distributed to 500 mini
batches. For each given mini-batch, one of the two hyper
parameters in the loss function (A_2 or A_3) was set to 0. To 
be more specific, at the current mini-batch, the model was 
trained only with material bases loss and effective energy 
loss, namely, A_l=l,A_2=0.1,A_3=0 were used in this mini
batch. For the next adjacent mini-batch, the model was 
trained only with material bases loss and data fidelity loss, 
namely, A_l=l,A_2=0,A_3=0.05 were used. After all mini
batches were used to minimize the loss function, the same 
two-step alternating strategy is used for the next epoch. 
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[0123] The stochastic gradient descent with momentum 
was used as the optimizer in this training. Leaming rate (ri= 
[ 10] '(-3)) and momentum (~=0.9) were empirically 
selected. Although there was no theoretical guarantee of 
convergence for the empirical two-step alternating training 
strategy, empirical convergence was confirmed by monitor
ing the change of loss function value with respect to each 
epoch and showed that the two-step alternating strategy 
decreases the loss function value quasi-monotonically, and 
indicates the empirical convergence of the numerical pro
cess. 

[0124] Pretraining of the Deep-En-Chroma system 300, 
especially for pretraining of the En-Chroma generator 310 
utilized high quality training samples for effective energy 
distribution. Clinical CT images-based numerical simula
tions were conducted to provide high quality training 
samples and the needed anatomical complexity for the 
pretraining phase. In the numerical simulation data acqui
sition, clinical CT image volumes, each containing 150-250 
image slices, were used to generate simulation training data 
by using a standard ray-driven numerical forward projection 
procedure in a fan-beam geometry. The geometrical param
eters for the numerical simulation are the same as that used 
in a clinical 64-slice multi-detector row CT scanner. To 
make the simulated dataset as realistic as possible (i.e. with 
realistic anatomical structures) and to facilitate for further 
generalization to human subjects with complex anatomy, a 
density-scaling-based simulation method is used in numeri
cal simulations. The method contained the following steps. 

[0125] From clinical contrast-enhanced CT images, a total 
of 10,000 pairs of representative calcium and iodine con
centration levels (Cea and CI) were predetermined. Iodine
containing organs such as the coronary arteries and cardiac 
chambers are assumed to be composed of both water and the 
pre-selected iodine solution with concentration CI" Bony 
structures are assumed to be composed of both water and the 
pre-selected calcium solution with concentration Cea· The 
mass attenuation coefficient of an iodine-containing pixel 
can be represented as follows: 

(25) 

[0126] where f denotes the weight fraction. The mass 
attenuation of each calcium-containing pixel can be modeled 
using the similar method. For clarity, a step-by-step proce
dure to generate the numerical simulation data is presented 
as follows: 

[0127] 1) An image-based segmentation technique can be 
used to segment each clinical CT image into a water mask 
( denoted as Mw), an iodine solution mask ( denoted as M,odI), 
a calcium solution mask ( denoted as MeJ, and an air mask 
(denoted as Ma,r). 

[0128] 2) For a given CT system and x-ray spectrum, the 
effective beam energy E was estimated via a calibration 
process. 

[0129] 3) The CT image with units of HU was converted 
----► ----;, 

to µ( x , E ) using 
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[0130] 4) For a CT image pixel falling into the i th material 
mask, the density of the tissue in that pixel was estimated 
using 

where 

"' - µ(x, ,:) P\A)-(µ) - , 
- (.s) 
P; 

is the mass attenuation coefficient of the i th material at 
energy level E. 

[0131] 5) The linear attenuation coefficient of the pixel at 
an arbitrary energy level E was estimated using 

The process in 1 )-5) was repeated for all pixels in the image. 

[0132] 6) Monoenergetic sinograms at different E (40 to 
140 keV) were generated via numerical forward projection. 

[0133] 7) A polychromatic sinogram was synthesized from 
the monoenergetic sinograms and the polychromatic x-ray 
spectrum. 

[0134] To collect data for the training of Deep-En-Chroma 
system 300, anthropomorphic phantoms were scanned that 
included (i) a head phantom (PH-3 ACS Head, Kyoto 
Kagaku, Japan), (ii) a multipurpose anthropomorphic phan
tom (Lungman, Kyoto Kagaku, Japan); (iii) an abdominal 
CT phantom with a custom tumor insert that contains 
multiple simulated liver lesions (CIRS Triple Modality 3D 
Abdominal Phantom, Norfolk, Va.); and (iv) the Gammex 
spectral CT phantom (Gammex, Middleton, Wis.) that pro
vides users with the ability to perform quality assurance for 
spectral CT analysis of iodine and calcium. Training data 
acquisitions were performed using the GE 64-slice Discov
ery CT 750 HD. All phantoms were scanned at 80 kV, 100 
kV, 120 kV, and 140 kV to acquire the training data. From 
the acquired data, the following training labels was gener
ated: (i) material-basis maps for (water, bone) and (water, 
iodine) and (ii) sinogram data for each given scan have been 
obtained using a proprietary software toolkit provided by 
GE Healthcare. The CT images from the 80 and 140 kV 
scans were paired to perform image-domain material 
decomposition to generate the needed material basis training 
labels. A total of 5,000 CT scans were performed to acquire 
more than 1.0 million data pairs to train the network and test 
its performance. For each phantom, 90% of the acquired 
data has been used for training purposes and 10% of the data 
was allocated as test data to ensure that there is no overfitting 
in the training process of Deep-En-Chroma system 300. 
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[0135] The training data sets were acquired using the GE 
64-slice Discovery CT750 HD scanner. This CT system is 
equipped with the GE fast kV switching technique known as 
Gemstone Spectral Imaging (GSI) (GE Healthcare, Wis.). 
All phantoms were scanned at 80 kV, 100 kV, 120 kV, and 
140 kV at a variety of exposure levels ranging from 10 mAs 
to 500 mAs to acquire training data. From the acquired data, 
the following training labels have been generated: (1) mate
rial basis images (water, calcium) and (water, iodine). The 
images from the 80 kV scan and the 140 kV scan were paired 
to perform image-domain material decomposition to gener
ate basis images for each scanned phantom in order to obtain 
the training label basis images. (2) Label images for the 
effective energy feature "En-Chroma Generator" module. 
From the ground truth basis images, a forward projection 
operation is performed to generate the corresponding line 
integrals for each given ray. This step yields two line 
integrals, p1 , and p2 , for the two corresponding material 
basis image; respecti~ely. The nonlinear optimization prob
lem (equation 11) was then solved to obtain the effective 
energy, E,, and used as the training label for the "En
Chroma" module in the Deep-En-Chroma system. (3) Sino
gram data, i.e. y, values, for each given scan were obtained. 
The same procedures were performed to generate training 
datasets for numerical simulated datasets. 
[0136] Thus, it was shown that an implementation of a 
Deep-En-Chroma system could be designed and trained to 
achieve spectral CT imaging using an energy integration 
detector and a single-energy acquisition. Both physical 
phantom studies and human subject studies demonstrate the 
clinical feasibility of generating quantitative iodine maps to 
detect lung perfusion defect for pulmonary embolism diag
nosis. 
[0137] The present invention has been described in terms 
of one or more preferred embodiments, and it should be 
appreciated that many equivalents, alternatives, variations, 
and modifications, aside from those expressly stated, are 
possible and within the scope of the invention. 

1. A system for performing material decomposition using 
a single energy spectrum x-ray dataset, the system compris
ing: 

a material basis generator configured to decompose the 
single energy spectrum x-ray dataset into at least two 
material basis images; 

an en-chroma generator configured to regularize the mate
rial basis generator by enforcing an effective energy 
constraint; and 

a sinogram generator configured to generate projection 
data from the at least two material basis images. 

2. The system of claim 1 wherein the en-chroma generator 
is configured to extract the effective energy from each datum 
in the single energy spectrum x-ray dataset, including the at 
least two material basis images. 

3. The system of claim 1 wherein the material basis 
generator is configured to extract energy dependent linear 
attenuation coefficients for each image object in the single 
energy spectrum dataset to decompose the single energy 
spectrum dataset as a linear combination of energy depen
dence function biE), and corresponding expansion coeffi-

cients aix), wherein X is a selected spatial location, E is an 
x-ray energy in the single energy spectrum x-ray dataset at 
the selected spatial location, and k=l,2, ... ,K, to serve as 
an index that labels material basis that is selected for 
decomposition. 
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4. The system of claim 3 wherein the material basis 
generator is configured to decompose the single energy 
spectrum x-ray dataset into linear attenuation coefficients,µ( 

--;Z, E), as follows: 

µ(x, e)~":f.Jflk(x)bk(E). 

5. The system of claim 1 wherein at least one of the 
material basis generator or the en-chroma generator are 
formed of a learning network. 

6. The system of claim 1 wherein the single energy 
spectrum x-ray dataset is a single energy spectrum computed 
tomography (CT) dataset. 

7. The system of claim 1 wherein the material basis 
generator is configured to extract energy dependent linear 
attenuation coefficients for each image object in the single 
energy spectrum x-ray dataset to decompose the single 
energy spectrum x-ray dataset as a linear combination of 
energy dependence function biE), and corresponding 

expansion coefficients ai--;Z), wherein --;Z is a selected spatial 
location, E is an x-ray energy in the single energy spectrum 
x-ray dataset at the selected spatial location, and k=l,2, ... 
, K, to serve as an index that labels material basis that is 
selected for decomposition. 

8. The system of claim 7 wherein the material basis 
generator is configured to generate material basis images ai 

--;Z) from the single energy spectrum x-ray dataset. 
9. The system of claim 8 wherein the output of material 

basis generator is configured to generate energy-resolved 

spectral CT images, as follows: µ(--;Z, E)=~0k (--;Z)biE). 
10. A method for performing a material decomposition 

using a single energy spectrum x-ray dataset, the method 
comprising: 

accessing the single energy spectrum x-ray dataset; 
decomposing the single energy spectrum x-ray dataset 

into a linear combination of energy dependence func
tion, biE), and corresponding expansion coefficients, 

ai--;Z); 

wherein --;Z is a selected spatial location in the single 
energy spectrum x-ray dataset, E is an x-ray energy in 
the single energy spectrum x-ray dataset at the selected 
spatial location, and k=l,2, ... , K, to an index that 
labels material basis that is selected for decomposition; 

wherein ai--;Z)=~1ak,1e)--;Z), e)--;Z) is an expanded image 
voxel basis function, where j E[l ,N] and N=NxNyNz is 
a total number of image voxels in an image formed 
from the single energy spectrum x-ray dataset. 

11. The method of claim 10 wherein decomposing the 
single energy spectrum x-ray dataset includes subjecting the 
single energy spectrum x-ray dataset to a multi-module 
system. 

12. The method of claim 11 wherein the multi-module 
system includes: 

a material basis generator configured to decompose the 
single energy spectrum x-ray dataset into at least two 
material basis images; 

an en-chroma generator configured to regularize the mate
rial basis generator by enforcing an effective energy 
constraint; and 

a sinogram generator configured to generate projection 
data from the at least two material basis images. 
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13. The method of claim 10 further comprising receiving 
a user-selection of a desired energy for decomposition and 
wherein the decomposing is performed using the desired 
energy for decomposition. 

14. A method for performing a material decomposition of 
a single energy spectrum x-ray dataset, the method com
prising: 

accessing the single energy spectrum x-ray dataset; 

receiving a user-selection of a desired energy for decom
position; and 

decomposing the single energy spectrum x-ray dataset 
into a linear combination of energy dependence func
tion using the desired energy for decomposition. 

15. The method of claim 14 further comprising generating 
a set of images specific to the desired energy for decompo
sition from the single energy spectrum x-ray dataset. 

16. The method of claim 14 wherein decomposing 
includes decomposing into a linear combination of energy 
dependence function, biE), and corresponding expansion 

coefficients, ai--;Z), wherein --;Z is a selected spatial location 
in the single energy spectrum x-ray dataset, E is an x-ray 
energy in the single energy spectrum x-ray dataset at the 
selected spatial location, and k=l,2, ... , K, to an index that 
labels material basis that is selected for decomposition, and 

wherein ai--;Z)=~1ak,1e)--;Z), e)--;Z) is an expanded image 
voxel basis function, where j E[l,N] and N=NxNyNz is a 
total number of image voxels in an image formed from the 
single energy spectrum x-ray dataset. 

17. The method of claim 14 wherein decomposing the 
single energy spectrum x-ray dataset includes subjecting the 
single energy spectrum x-ray dataset to a multi-module 
system. 

18. The method of claim 17 wherein the multi-module 
system includes: 

a material basis generator configured to decompose the 
single energy spectrum x-ray dataset into at least two 
material basis images; 

an en-chroma generator configured to regularize the mate
rial basis generator by enforcing an effective energy 
constraint; and 

a sinogram generator configured to generate projection 
data from the at least two material basis images. 

19. The method of claim 18 wherein the material basis 
generator is configured to extract energy dependent linear 
attenuation coefficients for each image object in the single 
energy spectrum x-ray dataset to decompose the single 
energy spectrum x-ray dataset as a linear combination of 
energy dependence function biE), and corresponding 

expansion coefficients ai--;Z), wherein --;Z is a selected spatial 
location, E is an x-ray energy in the single energy spectrum 
x-ray dataset at the selected spatial location, and k=l,2, ... 
, K, to serve as an index that labels material basis that is 
selected for decomposition. 

20. The method of claim 19 wherein the material basis 
generator is configured to generate material basis images ai 

--;Z) from the single energy spectrum x-ray dataset. 

21. The method of claim 20 wherein the output of material 
basis generator is configured to generate energy-resolved 

spectral CT images, as follows: µ(--;Z, E)=~1c3i--;Z)biE). 
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22. A medical imaging system comprising: 
an x-ray source configured to deliver x-rays to an imaging 

patient at a single, selected x-ray energy spectrum; 
a controller configured to control the x-ray source to 

acquire a single energy spectrum x-ray dataset from the 
imaging patient at the single, selected x-ray energy 
spectrum; 

a material decomposition image reconstruction system 
comprising: 
a material basis generator configured to decompose the 

single energy spectrum x-ray dataset into at least two 
material basis images; 

an en-chroma generator configured to regularize the 
material basis generator by enforcing an effective 
energy constraint; and 

a sinogram generator configured to generate projection 
data from the at least two material basis images. 

23. The system of claim 22 wherein the en-chroma 
generator is configured to extract the effective energy from 
each datum in the single energy spectrum x-ray dataset, 
including the at least two material basis images. 

24. The system of claim 22 wherein the material basis 
generator is configured to extract energy dependent linear 
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attenuation coefficients for each image object in the single 
energy spectrum x-ray dataset to decompose the single 
energy spectrum x-ray dataset as a linear combination of 
energy dependence function biE), and corresponding 

expansion coefficients aix), wherein X is a selected spatial 
location, E is an x-ray energy in the single energy spectrum 
x-ray dataset at the selected spatial location, and k=l,2, ... 
, K, to serve as an index that labels material basis that is 
selected for decomposition. 

25. The system of claim 24 wherein the material basis 
generator is configured to generate material basis images ai 

x) from the single energy spectrum x-ray dataset. 
26. The system of claim 25 wherein the output of material 

basis generator is configured to generate energy-resolved 

spectral CT images, as follows: µ(x, E)=~0ix)biE). 
27. The system of claim 26 wherein the energy depen

dence functions biE) are specified by the materials used in 
material basis generator. 

28. The system of claim 22 wherein at least one of the 
material basis generator or the en-chroma generator are 
formed of a learning network. 

* * * * * 




