
1111111111111111 IIIIII IIIII 11111111111111111111111111111111111 IIIII IIIII IIIIII IIII 11111111
US 20230089349Al

(19) United States
02) Patent Application Publication

Sohi et al.
(10) Pub. No.: US 2023/0089349 Al
(43) Pub. Date: Mar. 23, 2023

(54) COMPUTER ARCHITECTURE WITH
REGISTER NAME ADDRESSING AND
DYNAMIC LOAD SIZE ADJUSTMENT

(71) Applicant: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(72) Inventors: Gurindar Singh Sohi, Madison, WI
(US); Vanshika Baoni, Santa Clara, CA
(US); Adarsh Mittal, Santa Clara, CA
(US)

(21) Appl. No.: 17/480,879

(22) Filed:

(51) Int. Cl.

Sep.21,2021

Publication Classification

G06F 9/30
G06F 9/38

(2006.01)
(2006.01)

12'
10~

\

9
34 36

D
30 32

.
I .

29

' \
'

CRAC CMAP
g

CLAP CLAR
g

G06F 12/1027 (2006.01)

(52) U.S. Cl.

(57)

CPC G06F 9/30043 (2013.01); G06F 9/3806
(2013.01); G06F 9/3826 (2013.01); G06F

9/30105 (2013.01); G06F 12/1027 (2013.01)

ABSTRACT

A computer architecture allows load instructions to fetch
from cache memory "fat" loads having more data than
necessary to satisfy execution of the load instruction, for
example, loading a full cache line instead of a required
word. The fat load allows load instructions having spatio
temporal locality to share the data of the fat load avoiding
cache accesses. Rapid access to local data structures is pro
vided by using base register names to directly access those
structures as a proxy for the actual load base register
address,

19

18,

L2

~ 2 5 _ ____.

20

72

80

Patent Application Publication Mar. 23, 2023 Sheet 1 of 8

12'

\

52,

50{

10~

. '
I \ . '

CRAC CMAP
44--1--1--++-1 9 72

CLAP CLAR
42-----;-------t--- 9 80

FIG. 1

r21

US 2023/0089349 Al

19

20

r19

55

0 1 2 3 4 5 6 7 FIG. 2
50 55

52'_1

Patent Application Publication Mar. 23, 2023 Sheet 2 of 8 US 2023/0089349 Al

a.. ..c ::s u
<C (Y") u c:::

w I-I- w (.!J <C (f)
0 w
a.. c::: LL

(
:::::>

00
(Y)

0 r-1
r---. r---.

00
(Y)

0 r-1 r---.

\ l.O l.O l.O

0 LO
z l.O

_J c::: u
oz u <Cw <C

<C >I- c::: ro <CO c::: c::: z (Y") o- w:::::> I-
_J t3 u 1-0 z
I:::> (f) zu w
u c::: (f) -, ~ (.!J
I- I-

w
I- c::: w u w (f) u c::: w c::: LL LLZ <C j:::~ u
(f) -

z
I-

Patent Application Publication Mar. 23, 2023 Sheet 3 of 8

0
z:

00
(Y) (Y) en

\
00 w

>-

(Y) LO
r--- r---

0
z:

0
a.. I- a..
<(0:::: <(en _J w~ w (_) I-(.) >-en en -en en C!J en w Ww
(_) 0:::: (_)
(_) wU <(en <C

::::J

'---y--/
I w
(_) 0
I- 0 w (_) LL w

0

.::::I"
00

.---1
00

\

0
0
.---1

_J

<(

~
0::::
0
z:

I
0
<(
0
_J

I-
~

I
0
<(
0
_J

0::::

::5
(_)

I
0
<(
0
_J

' ' '

.
/ .

v
w
I-
::::J
(_)
w
>< w

US 2023/0089349 Al

0
.---1
.---1

'

' ' ' '
0
<(
0
_J

w
I-a..
(_)

/ .
/ .

/

(..)
(Y')

~
LO LL 00

(_)
0::::
a..
I-
z:
w
~
w
0::::
(_)
w
0

I

Patent Application Publication Mar. 23, 2023 Sheet 4 of 8 US 2023/0089349 Al

CRAC ,-44
REGION RAC

54
- - [>= /

~
-

,.....

64

FIG. 4

CLAP ,-42
TAG CLC

---..
> 90 -

63
-/

' -

FIG. 5

Patent Application Publication Mar. 23, 2023 Sheet 5 of 8 US 2023/0089349 Al

74,
22~ ,

REGISTER V

CMAP , 76 f 78

BANK LOCATION , 72

Ro

R1 1 Bo S4

R2

R3

--
I....___R ___ N ___________,f

FIG. 6

86 87 91 92

\ \ \ \
BANK V RDY PRC

CLAR
88
JI

94

\
RVA

9\ 9\ ,-so
CPTE ACTIVE

So ✓,

S1 ~
Bo S2 /

, 55 • • • 54

~ Sn

B1

L----"""" ----

FIG. 7

Patent Application Publication Mar. 23, 2023 Sheet 6 of 8 US 2023/0089349 Al

130

136

144

REGISTER
MODIFIED

INVALIDATE
CMAP ROW

140

STORE WITH
TLB BYPASS

NO

FIG. 8

STORE REQ

146

FIG. 9

MODIFY
CMAP

NO

STORE WITH
TLB ACCESS

134

Patent Application Publication Mar. 23, 2023 Sheet 7 of 8 US 2023/0089349 Al

12, 12'
)

14 18,

L1

L2

MMU

FIG. 10

CMAP /REGISTER MAP TABLE

72 79 74 78 91 94 96

\ \ \ \ \ \ \
R p V L RDY RVA CPTE

Ro P71 1 P1

R1 P54 1 Pg

R2 R57 1 P25
FIG. 11 --

0

P3 Rn Pu 0 P19 -

V \
V

I

72 72

~
31

Patent Application Publication Mar. 23, 2023 Sheet 8 of 8

60
FETCH LOAD
INSTRUCTION

CLAR ,so

FIG. 12

NO

US 2023/0089349 Al

LOAD NORMAL 100

CPTE LOAD 110
81 RENAME REGISTER

FIG. 13

US 2023/0089349 Al

COMPUTER ARCHITECTURE WITH
REGISTER NAME ADDRESSING AND
DYNAMIC LOAD SIZE ADJUSTMENT

[0001] STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT
[0002] CROSS REFERENCE TO RELATED
APPLICATION

BACKGROUND OF THE INVENTION

[0003] The present invention relates to computer architec
tures employing cache memory hierarchies and in particular
to an architecture that provides fast local access to data
optionally permitting loading different amounts of data
from the cache based on a prediction.
[0004] Computer processors executing a program tend to
access data memory locations that are close to each other for
instructions that are executed at proximate times. This phe
nomenon is termed spatiotemporal locality and has brought
about the development of memory hierarchies having one or
more cache memories coordinated with the main memory.
Generally, each level of the memory hierarchy employs suc
cessively smaller but faster memory structures as one pro
ceeds from a main memory to a lowest level cache. The time
penalty in moving data through the hierarchy from larger,
slower structures to smaller, faster structures is acceptable
as it is typically offset by many higher speed accesses to the
smaller, faster structure, as is expected with the spatiotem
poral locality of data.

SUMMARY

[0005] The operation of a memory hierarchy can be
improved, and the energy expended in accessing the mem
ory hierarchy reduced, by using a larger data load size, par
ticularly when loaded data is predicted to have high spatio
temporal locality. This larger load can be stored in efficient
local storage structures to avoid subsequent slower and
more energy intensive cache loads. The dynamically chan
ging spatiotemporal locality of data is normally not known
at the time of the load instruction, however, the present
inventors have determined that imperfect yet practical
dynamic estimates of spatiotemporal locality significantly
improve the ability to exploit such spatiotemporal locality
by allowing larger or more efficient storage structures
based on predictions of which data is likely to have the
most potential reuse. Importantly, the benefit of selectively
loading larger amounts of data (fat loads) is not lost even
when the estimates of spatiotemporal locality are error
prone because such a system can "fail gracefully" allowing
a normal cache load, or alternatively discarding extra cache
load data that is unused, if spatiotemporal locality is not
correctly anticipated.
[0006] A second aspect of the present invention provides
earlier access to data in local storage structures by accessing
the storage structures using only the names of base registers
and not the register contents greatly accelerating the ability
to access the storage structures. This approach can be used
either alone or with the fat loads described above. Earlier
access of data from local storage structures provide signifi
cant ancillary benefits including earlier resolution of mispre
dicted branches and reduced wrong-path instructions.
[0007] More specifically, in one embodiment the inven
tion provides a computer processor operating in conjunction

I
Mar. 23, 2023

with a memory hierarchy to execute a program. The compu
ter processor includes processing circuitry operating to
receive a first and a second load instruction of a type speci
fying a load operation loading a designated data from a
memory region of the memory hierarchy to the processor.
The processing circuitry may operate to process the first
load instruction by loading from the memory hierarchy the
designated data of the first load instruction to the processor
and to process the second load instruction by loading from
the memory hierarchy a "fat load" of data greater in amount
than an amount of designated data of the second load
instruction to the processor.
[0008] It is thus a feature of at least one embodiment of the
invention to provide a compact (and hence fast) local sto
rage structure by selectively loading additional data to the
processor only for load instructions likely to exhibit high
spatiotemporal locality.
[0009] In one embodiment, the architecture may include a
prediction circuit operating to generate a prediction value
predicting spatiotemporal locality of the data to be loaded
by the first load instruction and the second load instruction.
Using this prediction value, the processing circuitry may
select between a loading from the memory hierarchy of the
designated data and a fat load of data based on the prediction
values for the first and second load instruction received from
the prediction circuit.
[0010] It is thus a feature ofat least one embodiment of the
invention to permit the use of a small storage structure by
predicting likely reuse of data and selecting data for storage
based on this prediction. This ability is founded on a deter -
mination that meaningful predictions of spatiotemporal
locality can be made for important classes of computer
programs.
[0011] The prediction circuit may provide a prediction
table linking multiple sets of prediction values and load
instructions.
[0012] It is thus a feature ofat least one embodiment of the
invention to effectively leverage a small and fast storage
structure by exploiting a persistent association between par
ticular load instructions and spatiotemporal locality.
[0013] The prediction circuit may operate to generate the
prediction value by monitoring spatiotemporal locality for
previous executions of load instructions.
[0014] It is thus a feature ofat least one embodiment of the
invention to exploit a linkage between historical and future
spatiotemporal locality for load instructions determined by
the inventors to exist in many important computer programs.
[0015] The prediction circuit may access the prediction
table to obtain a prediction value for a load instruction
using the program counter value of the load instruction.
[0016] It is thus a feature ofat least one embodiment of the
invention to rapidly assess the spatiotemporal locality asso
ciated with a given load instruction. This ability relies on a
determination by the present inventors that there is a mean
ingful variation in spatiotemporal locality identifiable to
particular load instructions.
[0017] The prediction circuit, in one embodiment, may
use a compressed representation of the program counter
insufficient to map to a unique program counter value to
access the prediction table.
[0018] It is thus a feature ofat least one embodiment of the
invention to allow a flexible trade-off between table size and
prediction accuracy by compressing the program counter
value range. Simulations have demonstrated that the prob-

US 2023/0089349 Al

abilistic nature of the prediction process can accommodate
errors introduced by compression of this kind.
[0019] The prediction value for a given load instruction
may be based on a measurement of a number of subsequent
load instructions accessing a same memory region as the
given load instruction in a measurement interval.
[0020] It is thus a feature ofat least one embodiment of the
invention to provide a simple method of tailoring the histor
ical measurement to an expected decrease in the predictive
power of older measurements through a deterministic mea
surement interval.
[0021] In some nonlimiting examples, measurement inter
val can be: (a) a time between an execution of a given load
and a completion of processing of the given load instruction;
or (b) a number of instructions executing subsequent to the
execution of the given load instruction; or (c) a number of
clock cycles of the computer processor after the execution of
the given load instruction, where execution of the given load
instruction corresponds to a time of determination of the
memory region to be accessed by the given load instruction.
[0022] It is thus a feature ofat least one embodiment of the
invention to flexible measurement interval definition that
may accommodate different architectural goals or
limitations.
[0023] The computer processor may further include a
translation lookaside buffer holding page table data used
for translation between virtual and physical addresses and
the processing circuitry may process the second load
instruction to load both the fat load of data and translation
lookaside buffer data to the processor.
[0024] It is thus a feature of at least one embodiment the
present invention to employ the same local storage techni
ques to reduce access time to the translation lookaside
buffer.
[0025] The processing circuitry may receive a third load
instruction and process the third load instruction by provid
ing designated data for the third load instruction to the pro
cessor from the fat load of data of the second instruction.
This third load instruction may be associated with an offset
with respect to its base register and in this case the proces
sing circuitry may compare an offset of the third instruction
to a location in the fat area of the storage structure linked in
the mapping table to confirm that the fat load of data of the
second load instruction contains the designated data of the
third load instruction.
[0026] It is thus a feature ofat least one embodiment of the
invention to provide a mechanism that allows later load
instructions to quickly identify the data they need from
within a fat load. By evaluating the offsets and base register
names only, delays incident to decoding the load address by
reading the contents of the base register can be avoided.
[0027] Each fat load area of storage structures may be
made up of a set of named ordered physical registers and
location in the fat load area may be designated by a name
of one of the set of named ordered physical registers.
[0028] It is thus a feature ofat least one embodiment of the
invention to provide a simple direct accessing of the fat load
data using register names.
[0029] The processing circuitry may include a register
mapping table mapping an architectural register to a physi
cal register and the processing circuitry may change the reg
ister mapping table to link the selected physical register
holding the designated data for the third load instruction to
a destination register of the third load instruction.

2
Mar. 23, 2023

[0030] It is thus a feature of at least one embodiment of the
invention to avoid a time-consuming register-to-register
transfer of data by employing a simple re-mapping of the
architectural register.
[0031] The data in a fat load area may be linked with a
count value indicating an expected spatiotemporal locality
of the fat load of data with respect to future load instructions
and the architecture may operate to update the count value to
indicate a reduced expected remaining spatiotemporal local
ity when the third load instruction is processed by the pro
cessing circuitry in providing its designated data from the
data in the fat load area.
[0032] It is thus a feature of at least one embodiment of the
invention to efficiently conserve limited local storage
resources (permitting a small, fast storage structure) by
adopting a replacement policy by using a prediction value
(which may be the same prediction value that determines
whether to make a fat load) to assess the future value of
the stored data in satisfying later load instructions.
[0033] In one nonlimiting example, the amount of the
designated data may be a memory word and the amount of
the fat load data may be at least a half-cache line of a lowest
level cache in the memory hierarchy.
[0034] It is thus a feature of at least one embodiment of the
invention to provide a system that integrates well with cur
rent computer architectures employing cache structures.
[0035] In one embodiment, the invention provides a com
puter architecture having processing circuitry operating to
receive a load instruction of a type providing a name of a
base register holding memory address information of desig
nated data for the load instruction. A mapping table links the
name of a base register of a first load instruction to a storage
structure holding data derived from memory address infor
mation of the base register of the first load instruction. The
processing circuitry further operates to match a name of a
base register of a second load instruction to a name of a base
register in the mapping table to determine if the designated
data for the second load instruction is available in a storage
structure.
[0036] It is thus a feature of at least one embodiment of the
invention to provide an extremely rapid method of identify
ing the availability of locally stored data for load instruc
tions by evaluating the name of the base register of the
load instruction rather than the base register contents.
[0037] These objects and advantages may apply to only
some embodiments falling within the claims and thus do
not define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0038] FIG. 1 is an architectural diagram of a processor
employing the present invention showing processor compo
nents including a predictive load processing circuit and a
memory hierarchy including an Ll cache;
[0039] FIG. 2 is a diagram showing an access pattern for a
group of contemporaneous load instructions exhibiting a
spatiotemporal locality;
[0040] FIGS. 3a-3c are flowcharts describing operation of
the predictive load processing circuit of FIG. 1, as part of a
processor's instruction processing circuitry, in predicting
data reuse and in using that prediction to control an amount
of data to be loaded from the cache in executing load
instructions;

US 2023/0089349 Al

[0041] FIG. 4 is a logical representation of a contempora
neous region access count table (CRAC) used to collect sta
tistics about spatiotemporal loads in real time;
[0042] FIG. 5 is a logical representation of a contempora
neous load access prediction table (CLAP) holding the sta
tistics developed by the CRAC for future execution cycles;
[0043] FIG. 6 is a logical representation of a contempora
neous load access register map table (CMAP) used to deter
mine whether fat load data exists;
[0044] FIG. 7 is a logical representation of a set of con
temporaneous load access registers (CLAR) used to hold fat
load data;
[0045] FIG. 8 is a flowchart describing operation of the
predictive load processing circuit of FIG. 1 in monitoring
register modifications;
[0046] FIG. 9 is a flowchart describing operation of the
predictive load processing circuit of FIG. 1 during store
operations;
[0047] FIG. 10 is a figure similar to FIG. 1 showing an
architecture independent of the predictive load processing
circuitry of FIG. 1 while providing register name addres
sing, for example, also used in the embodiment of FIGS. 6
and 7;
[0048] FIG. 11 is a figure similar to that ofFIG. 6 showing
an alternative version of the CMAP also fulfilling functions
of a register mapping table;
[0049] FIG. 12 is a figure similar to that ofFIG. 7 showing
a set of physical registers used for the CLAR; and
[0050] FIG. 13 is a figure similar to that ofFIG. , 3 show
ing a simplified access to the CLAR without prediction.

DETAILED DESCRIPTION

System Hardware for Predictive Loading

[0051] Referring now to FIG. 1, in one embodiment, the
present invention may provide a processor 10 providing a
processor core 12, an Ll cache 14, and an L2 cache 18 com
municating with an external memory 20, for example,
including banks of RAM, disk drives, etc. As is understood
in the art, the various memory elements of the external
memory 16, the L2 cache 18, and the L1 cache 14 together
form a memory hierarchy 19 through which data may be
passed for efficient access. Generally, the memory hierarchy
19 will hold a program 21 including multiple instructions to
be executed by the processor 10 including load and store
instructions. The memory hierarchy 19 may also include
data 17 that may be operated on by the instructions.
[0052] Access to the memory hierarchy may be mediated
by a memory management unit (MMU) 25 which will nor
mally provide access to a page table (not shown) having
page table entries that provide a mapping between virtual
memory addresses and physical memory addresses, memory
access permissions, and the like. The MMU may also
include a translation lookaside buffer (TLB) 23 serving as
a cache of page table entries to allow high-speed access to
entries of a page table.
[0053] In addition to the processor core 12 and the L1
cache 14, processor 10 may also include various physical
registers 22 holding data operated on by the instructions as
is understood in the art including a specialized program
counter 29 used to identify instructions in the program 21
for execution. A register mapping table 31 may map various
logical or architectural registers to the physical registers 22
as is generally understood in the art. These physical registers

3
Mar. 23, 2023

22 are local to the processor core 12 and architected to pro
vide much faster access than provided by access to the Ll
cache.
[0054] The processor 10 will also provide instruction pro
cessing circuitry in the form of a predictive load processing
circuit 24 as will be discussed in more detail below and
which controls a loading of data from the Ll cache 14 for
use by the processor core 12. In most embodiments, the pro
cessor core 12, caches 14 and 18, physical registers 22, pro
gram counter 29, and the predictive load processing circuit
24 will be contained on a single integrated circuit substrate
with close integration for fast data communication.
[0055] In one embodiment, the processor core 12 may pro
vide an out-of-order (000) processor of the type generally
known in the art having fetch and decode circuitry 26, a set
of reservation stations 28 holding instructions for execution,
and a commitment circuit 30 ordering the instructions for
commitment according to a reorder buffer 32, as is under
stood in the art. Alternatively, and as shown in inset in FIG.
1, the invention may work with a general in-order processor
core 12' having in-order fetch and decode circuits 34 and
execution circuits 36 executing instructions in order without
reordering.
[0056] Referring still to FIG. 1, the predictive load proces
sing circuit 24 may include a firmware and/or discrete logic
circuit whose operation will be discussed in more detail
below, to load information from the Ll cache 14 to a con
temporaneous load access register (CLAR) 80 being part of
the predictive load processing circuit 24. Generally, access
by the processor core 12 to the CLAR 80 will be substan
tially faster and consume less energy than access by the pro
cessor core 12 to the Ll cache 14 which is possible because
of its smaller size and simpler architecture.
[0057] Whether data for a given load instruction is loaded
into the CLAR 80 by the predictive load processing circuit
24 may be informed by a contemporaneous load access pre
diction table (CLAP) 42 (shown in FIG. 5) that serves to
predict the spatiotemporal locality that will be associated
with that load instruction and subsequent contemporaneous
load instructions. The prediction value of the CLAP 42 is
derived from data collected by a contemporaneous region
access count table (CRAC) 44 (shown in FIG. 4) that moni
tors the executing program 21 as will be discussed.
[0058] Referring now to FIG. 2, sets of instructions 50 of
the program 21 having high spatiotemporal locality will,
when executed at different times 52 and 52', include con
temporaneous load instructions that access common regions
54 (contiguous ranges of memory addresses or memory
regions) in the memory hierarchy 19. For simplicity, the
common regions 54 as depicted and discussed can be a
cache line, but other region sizes are also contemplated
including part of a cache line or even several cache lines.
Note that the common regions 54 may have different start
ing addresses at the different times 52 and 52', and thus the
commonality refers only to a given time of execution of the
set of instructions 50. The present invention undertakes to
identify a load instruction accessing a region 54 associated
with high spatiotemporal locality and process it to optimize
the loading of data from the region from the memory hier
archy 19 into a CLAR 80, from where other contempora
neous load instructions in the set could access the data
with greater speed and lower energy than accessing the
data from the memory hierarchy 19.

US 2023/0089349 Al

[0059] In this regard, the present inventors have recog
nized that although the amount of spatiotemporal locality
of sets of instructions in different programs or even different
parts of the same program 21 will vary significantly, a sig
nificant subset of instructions 50 have persistent spatiotem
poral locality over many execution cycles. Further, the pre
sent inventors have recognized that spatiotemporal locality
can be exploited successfully with limited storage of predic
tions, for example, in the table having relatively few entries,
far less than the typical number of instructions in a program
21 and a necessary condition for practical implementation.
Simulations have validated that as few as 128 entries may
provide significant improvements in operation and for this
reason it is expected that a table size of less than 512 or less
than 2000 would likewise provide substantial benefits,
although the broadest concept of the invention is not limited
by these numbers. For the purpose of simplifying the fol
lowing discussion, as noted above, in one embodiment the
common region 54 will be considered a cache line 55 (as
represented) having at various offsets within the cache line
eight words 57 that individually may be a data argument for
a load instruction. In the following example, upon occur
rence of a load instruction, the predictive load processing
circuit 24 makes a decision whether to load a given word
57 from CLAR 80 (a "Load-CLAR") or to load the word
57 from the memory hierarchy 19 (a "Load-Normal" from
the L1 cache 14) as required by the load instruction or load
the entire cache line 55 including data not required by the
given load instruction (a "Fat-Load") with the expectation
that there is a substantial spatiotemporal locality associated
with that cache line 55 so that subsequent load instructions
accessing this same cache line 55 may obtain their data from
CLAR80.

Data Structure and Operation

Developing Predictions of Spatio temporal Locality

[0060] Referring now to FIG. 3a, the predictive load pro
cessing circuit 24 implementing the firmware 38, in commu
nication with processor core 12 and its instruction proces
sing circuitry, may monitor the processing of a load
instruction at the processor core 12 per process block 60
and may use the lower order bits of the memory address
for the data accessed by the load instruction to access the
CRAC 44 per process block 61. The CRAC 44 (shown in
FIG. 4) provides a logical table having a set of rows corre
sponding in number to a number of cache lines 55 in the Ll
cache 14 and more generally to a number of predefined
regions 54 in the L1 cache 14.
[0061] Once the proper row of the CRAC 44 is identified
using the low order address bits, a corresponding region
access count (RAC) 64 for that row is checked per decision
block 62. The RAC 64 generally indicates the number of
contemporaneous load instructions that have accessed that
region 54 or cache line 55 of that row during a current mea
surement interval, as will be discussed.
[0062] If the RAC 64 is zero, as determined at decision
block 62, there is no ongoing measurement interval for the
given cache line 55 and the given load instruction is a first
load instruction of a new measurement interval accessing
that cache line 55. Accordingly, at that time the new mea
surement interval is initiated per process block 65 to collect
information about the spatiotemporal locality of the region

4
Mar. 23, 2023

that is being accessed by the given first load instruction, and
the given first load instruction is marked as a potential fat
load candidate instruction. In an out-of-order processor core
12, this flagging may be accomplished in the reorder buffer
by setting a potential fat load candidate bit (PFLC) asso
ciated with that load instruction, while in an in-order proces
sor core 12', a dedicated flag for the instruction may be
established.
[0063] The new measurement interval initiated at process
block 65 may employ a variety of different measurement
techniques including counting instructions, time, or occur
rences of different processing states of the load instruction,
for example, terminating at its retirement, or a combination
of different measurement techniques. In some nonlimiting
examples, the interval may be (a) a time between the execu
tion of the given load and the completion of processing of
the given load instruction; or (b) a number of instructions
executing subsequent to the execution of the given load
instruction; or (c) a number of clock cycles of the computer
processor after the execution of the given load instruction
where execution of the given load instruction corresponds
to a time of determination of the memory region to be
accessed by given load instruction. An appropriate counter
or clock (not shown) associated with each region 54 may be
employed for this purpose.
[0064] At a next process block 67 (whether the given load
instruction is the first or a subsequent load instruction during
the measurement interval), the RAC 64 (discussed above)
for the identified row of the CRAC 44 is incremented indi
cating a load instruction accessing the given cache line 55
has been encountered in the execution of the program during
the ongoing measurement interval.
[0065] Referring now to FIG. 3b, at the expiration of the
measurement interval for a given first load instruction
marked as a potential fat load candidate instruction, trig
gered by any of the mechanisms discussed above and as
indicated by decision block 68, the information accumulated
in the CRAC 44 will be used to update the CLAP 42 provid
ing a longer-term repository for historical data about the
spatiotemporal locality, per process block 70. At this time,
the value of RAC 64 in the CRAC 44 associated with a
given first load instruction indicates how many later load
instructions accessed the same cache line 55 from the mem
ory hierarchy 19 in the measurement interval. This value of
the RAC 64 minus one is moved to the corresponding con
temporaneous load count (CLC) 90 of the CLAP 42 in a row
indexed by the bits of the program counter 29 for the given
first load instruction, and the value of the RAC 64 in the
CRAC 44 is then set to zero per process block 71. The
CLAP 42 thus provides in its CLC values a predicted spa
tiotemporal locality for a set of first load instructions for
given regions 54.
[0066] While the number of possible first load instructions
in the program 21 may be quite large, the present inventors
have determined that the invention can be beneficially
implemented with a relatively small CLAP 42, for example,
having 128 entries and in most cases less than 2000 entries,
far less than the number ofload instructions that are found in
a typical program 21. In one embodiment, the rows of the
CLAP 42 may be indexed by only the low order bits of the
program counter. This will beneficially reduce the size of the
CLAP but will also result in an "aliasing" of different pro
gram counter values to the same row. The aliasing may be
addressed by providing a tag 63, with a different number of

US 2023/0089349 Al

bits in the tag addressing the aliasing to different degrees. In
one embodiment of the invention, this aliasing is left unre
solved and empirically appears to result in only a small loss
of performance that is overcome by the general advantages
of the invention. In another embodiment, the bits are used to
index and select a row in the CLAP 42 and, for the tag, could
be function of a subset of the bits of the program counter 29
for the load instruction and other additional bits of informa
tion. Note that an incorrect prediction of spatiotemporal
locality simply results in different fat loads but will not pro
duce incorrect load values because of other mechanisms to
be described. The development of the CLC 90 of the CLAP
42 will be discussed in more detail below.

Using Spatiotemporal Locality Predictions

[0067] The prediction values of the CLC 90 in the CLAP
42 will be used to selectively make a load instruction from
the Ll cache 14 into a fat load instruction from the Ll cache
14 to the CLAR 80 when that data is likely to be usable for
additional subsequent load instructions.
[0068] This process begins as indicated by process block
73 ofFIG. 3c with the fetching of a load instruction and thus
may occur contemporaneously with the steps of FIG. 3a dis
cussed above. At this step a set of bits is used to index the
CLAP 42 and select a row to obtain the CLC 90. In one
embodiment, the rows of the CLAP 42 may be indexed by
only the low order bits of the program counter of the load
instruction. More generally, the bits used to index and select
a row in the CLAP 42 could be any function resulting in a
reduced subset of the bits of the program counter 29 for the
load instruction (for example, a hash function or other deter
ministic compressing function). In general, using a subset of
the bits of the program counter 29 of a load instruction will
resulting in "aliasing," where the value of the CLC 90 is
shared by multiple load instructions.
[0069] Generally, the load instruction will have a base
address described by the contents of a base architectural reg
ister (which may either be a physical register 22 or mapped
to a physical register 22 by the register mapping table 31)
and possibly a memory offset describing a resulting target
memory address offset from the base address as is generally
understood in the art. During a decode process of the
received load instruction, per process block 75, the load
instruction's base register may be identified and its name
(rather than its contents) used to access CMAP 72. Signifi
cantly, this ability to access the CMAP 72 without reading
the contents of the base register or otherwise decoding the
memory address in the base register greatly accelerates
access to the data in the CLAR 80.
[0070] Referring momentarily to FIG. 6, the CMAP 72
provides a logical row for each architectural register (Ro
RN) of the processor 10. Each row has a valid bit 74 indicat
ing that the row data is valid. Each row also indicates a bank
76 and provides a storage location identifier 78. The bank 76
maps to a single row of the CLAR 80 which is sized to hold
the data ofa region 54 (e.g., the entire cache line 55) fetched
by a fat load. The storage location identifier 78 identifies a
storage structure 88 within the CLAR row which holds the
data of the memory address contained in the base architec
tural register of the load instruction previously providing the
data for the CLAR row. As will be discussed, the bank 76
and storage location identifier 78 may be used to determine
whether (and in fact confirm that) the necessary data of the

5

Mar. 23, 2023

load target memory address for a later load instruction is in
the CLAR 80, allowing that data to be obtained from the
CLAR 80 instead of the L 1 cache 14.
[0071] Referring now momentarily to FIG. 7, the CLAR
80 provides a number of logical rows (for example, 4)
indexable by bank 76. Each row will be mappable to a
region 54 (e.g., a cache line 55) and for that purpose pro
vides a set of storage structures 88 equal in number to the
number of individual words 57 of a region 54 so that, in this
example, storage structures 88 labeled s0-s7 may hold the
eight words 57 of a cache line 55. Using the bank 76 and
storage location identifier 78 from the CMAP 72 and the
memory offset of the load instruction, the appropriate sto
rage structure 88 in CLAR 80 can be directly accessed to
obtain the necessary data for the load instruction by passing
the L1 cache 14.
[0072] The CLAR 80 may also provide a set of metadata
associated with the stored data including a ready bit 91
(which must be set before data is provided to the load
instruction) and a pending remaining count value PRC 92
which is decremented when data is provided to a load
instruction from the CLAR 80 as will be discussed below.
Generally, the PRC provides an updated prediction of spa
tiotemporal locality for the given cache line 55 in the storage
structures 88 as will be discussed below. At each access to a
given line 55 of the CLAR 80, its associated PRC is decre
mented being a measure of the remaining value of the stored
information with respect to servicing load instructions.
[0073] The CLAR 80 may also provide a region virtual
address RVA 94 indicating the virtual address corresponding
to the stored cache line 55 in the storage structures 88 and a
corresponding page table entry (CPTE) 96 holding the page
table entry from the translation lookaside buffer 23 related
to the address of the data of the storage structures 88.
Finally, the CLAR 80 will hold a valid bit 87 (indicating
the validity of the data of the row) and an active count 97
indicating any in-flight instructions that are using the data of
that row. The active count 97 is incremented when any
Load-CLAR (to be discussed below) is dispatched and
decremented when the Load-CLAR is executed.
[0074] Continuing at decision block 77 of FIG. 3c, the
memory offset of the current load instruction is compared
to the storage location identifier 78 of the indicated row of
the CMAP 72 (corresponding to the base register of the
current load instruction) to see if these two values are con
sistent with the target memory address of the current load
instruction (of process block 73) being in a common cache
line 55 (region 54) with the data stored in the CLAR 80. If
the valid bit 74 of the CMAP 72 is set, it may be assumed
that the base register of the current load instruction has the
address of the data stored in the identified row of the CLAR
80 for that base register. So, for example, where the location
entry in the CMAP 72 is s4, the memory data for a current
load instruction of the form of LOAD Riest, Rbase-4 has an
offset value of -4, that is a load instruction that is loading
from a memory address obtained by subtracting 4 from the
contents of base register Rbase, can be assumed to also be in
the CLAR 80 because s4-4=s0, an offset that falls within a
single cache line 55 with the word s4 (a cache line has each
word/location s0-s7). On the other hand, if the current load
instruction is in the form of LOAD Rdest, Rbase +5 having an
offset value of +5, it can be assumed that the desired load
data is not in the CLAR 80 because A+5=s9, an address that

US 2023/0089349 Al

falls outside of the cache line 55 previously brought in for
storing s4 (but rather falls in the next cache line 55).
[0075] Importantly, upon interrogating the CMAP 72, it is
known immediately whether the necessary data is in the
CLAR 80 providing a significant advantage in the execution
of data-dependent instructions, as the availability of data for
the later data-dependent instruction in the CLAR 80 will
have been resolved at the interrogation of the CMAP 72
before later dependent data instructions are invoked. Nota
bly, this determination is made simply using the base regis
ter name and the memory offset of the load instruction with
out requiring knowledge of the contents of the base register
greatly accelerating this determination.

Load-CLAR

[0076] If, after review of the CMAP 72 at decision block
77, the determination is that the necessary data of the mem
ory addresses of a load instruction is in the CLAR 80, then
per process block 84 the necessary data is read directly from
the CLAR 80 and the load instruction is termed a "Load
CLAR." Such a Load-CLAR instruction can obtain its data
from the CLAR 80 and need not access the Ll cache 14.
During instruction execution per process block 81, when
ever data for a load instruction is read from the CLAR 80,
the PRC 92 for the appropriate line of the CLAR 80 match
ing the bank 76 is decremented at process block 85 as men
tioned above to provide a current indication of the expected
number of additional loads that will be serviced by that data.
This is used later in executing a replacement policy for the
CLAR80.
[0077] The Load-CLAR, unlike a load from the L1 cache,
executes with a fixed, known latency, allowing dependent
operations to be scheduled deterministically rather than
speculatively.

Load-Fat

[0078] Ifat decision block 77, the necessary data is not in
the CLAR 80, the program moves to decision block 83
which determines whether a Load-Fat (e.g., a cache line
55) or Load-Normal (e.g., a cache word 57) should be
implemented. In decision block 83, the CLC 90 from the
appropriate row of CLAP 42 obtained for the load instruc
tion in process block 73 is compared to each of the PRC
values of the CLAR 80. If the CLC 90, which indicates the
expected number of loads that will be serviced by a Load
Fat for the current load instruction, is greater than the PRC
92 of any row of the CLAR 80, the current load instruction
will be conducted as a Load-Fat during execution of the
instruction per process block 84 using the storage structures
88 associated with the row of the CLAR 80 having the low
est PRC less than the CLC. In this way, a Load-Fat is con
ducted only if it doesn't displace the data fetched by the
previous fat loads that would likely service more load
instructions, and the limited storage space of the CLAR 80
is best allocated to servicing those loads.
[0079] In completion of the Load-Fat per process block
84, a full cache line 55 (or region 54) is read from the L1
cache and stored in the CLAR 80 in the row identified
above. In addition, the CLAR 80 is loaded with data for
the CPTE 96 (from the TLB 23) and the RVA 94 (from the
decoded addresses). The physical address in the CPTE 96 is
compared against the physical addresses in the CPTE entries
of the other CLAR rows to ensure there are no virtual

6

Mar. 23, 2023

address synonyms. If such synonyms exist, the Load-Fat is
invalidated and a Load-Normal proceeds as discussed
below.
[0080] In addition, prior to updating the CLAR 80 by a
Load-Fat, the active count 97 is reviewed to make sure
there are no current in-flight operations using that row of
the CLAR 80. Again, if such operations exist, the Load
Fat is held from updating the row of CLAR 80 with the
new fetched data until the in-flight operations reading the
previous data in that row have read the data.
[0081] The PRC 92 in the selected row of CLAR 80 is set
to the value of the CLC, and the ready bit 91 is set once the
data is enrolled. Corresponding information is then added to
the CMAP 72 including the bank 76 and the storage location
identifier 78 for the loaded data, and the valid bit 74 of the
CMAP 72 is set.

Load-Normal

[0082] If, at decision block 83, the current load instruction
is not categorized as a Load-Fat, a Load-Normal will be
conducted per process block 100 in which a single word
(related to the target memory address of the current load
instruction) is fetched from the L1 cache 14 and loaded
into a destination architectural register, or in an embodiment
with an 000 processor, to a physical register 22 to which
the architectural register is mapped via the register mapping
table 31.
[0083] During either the Load-Fat of process block 84 or
the Load-Normal of process block 100, the CPTE 96 entries
of the rows of CLAR 80 may be reviewed at process block
110 to see if the necessary page table data is in the CLAR 80
for the page required by the normal load or fat load (regard
less of whether the target data for the load instruction is in
the CLAR 80). The page address of this data may be
deduced from the RVA 94 entries. If a CPTE 96 for the
desired page is in the CLAR 80, this data may be used in
lieu of reading the TLB 23 (shown in FIG. 1), saving time
and energy. For proper classification of a load instruction as
a Load-CLAR, as per decision block 77 of FIG. 3c, data in
the bank 76 and storage location identifier 78 in a row in the
CMAP 72 need to accurately reflect the CLAR storage
structure 88 containing the data for the memory address in
the base register. If an instruction changes the contents of
the base register, the data in the entries in the corresponding
rows of the CMAP 72 need to be modified accordingly and
possibly invalidated.
[0084] Referring now to FIG. 8, per process block 130,
modifications to architectural registers are monitored.
When a base register is modified, the modification is ana
lyzed per decision block 132 to see if the current address
pointed to by the modified register still lies within the
cache line enrolled in the CLAR 80. This can be done in a
decoding stage because it contemplates an analysis of
instructions that change the contents of a base register in
the CMAP 72 distinct from and before a load instruction
where fat load assessment must be made. If the base register
is changed, the appropriate data in the entries of the corre
sponding row of CMAP 72 are updated, for example, chan
ging the storage location identifier 78. Thus, for example, if
the location identifier for register Rl as depicted is s4 and at
process block 130 a modification of the register Rl incre
ments the value held by that register by one, the CMAP 72
may be simply modified per process block 134 to change the

US 2023/0089349 Al

location identifier from s4 to s5 which does not affect the
value or use of the stored cache line 55 in the CLAR 80. On
the other hand, if the modification is to add 5 to the value of
Rl (resulting in an effective location of s9 no longer in the
cache line 55), the CMAP 72 can no longer guarantee that
the data for the memory address in Rl is present in the
CLAR 80, and the data of the CMAP 72 may be simply
invalidated per process block 136 by resetting the valid bit
74 for the appropriate row.

Bypassing the TLB

[0085] Referring now to FIG. 9, it will be appreciated that
the stored CPTE 96 in the CLAR 80 may also be used to
eliminate unnecessary access to the TLB 23 (shown in FIG.
1) during a store operation. In this procedure, before com
mitting a store instruction, as indicated by process block
140, the availability of the CPTE 96 may be assessed
according to the target memory address of the store instruc
tion matching a page indicated by an RVA 94 entry in one of
the rows of the CLAR 80. If that CPTE 96 is available, per
decision block 142, it may be used to implement a storing
indicated by process block 144 without access to the TLB
23. If the CPTE 96 is not available, a regular store per pro
cess block 146 may be conducted in which the TLB 23 is
accessed.
[0086] Generally, it will be appreciated that the storage
structures 88 of CLAR 80 may be integrated with the phy
sical registers 22 of the processor 10. Further, the CMAP 72
may be simply integrated into a standard register mapping
table 31 which also provides entries for each architectural
register.
[0087] It will be appreciated that the above description
considers the fat load as a single cache line from the Ll
cache 14; however, as noted, the size of the fat load may
be freely varied to any length above a single word including
a half-cache line, a full cache line, or two cache lines.

Additional Operation Details

Mis-speculation

[0088] Since the CMAP 72 needs to point to the correct
bank and storage structure 88 of the CLAR 80 for a given
base architectural register, recovering the CMAP 72 in case
of a mis-speculation can be complicated. Accordingly,
entries in the CMAP and the CLAR banks may be invali
dated on a mis-speculation of any kind. Other embodiments
may include means to recover the correct entries of the
CMAP.

Handling Loads and Stores in an Out-of-Order Processor

[0089] In an out-of-order processor, stores may write into
the cache when they commit, and loads can bypass values
from a prior store waiting to be committed in a store queue.
Memory dependence predictors are used to reduce memory
ordering violations, as is known in the art. With the present
invention a load operation can dynamically be carried out as
a different operation (normal loads, fat loads, and CLAR
loads), and the data in the CLAR 80 needs to be maintained
as a copy of the data in the cache 14. Accordingly, in one
embodiment, stores write into the cache 14, but also into a
matching location in the CLAR 80 when they commit (not
when they execute). For normal loads, if there is a match in a

7
Mar. 23, 2023

store queue (SQ), the value is bypassed from the store
queue, or else it is obtained from the Ll cache 14.
[0090] When a fat load proceeds to the L1 cache 14 per
process block 84, checking the SQ to bypass a matching
value is not done since that would result in the CLAR 80
and L1 cache 14 having different values. Rather, the fat
load brings the cache line into the CLAR 80, and the match
ing store updates the data in the CLAR 80 and L1 cache 14
when it commits. Load-CLARs are entered into a load
queue (LQ) associated with these processors even though
they don't proceed onward from the queue (and thus don't
check the SQ), so they participate in the other functionality
(e.g., load mis-speculation detection/recovery, memory con
sistency) that the LQ provides.
[0091] Load-Fats and Load-CLARs can execute before a
prior store. This early execution can be detected via the LQ
and the offending operations replayed to ensure correct
execution, just like early normal loads. To minimize the
number of such replays, a memory-dependence predictor,
accessed with the load PC which is normally used to deter
mine if a load is likely to access the same address as a prior
store, could be deployed to prevent the characterization of a
load into a Load-CLAR or a Load-Fat; it would remain a
normal load and execute as it would without CLAR 80,
and get its value from the prior store.

Cache Consistency

[0092] To allow for a load to be serviced from a storage
structure of the CLAR 80, if early classification as a Load
CLAR is possible, or from the memory hierarchy otherwise,
the values in the CLAR 80 and in the L1 cache 14 and TLB
23 need to be kept consistent. From the processor side, this
means that, when a store commits, the value must also be
written into a matching storage structure of the CLAR 80
(and any buffers holding data in transit from the L1 cache
14 to the CLAR 80). Stores can also update the CLAR 80,
partially changing a few bits in a storage structure 88.
Wrong path stores don't update the CLAR 80 in a preferred
embodiment.
[0093] From the memory side, if an event updates the state
relevant to a memory location from which data is in a CLAR
80, that location should not be accessible from the CLAR 80
(via a Load-CLAR). Accordingly, if data is invalidated,
updated, or replaced in either the L1 cache 14 or the TLB
23 for any reason (e.g., coherence, activity, replacement,
TLB shootdown), the corresponding data in the CLAR 80
and CMAP 72 are invalidated, preventing loads from being
classified as Load-CLARs until the CLAR 80 and CMAP 72
are repopulated. An additional bit per L1 cache line/TLB
entry, which indicates that the corresponding item may be
present in the CLAR 80, can be used to minimize unneces
sary CLAR 80 invalidation probes, for example, as
described at R. Alves, A. Ros, D. Black-Schaffer, and S.
Kaxiras, "Filter caching for free: the untapped potential of
the store-buffer," in Proceedings of the 46th International
Symposium on Computer Architecture, 2019, pp. 436-448.
[0094] In multiprocessors with out-of-order processors,
memory consistency is maintained using the Load and
Store queues, which contain all the loads and stores in
order, detecting problems and potentially squashing and
restarting execution from a certain instruction. The same
process can be used with Load-CLARs: they are loads that

US 2023/0089349 Al

have executed "earlier" but their position in the overall order
is known, and they can be restarted.

System Hardware for Register Name Addressing

[0095] Referring now to FIG. 10, in one embodiment, the
present invention may provide a processor 10', similar to the
processor 10 described above with respect to FIG. 1, but not
necessarily including the predictive load processing circuit
24 and thus optionally making some or even every load a fat
load. In this processor 10', the function of the CMAP 72 may
be incorporated into the register mapping table 31 and the
CLAR 80 may be implemented using a plurality of banks of
ordered physical registers 22. It will be appreciated from the
following discussion, that this incorporation still provides
the two separate functions of the CMAP 72 and register
mapping table 31 but offers a savings in eliminating redun
dant information storage when physical registers 22 are used
for storage of data of a fat load.
[0096] As before, and referring to FIG. 11, the CMAP 72
provides a logical row for each architectural register (Ro
RN) of the processor 10', the architectural register name
which may be used to index the CMAP 72. Importantly, in
this embodiment, the CMAP 72 also incorporates the func
tionality of a register mapping table 31 linking architectural
registers R to physical registers P. This register mapping
function is provided (as represented diagrammatically) by
a second column of physical register identifiers 79 identify
ing physical registers 22 and linking them to the architec
tural registers of the first column by a common row. Opera
tions on the register mapping table 31 allow for data
"movement" between a physical register P and an architec
tural register R to be accomplished simply by adjustment of
the value of the physical register identifier 79 for architec
tural register R without a movement of data between physi
cal registers.
[0097] Also, as before, a row of the CMAP 72 for an
architectural register R has a valid bit 74 indicating that
the row data with respect to the CLAR function is valid
and a storage location identifier 78, in this case, being the
name of a physical register 22 associated with previously
loaded fat load of data from a fat load instruction using the
given architectural register as a base register. This name of a
physical register 22 will be used to evaluate later load
instructions to see if the later load instruction can make
use of the data of that fat load.
[0098] The CMAP 72 may also provide data that in the
earlier embodiment was stored in the CLAR 80, including
for each bank 76 of ordered physical registers, metadata
associated with the stored data including a ready bit 91
(which must be set as a condition for data to be provided
to the load instruction), a region virtual address RVA 94
indicating the virtual address corresponding to the stored
cache line in the ordered physical registers of bank 76 and
a corresponding page table entry (CPTE) 96 holding the
page table entry from the translation lookaside buffer 23.
[0099] Referring now also to FIG. 12, banks 76 of ordered
physical registers 22 operate in a manner similar to the sto
rage structures 88 described above with respect to FIG. 7. In
this example, multiple physical registers 22 form each bank
76 of the CLAR 80 as mapped to a region 54 (e.g., a cache
line 55). In this example, a bank 76 provides eight physical
registers (e.g., P0-P7 for bank BO) individually assigned to
each of the eight words 57 of a cache line 55.

8
Mar. 23, 2023

[0100] Referring now to FIG. 13, an example load instruc
tion (LD Rll, [RO], offset) may be received at process block
60. Per conventional terminology, Rll is a destination reg
ister indicating the register where the data of the memory
load will be received, RO is a base register name (the brack
ets indicate that the data to be loaded does not come from the
RO register but rather from a memory address designated by
the contents of the RO register), and "offset" is an offset
value from the address indicated by RO together providing
a target memory address of the designated data of the load
instruction. Each of these architectural registers RO and Rll
is mapped to an actual physical register by the register map
ping table in CMAP 72 as discussed above.
[0101] Per decision block 77, (operating in a similar man
ner as decision block 77 in FIG. 3c) the name of the base
register (RO), as opposed to its contents, is used to access the
CMAP 72 of FIG. 11 to determine whether the necessary
data to satisfy the load instruction is in the CLAR 80. In
this example, there is an initial match with the first valid
row of the CMAP 72 (indexed to RO) and the base register
(RO) of the current load instruction. At decision block 77,
the offset of the current load instruction is compared to the
name of the physical register 22 in the storage location iden
tifier 78 (Pl) of the indicated row of the CMAP 72 to see if
these two values are consistent with the target memory
address of the data of the current load instruction, being in
the memory region 54 in the bank 76 holding the physical
register 22 indicated by storage location identifier 78. If the
data is in the CLAR 80, per this determination, the program
proceeds to process block 81 and ifnot, to process block 100
both described in more detail above with respect to FIG. 3c.
[0102] So, in this example, assuming that the physical reg
ister 22 identified by the storage location identifier 78 in the
CMAP 72, associated with matching base register RO, is Pl
and the offset value of the current load instruction is 2, the
desired data will be in physical register P3 still within the
designated bank 76 holding the physical register 22 (Pl) of
the storage location identifier 78 which extends from P0-P7,
thus confirming that the necessary data is available in the
CLAR 80. On the other hand, it will be appreciated that if
the current load instruction has an offset value of 8, the
desired load data would not be in the bank 76 of the
CLAR 80 because Pl +8=P9, a register outside of the bank
76 holding the physical register 22 (Pl) indicated by the
storage location identifier 78. Though this data may be pre
sent in some other bank 76 of the CLAR 80, the presence of
the data in the CLAR 80 is not easily confirmed by consult
ing the CMAP 72 with the name of the base register (RO) of
the load instruction.
[0103] In this regard, it is important to note that the origi
nal load instruction providing the fat load of data in the
CLAR 80 may also have had an offset value. This offset
value may be incorporated into the above analysis by sepa
rately storing the offset value in the CMAP 72 (as an addi
tional column not shown) and using it and the name of the
physical register 22 in the storage location identifier 78 to
identify the name of the physical register 22 associated with
the base register of the load instruction. For example, if the
designated data of an original load instruction having an off
set of 2 with a base register RO was loaded into physical
register P3 as part of a fat load, the CMAP 72 would have,
in the row corresponding to RO, an offset value of 2 in the
additional column (not shown), and a storage location iden
tifier 78 indicating a physical register 22 of P3. Given this

US 2023/0089349 Al

information, the above analysis would determine that the
physical register 22 holding the data from the memory
address in the base register RO would be P3 - 2 = Pl.
[0104] Alternatively, the additional column holding the
offset value in the CMAP 72 can be eliminated by modify
ing the physical register 22 named by the location identifier
78. In the above example, the location identifier 78 stored in
the CMAP would be modified at the time of the original fat
load to read Pl rather than P3, indicating that the data from
the memory address in the base register RO has been loaded
into Pl as part of the fat load of data.
[0105] An important feature of using physical registers 22
for the CLAR 80 is the ability to access data of the CLAR 80
in later load instructions without a transfer of data from the
CLAR 80 to the destination register of the new load instruc
tion. Thus, at process block 81 of FIG. 13, after data has
been identified as existing in the CLAR 80, the destination
register of the current load instruction may simply be
remapped to the physical register of the CLAR 80. In the
above example of a current load instruction (LD Rll,
[RO], 2), if the data necessary for this load instruction is
found in P3 per the above example, there is no need to
move the data from P3 to a physical register associated
with Rll but rather Rll can be simply remapped to P3
(instead of Pll) by rewriting the value of the physical reg
ister identifier 79 ofRll in the register mapping table 31. A
similar approach can be used with respect to the operation
described at FIG. 3c for process block 81.
[0106] It will be appreciated that the different components
of these various embodiments may be combined in different
combinations according to the above teachings, for exam
ple, using physical registers 22 and/or register mapping in
the CMAP together with the predictive load processing cir
cuit 24 to provide both fat and normal loads. Generally, the
distinct functional blocks of the invention described above
and as grouped for clarity, may share underlying circuitry as
dictated by a desire to minimize chip area and cost.
[0107] The term "registers" should be understood gener
ally as computer memory and not as requiring a particular
method of access or relationship with the processor unless
indicated otherwise or as context requires. Generally, how
ever, access by the processor to registers will be faster than
access to the Ll cache.
[0108] Certain terminology is used herein for purposes of
reference only, and thus is not intended to be limiting. For
example, terms such as "upper", "lower", "above", and
"below" refer to directions in the drawings to which refer
ence is made. Terms such as "front", "back", "rear", "bot
tom" and "side", describe the orientation of portions of the
component within a consistent but arbitrary frame of refer
ence which is made clear by reference to the text and the
associated drawings describing the component under dis
cussion. Such terminology may include the words specifi
cally mentioned above, derivatives thereof, and words of
similar import. Similarly, the terms "first", "second" and
other such numerical terms referring to structures do not
imply a sequence or order unless clearly indicated by the
context.
[0109] When introducing elements or features of the pre
sent disclosure and the exemplary embodiments, the articles
"a", "an", "the" and "said" are intended to mean that there
are one or more of such elements or features. The terms
"comprising", "including" and "having" are intended to be
inclusive and mean that there may be additional elements or

9

Mar. 23, 2023

features other than those specifically noted. It is further to be
understood that the method steps, processes, and operations
described herein are not to be construed as necessarily
requiring their performance in the particular order discussed
or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or
alternative steps may be employed.
[0110] It is specifically intended that the present invention
not be limited to the embodiments and illustrations con
tained herein and the claims should be understood to include
modified forms of those embodiments including portions of
the embodiments and combinations of elements of different
embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications, are hereby incorporated
herein by reference in their entireties.

1. An architecture of a computer processor operating in
conjunction with a memory hierarchy to execute a program
and comprising:

processing circuitry operating to receive a first and a second
load instruction of the program, the load instructions of a
type specifying a load operation loading a designated
data from a memory region of the memory hierarchy to
the processor; and

the processing circuitry further operating to process the first
load instruction by loading from the memory hierarchy
the designated data of the first load instruction to the pro
cessor and to process the second load instruction by load
ing from the memory hierarchy a fat load of data greater
in amount than an amount of designated data of the sec
ond load instruction to the processor.

2. The architecture of claim 1 further including a prediction
circuit operating to generate a prediction value predicting spa
tio temporal locality of the data to be loaded by the first load
instruction and the second load instruction; and

wherein the processing circuitry selects between a loading
from the memory hierarchy of the designated data and a
fat load of data based on the prediction values for the first
and second load instruction received from the prediction
circuit.

3. The architecture of claim 2 wherein the prediction circuit
provides a prediction table linking multiple sets of prediction
values and load instructions.

4. The architecture of claim 2 wherein the prediction circuit
operates to generate the prediction value by monitoring spa
tio temporal locality for previous executions of load
instructions.

5. The architecture of claim 3 wherein the prediction circuit
accesses the prediction table to obtain a prediction value for a
load instruction using the program counter value of the load
instruction.

6. The architecture of claim 5 wherein the prediction circuit
uses a compressed representation of the program counter
insufficient to map to a unique program counter value to
access the prediction table.

7. The architecture of claim 2 wherein the prediction value
for a given load instruction is based on a measurement of sub
sequent load instructions accessing a same fat load of data as
the given load instruction in a measurement interval.

8. The architecture of claim 7 wherein the measurement
interval is selected from the group consisting of: (a) a time
between an execution of a given load and a completion of
processing of the given load instruction; or (b) a number of
instructions executing subsequent to the execution of the

US 2023/0089349 Al

given load instruction; or (c) a number of clock cycles of the
computer processor after the execution of the given load
instruction;

wherein execution of the given load instruction corre
sponds to a time of determination of the memory region
to be accessed by the given load instruction.

9. The architecture of claim 1 wherein the computer proces
sor further includes a translation lookaside buffer holding
page table data used for translation between virtual and phy
sical addresses; and

wherein the processing circuitry processes the second load
instruction to load both the fat load of data and translation
lookaside buffer data to the processor.

10. The architecture of claim 1
wherein the processing circuitry further operates to receive

a third load instruction of the program of a type specify
ing a load operation loading a designated data from a
memory region of the memory hierarchy to the proces
sor; and

wherein the processing circuitry further processes the third
load instruction by providing designated data for the
third load instruction to the processor from the fat load
of data of the second instruction.

11. The architecture of claim 10 including multiple storage
structures wherein the multiple storage structures provide a
plurality of fat load areas holding fat load amounts of data;

and wherein each load instruction is associated with a base
register having a name, a contents of the base register
identifying an address in the memory hierarchy; and

a mapping table linking the name of a base register to a
storage structure; and

wherein the processing circuitry selects a storage structure
from among the multiple storage structures for the third
load instruction using the name of the base register of the
third load instruction.

12. The architecture of claim 11 where the processing cir
cuitry includes a register mapping table mapping an architec
tural register to a physical register and wherein the multiple
storage structures are physical registers mapped by the regis
ter mapping table; and

wherein the processing circuitry changes the register map
ping table to link the selected physical register to a desti
nation register of the third load instruction.

13. The architecture of claim 11 wherein a load instruction
may be associated with an offset with respect to the base
register;

and the mapping table links a baseregistername of the map
ping table to a storage structure in a fat load area; and

wherein the processing circuitry compares an offset of the
third instruction to a location in the fat area of the storage
structure linked in the mapping table to confirm that the
fat load of data of the second load instruction contains the
designated data of the third load instruction.

14. The architecture of claim 13 wherein each fat load area
of storage structures includes a set of named ordered registers
providing the fat load area and the location in the fat load area
is designated by a name of one of the set of named ordered
registers.

15. The architecture of claim 11 wherein the data in a fat
load area is linked with a count value indicating an expected
spatiotemporal locality of the fat load of data with respect to
future load instructions; and

wherein the processing circuitry operates to update the
count value to indicate a reduced expected remaining
spatiotemporal locality when a third load instruction is

Mar. 23, 2023

processed by the processing circuitry in providing the
designated data from the data in the fat load area.

16. The architecture of claim 10 further including multiple
storage structures wherein the multiple storage structures pro
vide a plurality of fat load areas holding fat load amounts of
data and linked with a count value indicating an expected spa
tio temporal locality of a held fat load of data; and

wherein the processing circuitry further processes a fourth
load instruction by loading from the memory hierarchy
into one of the fat load areas a fat load of data greater than
the designated data of the fourth load instruction; and

wherein the processing circuitry selects among the fat load
areas for storage of the fat load of data of the fourth load
instruction according to a comparison of the count value
linked to each fat load area with a prediction value for the
fourth load instruction, the prediction value indicating a
likelihood of spatio temporal locality between respective
designated data and designated data of other load
instructions.

17. The architecture of claim 1 wherein the amount of the
designated data is a memory word and the amount of the fat
load data is at least a half-cache line of a lowest level cache in
the memory hierarchy.

18. A method of operating a computer processor commu
nicating with a memory hierarchy to execute a program, the
method including:

receiving load instructions from the program of a type
describing a load operation loading a designated data to
the processor from a memory region of the memory
hierarchy;

processing a first load instruction by loading from the mem
ory hierarchy the designated data of the first load instruc
tion; and

processing a second different load instruction by loading
from the memory hierarchy a fat load of data greater in
amount than an amount of designated data of the second
load instruction.

19. An architecture of a computer processor operating in
conjunction with a memory to execute a program and
comprising:

processing circuitry operating to receive a load instruction
of the program, the load instruction ofa type specifying: a
load operation loading a designated data from a memory
address of the memory to a destination register in the
processor and a name of a base register holding memory
address information used to determine the memory
address in memory of the designated data for the load
instruction;

a plurality of storage structures adapted to hold data loaded
from a memory address of the memory;

a mapping table linking the name of a base register of a first
load instruction to a storage structure holding data of a
memory address of the memory, the memory address
derived from a memory address information of the base
register of the first load instruction;

wherein the processing circuitry further operates to match a
name of a base register of a second load instruction to a
name of a base register in the mapping table to determine
if the designated data for the second load instruction is
available in a storage structure.

20. The architecture of claim 19 wherein the storage struc
tures are a set of registers accessible by a register name.

21. The architecture of claim 19 wherein the processing
circuitry further processes the second load instruction by

US 2023/0089349 Al

providing available designated data for the second load
instruction to the processor from a selected storage structure.

22. The architecture of claim 21 wherein the storage struc
tures are physical registers

and the processing circuitry includes a register mapping
table mapping an architectural register to a physical reg
ister; and

wherein the processing circuitry changes the register map
ping table to link the destination register of the second
load instruction to a physical register providing the
selected storage structure.

23. The architecture of claim 21 wherein a load instruction
may be associated with an offset with respect to the base
register;

and wherein the processing circuitry performs a compari
son using an offset of the second instruction and the name
of the base register of the second load instruction and
information from the mapping table to confirm that the
designated data of the second load instruction is held by a
storage structure.

24. The architecture of claim 23 wherein the first and sec
ond load instruction both include an offset and the comparison
uses both the offset of the first instruction and the offset of the
second instruction and the name of the base register of the
second load instruction and information from the mapping
table to confirm that the designated data of the second load
instruction is held by a storage structure.

25. The architecture of claim 19 wherein the processing
circuitry determines if the designated data for the load instruc
tion is available in the storage structure without accessing
contents of the base register of the load instruction.

26. The architecture of claim 19 wherein when the proces
sing circuitry determines that the designated data for the load
instruction is not available in a storage structure; the

11
Mar. 23, 2023

processing circuitry obtains the designated data for the pro
cessor from the memory.

27. The architecture of claim 26 wherein the processing
circuitry selects between obtaining from the memory a first
amount of data holding the designated data and a second
amount of data holding the designated data and other data
and larger in amount than the first amount and storage of the
second amount of data in the storage structure.

28. The architecture of claim 27 further including a transla
tion lookaside buffer providing data translating between virtual
addresses and physical addresses and wherein when the proces
sing circuitry obtains the second amount of data it further loads
translation lookaside buffer data for the designated data in the
storage structure.

29. A method of operating a computer processor communi
cating with a memory to execute a program, the computer pro
cessor having a plurality of storage structures adapted to hold
data loaded from a memory address of the memory and a map
ping table linking the name of a base register to a storage struc
ture holding data of a memory address of the memory the mem
ory address derived from a memory address in the base register;
the method including:

operating the processor to receive a load instruction of the
program, the load instruction of a type specifying: a load
operation loading a designated data from a memory
address of the memory to a destination register in the pro
cessor and a name of a base register holding memory
address information used to determine the designated
data for the load instruction; and

further operating the processor to match the name of the base
register of the load instruction to a name of a base register
in the mapping table and to determine ifthe designated data
for the load instruction is available in a storage structure.

	Front Page
	Drawings
	Specification
	Claims

