

US 20220347282A1

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2022/0347282 A1 McNeel et al.

(54) ANTI-TUMOR DNA VACCINE WITH PD-1 AND LAG-3 PATHWAY BLOCKADE

- (71) Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION, Madison, WI (US)
- Inventors: Douglas McNeel, Madison, WI (US); (72)Christopher D. Zahm, Madison, WI (US); Jena Moseman, Madison, WI (US)
- (21) Appl. No.: 17/732,237
- (22) Filed: Apr. 28, 2022

Related U.S. Application Data

(60) Provisional application No. 63/180,726, filed on Apr. 28, 2021.

Publication Classification

(51) Int. Cl. A61K 39/00 (2006.01)A61P 35/00 (2006.01)

Nov. 3, 2022 (43) **Pub. Date:**

A61K 39/395	(2006.01)
A61P 37/04	(2006.01)

(52) U.S. Cl. CPC A61K 39/001184 (2018.08); A61P 35/00 (2018.01); A61K 39/001102 (2018.08); A61K 39/001194 (2018.08); A61K 39/001106 (2018.08); A61K 39/001193 (2018.08); A61K 39/3955 (2013.01); A61P 37/04 (2018.01); A61K 2039/53 (2013.01); A61K 2039/884 (2018.08); A61K 2039/868 (2018.08); A61K 2039/892 (2018.08); A61K 2039/505 (2013.01); A61K 2039/572 (2013.01); A61K 2039/545 (2013.01)

(57) ABSTRACT

The present invention provides combination therapies and methods of treating cancer, including, cancers that are resistant to PD-1 therapy. The combination therapies described herein comprise a DNA vaccine to a tumor antigen, anti-PD-1 therapy, and an anti-LAG-3 therapy, which provides an increased T cell response against the cancer.

Specification includes a Sequence Listing.

Figure 1

Figure 3

Patent Application Publication

Figure 3 (Continued)

Figure 4 (Continued)

Figure 4 (Continued)

Figure 5

Figure 5 (Continued)

Figure 7

Patent Application Publication

Figure 9

Days Post Tumor Implantation

Figure 12

Figure 13

Patent Application Publication Nov. 3, 2022 Sheet 18 of 20 US 2022/0347282 A1

Figure 15

Figure 15 (Continued)

ANTI-TUMOR DNA VACCINE WITH PD-1 AND LAG-3 PATHWAY BLOCKADE

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of priority under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 63/180,726, filed Apr. 28, 2021, the contents of which is incorporated herein by reference in its entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

[0002] This invention was made with government support under CA219154 awarded by the National Institutes of Health. The government has certain rights in the invention.

SEQUENCE LISTING

[0003] A Sequence Listing accompanies this application and is submitted as an ASCII text file of the sequence listing named "960296_04284_ST25.txt" which is 57,623 bytes in size and was created on Apr. 28, 2022. The sequence listing is electronically submitted via EFS-Web with the application and is incorporated herein by reference in its entirety.

BACKGROUND

[0004] The blockade of T-cell immune checkpoint receptors to enable the activity of tumor-specific T cells has revolutionized the treatment of cancer. Notably, an antibody blocking cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) was the first of these agents that was FDA approved in 2010 for the treatment of metastatic melanoma¹. Other immune checkpoint receptors were discovered as markers of cell death and exhausted, non-functional T cells that had experienced long-term antigen exposure². In particular, the programmed death 1 (PD-1) receptor, while initially thought to indicate T cell exhaustion, was subsequently found to function by preventing functional Th1 CD8+ T cells from causing autoimmunity³. The immunosuppressive activity of PD-1 is executed following ligand (PD-L1) encounter on self (including tumor) cells resulting in the activation of a signaling pathway that attenuates cytotoxic T cell activity³⁻⁵. As a result, remarkable antitumor activity can be achieved by blocking PD-1/PD-L1 ligation using antibodies, and this approach has led to multiple new FDA approvals over the last 5 years, underscoring the power of this single immune checkpoint⁶⁻⁸.

[0005] The general rationale for use of T-cell checkpoint blockade as cancer therapies is that ligand-induced checkpoint signaling leads to the activation of regulatory pathways within tumor-reactive T cells and thus blocking ligand interaction can remove the negative signal to allow for eradication of tumor cells. As PD-1 and other checkpoints operate through distinct mechanisms but result in similar outcomes, it follows that simultaneous blockade could have a synergistic effect. Indeed, a number of murine and clinical studies have been conducted using PD-1 blockade with other checkpoint blocking therapies⁹⁻¹³. Preclinical studies demonstrate that blocking checkpoints with complementary mechanisms of action can result in the expansion of unique T-cell repertoires and activate adaptive anti-tumor immunity¹⁰. Furthermore, a randomized, double-blind, phase 3 study of PD-1 blockade alone or in a dual blockade combination with CTLA-4 blockade in patients with metastatic melanoma found a median progression-free survival of 11.5 months with the combination and 6.9 months with single agent PD-1 blockade⁹. Similar results in patients with renal cell cancer have led to the FDA approval of CTLA-4 and PD-1 dual blockade for the treatment of metastatic renal cell cancer and melanoma^{14,15}.

[0006] In previous studies, the inventors found that DNA or peptide vaccine-induced activation of tumor-specific, CD8+ T cells led to increased expression of multiple checkpoint receptors that could mitigate the anti-tumor response following vaccination. More specifically, the inventors found that antigens with high-affinity for MHC-I increased contact time between CD8+ T cells and APCs, which led to increases in multiple immune checkpoints, including PD-1, CTLA-4, lymphocyte activation gene-3 (LAG-3), and T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) on responding cells when compared to cells activated with lower affinity epitopes. Additionally, the reduced anti-tumor efficacy could be recovered when vaccines encoding highaffinity epitopes were combined with PD-1 or PD-L1 blocking antibodies^{16,17}. In a separate study, the inventors found that immunization approaches leading to increased antigen expression also led to increased LAG-3 on tumor antigenspecific CD8+ T cells, which was likewise capable of interfering with the anti-tumor response. Again, the reduced anti-tumor efficacy could be recovered when vaccination was combined with LAG-3 blocking antibodies¹⁸. These data demonstrate that blocking the regulatory pathways induced with vaccination can enhance anti-tumor responses and indicate checkpoint receptor upregulation as a major mechanism of tumor resistance to vaccination. Furthermore, these data demonstrate that T-cell activating therapies can result in the expression of multiple, different checkpoint receptors, and hence combination blockade might be preferable. This is particularly relevant for anti-tumor DNA vaccines, which result in tumor-antigen presentation via professional APC and/or bystander cells. Presentation by multiple cell types may increase the diversity of responding T cells and likewise the complexity of checkpoint expression profiles on these populations^{18,19}. Consequently, the inventors hypothesized that blockade of multiple checkpoints may be necessary to elicit CD8+ T cells with greater anti-tumor activity in the context of anti-tumor immunization.

SUMMARY OF INVENTION

[0007] The present invention is a method of enhancing DNA vaccine activity through the addition of inhibitors to the PD-1 and LAG-3 checkpoint pathways. The inventors have surprisingly discovered an enhancement of PD-1 expression and LAG-3 in T cells after treatment with a DNA vaccine. Using a combination of inhibitors for PD-1 and LAG-3 (antibodies against PD-1 and LAG-3) with a DNA vaccine resulted in an increase in T cell activity, which is not seen with other combinations of inhibitors, such as using inhibitors of the CTLA-4 or TIM-3 pathways. The blockade of PD-1 and LAG-3 pathways caused a more robust immune response to the inventors' DNA vaccine in a prostate cancer mouse model.

[0008] In one aspect, the disclosure provides a method of treating a subject having cancer, the method comprising administering an anti-tumor vaccine and a combination of a PD-1 inhibitor and an LAG-3 inhibitor, wherein the com-

bination is effective in increasing the efficacy of the antitumor vaccine and treating the cancer.

[0009] In another aspect, the disclosure provides a method of increasing the anti-tumor T cell response to a tumor antigen in a subject having cancer, the method comprising administering an effective amount of a DNA vaccine and a combination of PD-1 inhibitor and an LAG-3 inhibitor, wherein the combination is effective in increasing the anti-tumor T cell immune response.

[0010] In a further embodiment, the disclosure provides a method of increasing the immune response to a tumor antigen on a cell in a subject, the method comprising contacting the subject with at least one vaccine directed to said tumor antigen, at least one PD-1 inhibitor and at least one LAG-3 inhibitor, wherein the immune response to said tumor antigen is increased relative to a subject treated with the tumor vaccine alone.

[0011] In yet another embodiment, the disclosure provides a kit for eliciting an anti-tumor response, the kit comprising: at least one DNA vaccine to a tumor antigen; at least one PD-1 inhibitor; and at least one LAG-3 inhibitor.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1. T-cell activation by professional APCs can lead to distinct immune checkpoint expression on CD8+T cells. Splenocytes were prepared from the spleens of OT-1 mice and separated into T cells (CD8+) and B-cells (CD19+) using MACS. DC (CD11c+) were prepared from the spleens of Flt3 ligand-treated B6 mice. T cells were stimulated with a control peptide (No Stim), the SIINFEKL peptide alone (No APC), or the SIINFEKL peptide in combination with either B cells or DC. After 72 hours the cells were collected and the checkpoint and 4-1BB expression analyzed by flow cytometry. Shown is the mean fluorescence intensity (MFI) and standard error of the mean of 4-1BB, PD-1, CTLA-4, TIM-3, or LAG-3 on CD8+T cells from triplicate assessments (panel A), and a representative histogram for each marker (panel B). Asterisks indicate p<0.05 by one-way ANOVA with Bonferroni's multiple comparisons correction. Results are from one experiment (N=3 mice per group) and are representative of two similar, independent experiments. [0013] FIG. 2. Blockade of PD-1 or LAG-3 improves anti-tumor activity of activated CD8+T-cells. As shown in panel A, B6 mice were inoculated with 1×106 PD-L1expressing E.G7-OVA cells. After ten days, 1×10⁶ OT-1 T cells, stimulated with or without peptide and with or without DC as in FIG. 1, were adoptively transferred into the tumor-bearing mice. The following day, mice were treated with IgG isotype control (gray), PD-1 blocking (red), LAG-3 blocking (purple), or a combination of both PD-1 and LAG-3 blocking antibodies (green). Tumor growth was measured as indicated on the X axes. Shown in panel B are the growth curves for mice that received T cells which had not been incubated with DC and a nonspecific peptide (No Stim), T without DC cells stimulated with SIINFEKL peptide alone (No APC), or T cells stimulated with peptide in the presence of DC (DC). Panel C shows the same data grouped by checkpoint blockade treatment rather than T-cell stimulation conditions. Measurements for individual mice are shown in Supplemental FIG. 10. Asterisks indicate p<0.05 as assessed by 2-way ANOVA with Bonferroni's multiple comparisons test. Results are from one experiment with N=6 mice per group.

[0014] FIG. 3. DNA vaccination can elicit CD8+T cells differentially expressing PD-1 and LAG-3. Panel A: sixweek-old HHDII HLA-A2+ mice were immunized with pTVG4 empty vector, the native pTVG-SSX2 DNA vaccine (SSX2), pTVG-SSX2^{HA} (SSX2^{HA}), or MIP-SSX2. Mice were euthanized at the time points indicated and splenocytes were assessed by flow cytometry gated on CD3+ CD8+ tetramer+ cells (panels B and D, n=6 mice/time/condition) or following stimulation with an HLA-A2-restricted peptide epitope (SSX2 p103-111) to determine the number of responding cells via intracellular cytokine analysis (panel C, n=3 mice/timepoint). In panel C, comparisons are of total cytokine-secreting CD8+T cells at each time point between vaccine-treated or pTVG4 control-treated animals. For all panels, asterisks indicate p<0.05 by two-way ANOVA with Bonferroni's multiple comparisons correction. MFI=mean fluorescence intensity. Results are from one experiment and are representative of two similar, independent experiments.

[0015] FIG. 4. PD-1 blockade is superior to LAG-3 blockade when used in combination with an anti-tumor DNA vaccine in an aPD-1 sensitive tumor. Panel A: six-week-old HHDII (HLA-A2+) mice were inoculated s.c. with SSX2+ HLA-A2+ sarcoma cells and immunized with pTVG4 empty vector, pTVG-SSX2 (SSX2), pTVG-SSX2^{HA} (SSX2^{HA}), or MIP-SSX2 in combination with aPD-1, aLAG-3, both aPD-1/aLAG-3, or IgG control. Tumor growth was measured over time. Panel B: shown are the tumor growth curves for each vaccine group. Animals with tumors greater than 2 cm³ in size were euthanized, and data were censored at 2 cm³. Panel C: data are presented as survival plots using the time to death or when tumors reached 2 cm³ in size, whichever occurred first. Individual tumor measurements are shown in Supplemental FIG. 13. Asterisks in panel B indicate p<0.05 as assessed by mixed-effects model with Geisser-Greenhouse correction and Tukey's multiple comparisons test with individual variances; N=6 mice/time point/condition. n. s.=not significant. Results are from one experiment (N=6) and are representative of two similar, independent experiments. For data points above the Y axis, statistical comparisons are indicated on the figure legends. In panel C, asterisks indicate p<0.05 as assessed by log-rank test.

[0016] FIG. 5. Vaccination with PD-1 and LAG-3 blockade is superior to vaccination with either blockade alone in α PD-1 resistant prostate cancer model. As shown in panel A. six-week-old FVB mice (n=20 per group) were inoculated s.c. with 10⁶ MyC-CaP cells and immunized with pTVG4 empty vector or pTVG-AR in combination with IgG control, α PD-1, α LAG-3, or both α PD-1/ α LAG-3 antibodies. Tumor growth was measured over time. Panel B: Shown are the mean tumor growth curves and standard deviations; individual tumor measurements are shown in Supplemental FIG. 15. Animals with tumors greater than 2 cm^3 in size were euthanized, and data were censored at 2 cm³. Panel C: data are presented as survival plots using the time to death or when tumors reached 2 cm³ in size, whichever occurred first. Results shown are from one experiment and representative of three independent experiments. Panel D: Shown are the number of CD8+ (top) and CD4 (bottom) tumor-infiltrating lymphocytes per gram of tumor tissue collected at day 29 as determined by flow cytometry (gating strategy shown in Supplemental FIG. 11). Panel E: Shown are the distribution of effector memory (T_{EM} , CD44+ CD62L^{*lo*}), resident memory (T_{RM} , CD69+ CD103+), central memory (T_{CM}, CD44+ CD62L+), and naïve (T_{NP}, CD44-CD62L+) cells among the CD8+T cells. Asterisks indicate p<0.05 assessed by the mixed-effects model with Geisser-Greenhouse correction and Tukey's multiple comparisons test with individual variances (panel B), by log-rank test (panel C), or by the one-way ANOVA with Tukey's multiple comparisons test (panels D and E).

[0017] FIG. 6. Co-culture experimental methods schematic. Shown in A-C are flow diagrams for the isolation/ purification of DCs (A), T cells (B) and B cells (C). Panel D indicates which cells were cultured together for the studies described in relation to FIG. 1.

[0018] FIG. 7. Immunization studies in HHD-II mice. Shown is a schematic flow diagram of the experiments conducted using SSX2-targeted DNA vaccines in HHD-II mice.

[0019] FIG. **8**. Tumor treatment studies: E.G7-OVA tumors in B6 mice. Shown is a schematic flow diagram for the studies using adoptive transfer of T cells to E.G7-OVA tumor-bearing mice.

[0020] FIG. 9. Tumor treatment studies: SSX2+ sarcomas in HHD-II mice. Shown is a schematic flow diagram of the experiments conducted using SSX2+ sarcomas in HHD-II mice.

[0021] FIG. 10. Tumor treatment studies: MycCaP tumors in FVB mice. Shown is a schematic flow diagram of the experiments conducted using DNA vaccines with T-cell checkpoint blockade in MycCaP tumor-bearing FVB mice. [0022] FIG. 11. Gating strategy for tumor-infiltration T cells (TIL) analysis. Shown is the flow cytometry gating strategy employed to assess TIL and memory phenotypes. From left to right, top to bottom, all cells were evaluated by forward and side scatter to include lymphocytes, gated for live events, then gated for CD45 expression, then CD3+ CD8+ cells were gated for the expression of memory markers as shown.

[0023] FIG. **12**. Individual growth curves for FIG. **2**, OVA-expressing tumor study. B6 mice were inoculated with 1×106 PD-L1-expressing E.G7-OVA cells. After ten days, 1×106 OT-1 T cells, stimulated with or without peptide and with or without APC as in FIG. **1**, were adoptively transferred into the tumor-bearing mice. The following day, mice were treated with IgG isotype control (top row), PD-1 blocking (second row), LAG-3 blocking (third row), or a combination of both PD-1 and LAG-3 blocking antibodies (fourth row). Tumor growth was measured as indicated on the X axes. Shown are the individual tumor measurements for each mouse per day following tumor implantation, and the median tumor size. Results are from one experiment with N=6 mice per group.

[0024] FIG. **13**. Representative histograms and dot plots for FIG. **3**. Six-week-old HHDII HLA-A2+ mice were immunized with pTVG4 empty vector, the native pTVG-SSX2 DNA vaccine, pTVG-SSX2HA, or MIP-SSX2. Splenocytes obtained from mice at different time points were assessed by flow cytometry for expression of various markers, as described in FIG. **3**. Shown are representative data for expression of 4-1BB, LAG-3, and PD-1 expression four days following treatment with the different vaccines (panel A). Panel B shows representative dot plots for the intracellular cytokine analysis. The upper left plot shows the gating of live, lymphocyte scatter for CD3 (X axis) by CD8 (Y axis). The indicated gate was used to evaluate expression of the individual cytokines as shown in the other plots. Panel

C shows the evaluation for CD44 and CD62L expression gated on live/CD3+/CD8+/tetramer+ cells. Quadrants are based on FMO gating performed at each time point.

[0025] FIG. **14**. Individual growth curves for FIG. **4**, SSX2/HLA-A2 tumor study. Six week-old HHDII (HLA-A2+) mice were inoculated s.c. with SSX2+ HLA-A2+ sarcoma cells and immunized with pTVG4 empty vector (top row), pTVG-SSX2 (second row), pTVG-SSX2HA (third row), or MIP-SSX2 (fourth row) in combination with IgG control (first column), α PD-1 (second column), α LAG-3 (third column), or both α PD-1/ α LAG-3 (fourth column), as described in FIG. **4**. Tumor growth was measured over time. Shown are the individual tumor measurements for each animal per group and the median (line) for each treatment.

[0026] FIG. 15. Vaccination with PD-1 and LAG-3 blockade is superior to antibody treatment alone in MvcCaP prostate tumors. Six-week-old FVB mice (n=10 per group) were inoculated s.c. with 106 MyC-CaP cells and immunized with pTVG4 empty vector or pTVG-AR in combination with IgG control or α PD-1 and α LAG-3 antibodies. Tumor growth was measured over time (panel A). Animals with tumors greater than 2 cm3 in size were euthanized, and data are censored at 2 cm3. Kaplan-Meier curves depicting either the time of death or when the tumor reached 2 cm3 in size, whichever occurred first (panel B). Panel C: In a separate study, six-week-old FVB mice (n=5 per group) were inoculated s.c. with 106 MyC-CaP cells and immunized the following day and weekly with pTVG4 empty vector or pTVG-AR. Groups received IgG control, aPD-1, α LAG-3, or both α PD-1 and α LAG-3 antibodies the day after each immunization. On day 29, tumors were collected, digested with collagenase, and evaluated for the presence of CD11b+Gr-1+ (MDSC) cells or CD4+FoxP3+ (Treg) among live cells. These are expressed as an absolute number per gram of tumor. Panel D: Individual growth curves for mice from FIG. 5A. Asterisks in panels A and C indicate p<0.05 assessed by the mixed-effects model with Geisser-Greenhouse correction or two-way ANOVA, both with Tukey's multiple comparisons test with individual variances.

DETAILED DESCRIPTION

[0027] The present invention provides compositions, kits and methods for increasing an immune response to tumor antigens, resulting in the ability to treat or reduce tumor burden in a subject having cancer. The present inventors have found that combinations of PD-1 and LAG-3 blockade in the context of anti-tumor vaccination enhanced vaccine induced anti-tumor responses with all the vaccines tested, especially in cancers that are resistant to PD-1 therapy. In the prostate cancer model, which is resistant to single-agent PD-1 blockade using a vaccine encoding a naturally expressed tumor antigen, the dual blockade group demonstrated greater therapeutic efficacy than other treatment groups. These results indicate that depending on which cells are presenting antigen, tumor-reactive CD8+ T cells can activate with distinct patterns of checkpoint receptor expression and dual blockade of PD-1 and LAG-3 can provide significant benefit over either blockade alone in PD-1 resistant MycCaP prostate tumors.

[0028] The inventors' method is based on the finding that T-cell activation following vaccination resulted in the expression of PD-1, LAG-3, CTLA-4, and TIM-3 check-

point receptors. However, in the absence of professional APC, activated CD8+ T cells expressed only LAG-3. The inventors found that the combination checkpoint blockade following vaccination including LAG-3 blockade can result in antigen presentation through non-professional APC. Not to be bound by any theory, but the inventors believe there are two negative feedback loops at play in the anti-tumor T cell response, the first in which excess TCR stimulation leads to the expression of PD-1 and other inhibitory receptors and molecules; and the second negative feedback loop that is regulated independently of PD-1 and involves LAG-3 expression, and consequently that the use of PD-1 and LAG-3 in a dual checkpoint blockade strategy provides advantages following vaccination with a tumor antigen.

[0029] The data collected by the inventors demonstrates that following vaccination in a subject having a PD-1 therapy resistant tumor, there is a benefit of treating with both an anti-PD-1 inhibitor and a LAG-3 inhibitor.

[0030] In one embodiment, the present disclosure provides a method of treating a subject having cancer, preferably a cancer that is resistant to anti-PD-1 therapy. The method comprises administering an effective amount of an antitumor vaccine and a combination of a PD-1 inhibitor and a LAG-3 inhibitor, wherein the combination of the PD-1 inhibitor and LAG-3 inhibitor is capable of increasing the immune response to the anti-tumor vaccine and in treating the cancer.

[0031] The anti-tumor vaccine is a composition comprising a tumor antigen or a polynucleotide encoding the tumor antigen. In one embodiment, the anti-tumor vaccine is a DNA vaccine.

[0032] The term "tumor antigen" or "cancer antigen" refers to a protein that is specifically found on tumor cells or may be a molecule that is greatly upregulated on tumor cells. The term antigen refers to the ability of the protein to elicit an immune response when presented by antigen presenting cells to T cells. Suitable tumor antigens are known in the art, and will vary depending on the type of tumor being treated. [0033] In some embodiments, the tumor antigen is synovial sarcoma X breakpoint 2 (SSX2), androgen receptor ligand-binding domain (AR LBD), prostate-specific antigen (PSA), human epidermal growth factor receptor 2 (HER-2/neu), or prostatic acid phosphatase (PAP). In some embodiments, the antigen is a fragment or epitope of the antigen protein.

[0034] In some embodiments, the anti-tumor vaccine is a DNA vaccine. Any DNA vaccine that targets cancer may be used with the present methods. DNA vaccines against prostate cancer, breast cancer, ovarian cancer, sarcoma, lymphoma, among others, are known and understood in the art. [0035] In some embodiments, the anti-tumor vaccine is a DNA vaccine comprises a polynucleotide encoding the tumor antigen. For example, suitable tumor antigens include, but are not limited to, synovial sarcoma X breakpoint 2 (SSX2), androgen receptor ligand-binding domain (AR LBD), prostate-specific antigen (PSA), human epidermal growth factor receptor 2 (HER-2/neu), and prostatic acid phosphatase (PAP).

[0036] Suitable prostate cancer vaccines for use in the present methods include, for example, recombinant DNA vaccines that encode an androgen receptor or fragments thereof. Suitable recombinant DNA vaccines are disclosed in U.S. Pat. Nos. 7,910,565, 8,513,210 and 8,962,590, each of which is incorporated herein by reference in its entirety.

In some embodiments, the DNA vaccine comprises the pTVG-AR vector, which encodes the ligand-binding domain of the human androgen receptor gene inserted into the pTVG4 vector to create the immunization vector pTVG-AR. as disclosed in U.S. Pat. No. 7,910,565. Androgen receptor genes are known and have been cloned from many species. For example, the human, mouse, rat, dog, chimpanzee, macaque, and lemur androgen receptor mRNA that correspond to cDNA along with amino acid sequences can be found at GenBank Accession Nos. NM_000044 (cDNA-SEQ ID NO:1 and amino acid sequence-SEQ ID NO:2), NM_013476 (cDNA-SEQ ID NO:3 and amino acid sequence-SEQ ID NO:4), NM_012502 (cDNA-SEQ ID NO:5 and amino acid sequence-SEQ ID NO:6), NM_001003053, NM_001009012, U94179, and U94178, respectively. According to another embodiment, the DNA vaccine comprises a polynucleotide operatively linked to a transcriptional regulatory element (e.g., a promoter such as a heterologous promoter) wherein the polynucleotide encodes a member selected from (i) a mammalian androgen receptor (e.g., a human androgen receptor), (ii) a fragment of the androgen receptor that comprises the ligand-binding domain, (iii) a fragment of the ligand-binding domain defined by SEQ ID NO:9 (LLLFSIIPV, amino acids 811-819 of SEQ ID NO:2); (iv) a fragment of the ligand-binding domain defined by SEQ ID NO:10 (RMLYFAPDLV, amino acids 761-770 of SEQ ID NO:2), (v) a fragment of the ligand-binding domain defined by SEQ ID NO:11 (FLCMKALLL, amino acids 805-813 of SEQ ID NO:2), and (vi) a fragment of the ligand-binding domain defined by SEQ ID NO:12 (QLTKLLDSV, amino acids 859-867 of SEQ ID NO:2), wherein administration of said vaccine to a subject induces a cytotoxic immune reaction against cells expressing androgen receptor.

[0037] Other suitable DNA vaccines encode native or modified SSX2 peptides, as described in Smith et al. 2011 (Vaccines targeting the cancer-testis antigen SSX-2 elicit HLA-A2 epitopes specific cytolytic T cells. J. Immunother. 2011:34:569-80) and Smith et al. 2014 (DNA vaccines encoding altered peptide ligands for SSX2 enhance epitopespecific CD8+ T cell immune responses. Vaccine 2014:32: 1707-15), each of which is incorporated herein by reference in its entirety. In some embodiments, the DNA vaccines encoding native or modified SSX2 peptides comprise pTVG-SSX2^{HA} (KASEKIFYV (SEQ ID NO: 13) and/or RLQGISPKI (SEQ ID NO: 8)), MIP-SSX2, details for which can be found in Colluru V T, Zahm C D, McNeel D G. Mini-intronic plasmid vaccination elicits tolerant LAG3 (+) CD8(+) T cells and inferior antitumor responses. Oncoimmunology. 2016; 5(10):e1223002, which is incorporated by reference herein in its entirety. Other suitable prostate cancer vaccines include vaccines then encode prostatic acid phosphatase (PAP), for example, those described in U.S. Pat. No. 7,179,797, U.S. application Ser. Nos. 11/615,778, and 15/430,012, each of which is incorporated herein by reference in its entirety.

[0038] Suitable dosages and schedules for administering the DNA vaccine would be readily understood by one skilled in the art. An appropriate dosage would depend upon several factors, including the patient (age, weight, etc.), the DNA vaccine in use, the route of administration, and the additional drugs administered in combination with the vaccine. For example, the DNA vaccine may be administered at about

10 μ g to -1 mg per dose (e.g., 100 μ g). The vaccine may be administered using a standard schedule over a period of months or years.

[0039] The methods further comprise a combination of a LAG-3 inhibitor and a PD-1 inhibitor. Lymphocyte activation gene-3 (LAG-3; CD223) is a type I transmembrane protein expressed on the cell surface of activated CD4+ and CD8⁺ T cells and subsets of NK and dendritic cells (Triebel F, et al., J. Exp. Med. 1990; 171:1393-1405; Workman C J, et al., J. Immunol. 2009; 182(4): 1885-91). LAG-3 negatively regulates T cell signaling and functions. Suitable LAG-3 checkpoint inhibitors include, but are not limited to, for example, anti-LAG-3 antibody. Anti-LAG-3 antibodies are known in the art and commercially available, for example, relatlimab (Bristol-Myers Squibb). Suitable antibodies are also described in U.S. Pat. No. 9,908,936, the contents of which are incorporated by reference in their entirety. Other suitable LAG-3 checkpoint inhibitors include molecules that can prevent binding of LAG-3 to its ligands (e.g. major histocompatibility class II (MEW II) and/or Galectin-3) or molecules that inhibit signaling through the LAG-3 pathway. Not to be bound by any theory, but the inventors hypothesize that the combination of LAG-3 blockade with PD-1 inhibitor works better than the combination of PD-1 with other checkpoint inhibitors because of the expression levels of PD-1 and LAG3 on CD8+ T cells, making the combination blockade more effective in eliciting an anti-tumor CD8+ T cell response.

[0040] The term "antibody" as used herein also includes an "antigen-binding portion" of an antibody. The term "antigen-binding portion," as used herein, refers to one or more fragments of an antibody that retain the ability to specifically bind to an antigen (e.g., polypeptide or fragment thereof of LAG-3) and block signaling through the LAG-3 pathway. Examples of binding fragments encompassed within the term "antigen-binding portion" of an antibody include, but are not limited to, (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CHI domains; (ii) a F(ab')2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CHI domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al, (1989) Nature 341:544-546), which consists of a VH domain; and (vi) an isolated complementarity determining region (CDR).

[0041] Antibodies used in the methods may be polyclonal or monoclonal; xenogeneic, allogeneic, or syngeneic; or modified forms thereof (e.g., humanized, chimeric, etc.). Suitable antibodies may be fully human or humanized. Preferably, antibodies of the invention bind specifically or substantially specifically to the antigen (e.g. LAG-3, polypeptides or fragments thereof). The term "monoclonal antibodies" refers to a population of antibody polypeptides that contain only one species of an antigen binding site capable of binding a particular epitope of an antigen, whereas the term "polyclonal antibodies" refers to a population of antibody polypeptides that contain multiple species of antigen binding sites capable of interacting with a particular antigen. [0042] Suitable antibodies are able to inhibit or reduce at least one biological activity of the antigen (e.g. LAG-3) it binds. In certain embodiments, the antibodies or fragments thereof substantially or completely inhibit a given biological activity of the antigen.

[0043] For the present invention, inhibitors of PD-1 or PD-L1 are contemplated to be used in combination with the LAG-3 inhibitors described herein. PD-1 or PD-L1 inhibitors may include, but are not limited to, antibodies, peptides, small molecules, antisense RNAs, cDNAs, miRNAs, siR-NAs, aptamers, oligonucleotides, and the like. Examples include, but are not limited to, nivolumab, an anti-PD-1 antibody, available from Bristol-Myers Squibb Co and described in U.S. Pat. Nos. 7,595,048, 8,728,474, 9,073,994, 9,067,999, 8,008,449 and 8,779,105; pembrolizumab, and anti-PD-1 antibody, available from Merck and Co and described in U.S. Pat. Nos. 8,952,136, 83545509, 8,900,587 and EP2170959; atezolizumab is an anti-PD-L1 available from Genentech, Inc. (Roche) and described in U.S. Pat. No. 8,217,149; avelumab (Bavencio, Pfizer, formulation described in PCT Publ. WO2017097407), durvalumab (Imfinzi, WO2011066389). Medimmune/AstraZeneca, cemiplimab (Libtayo, Regeneron Pharmaceuticals Inc., Sanofi), spartalizumab (PDR001, Novartis), camrelizumav (AiRuiKa, Hengrui Medicine Co.), sintillimab (Tyvyt, Innovent Biologics/Eli Lilly), KN035 (Envafolimab, Tracon Pharmaceuticals); tislelizumab available from BeiGene and described in U.S. Pat. No. 8,735,553; among others and the like. Other PD-1 and PD-L1 that are in development may also be used in the practice of the present invention, including, for example, PD-1 inhibitors including toripalimab (JS-001, Shanghai Junshi Biosciences), dostarlimab (GlaxoSmithKline), INCMGA00012 (Incyte, MarcoGenics), AMP-224 (AstraZeneca/MedImmune and GlaxoSmithKline), AMP-514 (AstraZeneca), and PD-L1 inhibitors including AUNP12 (Aurigene and Laboratoires), CA-170 (Aurigen/Curis), and BMS-986189 (Bristol-Myers Squibb), among others. The term "checkpoint inhibitor therapy" refers to the form of cancer immunotherapy that block inhibitory checkpoints and thereby restore immune system function. Such therapies are known by those skilled in the art. In some embodiments, the PD-1 inhibitor is selected from the group consisting of Nivolumab (anti-PD-1), Pembrolizumab (anti-PD-1), and combinations thereof. In some embodiments, the PD-L1 inhibitor is selected from atezolizumab, avelumab, and durvalumab, among others. CTLA-4 inhibitors are not contemplated for use in the present invention, as described in the examples, CTLA-4 inhibitors do not act through the same pathway as the PD-1/PD-L1 inhibitors with respect to NLRP3 inhibitors, and as such, the combination of such does not produce the desired outcome as described herein, demonstrating the combination is unpredictable without knowledge of the underlying signaling mechanism, as described herein.

[0044] In the methods described herein the combination of the PD-1 inhibitor and the LAG-3 inhibitor preferably are administered after the initial administration of the anti-tumor vaccine. In some embodiments, "booster" or additional dosages of the anti-tumor vaccine are provided in intervals after the initial administration, e.g., 4 weeks, 6 weeks, 10 weeks, 12 weeks, 3-months, 6 months, 12 months after the initial administration.

[0045] An "effective treatment" refers to treatment producing a beneficial effect, e.g., amelioration of at least one symptom of a cancer. A beneficial effect can take the form of an improvement over baseline, i.e., an improvement over a measurement or observation made prior to initiation of therapy according to the method. A beneficial effect can also take the form of reducing, inhibiting or preventing further growth of cancer cells, reducing, inhibiting or preventing metastasis of the cancer cells or invasiveness of the cancer cells or metastasis or reducing, alleviating, inhibiting or preventing one or more symptoms of the cancer or metastasis thereof. Such effective treatment may, e.g., reduce patient pain, reduce the size or number of cancer cells, may reduce or prevent metastasis of a cancer cell, or may slow cancer or metastatic cell growth. The

[0046] The terms "cancer," "tumor" or "malignancy" are used throughout this description interchangeably and refer to the diseases of abnormal cell growth. While the present disclosure is directed to the treatment of prostate cancer, in some embodiments, castrate-resistant prostate cancer, one of skill in the art could readily extend the present teachings to other known solid cancers using cancer specific DNA vaccines. Suitable cancers include, without limitation, breast cancer, prostate cancer, cervical cancer, ovarian cancer, pancreatic cancer, glioblastoma, melanoma, renal cell carcinoma, melanoma, colon cancer, colorectal cancer, sarcoma, kidney cancer, and those summarized in "Cancer DNA vaccines: current preclinical and clinical developments and future perspectives" Lopes et al. Journal of Experimental and Clinical Cancer Research" 38, 146 (2019), the contents of which are incorporated by reference in its entirety. Preferably, the cancer is breast cancer, cervical cancer, colorectal cancer, prostate cancer, lymphoma and sarcoma, and more preferably a cancer that is resistant to PD-1 therapy.

[0047] As used herein, "castrate-resistant prostate cancer" refers to prostate cancer that keeps growing even when the amount of testosterone in the body is reduced to very low levels. Many early-stage prostate cancers need normal levels of testosterone to grow, but castrate-resistant prostate cancer describes prostate cancer that is no longer responding to treatments that reduce androgens in the subject.

[0048] The terms "metastasis" or "secondary tumor" refer to cancer cells that have spread to a secondary site, e.g., outside of the original primary cancer site. Secondary sites include, but are not limited to, for example, the lymphatic system, skin, distant organs (e.g., liver, stomach, pancreas, brain, etc.) and the like and will differ depending on the site of the primary tumor.

[0049] Preferably, in some embodiments, the tumor is resistant to PD-1 therapy. The term "refractory" or "resistant" to checkpoint inhibitors or PD-1/PD-L1 inhibitors refers to subjects that have been treated with the checkpoint inhibitors and/or PD-1/PD-L1 inhibitors and the cancer has either developed resistance to the therapy or has responded poorly or not responded to the treatment with the inhibitors even at the beginning of treatment.

[0050] The terms "subject" and "patient" are used interchangeably and refer to any animal (e.g., a mammal), including, but not limited to, humans, non-human primates, rodents, and the like, which is to be the recipient of a particular treatment. Typically, the terms "subject" and "patient" are used interchangeably herein in reference to a mammalian, for example, human, subject. Preferably, the human subject has a cancer, and in some embodiments, a cancer resistant to PD-1 therapy.

[0051] For purposes of the present invention, "treating" or "treatment" describes the management and care of a subject for combating the disease, condition, or disorder. Treating includes the administration of the multicell conjugate or

composition described herein to reduce, prevent, ameliorate and/or improve the onset of the symptoms or complications, alleviating the symptoms or complications, or reducing or eliminating the disease, condition, or disorder.

[0052] For example, treating cancer in a subject includes the reducing, repressing, delaying or preventing cancer growth, reduction of tumor volume, and/or preventing, repressing, delaying or reducing metastasis of the tumor. Treating cancer in a subject also includes the reduction of the number of tumor cells within the subject. The term "treatment" can be characterized by at least one of the following: (a) reducing, slowing or inhibiting growth of cancer and cancer cells, including slowing or inhibiting the growth of metastatic cancer cells; (b) preventing further growth of tumors; (c) reducing or preventing metastasis of cancer cells within a subject; and (d) reducing or ameliorating at least one symptom of cancer. In some embodiments, the optimum effective amount can be readily determined by one skilled in the art using routine experimentation.

[0053] The present disclosure further provides a method of increasing the anti-tumor immune response, and in some embodiments, a T cell response to a tumor antigen in a subject having cancer, the method comprising administering an effective amount of a DNA vaccine, and a combination of a PD-1 inhibitor and a LAG-3 inhibitor, wherein the combination is effective in increasing the anti-tumor immune response to the tumor antigen of the vaccine as compared to the vaccine alone.

[0054] In some embodiments, the anti-tumor immune response is a cellular immune response. Preferably, the cellular immune response is a T cell response. Suitable T cell responses include, for example, a CD8+ T cell response or a cytotoxic T lymphocyte (CTL) response. Cellular immune responses are understood by one skilled in the art, and include the ability to kill tumor cells. Activation of CD8+ T cells leads to programmed cell death of the tumor cells. In some embodiments, anti-tumor immune response is measured by assessing the cytotoxicity of T cells, for example, by cytotoxicity assays known in the art, or by assessing production of effector molecules, e.g., interferon gamma (IFN- γ), tumor necrosis factor α (TNF α), etc., by T cells from the subject.

[0055] As used herein, the terms "administering" and "administration" refer to any method of providing a pharmaceutical preparation to a subject. Such methods are well known to those skilled in the art and include, but are not limited to, oral administration, transdermal administration, administration by inhalation, nasal administration, topical administration, intravaginal administration, ophthalmic administration, intraaural administration, intratumoral administration, rectal administration, sublingual administration, buccal administration, and parenteral administration, including injectable such as intravenous administration. intra-arterial administration, intramuscular administration, intradermal administration, intrathecal administration, and subcutaneous administration. Administration can be continuous or intermittent. The vaccine and the inhibitors described herein may be administered via different routes. for example, the vaccine may be administered by injection (e.g., intramuscular, intradermal, etc.) while the inhibitors may be administered by intravenous administration, oral administration, etc. depending of the inhibitor selected.

[0056] In another embodiment, the present disclosure provides compositions and kits for eliciting an anti-tumor response to a tumor cell. The composition or kit comprises at least one DNA vaccine to a tumor antigen; at least one PD-1 inhibitor; and at least one LAG-3 inhibitor. In some embodiments, the anti-tumor vaccine is a DNA vaccine to the tumor antigen, wherein the tumor antigen is synovial sarcoma X breakpoint 2 (SSX2), androgen receptor ligand-binding domain (AR LBD), prostate-specific antigen (PSA), human epidermal growth factor receptor 2 (HER-2/neu), or prostatic acid phosphatase (PAP).

[0057] The inhibitors and vaccines used in the methods of the present invention may be formulated in any form that is appropriate for administration to the subject. For example, one or more of the inhibitors or vaccines may be formulated with a pharmaceutically acceptable carrier. The term "pharmaceutically acceptable carrier" refers to any carrier, diluent or excipient that is compatible with the other ingredients of the formulation and not deleterious to the recipient. Preferably, the pharmaceutically acceptable carrier is chosen in accordance with the selected route of administration and standard pharmaceutical practice for each agent. For example, for oral administration, the active ingredient may be combined with one or more solid inactive ingredients for the preparation of tablets, capsules, pills, powders, granules or other suitable oral dosage forms. For instance, the active agent may be combined with excipients such as fillers, binders, humectants, disintegrating agents, solution retarders, absorption accelerators, wetting agents absorbents or lubricating agents. Alternatively, for parenteral administration, the active agent may be mixed with a suitable carrier or diluent such as water, an oil (e.g., a vegetable oil), ethanol, saline solution (e.g., phosphate buffer saline or saline), aqueous dextrose (glucose) and related sugar solutions, glycerol, or a glycol such as propylene glycol or polyethylene glycol. Stabilizing agents, antioxidant agents and preservatives may also be added. Suitable antioxidant agents include sulfite, ascorbic acid, citric acid and its salts, and sodium EDTA. Suitable preservatives include benzalkonium chloride, methyl- or propyl-paraben, and chlorbutanol. The composition for parenteral administration may take the form of an aqueous or nonaqueous solution, dispersion, suspension or emulsion.

[0058] Further, inhibitors or vaccines used in the methods of the present invention may be formulated into dosage forms according to standard practices in the field of pharmaceutical preparations. See, e.g., Alphonso Gennaro, ed., *Remington's Pharmaceutical Sciences*, 18th Ed., (1990) Mack Publishing Co., Easton, Pa. Suitable dosage forms may comprise, for example, tablets, capsules, solutions, parenteral solutions, injectable solutions, troches, suppositories, or suspensions. For antibodies, suitable dosages forms are typically solutions.

[0059] The present invention has been described in terms of one or more preferred embodiments, and it should be appreciated that many equivalents, alternatives, variations, and modifications, aside from those expressly stated, are possible and within the scope of the invention.

[0060] It should be apparent to those skilled in the art that many additional modifications beside those already described are possible without departing from the inventive concepts. In interpreting this disclosure, all terms should be interpreted in the broadest possible manner consistent with the context. Variations of the term "comprising" should be

interpreted as referring to elements, components, or steps in a non-exclusive manner, so the referenced elements, components, or steps may be combined with other elements, components, or steps that are not expressly referenced. Embodiments referenced as "comprising" certain elements are also contemplated as "consisting essentially of" and "consisting of" those elements. The term "consisting essentially of" and "consisting of" should be interpreted in line with the MPEP and relevant Federal Circuit interpretation. The transitional phrase "consisting essentially of" limits the scope of a claim to the specified materials or steps "and those that do not materially affect the basic and novel characteristic(s)" of the claimed invention. "Consisting of" is a closed term that excludes any element, step or ingredient not specified in the claim. For example, with regard to sequences "consisting of" refers to the sequence listed in the SEQ ID NO. and does refer to larger sequences that may contain the SEQ ID as a portion thereof.

[0061] The references cited herein are explicitly incorporated by reference in their entireties.

Exemplary Embodiments

[0062] In one embodiment, a method of treating a subject having cancer is provided. The method comprises administering an anti-tumor vaccine and a combination of a PD-1 inhibitor and an LAG-3 inhibitor, wherein the combination is effective in increasing the efficacy of the anti-tumor vaccine and treating the cancer.

[0063] In another embodiment, a method of increasing the anti-tumor T cell response to a tumor antigen in a subject having cancer is provided. The method comprises administering an effective amount of a DNA vaccine and a combination of PD-1 inhibitor and an LAG-3 inhibitor, wherein the combination is effective in increasing the anti-tumor T cell immune response. In some aspects, the subject has a cancer resistant to PD-1.

[0064] The method of any one of the preceding embodiments, the subject has a cancer selected from breast cancer, cervical cancer, colorectal cancer, prostate cancer, lymphoma and sarcoma.

[0065] In some aspects, the DNA vaccine comprises a polynucleotide encoding the tumor antigen, wherein the tumor antigen is selected from the group consisting of synovial sarcoma X breakpoint 2 (SSX2), androgen receptor ligand-binding domain (AR LBD), prostate-specific antigen (PSA), human epidermal growth factor receptor 2 (HER-2/ neu), and prostatic acid phosphatase (PAP). In a preferred aspect, the cancer is prostate cancer.

[0066] The method of any one of the preceding embodiments, wherein the cancer is castrate resistant prostate cancer.

[0067] The method of any one of the preceding embodiments wherein the PD-1 inhibitor is an anti-PD 1 antibody.

[0068] The method of any one of the preceding embodiments, wherein the LAG-3 inhibitor is an anti-LAG3 antibody.

[0069] The method of any one of embodiments described herein, wherein the immune response is a cellular immune response. In some aspects, the immune response is a CD8+ T cell response. In some aspects, the anti-tumor vaccine is a DNA vaccine to the tumor antigen.

[0070] The method of any one of the preceding embodiments, wherein the combination of the PD-1 inhibitor and the LAG-3 inhibitor is administered after the anti-tumor vaccine in the subject.

[0071] In another embodiment, the disclosure provides a method of increasing the immune response to a tumor antigen on a cell in a subject, the method comprising contacting the subject with at least one vaccine directed to said tumor antigen, at least one PD-1 inhibitor and at least one LAG-3 inhibitor, wherein the immune response to said tumor vaccine alone. In some aspects, the immune response is a cellular immune response. In some aspects, the pD-1 inhibitor is an anti-PD1 antibody.

[0072] In some aspects of the methods of any one of embodiments, the LAG-3 inhibitor is an anti-LAG3 antibody. In some aspects, the tumor vaccine is a DNA vaccine. In some aspects, the tumor is a prostate cancer. In some aspects, the tumor is resistant to PD-1 inhibitor treatment alone.

[0073] In another embodiment, the disclosure provides a kit for eliciting an anti-tumor response, the kit comprising: at least one DNA vaccine to a tumor antigen; at least one PD-1 inhibitor; and at least one LAG-3 inhibitor. In some embodiments, the DNA vaccine to the tumor antigen, wherein the tumor antigen is synovial sarcoma X breakpoint 2 (SSX2), androgen receptor ligand-binding domain (AR LBD), prostate-specific antigen (PSA), human epidermal growth factor receptor 2 (HER-2/neu), or prostatic acid phosphatase (PAP).

[0074] It should be apparent to those skilled in the art that many additional modifications beside those already described are possible without departing from the inventive concepts. In interpreting this disclosure, all terms should be interpreted in the broadest possible manner consistent with the context. Variations of the term "comprising" should be interpreted as referring to elements, components, or steps in a non-exclusive manner, so the referenced elements, components, or steps may be combined with other elements, components, or steps that are not expressly referenced. Embodiments referenced as "comprising" certain elements are also contemplated as "consisting essentially of" and "consisting of" those elements. The term "consisting essentially of" and "consisting of" should be interpreted in line with the MPEP and relevant Federal Circuit interpretation. The transitional phrase "consisting essentially of" limits the scope of a claim to the specified materials or steps "and those that do not materially affect the basic and novel characteristic(s)" of the claimed invention. "Consisting of" is a closed term that excludes any element, step or ingredient not specified in the claim. For example, with regard to sequences "consisting of" refers to the sequence listed in the SEQ ID NO. and does refer to larger sequences that may contain the SEQ ID as a portion thereof.

[0075] The invention will be more fully understood upon consideration of the following non-limiting examples.

EXAMPLE 1

[0076] In this example, rational dual checkpoint blockade combinations and test these combinations in tumor models. The inventors used three separate murine tumor models targeting different antigens with different vaccines: C57BL/6 mice implanted with E.G7-OVA tumors express-

ing ovalbumin which the inventors previously modified to overexpress PD-L1 (PD-L1^{high}),19 an HLA-A2+ HLA-DR1+ (HHD-II) mouse model in which mice were implanted with sarcoma cells expressing the human synovial sarcoma X breakpoint 2 (SSX2) protein as a tumor antigen, 20 and FVB mice implanted with MycCaP prostate tumor cells, using a vaccine targeting the native androgen receptor (AR).21-23 Using OT-1 mice, the inventors assessed immune checkpoint expression on CD8+T cells following activation by antigen alone or by antigen presented by professional APC. The inventors found that PD-1, CTLA-4, LAG-3, and TIM-3 were all upregulated in the presence of professional APC. However, in the absence of professional APC, LAG-3 was the only checkpoint molecule expressed, suggesting LAG-3 as a rational target for dual blockade in combination with anti-tumor vaccination. Subsequent studies focused on anti-tumor vaccination in the presence or absence of PD-1, LAG-3, or dual PD-1/LAG-3 antibody blockade. The inventors found that in a model less responsive to vaccination and PD-1 blockade anti-tumor vaccination produced a greater anti-tumor response when used in combination with both PD-1 and LAG-3 blockade.

Materials and Methods:

Mice

[0077] HLA-A2.01/HLA-DR1-expressing (HHDII-DR1) mice on a C57BL/6 background were obtained from Charles River Labs courtesy of Dr. François Lemonnier.24 OT-1 (Stock No: 003831), C57BL/6 J (B6, Stock No: 000664), and FVB/NJ (FVB, Stock No: 001800) mice were purchased from The Jackson Laboratory (Jax, Bar Harbor, Mass.). All mice were maintained and treated in microisolator cages under aseptic conditions, and all experiments were conducted under an IACUC-approved protocol that conforms to the NIH guide for the care and use of laboratory animals.

Cell Lines

[0078] E.G7-OVA (derivative of EL4) cells were obtained from ATCC (Manassas, Va., Cat. #CRL-2113) and maintained via the ATCC-recommended culture methods. E.G7-OVA cells were lentivirally transduced to express PD-L1, as previously described.19 The A2/sarcoma cell line expressing SSX2 (A2/Sarc-SSX2) was generated as previously described.16 The MycCaP cell line was obtained from ATCC (Cat #CRL-3255) and cultured according to their instructions. All cell lines used were authenticated and tested for mycoplasma.

Peptides

[0079] Peptides encoding the H2K^{*b*}-restricted epitope from chicken ovalbumin (SIINFEKL) and the HLA-A2 restricted epitope of SSX2 (RLQGISPKI) were synthesized, and the purity and identity confirmed by mass spectrometry and gas chromatography (LifeTein, LLC., Hillsborough, N.J.). Peptides were dissolved in DMSO (2 mg/ml) and stored at -80° C. until required.

In Vitro Assay

[0080] Splenocyte Stimulation

[0081] Spleens were collected from OT-1 mice, processed through a mesh screen, and splenocytes were isolated by centrifugation after red blood cell osmotic lysis with ammo-

nium chloride/potassium chloride lysis buffer (0.15 M NH4Cl, 10 mM KHCO3, 0.1 mM EDTA). Splenocytes were cultured at 2×10^6 /mL in RPMI 1640 medium supplemented with L-glutamine, 10% fetal calf serum (FCS), 200 U/mL penicillin/streptomycin, 1% sodium pyruvate, 1% HEPES, 50 μ M β -MeOH, and 2 μ g/mL SIINFEKL (SEQ ID NO: 7) peptide or the HLA-A2 restricted sequence from SSX2 (RLQGISPKI (SEQ ID NO: 8)) as a nonspecific control. [0082] Co-Culture Experiments (FIG. 6)

[0083] B cells or dendritic cells (DCs) were enriched from splenocytes of OT-1 or B6 mice inoculated with Flt3 ligandexpressing B16 tumor cells25 using PE-labeled antibodies specific for either CD19 or CD11c (StemCell, Seattle, Wash., Cat. #17,684) as previously described.26 Similarly, CD8+T cells were isolated using a negative selection CD8+ T-cell isolation kit (StemCell, Cat. #19,853). After enrichment, each APC subset, and a subset of purified T cells, were cultured as described above with 2 µg/mL SIINFELK (SEQ ID NO: 7) or the HLA-A2 sequence from SSX2 (RLQGIS-PKI (SEQ ID NO: 8)) as a nonspecific control peptide. Naïve OT-1 T cells were added to each cell type at a 1:1 ratio and incubated for three days, after which cells were stained and analyzed by flow cytometry with the following panel: CD3-FITC (BD 555,274), CD4-BUV395 (BD 563,790), CD8-BUV805 (BD 564,920), LAG-3-BV711 (BD 563, 179), PD1-PECF594 (BD 562,523), TIM3-APC (eBiosci-

179), PDI-PECF594 (BD 562,523), TIM3-APC (eBioscience 17-5871-82), CTLA4-PECy7 (Tonbo 60-1522-U100), 41BB-PerCPeF710 (eBioscience 46-1371-82), and Live/ Dead Ghost dye 780 (Tonbo, San Diego, Calif. 13-0865-T100).

[0084] Immunization Studies

[0085] The construction of DNA vaccines encoding SSX2 was previously described.20 Six- to to eight-week-old HHDII-DR1 mice were randomized into treatment groups and immunized intradermally (i.d.) with the 100 μ g pTVG4 control vector, pTVG-SSX2, pTVG-SSX2^{HA}, or MIP-SSX2 DNA vaccines (FIG. 7). At 2, 4, 7, 10, and 14 days after immunization, a group from each treatment type were euthanized, their spleens collected and SSX2-tetramer+ CD8 T cells assessed by flow cytometry directly for surface markers or stimulated with the dominant HLA-A2 restricted epitope of SSX2; p103-111, RLQGISPKI (SEQ ID NO: 8), for 16 hours (8 alone and 8 in the presence of BD GolgiStop [BD Biosciences, Cat. #554,724]) and activation and cytokine production of all CD8 T cells assessed by intracellular cytokine staining and flow cytometry using standard protocols provided by BD biosciences. A flow panel for direct analysis of surface markers was as described above, with the addition of SSX2 p103 tetramer-APC.

[0086] Tumor Treatment Studies

E.G7-OVA Tumors in B6 Mice (FIG. 8)

[0087] Six- to ten-week-old female B6 mice were injected subcutaneously (s.c.) with 106 ovalbumin-expressing E.G7-OVA PD-L1high cells. Seven to ten days postinjection, when tumors were palpable and similarly sized (~0.1 cm3), mice were randomized into treatment groups and OT-1 splenocytes were harvested and SIINFEKL-specific CD8+T cells and DC were isolated as previously described.26 OT-1 CD8+T cells were stimulated for 36 hours in the presence of 2 µg/mL SIINFEKL (SEQ ID NO: 7) or vehicle control with or without a 1:1 ratio of DC as described above. Following stimulation, three groups of T cells were isolated: those that received vehicle (No Stim), those that were simulated in the

absence of DCs (No APC), and those that were stimulated in the presence of DCs (DC). Ten days after tumor implantation, 106 of each T cell subset were adoptively transferred via intraperitoneal (i.p.) injection into the E.G7-OVA PD-L1high tumor-bearing mice. The day following transfer, mice were given 100 μ g α PD-1, α LAG-3, both α PD-1 and α LAG-3, or IgG control. Tumor volume was measured with calipers three times weekly until tumors reach 2 cm3 or death and calculated in cubic centimeters using the following formula: (π /6)*(long axis, cm)*(short axis, cm)2. Animals with tumors larger than 2 cm3 were compassionately euthanized.

SSX2+ Sarcomas in HHD-II Mice (FIG. 9)

[0088] Six- to eight-week-old female HHDII-DR1 mice were inoculated with 10^{5} A2/Sarc-SSX2 cells administered s.c. in 50% Matrigel (Corning, Tewksbury, Mass. Cat. #354,248). The following day, mice were immunized i.d. with 100 µg pTVG4 control vector, pTVG-SSX2, pTVG-SSX2^{*HA*}, or MIP-SSX2 DNA, and the day after that, each vaccine group was administered 100 µg i.p. aPD-1, aLAG-3, both aPD-1/aLAG-3, or IgG control antibodies. Tumor volume was measured over time, with endpoints as above.

MycCaP Tumors in FVB Mice (FIG. 10)

[0089] 6- to 9-week-old male FVB mice were injected s.c. with 10^6 MycCaP cells on day 0. Beginning the next day (day 1) and continuing weekly, mice were immunized i.d. with 100 ug pTVG4 control vector or pTVG-AR vaccine. The following day (day 2), and weekly thereafter, mice were injected i.p. with 100 µg of IgG, α PD-1, α LAG-3, or both α PD-1/ α LAG-3 (100 µg each). Tumor volume was measured over time, with endpoints as above. In a parallel study, tumors were also collected on day 29, digested with collagenase, and assessed by flow cytometry as described above, with the gating strategy as shown in FIG. **11**.

Statistical Analyses

[0090] Comparison of group means was performed using GraphPad Prism software, v8.4.3. Analysis of Variance (ANOVA) followed by the Bonferroni multiple-comparison post-hoc procedure was used to compare individual group means. Where ANOVA was not possible, comparison of group means was performed using the mixed effects model with Geisser-Greenhouse correction. Survival analysis was conducted using a Mantel-Cox log-rank test. For all comparisons, P values equal to or less than 0.05 were considered statistically significant.

Results

T-Cell Activation by Professional APCs can Lead to Distinct Immune Checkpoint Expression on CD8±T Cells

[0091] As described earlier, the inventors' previous work has demonstrated that differences in T-cell priming from anti-tumor vaccination can lead to expression of different checkpoint receptors which can impede the anti-tumor efficacy of vaccine induced CD8+T cells.16·18·19 To evaluate this further, the inventors first assessed the expression of checkpoints immediately following antigen encounter by activating OT-1 CD8+T cells with SIINFEKL peptide in the presence or absence of professional APC (DCs or B cells). Shown in FIG. 1 are the mean fluorescence intensities (MFI)

of 4-1BB (CD137, as a marker of T-cell activation), PD-1, CTLA-4, TIM-3, and LAG-3 on OT-1 CD8+T cells activated in the presence or absence (No Stim) of cognate SIINFEKL (SEQ ID NO: 7) peptide. Expression of all the checkpoint receptors and 4-1BB was increased on cells stimulated in the presence of professional APCs (either B cells or DC). Expression of TIM-3 was slightly (but not significantly, p=0.086) lower when B cells were used as professional APC compared to DC. However, when T cells were stimulated alone without professional APC, the only checkpoint receptor with increased expression was LAG-3. This suggests that activation with co-stimulation leads to expression of other receptors and LAG-3 is increased with activation in the absence of a co-stimulatory signal.

Blockade of PD-1 or LAG-3 Improves Anti-Tumor Activity of Activated CD8±T-Cells

[0092] To determine directly whether expression of specific receptors interferes with anti-tumor response and whether blocking activation-induced checkpoint receptors can ameliorate the anti-tumor response, naïve OT-1+ CD8+T cells, or OT-1+ CD8+T cells that were stimulated in vitro with or without APC (DC), were adoptively transferred to B6 mice bearing PD-L1^{*high*} E.G7-OVA tumors. Following the transfer, mice were administered IgG isotype, aPD-1, aLAG-3, or both aPD-1 and aLAG-3 monoclonal antibodies (FIG. 2a). As shown in FIG. 2b, all groups that received checkpoint blockade had marked reductions in tumor growth when compared to IgG. However, LAG-3 blockade was most effective when used with T cells stimulated without APC (FIG. 2c). Blockade of both PD-1 and LAG-3 produced a greater delay in tumor growth when compared to IgG or LAG-3, however the response following dual blockade was not significantly greater when compared to PD-1 alone in this model (individual growth curves shown in FIG. 12).

DNA Vaccination Can Elicit CD8±T Cells Differentially Expressing PD-1 and LAG-3

[0093] The inventors next wished to determine how PD-1 and/or LAG-3 blockade, when used concurrently with DNA vaccination, would affect the resulting Th1 CD8+T-cell response. For this, the inventors first evaluated HLA-A2/ DR1+ HHD-II mice vaccinated with different plasmid vectors encoding SSX2. Specifically, pTVG-SSX 2^{HA} encodes two epitopes with high HLA-A2 affinity and was previously demonstrated to elicit antigen-specific CD8+T cells with higher PD-1 expression compared to a vector encoding the native SSX2 epitopes (pTVG-SSX2).16 The other construct, mini-intronic plasmid SSX2 (MIP-SSX2), encodes the native SSX2 protein in a mini-intronic plasmid resulting in prolonged expression of SSX2 in vivo, and was previously demonstrated to elicit antigen-specific CD8+T cells with higher LAG-3 expression compared to pTVG-SSX2.18 Mice were immunized with one of these modified vaccines, the native pTVG-SS2 vaccine, or empty vector (pTVG4). Splenocytes from immunized animals were collected at 2, 4, 7, 10 and 14 days after immunization to assess checkpoint expression and memory phenotype (FIG. 3a). As shown in FIG. 3b, immunization with $pTVG-SSX2^{HA}$ led to p103 (the dominant HLA-A2 epitope for SSX2) tetramer+ CD8+T cells with increased PD-1 expression when compared to the other vaccines (representative histograms are shown in FIG.

13). Immunization with MIP-SSX2 predominantly induced LAG-3 expression, with lower expression of PD-1 compared to the other vectors. These findings were consistent with the inventors' previous findings.16-18 As shown in FIG. **3***c*, vaccination with any of the SSX2 constructs elicited CD8+T cells with similar Th1 cytokine profiles following in vitro stimulation with the p103 peptide epitope. As shown in FIG. **3***d*, each of the SSX2 vaccines led to a similar transition from central to effector CD8 memory, which is expected following cytotoxic T-cell expansion (representative dot plots in FIG. **13**).27

PD-1 Blockade is Superior to LAG-3 Blockade when Used in Combination with an Anti-Tumor Vaccine in an α PD-1 Sensitive Tumor

[0094] The inventors next wished to determine whether PD-1 and LAG-3 blockade was superior to either alone when used in combination with these anti-tumor DNA vaccines. 6- to 8-week-old HLA-A2+ HHD-II mice were inoculated with SSX2-expressing sarcoma cells. As shown in FIG. 4a, the mice were immunized with pTVG4 control vector, pTVG-SSX2, pTVG-SSX2^{HA}, or MIP-SSX2 DNA vaccines one day following tumor implantation and at weekly intervals thereafter. The day following each immunization, mice were administered aPD-1, aLAG-3, both α PD-1/ α LAG-3, or IgG control antibodies. Shown in FIG. 4 are the mean tumor sizes (4B) and survival curves (4C) from each treatment group (individual data points are shown in FIG. 14). Consistent with the inventors' previous findings, and despite the similar cytokine expression profile and memory phenotype of CD8+T cells described in FIG. 3, pTVG-SSX2^{HA} and MIP-SSX2 vaccines were inferior to the native pTVG-SSX2 vaccine when used without T-cell checkpoint blockade (pTVG-SSX2 vs pTVG-SSX2^{H4}p=0. 036; pTVG-SSX2 vs MIP-SSX2 p=0.026). However, when the altered vaccines were used in combination with checkpoint blockade, all blocking antibodies resulted in reduced tumor growth when compared to IgG control. As in the PD-L1^{*high*} E.G7-OVA tumors, both α PD-1 and the α PD-1/ aLAG-3 combination slowed tumor growth to a greater extent and prolonged survival when compared to aLAG-3 alone with antigen-specific vaccination. However, the response to vaccination with dual α PD-1/ α LAG-3 blockade was not significantly greater than blockade with α PD-1 alone (pTVG-SSX2p=0.99; pTVG-SSX2^{HA}p=0.84; MIP-SSX2p=0.92), which in this model was highly effective. A treatment response was observed with α LAG-3 and control vector in this particular experiment, but not observed in repeated studies (data not shown).

In a Prostate Cancer Model, Vaccination with PD-1 and LAG-3 Blockade is Superior to Vaccination with Either Blockade Alone

[0095] The inventors next wished to evaluate vaccination with checkpoint blockade in a murine model less responsive to PD-1 blockade. Prostate cancers have been considered mostly resistant to single-agent PD-1 blockade in clinical trials, and previous reports using the murine MycCaP prostate cancer model have demonstrated that while it does respond to anti-tumor vaccination, it does not respond to PD-1/PD-L1 blockade.23·28-30 As shown in FIG. 5*a*, sixto-nine-week-old male FVB mice were inoculated with MycCaP cells and immunized with the pTVG4 control or a DNA vaccine encoding the native ligand-binding domain of the androgen receptor (pTVG-AR). The day following immunization and weekly thereafter, mice were treated with

aPD-1, aLAG-3, both aPD-1/aLAG-3, or IgG control. As shown in FIG. 5b and FIG. 5c, all vaccine combinations slowed the growth of tumors when compared to the vaccine with IgG; however, the combination of α PD-1 and α LAG-3 with vaccine led to a significant reduction in tumor growth compared to vaccination with either antibody alone. Treatment of mice with aPD-1 and/or aLAG-3 without vaccine showed little anti-tumor effect in this model (FIG. 15). In a duplicate study, tumors were collected at day 29 for further evaluation. The combination treatment led to a slight increase (not significant) in the number of infiltrating CD4+ and CD8+T cells (FIG. 5d), as well as an unexpected increase in tumor-infiltrating MDSC (FIG. 15). Further evaluation of tumor-infiltrating CD8+T cells showed these to be predominantly of an effector memory and tissueresident memory phenotype (FIG. 5e).

Discussion

[0096] In this example, the inventors investigated the activation-induced expression of immune checkpoint receptors on CD8+T cells and how that expression is affected by T-cells which had been activated by professional or "nonprofessional" APC. Based on this information, the inventors identified a rational combination of checkpoint inhibitors to use with anti-tumor vaccination. The inventors report that T cells stimulated in the absence of professional APC increased expression of LAG-3 but not PD-1, CTLA-4, or TIM3, while T cells stimulated with APC displayed an increase in all checkpoint receptors observed. The inventors thus focused on combinations of PD-1 and LAG-3 blockade in the context of anti-tumor vaccination. Using DNA vaccines that the inventors have previously demonstrated can lead to antigen-specific CD8+T cells with increased expression of PD-1 or LAG-3, the inventors found that either checkpoint blockade successfully enhanced vaccine induced anti-tumor responses with all the vaccines tested; however, the inventors found no specific advantage to vaccination with dual PD-1/LAG-3 blockade over vaccine with PD-1 blockade alone in murine models that were robustly sensitive to PD-1 blockade.19 In the prostate cancer model, which is resistant to single-agent PD-1 blockade, and using a vaccine encoding a naturally expressed tumor antigen, the dual blockade group demonstrated greater therapeutic efficacy than other treatment groups. These results indicate the following: 1) depending on which cells are presenting antigen, tumor-reactive CD8+T cells can be activated with distinct patterns of checkpoint receptor expression; 2) dual blockade of PD-1 and LAG-3 can provide significant benefit over either blockade alone in PD-1 resistant MycCaP prostate tumors; 3) the upregulation of other checkpoint receptors (e.g. TIM-3, CTLA-4, VISTA, CD160, BTLA etc.), and the persistence of some tumors despite activation of a Th1 biased T-cell response and targeted checkpoint blockade suggest that combination strategies with vaccine and other checkpoint blocking antibodies could be the focus of future investigations.

[0097] The inventors' approach was based on the finding that T-cell activation following vaccination resulted in the expression of PD-1, LAG-3, CTLA-4, and TIM-3 checkpoint receptors. Of note, the inventors did see a slight decrease in TIM-3 following stimulation with B cells as professional APC (FIG. 1), suggesting there could be differences in T cell function following stimulation by different professional APC types. However, in the absence of profes-

sional APC, activated CD8+T cells expressed only LAG-3. The inventors reasoned that combination checkpoint blockade following vaccination should consequently include LAG-3 blockade, as vaccines, and notably DNA vaccines, can result in antigen presentation through nonprofessional APC. The inventors have previously shown that, during T-cell activation, a longer contact time between the CD8+T cell and the APC (i.e. longer exposure to TCR signaling and co-stimulation), resulted in elevated PD-1 expression that persisted for months after antigen exposure.19 These data suggest the existence of a negative feedback loop in which excess TCR stimulation leads to the expression of PD-1 and other inhibitory receptors and molecules. Given the current study, LAG-3 expression appears to be dependent on TCR stimulation, but not necessarily co-stimulation. This suggests LAG-3 expression may be part of a second negative feedback loop that is regulated independently of PD-1, and consequently that the use of PD-1 and LAG-3 in a dual checkpoint blockade strategy could be advantageous following vaccination with a tumor antigen.

[0098] The inventors' data demonstrate that if CD8+T cells are activated in a way that leads to the expression LAG-3 alone; then, their anti-tumor activity is improved with LAG-3 blockade. However, following vaccination, there was little benefit to adding LAG-3 blockade to vaccine with PD-1 blockade in the OVA-expressing or SSX2 sarcoma models. It is possible that this is entirely due to the first two model systems being exquisitely sensitive to PD-1 blockade with vaccination. The inventors had specifically used E.G7-OVA tumor cells transfected to express PD-L1 as a model at least partially responsive to PD-1 blockade, compared with E.G7-OVA cells that do not express PD-L1. 31 In addition, the inventors had previously demonstrated that OVA-specific CD8+T cells infiltrating these tumors following treatment had increased LAG-3 expression.31 However, use of this cell line with checkpoint blockade, and the inventors' model using SSX2 DNA vaccination with PD-1 blockade alone, resulted in eradication of tumors in many animals. Hence, demonstrating a benefit with combined blockade was challenging in these models. Notwithstanding, the inventors used the SSX2 sarcoma model specifically because the inventors' prior data demonstrated that altered vaccines could elicit CD8+T cells with preferential expression of PD-1 or LAG-3, and hence might respond differently to vaccination with checkpoint blockade. It is conceivable that in these tumor models because the antigens targeted are not normal "self" proteins expressed in the host, the majority of antigen-specific CD8+T cells were activated by professional APC and predominantly expressed PD-1. However, the inventors' data are consistent with a report that combined PD-1 and LAG-3 blockade was effective when used in combination with a viral vaccine targeting non-self antigens.32 Together, these data suggest that this combination might be more effective than vaccination with PD-1 blockade alone, particularly for tumors less responsive to PD-1 blockade.

[0099] In the inventors' tumor studies, while some tumors were eradicated, many were not. This was despite demonstrating activation of CD8+T cells, the infiltration of tumors by CD8+T cells and blocking one or more of the checkpoint inhibitory receptors. The inventors have similarly found in patients with advanced prostate cancer, treated with vaccine and PD-1 blockade, that while some had evidence of disease response, this was often not durable.33 Certainly many

additional mechanisms of tumor immune evasion are present, but the observation that blocking multiple checkpoint receptors following vaccine leads to increased anti-tumor response suggests that combination blockade should be further explored, both in the clinic and in further preclinical studies. The inventors' findings in the MycCaP tumor model that CD11b+Gr-1+ MDSC were increased following treatment suggest that this could be an additional mechanism of resistance. Hence, the inventors' future studies will explore anti-tumor vaccines with other combinations of checkpoint blockade and/or therapies that reduce other immunosuppressive cells and pathways upregulated in the tumor microenvironment following anti-tumor vaccination.34

REFERENCES

- [0100] 1. Tang F, Du X, Liu M, Zheng P, Liu Y. Anti-CTLA-4 antibodies in cancer immunotherapy: selective depletion of intratumoral regulatory T cells or checkpoint blockade? Cell Biosci. 2018; 8:30. doi: doi.org/10.1186/s13578-018-0229-z.
- [0101] 2. Jin H T, Anderson A C, Tan W G, West E E, Ha S J, Araki K, Freeman G J, Kuchroo V K, A hmed R. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc Natl Acad Sci USA. 2010; 107(33):14733-10. doi: doi.org/ 10.1073/pnas.1009731107.
- [0102] 3. Pardoll D M. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012; 12(4):252-264. doi: doi.org/10.1038/nrc3239.
- [0103] 4. Riley J L. PD-1 signaling in primary T cells. Immunol Rev. 2009; 229(1):114-125. doi: doi.org/10. 1111/j.1600-065X.2009.00767.x.
- [0104] 5. Hui E, Cheung J, Zhu J, Su X, Taylor M J, Wallweber H A, Sasmal D K, Huang J, Kim J. M, Mellman I, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 2017; 355(6332):1428-1433. doi://doi.org/10.1126/science.aaf1292.
- [0105] 6. Hodi F S, O'Day S J, McDermott D F et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010; 363(8): 711-723. doi://doi.org/10.1056/NEJMoa1003466.
- [0106] 7. Hamid O, Robert C, Daud A, Hodi F S, Hwu W J, Kefford R, Wolchok J D, Hersey P, Joseph R W, Weber J S, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013; 369(2):134-144. doi:doi.org/10.1056/NEJ-Moa1305133.
- [0107] 8. Sakuishi K, Apetoh L, Sullivan J M, Blazar B R, Kuchroo V K, Anderson A C. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010; 207(10):2187-2194. doi:doi.org/10.1084/jem.20100643.
- [0108] 9. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob J J, Cowey C L, Lao C D, Schadendorf D, Dummer R, Smylie M, Rutkowski P, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015; 373(1):23-34. doi:doi.org/ 10.1056/NEJMoa1504030.
- **[0109]** 10. Crosby E J, Wei J, Yang X Y, Lei G, Wang T, Liu C X, Agarwal P, Korman A J, Morse M A, Gouin K, et al. Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-nega-

tive breast tumors. Oncoimmunology. 2018; 7(5): e1421891. doi:doi.org/10.1080/2162402X.2017. 1421891.

- **[0110]** 11. Fiegle E, Doleschel D, Koletnik S, Rix A, Weiskirchen R, Borkham-Kamphorst E, Kiessling F, Lederle W. Dual CTLA-4 and PD-L1 blockade inhibits tumor growth and liver metastasis in a highly aggressive orthotopic mouse model of colon cancer. Neoplasia. 2019; 21(9):932-944. doi:doi.org/10.1016/j.neo. 2019.07.006.
- [0111] 12. Shi L Z, Goswami S, Fu T, Guan B, Chen J, Xiong L, Zhang J, Ng Tang D, Zhang X, Vence L, et al. Blockade of CTLA-4 and PD-1 enhances adoptive T-cell therapy efficacy in an ICOS mediated manner. Cancer Immunol Res. 2019; 7(11):1803-1812. doi:doi. org/10.1158/2326-6066.CIR-18-0873.
- [0112] 13. Kos S, Lopes A, Preat V, Cemazar M, Lampreht Tratar U, Ucakar B, Vanvarenberg K, Sersa G, Vandermeulen G. Intradermal DNA vaccination combined with dual CTLA-4 and PD-1 blockade provides robust tumor immunity in murine melanoma. PLoS One. 2019; 14(5):e0217762. Doi doi.org/10.1371/journal.pone.0217762.
- [0113] 14. DiGiulio S (2015) FDA approves Opdivoyervoy combo for melanoma, first combo immunotherapy regimen for cancer. FDA Actions Updates. journals.lww.com/oncology-times/blog/fdaactionsandupdates/pages/post.aspx?PostID=116. 2020
- [0114] 15. Motzer R J, Tannir N M, McDermott D F, Aren Frontera O, Melichar B, Choueiri T K, Plimack E R, Barthelemy P, Porta C, George S, et al. Nivolumab plus ipilimumab versus sunitinib in advanced Renalcell carcinoma. N Engl J Med. 2018; 378(14):1277-1290. doi: doi.org/10.1056/NEJMoa1712126.
- [0115] 16. Rekoske B T, Smith H A, Olson B M, Maricque B B, McNeel D G. PD-1 or PD-L1 blockade restores antitumor efficacy following SSX2 Epitopemodified DNA vaccine immunization. Cancer Immunol Res. 2015; 3(8):946-955. doi: doi.org/10.1158/ 2326-6066.CIR-14-0206.
- [0116] 17. Zumwalde N A, Domae E, Mescher M F, Shimizu Y. ICAM-1-Dependent homotypic aggregates regulate CD8 T cell effector function and differentiation during T cell activation. The Journal of Immunology. 2013; 191(7):3681-3693. doi: doi.org/10.4049/jimmunol.1201954.
- [0117] 18. Colluru V T, Zahm C D, McNeel D G. Mini-intronic plasmid vaccination elicits tolerant LAG3(+) CD8(+) T cells and inferior antitumor responses. Oncoimmunology. 2016; 5(10):e1223002. doi: doi.org/10.1080/2162402X.2016.1223002.
- [0118] 19. Zahm C D, Colluru V T, McNeel D G. Vaccination with high-affinity epitopes impairs antitumor efficacy by increasing PD-1 expression on CD8(+) T cells. Cancer Immunol Res. 2017; 5(8):630-641. doi: doi.org/10.1158/2326-6066.CIR-16-0374.
- [0119] 20. Smith H A, McNeel D G. Vaccines targeting the cancer-testis antigen SSX-2 elicit HLA-A2 epitopespecific cytolytic T cells. J Immunother (Hagerstown, Md: 1997). 2011; 34(8):569-580. doi: doi.org/10.1097/ CJI.0b013e31822b5b1d.
- [0120] 21. Smith H A, Rekoske B T, McNeel D G. DNA vaccines encoding altered peptide ligands for SSX2 enhance epitope-specific CD8+ T-cell immune

responses. Vaccine. 2014; 32(15):1707-1715. doi: doi. org/10.1016/j.vaccine.2014.01.048.

- [0121] 22. Smith H A, McNeel D G. Vaccines targeting the cancer-testis antigen SSX-2 elicit HLA-A2 epitopespecific cytolytic T cells. J Immunother. 2011; 34(8): 569-580. doi: doi.org/10.1097/CJI. 0b013e31822b5b1d.
- [0122] 23. Olson B M, Bradley E S, Sawicki T, Zhong W, Ranheim E A, Bloom J E, Colluru V T, Johnson L E, Rekoske B T, Eickhoff J C, et al. Safety and immunological efficacy of a DNA vaccine encoding the androgen receptor Ligand-binding domain (AR-LBD). Prostate. 2017; 77(7):812-821. doi: doi.org/10.1002/ pros.23321.
- [0123] 24. Pajot A, Michel M L, Fazilleau N, Pancre V, Auriault C, Ojcius D M, Lemonnier F A, Lon e Y C. A mouse model of human adaptive immune functions: HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class IIknockout mice. Eur J Immunol. 2004; 34(11):3060-3069. doi: doi.org/10.1002/eji.200425463.
- [0124] 25. Kapadia D, Sadikovic A, Vanloubbeeck Y, Brockstedt D, Fong L. Interplay between CD8alpha+ dendritic cells and monocytes in response to Listeria monocytogenes infection attenuates T cell responses. PloS One. 2011; 6(4):e19376. doi: doi.org/10.1371/ journal.pone.0019376.
- [0125] 26. Colluru V T, McNeel D G. B lymphocytes as direct antigen-presenting cells for anti-tumor DNA vaccines. Oncotarget. 2016; 7(42):67901-67918. doi: doi.org/10.18632/oncotarget.12178.
- [0126] 27. Schlub T E, Badovinac V P, Sabel J T, Harty J T, Davenport M P. Predicting CD62L expression during the CD8(+) T-cell response in vivo. Immunol Cell Biol. 2010; 88(2):157-164. doi:https://doi.org/10. 1038/icb.2009.80.
- [0127] 28. Philippou Y, Sjoberg H T, Murphy E, Alyacoubi S, Jones K I, Gordon-Weeks A N, Phyu S, Parkes E E, Gillies McKenna W, Lamb A D, et al. Impacts of combining anti-PD-L1 immunotherapy and radiotherapy on the tumour immune microenvironment in a

murine prostate cancer model. Br J Cancer. 2020; 123(7):1089-1100. doi:https://doi.org/10.1038/s41416-020-0956-x.

- [0128] 29. Olson B M, Johnson L E, McNeel D G. The androgen receptor: a biologically relevant vaccine target for the treatment of prostate cancer. Cancer Immunology, Immunotherapy: CII. 2013; 62(3):585-596. doi:https://doi.org/10.1007/s00262-012-1363-9.
- [0129] 30. Olson B M, Gamat M, Seliski J, Sawicki T, Jeffery J, Ellis L, Drake C G, Weichert J, McN eel D G. Prostate cancer cells express more Androgen Receptor (AR) following androgen deprivation, improving recognition by AR-specific T cells. Cancer Immunol Res. 2017; 5(12):1074-1085. doi:https://doi.org/10.1158/ 2326-6066.CIR-16-0390.
- [0130] 31. Zahm C D, Colluru V T, McNeel D G. Vaccination with High-affinity epitopes impairs antitumor efficacy by increasing PD-1 expression on CD8(+) T cells. Cancer Immunol Res. 2017; 5(8):630-641. doi:https://doi.org/10.1158/2326-6066.CIR-16-0374.
- [0131] 32. Roy S, Coulon P G, Prakash S, Srivastava R, Geertsema R, Dhanushkodi N, Lam C, Nguyen V, Gorospe E, Nguyen A M, et al. Blockade of PD-1 and LAG-3 immune checkpoints combined with vaccination restores the function of antiviral Tissue-resident CD8(+) TRM cells and reduces ocular herpes simplex infection and disease in HLA transgenic rabbits. J Virol. 2019; 93. doi:https://doi.org/10.1128/JVI.00827-19.
- [0132] 33. McNeel D G, Eickhoff J C, Wargowski E, Zahm C, Staab M J, Straus J, Liu G. Concurrent, but not sequential, PD-1 blockade with a DNA vaccine elicits anti-tumor responses in patients with metastatic, castration-resistant prostate cancer. Oncotarget. 2018; 9(39):25586-25596. doi:https://doi.org/10.18632/oncotarget.25387.
- [0133] 34. Zahm C D, Johnson L E, McNeel D G. Increased indoleamine 2,3-dioxygenase activity and expression in prostate cancer following targeted immunotherapy. Cancer Immunol Immunother. 2019; 68(10):1661-1669. doi:https://doi.org/10.1007/s00262-019-02394-w.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 13	
<210> SEQ ID NO 1 <211> LENGTH: 10667 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 1	
agegeeecet eegagateee ggggageeag ettgetggga gagegggaeg gteeggagea	60
agcccagagg cagaggaggc gacagaggga aaaagggccg agctagccgc tccagtgctg	120
tacaggagee gaagggaege accaegeeag eeceageeeg geteeagega cageeaaege	180
ctcttgcagc gcggcggctt cgaagccgcc gcccggagct gccctttcct cttcggtgaa	240
gtttttaaaa gctgctaaag actcggagga agcaaggaaa gtgcctggta ggactgacgg	300
ctgeetttgt ectecteete tecaeceege etececeeae ectgeettee ecceeteece	360
cgtettetet ecegeagetg eeteagtegg etacteteag ecaaceeeee teaceaceet	420

US 2022/0347282 A1

continued

14

				-contir	nued		
tctccccacc	cgcccccccg	cccccgtcgg	cccagcgctg	ccagcccgag	tttgcagaga	480	
ggtaactccc	tttggctgcg	agcgggcgag	ctagctgcac	attgcaaaga	aggctcttag	540	
gagccaggcg	actggggagc	ggcttcagca	ctgcagccac	gacccgcctg	gttaggctgc	600	
acgcggagag	aaccctctgt	tttcccccac	tctctctcca	cctcctcctg	ccttccccac	660	
cccgagtgcg	gagccagaga	tcaaaagatg	aaaaggcagt	caggtettea	gtagccaaaa	720	
aacaaaacaa	acaaaaacaa	aaaagccgaa	ataaaagaaa	aagataataa	ctcagttctt	780	
atttgcacct	acttcagtgg	acactgaatt	tggaaggtgg	aggattttgt	ttttttttt	840	
taagatctgg	gcatcttttg	aatctaccct	tcaagtatta	agagacagac	tgtgagccta	900	
gcagggcaga	tcttgtccac	cgtgtgtctt	cttctgcacg	agactttgag	gctgtcagag	960	
cgctttttgc	gtggttgctc	ccgcaagttt	ccttctctgg	agcttcccgc	aggtgggcag	1020	
ctagctgcag	cgactaccgc	atcatcacag	cctgttgaac	tcttctgagc	aagagaaggg	1080	
gaggcggggt	aagggaagta	ggtggaagat	tcagccaagc	tcaaggatgg	aagtgcagtt	1140	
agggctggga	agggtctacc	ctcggccgcc	gtccaagacc	taccgaggag	ctttccagaa	1200	
tctgttccag	agcgtgcgcg	aagtgatcca	gaacccgggc	cccaggcacc	cagaggccgc	1260	
gagcgcagca	cctcccggcg	ccagtttgct	gctgctgcag	cagcagcagc	agcagcagca	1320	
gcagcagcag	cagcagcagc	agcagcagca	gcagcagcag	cagcaagaga	ctageceeag	1380	
gcagcagcag	cagcagcagg	gtgaggatgg	ttctccccaa	gcccatcgta	gaggeeecac	1440	
aggctacctg	gtcctggatg	aggaacagca	accttcacag	ccgcagtcgg	ccctggagtg	1500	
ccaccccgag	agaggttgcg	tcccagagcc	tggagccgcc	gtggccgcca	gcaagggggct	1560	
gccgcagcag	ctgccagcac	ctccggacga	ggatgactca	gctgccccat	ccacgttgtc	1620	
cctgctgggc	cccactttcc	ccggcttaag	cagctgctcc	gctgacctta	aagacatcct	1680	
gagegaggee	agcaccatgc	aactccttca	gcaacagcag	caggaagcag	tatccgaagg	1740	
cagcagcagc	gggagagcga	gggaggcctc	ggggggttccc	acttecteca	aggacaatta	1800	
cttaggggggc	acttcgacca	tttctgacaa	cgccaaggag	ttgtgtaagg	cagtgtcggt	1860	
gtccatgggc	ctgggtgtgg	aggcgttgga	gcatctgagt	ccaggggaac	agcttcgggg	1920	
ggattgcatg	tacgccccac	ttttgggagt	tecacceget	gtgcgtccca	ctccttgtgc	1980	
cccattggcc	gaatgcaaag	gttetetget	agacgacagc	gcaggcaaga	gcactgaaga	2040	
tactgctgag	tattcccctt	tcaagggagg	ttacaccaaa	gggctagaag	gcgagagcct	2100	
aggetgetet	ggcagcgctg	cagcagggag	ctccgggaca	cttgaactgc	cgtctaccct	2160	
gtetetetae	aagtccggag	cactggacga	ggcagctgcg	taccagagtc	gcgactacta	2220	
caactttcca	ctggctctgg	ccggaccgcc	gccccctccg	ccgcctcccc	atccccacgc	2280	
tcgcatcaag	ctggagaacc	cgctggacta	cggcagcgcc	tgggcggctg	cggcggcgca	2340	
gtgccgctat	ggggacctgg	cgagcctgca	tggcgcgggt	gcagcgggac	ccggttctgg	2400	
gtcaccctca	gccgccgctt	cctcatcctg	gcacactctc	ttcacagccg	aagaaggcca	2460	
gttgtatgga	ccgtgtggtg	gtggtggggg	tggtggcggc	ggcggcggcg	acaacaacaa	2520	
cggcggcggc	ggcggcggcg	gcggcgaggc	gggagctgta	gccccctacg	gctacactcg	2580	
gccccctcag	gggctggcgg	gccaggaaag	cgacttcacc	gcacctgatg	tgtggtaccc	2640	
tggcggcatg	gtgagcagag	tgccctatcc	cagtcccact	tgtgtcaaaa	gcgaaatggg	2700	

US 2022/0347282 A1

15

				-contir	nued	
cccctggatg g	gatagctact	ccggacctta	cggggacatg	cgtttggaga	ctgccaggga	2760
ccatgttttg	cccattgact	attactttcc	accccagaag	acctgcctga	tctgtggaga	2820
tgaagcttct g	gggtgtcact	atggagctct	cacatgtgga	agctgcaagg	tcttcttcaa	2880
aagagccgct	gaagggaaac	agaagtacct	gtgcgccagc	agaaatgatt	gcactattga	2940
taaattccga a	aggaaaaatt	gtccatcttg	tcgtcttcgg	aaatgttatg	aagcagggat	3000
gactctggga 🤉	gcccggaagc	tgaagaaact	tggtaatctg	aaactacagg	aggaaggaga	3060
ggcttccagc a	accaccagcc	ccactgagga	gacaacccag	aagctgacag	tgtcacacat	3120
tgaaggctat g	gaatgtcagc	ccatctttct	gaatgtcctg	gaagccattg	agccaggtgt	3180
agtgtgtgct g	ggacacgaca	acaaccagcc	cgactccttt	gcagcettge	tctctagcct	3240
caatgaactg g	ggagagagac	agcttgtaca	cgtggtcaag	tgggccaagg	ccttgcctgg	3300
cttccgcaac (ttacacgtgg	acgaccagat	ggctgtcatt	cagtactcct	ggatggggct	3360
catggtgttt g	gccatgggct	ggcgatcctt	caccaatgtc	aactccagga	tgctctactt	3420
cgcccctgat (ctggttttca	atgagtaccg	catgcacaag	tcccggatgt	acagccagtg	3480
tgtccgaatg a	aggcacctct	ctcaagagtt	tggatggctc	caaatcaccc	cccaggaatt	3540
cctgtgcatg a	aaagcactgc	tactcttcag	cattattcca	gtggatgggc	tgaaaaatca	3600
aaaattcttt o	gatgaacttc	gaatgaacta	catcaaggaa	ctcgatcgta	tcattgcatg	3660
caaaagaaaa a	aatcccacat	cctgctcaag	acgcttctac	cagctcacca	agctcctgga	3720
ctccgtgcag (cctattgcga	gagagctgca	tcagttcact	tttgacctgc	taatcaagtc	3780
acacatggtg a	agcgtggact	ttccggaaat	gatggcagag	atcatctctg	tgcaagtgcc	3840
caagatcctt	tctgggaaag	tcaagcccat	ctatttccac	acccagtgaa	gcattggaaa	3900
ccctatttcc d	ccaccccagc	tcatgccccc	tttcagatgt	cttctgcctg	ttataactct	3960
gcactactcc f	tctgcagtgc	cttggggaat	ttcctctatt	gatgtacagt	ctgtcatgaa	4020
catgttcctg a	aattctattt	gctgggcttt	tttttctct	ttctctcctt	tettttett	4080
ctteecteec	tatctaaccc	tcccatggca	ccttcagact	ttgcttccca	ttgtggctcc	4140
tatctgtgtt	ttgaatggtg	ttgtatgcct	ttaaatctgt	gatgatcctc	atatggccca	4200
gtgtcaagtt g	gtgcttgttt	acagcactac	tctgtgccag	ccacacaaac	gtttacttat	4260
cttatgccac o	gggaagttta	gagagctaag	attatctggg	gaaatcaaaa	caaaaacaag	4320
caaacaaaaa a	aaaaaagcaa	aaacaaaaca	aaaaataagc	caaaaaacct	tgctagtgtt	4380
ttttcctcaa a	aaataaataa	ataaataaat	aaatacgtac	atacatacac	acatacatac	4440
aaacatatag a	aaatccccaa	agaggccaat	agtgacgaga	aggtgaaaat	tgcaggccca	4500
tggggagtta d	ctgattttt	catctcctcc	ctccacggga	gactttattt	tctgccaatg	4560
gctattgcca 1	ttagagggca	gagtgacccc	agagctgagt	tgggcagggg	ggtggacaga	4620
gaggagagga	caaggagggc	aatggagcat	cagtacctgc	ccacagcett	ggtccctggg	4680
ggctagactg	ctcaactgtg	gagcaattca	ttatactgaa	aatgtgcttg	ttgttgaaaa	4740
tttgtctgca 🖞	tgttaatgcc	tcacccccaa	acccttttct	ctctcactct	ctgcctccaa	4800
cttcagattg a	actttcaata	gtttttctaa	gacctttgaa	ctgaatgttc	tcttcagcca	4860
aaacttggcg a	acttccacag	aaaagtctga	ccactgagaa	gaaggagagc	agagatttaa	4920
ccctttgtaa 🤉	ggccccattt	ggatccaggt	ctgctttctc	atgtgtgagt	cagggaggag	4980

		-continued	
ctggagccag aggagaagaa	aatgatagct tggctgttc	cctgcttagg acactgactg	5040
aatagttaaa ctctcactgc	cactacettt teeccacett	taaaagacct gaatgaagtt	5100
ttctgccaaa ctccgtgaag	ccacaagcac cttatgtcc	cccttcagtg ttttgtgggc	5160
ctgaatttca tcacactgca	tttcagccat ggtcatcaa	g eetgtttget tettttggge	5220
atgttcacag attctctgtt	aagagccccc accaccaaga	a aggttagcag gccaacagct	5280
ctgacatcta tctgtagatg	ccagtagtca caaagattto	c ttaccaactc tcagatcgct	5340
ggagccctta gacaaactgg	aaagaaggca tcaaagggat	c caggcaagct gggcgtcttg	5400
cccttgtccc ccagagatga	taccctccca gcaagtggaq	g aagtteteae tteettett	5460
agagcagcta aaggggctac	ccagatcagg gttgaagaga	a aaactcaatt accagggtgg	5520
gaagaatgaa ggcactagaa	ccagaaaccc tgcaaatgc	c cttcttgtca cccagcatat	5580
ccacctgcag aagtcatgag	aagagagaag gaacaaagaq	g gagactctga ctactgaatt	5640
aaaatcttca gcggcaaagc	ctaaagccag atggacacca	a tctggtgagt ttactcatca	5700
teeteetetg etgetgatte	tgggctctga cattgccca	actcactcag attccccacc	5760
tttgttgctg cctcttagtc	agagggaggc caaaccatt	g agactttcta cagaaccatg	5820
gcttctttcg gaaaggtctg	gttggtgtgg ctccaatac	t ttgccaccca tgaactcagg	5880
gtgtgccctg ggacactggt	tttatatagt cttttggcad	c acctgtgttc tgttgacttc	5940
gttetteaag eecaagtgea	agggaaaatg tccacctac	tteteatett ggeetetgee	6000
tccttactta gctcttaatc	tcatctgttg aactcaagaa	a atcaagggcc agtcatcaag	6060
ctgcccattt taattgattc	actctgtttg ttgagagga	t agtttctgag tgacatgata	6120
tgatccacaa gggtttcctt	ccctgatttc tgcattgata	a ttaatagcca aacgaacttc	6180
aaaacagctt taaataacaa	gggagagggg aacctaagat	t gagtaatatg ccaatccaag	6240
actgctggag aaaactaaag	ctgacaggtt ccctttttg	g ggtgggatag acatgttctg	6300
gttttcttta ttattacaca	atctggctca tgtacagga	c cacttttagc tgttttaaac	6360
agaaaaaaat atccaccact	cttttcagtt acactaggt	acattttaat aggteettta	6420
catctgtttt ggaatgattt	tcatcttttg tgatacaca	g attgaattat atcattttca	6480
tatctctcct tgtaaatact	agaagctctc ctttacatt	c ctctatcaaa tttttcatct	6540
ttatgggttt cccaattgtg	actcttgtct tcatgaata	t atgtttttca tttgcaaaag	6600
ccaaaaatca gtgaaacagc	agtgtaatta aaagcaacaa	a ctggattact ccaaatttcc	6660
aaatgacaaa actagggaaa	aatagcctac acaagcctt	aggeetaete tttetgtget	6720
tgggtttgag tgaacaaagg	agattttagc ttggctctg	t tctcccatgg atgaaaggag	6780
gaggattttt tttttctttt	ggccattgat gttctagcca	a atgtaattga cagaagtctc	6840
attttgcatg cgctctgctc	tacaaacaga gttggtatgg	g ttggtatact gtactcacct	6900
gtgagggact ggccactcag	acccacttag ctggtgagc	: agaagatgag gatcactcac	6960
tggaaaagtc acaaggacca	tctccaaaca agttggcagi	: gctcgatgtg gacgaagagt	7020
gaggaagaga aaaagaagga	gcaccaggga gaaggctcc	g tetgtgetgg geageagaea	7080
gctgccagga tcacgaactc	tgtagtcaaa gaaaagagto	s gtgtggcagt ttcagctctc	7140
gttcattggg cagctcgcct	aggeecagee tetgagetga	a catgggagtt gttggattct	7200
		g ttettggaaa gtttattatt	7260
J	5	,	

		-contin	nued	
tttttaactc ccttactctg	agaaagggat attttgaag	g actgtcatat	atctttgaaa	7320
aaagaaaatc tgtaatacat	atattttat gtatgttca	c tggcactaaa	aaatatagag	7380
agetteatte tgteetttgg	gtagttgctg aggtaattg	t ccaggttgaa	aaataatgtg	7440
ctgatgctag agtccctctc	tgtccatact ctacttcta	a atacatatag	gcatacatag	7500
caagttttat ttgacttgta	ctttaagaga aaatatgtc	c accatccaca	tgatgcacaa	7560
atgagctaac attgagcttc	aagtagette taagtgttt	g tttcattagg	cacagcacag	7620
atgtggcctt tccccccttc	tctcccttga tatctggca	g ggcataaagg	cccaggccac	7680
tteetetgee eetteecage	cctgcaccaa agctgcatt	t caggagactc	tctccagaca	7740
gcccagtaac tacccgagca	tggcccctgc atagccctg	g aaaaataaga	ggctgactgt	7800
ctacgaatta tcttgtgcca	gttgcccagg tgagagggc	a ctgggccaag	ggagtggttt	7860
tcatgtttga cccactacaa	ggggtcatgg gaatcagga	a tgccaaagca	ccagatcaaa	7920
tccaaaactt aaagtcaaaa	taagccattc agcatgttc	a gtttcttgga	aaaggaagtt	7980
tctacccctg atgcctttgt	aggcagatct gttctcacc	a ttaatctttt	tgaaaatctt	8040
ttaaagcagt ttttaaaaag	agagatgaaa gcatcacat	t atataaccaa	agattacatt	8100
gtacctgcta agataccaaa	attcataagg gcagggggg	g agcaagcatt	agtgcctctt	8160
tgataagctg tccaaagaca	gactaaagga ctctgctgg	t gactgactta	taagagcttt	8220
gtgggttttt ttttccctaa	taatatacat gtttagaag	a attgaaaata	atttcgggaa	8280
aatgggatta tgggtccttc	actaagtgat tttataagc	a gaactggctt	tccttttctc	8340
tagtagttgc tgagcaaatt	gttgaagete cateattge	a tggttggaaa	tggagctgtt	8400
cttagccact gtgtttgcta	gtgcccatgt tagcttatc	t gaagatgtga	aaccettget	8460
gataagggag catttaaagt	actagatttt gcactagag	g gacagcaggc	agaaatcctt	8520
atttctgccc actttggatg	gcacaaaaag ttatctgca	g ttgaaggcag	aaagttgaaa	8580
tacattgtaa atgaatattt	gtatccatgt ttcaaaatt	g aaatatatat	atatatatat	8640
atatatatat atatatatat	atagtgtgtg tgtgtgttc	t gatagettta	actttctctg	8700
catctttata tttggttcca	gatcacacct gatgccatg	t acttgtgaga	gaggatgcag	8760
ttttgttttg gaagetetet	cagaacaaac aagacacct	g gattgatcag	ttaactaaaa	8820
gttttctccc ctattgggtt	tgacccacag gtcctgtga	a ggagcagagg	gataaaaaga	8880
gtagaggaca tgatacattg	tactttacta gttcaagac	a gatgaatgtg	gaaagcataa	8940
aaactcaatg gaactgactg	agatttacca cagggaagg	c ccaaacttgg	ggccaaaagc	9000
ctacccaagt gattgaccag	tggcccccta atgggacct	g agctgttgga	agaagagaac	9060
tgttccttgg tcttcaccat	ccttgtgaga gaagggcag	t tteetgeatt	ggaacctgga	9120
gcaagcgctc tatctttcac	acaaatteee teacetgag	a ttgaggtgct	cttgttactg	9180
ggtgtctgtg tgctgtaatt	ctggttttgg atatgttct	g taaagatttt	gacaaatgaa	9240
aatgtgtttt tctctgttaa	aacttgtcag agtactaga	a gttgtatctc	tgtaggtgca	9300
ggtccatttc tgcccacagg	tagggtgttt ttctttgat	t aagagattga	cacttctgtt	9360
gcctaggacc tcccaactca	accatttcta ggtgaaggc	a gaaaaatcca	cattagttac	9420
tcctcttcag acatttcagc	tgagataaca aatcttttg	g aattttttca	cccatagaaa	9480
gagtggtaga tatttgaatt	tagcaggtgg agtttcata	g taaaaacagc	ttttgactca	9540

-continued

-continued	
yetttgattt ateeteattt gatttggeea gaaagtaggt aatatgeatt gattggett	tc 9600
gatteeaat teagtatage aaggtgetag gtttttteet tteeceacet gtetettag	gc 9660
rtggggaatt aaatgagaag oottagaatg ggtggooott gtgaootgaa acaottoo	ca 9720
cataagctac ttaacaagat tgtcatggag ctgcagattc cattgcccac caaagacta	ag 9780
aacacacaca tatccataca ccaaaggaaa gacaattctg aaatgctgtt tctctggtg	gg 9840
tteeetetet ggetgetgee teacagtatg ggaacetgta etetgeagag gtgacagge	cc 9900
agatttgcat tateteacaa eettageeet tggtgetaae tgteetacag tgaagtgee	ct 9960
ggggggttgt cctatcccat aagccacttg gatgctgaca gcagccacca tcagaatg	ac 10020
ccacgcaaaa aaaagaaaaa aaaaattaaa aagtcccctc acaacccagt gacacctti	tc 10080
tgettteete tagaetggaa eattgattag ggagtgeete agaeatgaea ttettgtge	2t 10140
ytccttggaa ttaatctggc agcaggaggg agcagactat gtaaacagag ataaaaatt	ta 10200
attttcaata ttgaaggaaa aaagaaataa gaagagagag agaaagaa	aa 10260
agattttett aaaagaaaca attttgettg aaatetettt agatgggget catttete	ac 10320
ggtggcactt ggcctccact gggcagcagg accagctcca agcgctagtg ttctgttc	tc 10380
tttttgtaat cttggaatct tttgttgctc taaatacaat taaaaatggc agaaacttg	gt 10440
ttgttggact acatgtgtga ctttgggtct gtctctgcct ctgctttcag aaatgtca	tc 10500
cattgtgtaa aatattggct tactggtctg ccagctaaaa cttggccaca tcccctgti	ta 10560
cggctgcagg atcgagttat tgttaacaaa gagacccaag aaaagctgct aatgtccto	2t 10620
tatcattgtt gttaatttgt taaaacataa agaaatctaa aatttca	10667
<210> SEQ ID NO 2 <211> LENGTH: 920 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 2	
Met Glu Val Gln Leu Gly Leu Gly Arg Val Tyr Pro Arg Pro Pro Ser 1 5 10 15	
bys Thr Tyr Arg Gly Ala Phe Gln Asn Leu Phe Gln Ser Val Arg Glu 20 25 30	
/al Ile Gln Asn Pro Gly Pro Arg His Pro Glu Ala Ala Ser Ala Ala	
35 40 45 Pro Pro Gly Ala Ser Leu Leu Leu Gln Gln Gln Gln Gln Gln Gln Gln	
50 55 60	
Gln	
Glu Thr Ser Pro Arg Gln Gln Gln Gln Gln Gln Gly Glu Asp Gly Ser 85 90 95	
Pro Gln Ala His Arg Arg Gly Pro Thr Gly Tyr Leu Val Leu Asp Glu 100 105 110	
Glu Gln Gln Pro Ser Gln Pro Gln Ser Ala Leu Glu Cys His Pro Glu 115 120 125	
Arg Gly Cys Val Pro Glu Pro Gly Ala Ala Val Ala Ala Ser Lys Gly 130 135 140	
T20 T20 T40	
eu Pro Gln Gln Leu Pro Ala Pro Pro Asp Glu Asp Asp Ser Ala Ala.	

											-	con	tin	ued	
Pro	Ser	Thr	Leu	Ser 165	Leu	Leu	Gly	Pro	Thr 170	Phe	Pro	Gly	Leu	Ser 175	Ser
Суз	Ser	Ala	Asp 180		ГЛа	Aap	Ile	Leu 185	Ser	Glu	Ala	Ser	Thr 190	Met	Gln
Leu	Leu	Gln 195	Gln	Gln	Gln	Gln	Glu 200	Ala	Val	Ser	Glu	Gly 205	Ser	Ser	Ser
Gly	Arg 210	Ala	Arg	Glu	Ala	Ser 215	Gly	Ala	Pro	Thr	Ser 220	Ser	Lys	Asp	Asn
Tyr 225	Leu	Gly	Gly	Thr	Ser 230	Thr	Ile	Ser	Asp	Asn 235	Ala	Lys	Glu	Leu	Cys 240
Lys	Ala	Val	Ser	Val 245	Ser	Met	Gly	Leu	Gly 250	Val	Glu	Ala	Leu	Glu 255	His
Leu	Ser	Pro	Gly 260	Glu	Gln	Leu	Arg	Gly 265	Asp	Сув	Met	Tyr	Ala 270	Pro	Leu
Leu	Gly	Val 275	Pro	Pro	Ala	Val	Arg 280	Pro	Thr	Pro	Суз	Ala 285	Pro	Leu	Ala
Glu	Сув 290		Gly	Ser	Leu	Leu 295		Asp	Ser	Ala	Gly 300		Ser	Thr	Glu
Asp 305		Ala	Glu	Tyr	Ser 310		Phe	Lys	Gly	Gly 315	Tyr	Thr	Lys	Gly	Leu 320
	Gly	Glu	Ser	Leu 325		Суз	Ser	Gly	Ser 330			Ala	Gly		
Gly	Thr	Leu		Leu	Pro	Ser	Thr	Leu		Leu	Tyr	Lys		335 Gly	Ala
Leu	Asp		340 Ala		Ala	Tyr		345 Ser	Arg	Asp	Tyr		350 Asn	Phe	Pro
Leu		355 Leu	Ala	Gly	Pro		360 Pro	Pro	Pro	Pro		365 Pro	His	Pro	His
Ala	370 Arg	Ile	Lys	Leu	Glu	375 Asn	Pro	Leu	Asp	Tyr	380 Gly	Ser	Ala	Trp	Ala
385 Ala	Ala	Ala	Ala	Gln	390 Суз	Arg	Tyr	Gly	Asp	395 Leu	Ala	Ser	Leu	His	400 Gly
Ala	Gly	Ala	Ala	405 Gly	Pro	Gly	Ser	Gly	410 Ser	Pro	Ser	Ala	Ala	415 Ala	Ser
			420					425 Ala					430		
		435					440				-	445		-	-
	450	-	-	-	-	455	-	Gly	-	-	460	-	-	-	-
Gly 465	Gly	Gly	Gly	Gly	Gly 470	Gly	Gly	Gly	Glu	Ala 475	Gly	Ala	Val	Ala	Pro 480
Tyr	Gly	Tyr	Thr	Arg 485	Pro	Pro	Gln	Gly	Leu 490	Ala	Gly	Gln	Glu	Ser 495	Asp
Phe	Thr	Ala	Pro 500	-	Val	Trp	Tyr	Pro 505	Gly	Gly	Met	Val	Ser 510	Arg	Val
Pro	Tyr	Pro 515	Ser	Pro	Thr	Cys	Val 520	Lys	Ser	Glu	Met	Gly 525	Pro	Trp	Met
Asp	Ser 530	Tyr	Ser	Gly	Pro	Tyr 535	Gly	Asp	Met	Arg	Leu 540	Glu	Thr	Ala	Arg
Asp 545	His	Val	Leu	Pro	Ile 550	Asp	Tyr	Tyr	Phe	Pro 555	Pro	Gln	Lys	Thr	Сув 560
	Ile	Суз	Gly	Asp		Ala	Ser	Gly	Сув		Tyr	Gly	Ala	Leu	

				565					570					575	
Суа	Gly	Ser	Суз 580		Val	Phe	Phe	Lys 585		Ala	Ala	Glu	Gly 590		Gln
Lys	Tyr	Leu 595	Сүз	Ala	Ser	Arg	Asn 600	Asp	Суз	Thr	Ile	Asp 605	Lys	Phe	Arg
Arg	Lys 610	Asn	Суз	Pro	Ser	Суя 615	Arg	Leu	Arg	Lys	Суз 620	Tyr	Glu	Ala	Gly
Met 625	Thr	Leu	Gly	Ala	Arg 630	Lys	Leu	Lys	Lys	Leu 635	Gly	Asn	Leu	Lys	Leu 640
Gln	Glu	Glu	Gly	Glu 645	Ala	Ser	Ser	Thr	Thr 650	Ser	Pro	Thr	Glu	Glu 655	Thr
Thr	Gln	Lys	Leu 660	Thr	Val	Ser	His	Ile 665	Glu	Gly	Tyr	Glu	Сув 670	Gln	Pro
		675				Glu	680					685			
-	690	-				Pro 695	-				700				
705					710	Arg				715					720
-				725		Arg			730		-	-		735	
			740		-	Met	-	745					750	-	-
-		755				Asn	760	-			-	765			-
	770				-	Arg 775			-		780		-		
785		-		-	790	Leu				795	-	-			800
				805		Суз		-	810					815	
			820			Lys Leu		825					830		
		835		-		Arg	840	-				845	-	-	-
	850					855 Ala					860				
865					870		-			875					880
			-	885		Gln			890	-				895	
			900			Thr		905	4.5				910	10	
цуъ	FIO	915	тут	FIIE	пъ	1111	920								
)> SH L> LH	ENGTH	H: 10												

<400> SEQUENCE: 3

-continued

				-contir	nued		
cagegeeece	tcggagatcc	ctaggagcca	gcctgctggg	agaaccagag	ggtccggagc	60	
aaacctggag	gctgagaggg	catcagaggg	gaaaagactg	agctagccac	tccagtgcca	120	
tacagaagct	taagggacgc	accacgccag	ccccagccca	gcgacagcca	acgcctgttg	180	
cagagcggcg	gcttcgaagc	cgccgcccag	gagctgccct	ttcctcttcg	gtgaagtttc	240	
taaaagctgc	gggagactca	gaggaagcaa	ggaaagtgtc	cggtaggact	acggctgcct	300	
ttgtcctctt	cccctctacc	cttaccccct	cctgggtccc	ctctccagga	gctgactagg	360	
caggetttet	ggccaaccct	ctcccctaca	cccccagctc	tgccagccag	tttgcacaga	420	
ggtaaactcc	ctttggctga	gagtagggga	gcttgttgca	cattgcaagg	aaggcttttg	480	
ggagcccaga	gactgaggag	caacagcacg	cccaggagag	tccctggttc	caggttctcg	540	
cccctgcacc	tcctcctgcc	cgcccctcac	cctgtgtgtg	gtgttagaaa	tgaaaagatg	600	
aaaaggcagc	tagggtttca	gtagtcgaaa	gcaaaacaaa	agctaaaaga	aaacaaaaag	660	
aaaatagccc	agttcttatt	tgcacctgct	tcagtggact	ttgaatttgg	aaggcagagg	720	
atttcccctt	tteccteccg	tcaaggtttg	agcatcttt	aatctgttct	tcaagtattt	780	
agagacaaac	tgtgtaagta	gcagggcaga	tcctgtcttg	cgcgtgcctt	cctttactgg	840	
agactttgag	gttatctggg	cactcccccc	acccaccccc	cctcctgcaa	gttttcttcc	900	
ccggagcttc	ccgcaggtgg	gcagctagct	gcagatacta	catcatcagt	caggagaact	960	
cttcagagca	agagacgagg	aggcaggata	agggaattcg	gtggaagcta	cagacaagct	1020	
caaggatgga	ggtgcagtta	gggctgggaa	gggtctaccc	acggccccca	tccaagacct	1080	
atcgaggagc	gttccagaat	ctgttccaga	gcgtgcgcga	agcgatccag	aacccgggcc	1140	
ccaggcaccc	tgaggccgct	aacatagcac	ctcccggcgc	ctgtttacag	cagaggcagg	1200	
agactagece	ccggcggcgg	cggcggcagc	agcacactga	ggatggttct	cctcaagccc	1260	
acatcagagg	ccccacaggc	tacctggccc	tggaggagga	acagcagcct	tcacagcagc	1320	
aggcagcctc	cgagggccac	cctgagagca	getgeeteee	cgagcctggg	gcggccaccg	1380	
ctcctggcaa	ggggctgccg	cagcagccac	cageteetee	agatcaggat	gactcagctg	1440	
ccccatccac	gttgtccctg	ctgggcccca	ctttcccagg	cttaagcagc	tgctccgccg	1500	
acattaaaga	cattttgaac	gaggccggca	ccatgcaact	tcttcagcag	cagcaacaac	1560	
agcagcagca	ccaacagcag	caccaacagc	accaacagca	gcaggaggta	atctccgaag	1620	
				ttcctccaag		1680	
				gtgtaaagca		1740	
ccatgggatt	gggtgtggaa	gcattggaac	atctgagtcc	aggggaacag	cttcggggag	1800	
actgcatgta	cgcgtcgctc	ctgggaggtc	cacccgcggt	gcgtcccact	ccttgtgcgc	1860	
cgctgcccga	atgcaaaggt	cttcccctgg	acgaaggccc	aggcaaaagc	actgaagaga	1920	
ctgctgagta	tteetettte	aagggaggtt	acgccaaagg	attggaaggt	gagagcttgg	1980	
ggtgctctgg	cagcagtgaa	gcaggtagct	ctgggacact	tgagatcccg	tcctctctgt	2040	
ctctgtataa	atctggagca	ctagacgagg	cagcagcata	ccagaatcgc	gactactaca	2100	
actttccgct	ggctctgtcc	gggccgccgc	accccccgcc	ccctacccat	ccacacgccc	2160	
gtatcaagct	ggagaaccca	ttggactacg	gcagcgcctg	ggetgeggeg	gcagcgcaat	2220	
gccgctatgg	ggacttgggt	agtctacatg	gagggagtgt	agccgggccc	agcactggat	2280	

				-contir	nued	
cgcccccagc	caccacctct	tetteetgge	atactctctt	cacagetgaa	gaaggccaat	2340
tatatgggcc	aggaggcggg	ggcggcagca	gcagcccaag	cgatgccggg	cctgtagccc	2400
cctatggcta	cactcggccc	cctcaggggc	tgacaagcca	ggagagtgac	tactctgcct	2460
ccgaagtgtg	gtatcctggt	ggagttgtga	acagagtacc	ctatcccagt	cccaattgtg	2520
tcaaaagtga	aatgggacct	tggatggaga	actactccgg	accttatggg	gacatgcgtt	2580
tggacagtac	cagggaccat	gttttaccca	tcgactatta	ctttccaccc	cagaagacct	2640
gcctgatctg	tggagatgaa	gcttctggct	gtcactacgg	agctctcact	tgtggcagct	2700
gcaaggtctt	cttcaaaaga	gccgctgaag	ggaaacagaa	gtatctatgt	gccagcagaa	2760
acgattgtac	cattgataaa	tttcggagga	aaaattgccc	atcttgtcgt	ctccggaaat	2820
gttatgaagc	agggatgact	ctgggagctc	gtaagctgaa	gaaacttgga	aatctaaaac	2880
tacaggagga	aggagaaaac	tccaatgctg	gcagccccac	tgaggaccca	tcccagaaga	2940
tgactgtatc	acacattgaa	ggctatgaat	gtcagcctat	ctttcttaac	gtcctggaag	3000
ccattgagcc	aggagtggtg	tgtgccggac	atgacaacaa	ccaaccagat	tcctttgctg	3060
ccttgttatc	tagcctcaat	gagettggag	agaggcagct	tgtgcatgtg	gtcaagtggg	3120
ccaaggcctt	gcctggcttc	cgcaacttgc	atgtggatga	ccagatggcg	gtcattcagt	3180
atteetggat	gggactgatg	gtatttgcca	tgggttggcg	gtccttcact	aatgtcaact	3240
ccaggatgct	ctactttgca	cctgacttgg	ttttcaatga	gtaccgcatg	cacaagtctc	3300
ggatgtacag	ccagtgtgtg	aggatgaggc	acctgtctca	agagtttgga	tggctccaaa	3360
taacccccca	ggaatteetg	tgcatgaaag	cactgctgct	cttcagcatt	attccagtgg	3420
atgggctgaa	aaatcaaaaa	ttctttgatg	aacttcgaat	gaactacatc	aaggaactcg	3480
atcgcatcat	tgcatgcaaa	agaaagaatc	ccacatcctg	ctcaaggcgc	ttctaccagc	3540
tcaccaagct	cctggattct	gtgcagccta	ttgcaagaga	gctgcatcag	ttcacttttg	3600
acctgctaat	caagtcccat	atggtgagcg	tggactttcc	tgaaatgatg	gcagagatca	3660
tctctgtgca	agtgcccaag	atcctttctg	ggaaagtcaa	gcccatctat	ttccacacac	3720
agtgaagatt	tggaaaccct	aatacccaaa	acccaccttg	ttccctttcc	agatgtette	3780
tgcctgttat	ataactctgc	actacttctc	tgcagtgcct	tgggggaaat	tcctctactg	3840
atgtacagtc	tgtcgtgaac	aggttcctca	gttctatttc	ctgggcttct	ccttctttt	3900
ttttcttctt	ccctccctct	ttcaccctcc	catggcacat	tttgaatctg	ctgcgtattg	3960
tggeteetge	ctttgttttg	atttctgttg	tatttctttg	aatctgtgat	gatcetettg	4020
				tgtgccaacc		4080
ttactcacct	tatgccatgg	caaatttaga	gagctataag	tatctggaga	agaaacaaac	4140
agagagaata	aaaagcaaaa	acaaaaccaa	aaaataaaaa	aaacacaaac	aaaaaacaaa	4200
accaacaaac	aaaacatgct	aggtttgttt	cttcgtggta	tacaaataaa	cacataggat	4260
tcccaaagaa	gccgacagtg	actagaagaa	agtaaaaaat	tacaaatcca	cgaggagtca	4320
ctgtttttgt	tcatcctgtt	tctctgtggg	aaacttcagt	tgttgttaat	ggctattgcc	4380
attaaagagc	aggttgaccc	caaagcttta	ctgatagggt	agagagaaaa	gaggacaagg	4440
agggcagatg	gataaccatt	acctccccac	agcetttgte	cctgagtcct	agagtgctca	4500
gttgcagtgt	agttccttgt	actgaaatgt	gcttcttgtt	tgaaaacttg	tctgcatgtg	4560

-continued

-continued	
aatgeetett eetteeaate ettttetete ttaacetetg etteeaeeet eaattgaett	4620
tcaatagett tteteagage tttgtaetat atgetetett tagecaaaae ttggeeaett	4680
tcactgaagt tatgtcagtg agaagaaagt ggaaaggtct gactctttgg aaggctctat	4740
tcagatttat gttcatattt ccatgtgtga gccatagcgg agctttgtga ctggagtcag	4800
aggaaaagga agtgatggct tagccattct cccattagag atagtgaatg atgatgccat	4860
agtgcaatca teettteete tgettttaaa ggaeetagag aeeeeatgea geeaeattet	4920
ccctgcacaa gtcttcagtg ttcagtggcc ctgaacttca ccaaaatgca tttaagccaa	4980
ggtggtaaag cttgtacact tetttggaeg tgtttgtaga caetgetaag ateteeetet	5040
caccaccacc acaaaggeta geaggeeage ageeaeagea tetatgttta gatgttaata	5100
gcataaaaga catctcactc aatgtctttc atcaacagta aatttctgga gcccttagaa	5160
aaattggaaa gaaagcatca aagggaccag acaaaatggg catcttgccc ttgtcctcca	5220
gagacaatat atteeteeca agtggagaaa tgteaattte eteeteagaa caattaaagg	5280
ggctacccag accatggtgg aagagaaaac taagtaaccc agctgagaaa aatgaagaca	5340
ctagaaccag aaagcacagg actttttcct ttccatccag catacccatt ggcagaaata	5400
atggaaggaa aagagaaggc cagaagaaaa tacagactgc tgaagtcttc agaggcaaag	5460
totaaagooa gatgaataoo atotggotag atgggoatoa gtttgotoat ootoototat	5520
tgccattgct gggctgactt tggccaaagt tacttcgaat ctccaccata gttgtcccct	5580
ctcagtcaga gggtgcagga ccactgaaac attctatcca ccgtgactct cattggacag	5640
atctggccgg tgtggctaca aatagactgc acccataaac tcagggcaag ccctgggtca	5700
ctggtttcat gtagtctgtt gacagccttc tttactgtgg actctgttcc tcaaccttga	5760
gtgcaggagg aatgcacatc tacttttgcc tttgtatcat teeteeteac teagetette	5820
acctccctgc agaccttaag aaatcagggg ccagctgcca agctgactct tttggttggt	5880
actatgttaa ctgaaaaggt gatttccgaa ggacaggttt tcttccctga tttctttgtt	5940
gctattaata gcaaaaacaa acttgcaaaa caacttottt aacaaggaag ggaggatata	6000
tacaatgggt gatatggtaa tccaaccctg cttgacaaaa actgaagctg acaggttaca	6060
tttaaaaaca aaacaaaaca aaacgggaca gtttctgatt tgctttgtga caacaccatc	6120
tggettatgt acaggagete tettagetgt teettaaaca gaaaaaaaat cattaeteet	6180
tttagttaaa tttggttaca ttttaatagt ttctttacat ctattctgaa gcaatttttg	6240
tettetgtgg tacatggatt ttattataae attetaatat ttgtetttgt aaataetaga	6300
gactetttga tecatttete taggaagttt tteatettat ggagttetga ateatgaett	6360
ttatetttat gaatgtatat getttttaet tgeaaaagee aaaaagagtg aaacageagt	6420
gcaattaaag caacaccaac taaactccaa atttccaagt gacaatatta gagaaaaaca	6480
gcatacacat ggctttatgc ctactgcttc tgcggtgggg tttgggtgcg caatggaaac	6540
tgtagettgg etgtgttete ceacacaagt gaagaagaga ttggtttttg etttttgga	6600
ttttgtgttt cttttctgtt ttgttttgtt ttgttttgtt ttgctttgct ttctttggcc	6660
atcaatgttc caactaatat gattggcgga gcacgtgctc tgctcagtag agtgaatgtt	6720
gctggtgcac tatgctcacc tgtgaacggc tggccatttc tccattcata tggttaagat	6780
ggaagatgag gatcacttac cagagaagtc aaggtgatca tctccaaaga ggtttacagt	6840

continued

-continued	
gcttggtagg aatggaaaat gaggacaaga aaaagaggag aaccatggag aaggcccaac	6900
tgggcaggac agcagccagc tgccaaagtc acgaactctg ggattcaaga agagtcgtgt	6960
agtgetttea acteteatee geaggeaget eactgtgtgt ggaetetgag etgaeaeggg	7020
agttggcttc tttgttccat agattttcta tgccacaggc aatattattg ttcttggaaa	7080
gttcattatt tttttaaatt accttactct cagaaaggga tttttttgaa ggattctgtc	7140
atatatettt ggaaaacaga aaateagtaa tatgtatatt tttatgtatg tteaetggea	7200
ctaaaaaaaa aaaaaaaaag aaaagaaaaa aaagagaaaa aaaaaa	7260
tttgggtagt tgctgaggtt aattgtccag gttgagaaat gtgcttctgc taacatcctt	7320
ctctgtccac actctatttc taagtacata taggcatata taggaagata tattcaacac	7380
actttaagaa aaaagtatgt ccaccatcca catgataacc acaatgatac tccacaaatt	7440
acatgacttt aagetteaag eaaettetaa etgatteatt eatttatage ettgeeetet	7500
tettteeett aaatttggee cageacaaag acceaageea eeettataee teeetaagae	7560
ttaagccagc accagacttc agaaggtttt ctgaagacaa ctgacttgct atccctgcat	7620
gaccctagca tggtcctgca aacacaagag actaattata attctcctcc actaattgcc	7680
tgggtcacag gtcattgggc caaggccatg attcttatgc ttacgaacca ctaatgctaa	7740
cctactagat taaatcctga actgaaagtt aaaagaagcc atttagcatg tgaaacttct	7800
tggagtaaga agtttctgtc ccggctgcct ttgcaaacag gtttgctttc accacttatc	7860
tccttgaaaa tctttgaagg ccttttttt ttaagtagaa aaggagatga aagcattata	7920
ttatgtaacc aaagattata ttgtatctaa gataccaaat tttttaaggg cagggaagga	7980
gcaagcatta gtgcctcttt ggtaaattat ccaaagacag actgaaggac ttttctgatg	8040
attgacttag aagactttgt ggggaggggt tgtctcacaa tatacatatt tagaagtgtt	8100
gagaataatt tggggggaaa tgggattata gtgtccttca ctaactgatt ttataagcag	8160
aactagettt eettttttt ttttttaaag tagttacaaa geaaattett aaageteeat	8220
ctttgcatgg ttagaaatgg agctggtctt ggccactgtg tttactagtg cccatgttag	8280
cttatttgaa gatgtgaagc ccttgataag aaggggtaca tttaaaggat tagatttttg	8340
cactagaagg agggcaggca gaaaccctca tttctgccca gtttggacag cacaaaaagt	8400
tctctgcagt ttaaggcaga aagttgaaat atattgtaaa tgagtatttg tatccatgtt	8460
tcaaaactga attctatata tagatgtaat gtgttctgat agctttacct ttctctgcac	8520
ctttatattt ggttccaggt catatctgat gccatgtact tgtaagagag gttgcagtta	8580
catttttgga tgctctctca gaatggataa gacacctgga ttgatcagat aactgagatc	8640
tetteette ttgggeetgg tgttgaggee ttgeaaaggg gtggaagagg aaagggtagg	8700
gtacatgatg tattgcactt tactagctta agacggatga atgtggaaag ggtggtgaaa	8760
tttcattgaa aatgcctagg aattgcaata gggagaaatc cagatgtggg gccaggtgcc	8820
cacccaaagg actggccagc agcctcttca tgggatctga ggcattggga aaaggaaggc	8880
tatttccttg gttttcacca tccttgttag agaagggcag ttgcctggtc ttgggaacct	8940
ggagcaaacg ctccttctgt cacatcaatt ctttcccctg caattgaggt gctcttgcta	9000
ctgggtgtcc gtgtgctcta attctggttc tggatatgtt ctgtaaagat tttgataatt	9060
gctaatgtat ttttctctgt taaaaatttg ttagtgtgtt agaagtcata tctctgtagg	9120

continued

-continued	
tacagateet ttgetaceea tgagtagagg gattttttt etteaattaa gagtttgaee	9180
ctggggtctg ttgcccagag cccatccaga aaaaaaaatc cacatttgtc acaatttttc	9240
tgaaatttca gtcaaggtaa cagatcgctg ggagttctct ttaccccccc aaaaaagcag	9300
ataattgaat ttagcaggtg gtgttttaga gcaaaaaaca aaacagcctt tgacccagct	9360
ttaatatgac ccaatttaat ctggccagga agcaggtaat gtgtattaat tggcttccaa	9420
teetggttga gtgtageaag gttetaettt gttteetagt teettttgtt aeatggeett	9480
tcacagaaag gattgactgg gtttgcagta tatcttatgg ccttagcacc tattgctaac	9540
tgtcctgaag ggaattgcct atggggttgt cctataagcc acttctatca ttaaaagcag	9600
ccaccaatgg aatctcccag gtttgaaaaa aaaaaaaaa aacagatggt cctttaccat	9660
tcattgacac acatecetge ttteetgtag acagattgae tggacattga ttagggaata	9720
catggcaaat gacatgctta cactaccctg gagattaatt tggcagtagg agggaataga	9780
caatgtaacc aagaatgtaa tgtaattctt atagagataa gaattaaatc tggatgtgga	9840
gagagcaaag agagaaagca ttcaatttt ttttcaaaag aaaccaattt attttgcttg	9900
aaacttettt egetgggget teagttetea eageggetet tggteteeae tgggeageag	9960
gaccagcccc aagcgctagt gttctgttct ctttttgtaa tcttggaatc ttttgttgct	10020
ctaaatacaa ttaaaaatgg cagaaacttg tttgttggaa tac	10063
<210> SEQ ID NO 4 <211> LENGTH: 899 <212> TYPE: PRT <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 4	
Met Glu Val Gln Leu Gly Leu Gly Arg Val Tyr Pro Arg Pro Pro Ser 1 5 10 15	
Lys Thr Tyr Arg Gly Ala Phe Gln Asn Leu Phe Gln Ser Val Arg Glu 20 25 30	
Ala Ile Gln Asn Pro Gly Pro Arg His Pro Glu Ala Ala Asn Ile Ala 35 40 45	
Pro Pro Gly Ala Cys Leu Gln Gln Arg Gln Glu Thr Ser Pro Arg Arg	
50 55 60	
Arg Arg Arg Gln Gln His Thr Glu Asp Gly Ser Pro Gln Ala His Ile 65 70 75 80	
Arg Gly Pro Thr Gly Tyr Leu Ala Leu Glu Glu Glu Gln Gln Pro Ser 85 90 95	
Gln Gln Gln Ala Ala Ser Glu Gly His Pro Glu Ser Ser Cys Leu Pro 100 105 110	
Glu Pro Gly Ala Ala Thr Ala Pro Gly Lys Gly Leu Pro Gln Gln Pro 115 120 125	
Pro Ala Pro Pro Asp Gln Asp Asp Ser Ala Ala Pro Ser Thr Leu Ser 130 135 140	
Leu Leu Gly Pro Thr Phe Pro Gly Leu Ser Ser Cys Ser Ala Asp Ile 145 150 155 160	
Lys Asp Ile Leu Asn Glu Ala Gly Thr Met Gln Leu Leu Gln Gln Gln 165 170 175	
Gln Gln Gln Gln His Gln Gln Gln His Gln Gln Gln Gln Gln 180 185 190	

continued

											-	con	tin	ued	
Gln	Glu	Val 195	Ile	Ser	Glu	Gly	Ser 200	Ser	Ala	Arg	Ala	Arg 205	Glu	Ala	Thr
Gly	Ala 210	Pro	Ser	Ser	Ser	Lys 215	Asp	Ser	Tyr	Leu	Gly 220	Gly	Asn	Ser	Thr
Ile 225	Ser	Asp	Ser	Ala	Lys 230	Glu	Leu	Сүз	Lys	Ala 235	Val	Ser	Val	Ser	Met 240
Gly	Leu	Gly	Val	Glu 245	Ala	Leu	Glu	His	Leu 250	Ser	Pro	Gly	Glu	Gln 255	Leu
Arg	Gly	Asp	Cys 260		Tyr	Ala	Ser	Leu 265	Leu	Gly	Gly	Pro	Pro 270	Ala	Val
Arg	Pro	Thr 275	Pro	Cys	Ala	Pro	Leu 280	Pro	Glu	Cys	Гла	Gly 285	Leu	Pro	Leu
Asp	Glu 290	Gly	Pro	Gly	Lys	Ser 295	Thr	Glu	Glu	Thr	Ala 300	Glu	Tyr	Ser	Ser
Phe 305	Lys	Gly	Gly	Tyr	Ala 310	Lys	Gly	Leu	Glu	Gly 315	Glu	Ser	Leu	Gly	Cys 320
Ser	Gly	Ser	Ser	Glu 325	Ala	Gly	Ser	Ser	Gly 330	Thr	Leu	Glu	Ile	Pro 335	Ser
Ser	Leu	Ser	Leu 340	Tyr	Lys	Ser	Gly	Ala 345	Leu	Asp	Glu	Ala	Ala 350	Ala	Tyr
Gln	Asn	Arg 355			Tyr	Asn	Phe 360		Leu	Ala	Leu	Ser 365	Gly	Pro	Pro
His	Pro 370		Pro	Pro	Thr	His 375		His	Ala	Arg	Ile 380		Leu	Glu	Asn
Pro 385		Asp	Tyr	Gly	Ser 390	Ala	Trp	Ala	Ala	Ala 395		Ala	Gln	Суз	Arg 400
	Gly	Asp	Leu	Gly 405		Leu	His	Gly	Gly 410		Val	Ala	Gly	Pro 415	
Thr	Gly	Ser	Pro 420		Ala	Thr	Thr	Ser 425		Ser	Trp	His	Thr 430		Phe
Thr	Ala	Glu 435		Gly	Gln	Leu	Tyr 440		Pro	Gly	Gly	Gly 445		Gly	Ser
Ser	Ser 450		Ser	Asp	Ala	Gly 455		Val	Ala	Pro	Tyr 460		Tyr	Thr	Arg
		Gln	Gly	Leu		Ser	Gln	Glu	Ser			Ser	Ala	Ser	
465 Val	Trp	Tyr	Pro		470 Gly	Val	Val	Asn			Pro	Tyr	Pro		480 Pro
Asn	Cys	Val		485 Ser	Glu	Met	Gly		490 Trp		Glu	Asn		495 Ser	Gly
Pro	Tyr		500 Asp	Met	Arg	Leu		505 Ser	Thr	Arg	Asp		510 Val	Leu	Pro
Ile		515 Tyr	Tyr	Phe	Pro	Pro	520 Gln	Гуз	Thr	Суз		525 Ile	Суз	Gly	Asp
Glu	530 Ala	Ser	Gly	Суз	His	535 Tyr	Gly	Ala	Leu	Thr	540 Cys	Gly	Ser	Cys	Lys
545 Val	Phe	Phe	Lvs	Ara	550 Ala	Ala	Glu	Glv	Lvs	555 Gln	Lvs	Tvr	Leu	Cys	560 Ala
				565		Ile			570					575	
	-		580	-			-	585		-	-	-	590	-	
Ser	Cys	Arg	Leu	Arg	Lys	Сув	Tyr	Glu	Ala	Gly	Met	Thr	Leu	Gly	Ala

											-	con	tin	ued				
	ļ	595					600					605						
Arg Ly 61	ув : 10	Leu	Lya	ГЛа	Leu	Gly 615	Asn	Leu	ГЛа	Leu	Gln 620	Glu	Glu	Gly	Glu			
Asn Se 625	er i	Asn	Ala	Gly	Ser 630	Pro	Thr	Glu	Asp	Pro 635	Ser	Gln	Lys	Met	Thr 640			
Val Se	er 1	His	Ile	Glu 645	Gly	Tyr	Glu	Суз	Gln 650	Pro	Ile	Phe	Leu	Asn 655	Val			
Leu Gl	lu i	Ala	Ile 660	Glu	Pro	Gly	Val	Val 665	Суз	Ala	Gly	His	Asp 670	Asn	Asn			
Gln Pr		Asp 675	Ser	Phe	Ala	Ala	Leu 680	Leu	Ser	Ser	Leu	Asn 685	Glu	Leu	Gly			
Glu Ar 69	rg (90	Gln	Leu	Val	His	Val 695	Val	Гла	Trp	Ala	Lys 700	Ala	Leu	Pro	Gly			
Phe Ar 705	rg i	Asn	Leu	His	Val 710	Asp	Asp	Gln	Met	Ala 715	Val	Ile	Gln	Tyr	Ser 720			
Trp Me	et (Gly	Leu	Met 725	Val	Phe	Ala	Met	Gly 730	Trp	Arg	Ser	Phe	Thr 735	Asn			
Val As	sn :	Ser	Arg 740	Met	Leu	Tyr	Phe	Ala 745	Pro	Asp	Leu	Val	Phe 750	Asn	Glu			
Tyr Ar		Met 755	His	Гла	Ser	Arg	Met 760	Tyr	Ser	Gln	Суз	Val 765	Arg	Met	Arg			
His Le 77	eu : 70	Ser	Gln	Glu	Phe	Gly 775	Trp	Leu	Gln	Ile	Thr 780	Pro	Gln	Glu	Phe			
Leu Cy 785	ys 1	Met	Lys	Ala	Leu 790	Leu	Leu	Phe	Ser	Ile 795	Ile	Pro	Val	Asp	Gly 800			
Leu Ly	ys i	Asn	Gln	Lys 805	Phe	Phe	Asp	Glu	Leu 810	Arg	Met	Asn	Tyr	Ile 815	Lys			
Glu Le	eu J	Aap	Arg 820	Ile	Ile	Ala	Суз	Lys 825	Arg	Lys	Asn	Pro	Thr 830	Ser	Сув			
Ser Ar		Arg 835	Phe	Tyr	Gln	Leu	Thr 840	Lys	Leu	Leu	Asp	Ser 845	Val	Gln	Pro			
Ile Al 85	la 2 50	Arg	Glu	Leu	His	Gln 855	Phe	Thr	Phe	Asp	Leu 860	Leu	Ile	Lys	Ser			
His Me 865	et '	Val	Ser	Val	Asp 870	Phe	Pro	Glu	Met	Met 875	Ala	Glu	Ile	Ile	Ser 880			
Val Gl	ln '	Val	Pro	Lys 885	Ile	Leu	Ser	Gly	Lys 890	Val	Lys	Pro	Ile	Tyr 895	Phe			
His Th	hr (Gln																
<210> SEQ ID NO 5 <211> LENGTH: 4136 <212> TYPE: DNA <213> ORGANISM: Rattus norvegicus																		
<400>	SE	QUEN	ICE :	5														
atccct	tag	ga g	JCCA	geet	gc t	ggga	gaaco	c aga	agggi	tccg	gago	caaa	eet (ggago	gctgag	60	0	
agggca	atc	ag a	aggg	gaaaa	ag a	ctga	gcta	g cca	actco	cagt	gcca	ataca	aga a	agcti	aaggg	120	0	
acatac	cca	cg c	cag	cccca	ag c	ccago	cgaca	a gco	caaco	gcct	gtt	gcaga	agc (ggcgé	gcttcg	180	0	
aageeg	gee	gc c	caga	aagct	tg c	cctt	tcct	c tt	ggt	gaag	ttt	ctaa	aag (ctgco	jggaga	240	0	
ctcgga	agg.	aa g	gcga	agaaa	ag te	gtee	ggta	g gad	ctac	gact	gcci	tttgi	tee t	tccto	cctcc	300	0	

				-contir	nued		
tacccctacc	cctcctgggt	cccctctccc	tgagcggact	aggcaggctt	cctggccagc	360	
cctctcccct	acaccaccag	ctctgccagc	cagtttgcac	agaggtaact	ccctttggct	420	
gaaagcagac	gagcttgttg	cccattggaa	gggaggcttt	tgggagccca	gagactgagg	480	
agcaacagca	cgctggagag	tccctgattc	caggttctcc	cccctgcacc	tcctactgcc	540	
cgcccctcac	cctgtgtgtg	cagctagaat	tgaaaagatg	aaaagacagt	tggggcttca	600	
gtagtcgaaa	gcaaaacaaa	agcaaaaaga	aaacaaaaag	aaaatagccc	agttettatt	660	
tgcacctgct	tcagtggaca	ttgactttgg	aaggcagaga	attttccttc	cccccagtca	720	
agctttgagc	atcttttaat	ctgttcttca	agtatttagg	gacaaactgt	gaaactagca	780	
gggcagatcc	tgtctagcgc	gtgccttcct	ttacaggaga	ctttgaggct	atctgggcgc	840	
tecceccec	ctccctgcaa	gttttcttcc	ctggagcttc	ccgcaggtgg	gcagctagct	900	
gcagatacta	catcatcagt	cagtagaact	cttcagagca	agagacgagg	aggcaggata	960	
agggaattcg	gtggaagcta	gagacaagct	aaaggatgga	ggtgcagtta	gggctgggaa	1020	
gggtctaccc	acggcccccg	tccaagacct	atcgaggagc	gttccagaat	ctgttccaga	1080	
gcgtgcgcga	agcgatccag	aacccgggcc	ccaggcaccc	tgaggccgct	agcatagcac	1140	
ctcccggtgc	ctgtttacag	cagcggcagg	agactagccc	ccggcggcgg	cggcggcagc	1200	
agcaccctga	ggatggctct	cctcaagccc	acatcagagg	caccacaggc	tacctggccc	1260	
tggaggagga	acagcagcct	tcacagcagc	agtcagcctc	cgagggccac	cctgagagcg	1320	
gctgcctccc	ggagcctgga	gctgccacgg	ctcctggcaa	ggggctgccg	cagcagccac	1380	
cageteetee	agatcaggat	gactcagctg	ccccatccac	gttgtcccta	ctgggcccca	1440	
ctttcccagg	cttaagcagc	tgctccgcag	acattaaaga	catcctgagc	gaggccggca	1500	
ccatgcaact	tcttcagcag	cagcagcaac	agcaacagca	gcagcagcag	cagcagcagc	1560	
agcagcagca	acagcagcag	gaggtaatat	ccgaaggcag	cagcagcgtg	agagcaaggg	1620	
aggccactgg	ggeteeetet	tcctccaagg	atagttacct	aggggggcaat	tcgaccatat	1680	
ctgacagtgc	caaggagttg	tgtaaagcag	tgtctgtgtc	catggggttg	ggtgtggaag	1740	
cactggaaca	tctgagtcca	ggggagcagc	ttcggggcga	ctgcatgtac	gcgtcgctcc	1800	
tgggaggtcc	acccgccgtg	cgtcccactc	cttgtgcgcc	tctggccgaa	tgcaaaggtc	1860	
tttccctgga	cgaaggcccg	ggcaaaggca	ctgaagagac	tgctgagtat	tcctctttca	1920	
agggaggtta	cgccaaaggg	ttggaaggtg	agagtctggg	ctgctctggc	agcagtgaag	1980	
caggtagctc	tgggacactt	gagatcccgt	cctcactgtc	tctgtataag	tctggagcag	2040	
tagacgaggc	agcagcatac	cagaatcgcg	actactacaa	ctttccgctc	gctctgtccg	2100	
ggccgccgca	ccccccgccc	cctacccatc	cacacgeeeg	catcaagctg	gagaacccgt	2160	
tggactacgg	cagcgcctgg	gctgcggcgg	cagcgcaatg	ccgctatggg	gacttggcta	2220	
gcctacatgg	agggagtgta	gccggaccca	gcactggatc	gcccccagcc	accgcctctt	2280	
cttcctggca	tactctcttc	acagctgaag	aaggccaatt	atatgggcca	ggaggcgggg	2340	
gcggcagcag	tagcccaagc	gatgctgggc	ctgtagcccc	ctatggctac	actcggcccc	2400	
ctcagggggct	ggcaagccag	gagggtgact	tetetgeete	tgaagtgtgg	tatcctggtg	2460	
gagttgtgaa	cagagtcccc	tatcccagtc	ccagttgtgt	taaaagtgaa	atgggacctt	2520	
ggatggagaa	ctactccgga	ccttatgggg	acatgcgttt	ggacagtacc	agggaccacg	2580	

-continued

-continued	
ttttacccat cgactattac ttcccacccc agaagacctg cctgatctgt ggagatgaag	2640
cttctggttg tcactacgga gctctcactt gtggcagctg caaggtcttc ttcaaaagag	2700
ctgcggaagg gaaacagaag tatctatgtg ccagcagaaa tgattgcacc attgataaat	2760
ttcggaggaa aaattgtcca tcgtgtcgtc tccggaaatg ttatgaagca gggatgactc	2820
tgggagctcg taagctgaag aaacttggaa atctcaaact acaggaagaa ggagaaaact	2880
ccagtgctgg tagccccact gaggacccat cccagaagat gactgtatca cacattgaag	2940
gctatgaatg tcaacctatc tttcttaatg tcctggaagc cattgagcca ggagtggtgt	3000
gtgccggaca tgacaacaac cagcctgatt cctttgctgc cttgttatct agtctcaacg	3060
agettggega gagacagett gtacatgtgg teaagtggge eaaggeettg eetggettee	3120
gcaacttgca tgtggatgac cagatggcag tcattcagta ttcctggatg ggactgatgg	3180
tatttgccat gggttggcgg tccttcacta atgtcaactc taggatgctc tactttgcac	3240
ctgacctggt tttcaatgag tatcgcatgc acaagtctcg aatgtacagc cagtgcgtga	3300
ggatgaggca cctttctcaa gagtttggat ggctccagat aaccccccag gaattcctgt	3360
gcatgaaagc actgctactc ttcagcatta ttccagtgga tgggctgaaa aatcaaaaat	3420
totttgatga acttogaatg aactacatoa aggaaottga togoatoatt goatgoaaaa	3480
gaaaaaatcc cacatcetge tcaaggeget tetaceaget caceaagete etggattetg	3540
tgcagcctat tgcaagagag ctgcatcaat tcacttttga cctgctaatc aagtcccata	3600
tggtgagcgt ggactttcct gaaatgatgg cagagatcat ctctgtgcaa gtgcccaaga	3660
tcctttctgg gaaagtcaag cccatctatt tccacacaca gtgaagattt ggaaacccta	3720
atacccaaac ccaccttgtt cccttttcag atgtcttctg cctgttatat aactctgcac	3780
tacttetetg cagtgeettg ggggaaatte etetaetgat gtacagtetg teatgaacat	3840
gttccccagt tctatttcct gggcttttcc ttctttcttt ttcttcttct ctgcctctct	3900
tacceteeca tggcacattt tgaateeget gegtgttgtg geteetgeet gtgttttgag	3960
ttttgttgta tttcttcaag tctgtgatga tcttcttgtg gcccagtgtc aactgtgctt	4020
gtttatagca ctgtgctgtg tgccaaccaa gcaaatgttt actcacctta tgccatggca	4080
agtttagaga gctataagta tcttgggaag aaacaaacag agagagtaaa aaaacc	4136
<210> SEQ ID NO 6 <211> LENGTH: 902 <212> TYPE: PRT <213> ORGANISM: Rattus norvegicus	
<400> SEQUENCE: 6	
Met Glu Val Gln Leu Gly Leu Gly Arg Val Tyr Pro Arg Pro Pro Ser 1 5 10 15	
Lys Thr Tyr Arg Gly Ala Phe Gln Asn Leu Phe Gln Ser Val Arg Glu 20 25 30	
Ala Ile Gln Asn Pro Gly Pro Arg His Pro Glu Ala Ala Ser Ile Ala 35 40 45	
ProPro Gly Ala Cys Leu Gln Gln Arg Gln Glu Thr Ser Pro Arg Arg505560	
Arg Arg Gln Gln His Pro Glu Asp Gly Ser Pro Gln Ala His Ile65707580	
Arg Gly Thr Thr Gly Tyr Leu Ala Leu Glu Glu Glu Gln Gln Pro Ser	

	-continued														
				85					90					95	
Gln	Gln	Gln	Ser 100		Ser	Glu	Gly	His 105	Pro	Glu	Ser	Gly	Cys 110	Leu	Pro
Glu	Pro	Gly 115	Ala	Ala	Thr	Ala	Pro 120		Lys	Gly	Leu	Pro 125	Gln	Gln	Pro
Pro	Ala 130	Pro	Pro	Asp	Gln	Asp 135	Asp	Ser	Ala	Ala	Pro 140	Ser	Thr	Leu	Ser
Leu 145	Leu	Gly	Pro	Thr	Phe 150	Pro	Gly	Leu	Ser	Ser 155	Сув	Ser	Ala	Asp	Ile 160
Lys	Asp	Ile	Leu	Ser 165	Glu	Ala	Gly	Thr	Met 170	Gln	Leu	Leu	Gln	Gln 175	Gln
Gln	Gln	Gln	Gln 180	Gln	Gln	Gln	Gln	Gln 185	Gln	Gln	Gln	Gln	Gln 190	Gln	Gln
Gln	Gln	Gln 195	Glu	Val	Ile	Ser	Glu 200		Ser	Ser	Ser	Val 205	Arg	Ala	Arg
Glu	Ala 210	Thr	Gly	Ala	Pro	Ser 215	Ser	Ser	Lys	Asp	Ser 220	Tyr	Leu	Gly	Gly
Asn 225	Ser	Thr	Ile	Ser	Asp 230		Ala	Lys	Glu	Leu 235	Сүв	ГЛа	Ala	Val	Ser 240
Val	Ser	Met	Gly	Leu 245	-	Val	Glu	Ala	Leu 250	Glu	His	Leu	Ser	Pro 255	Gly
Glu	Gln	Leu	Arg 260	-	Asp	Суз	Met	Tyr 265	Ala	Ser	Leu	Leu	Gly 270	Gly	Pro
Pro	Ala	Val 275	Arg	Pro	Thr	Pro	Cys 280	Ala	Pro	Leu	Ala	Glu 285	Суз	Lys	Gly
Leu	Ser 290	Leu	Asp	Glu	Gly	Pro 295	Gly	Lys	Gly	Thr	Glu 300	Glu	Thr	Ala	Glu
Tyr 305	Ser	Ser	Phe	Lya	Gly 310	Gly	Tyr	Ala	Lys	Gly 315	Leu	Glu	Gly	Glu	Ser 320
Leu	Gly	Cys	Ser	Gly 325		Ser	Glu	Ala	Gly 330	Ser	Ser	Gly	Thr	Leu 335	Glu
Ile	Pro	Ser	Ser 340		Ser	Leu	Tyr	Lys 345	Ser	Gly	Ala	Val	Asp 350	Glu	Ala
Ala	Ala	Tyr 355	Gln	Asn	Arg	Asp	Tyr 360		Asn	Phe	Pro	Leu 365	Ala	Leu	Ser
Gly	Pro 370	Pro	His	Pro	Pro	Pro 375	Pro	Thr	His	Pro	His 380	Ala	Arg	Ile	Lys
Leu 385		Asn	Pro	Leu	Asp 390	Tyr	Gly	Ser	Ala	Trp 395		Ala	Ala	Ala	Ala 400
	Cys	Arg	Tyr	Gly 405	Asp		Ala	Ser	Leu 410		Gly	Gly	Ser	Val 415	
Gly	Pro	Ser	Thr 420	Gly		Pro		Ala 425	Thr	Ala	Ser	Ser	Ser 430		His
Thr	Leu	Phe 435	Thr		Glu	Glu		Gln	Leu	Tyr	Gly	Pro 445		Gly	Gly
Gly	-			Ser	Pro		Asp		Gly	Pro			Pro	Tyr	Gly
Tyr	450 Thr	Arg	Pro	Pro	Gln	455 Gly		Ala	Ser	Gln	460 Glu	Gly	Asp	Phe	Ser
465 Ala	Ser	Glu	Val	Trn	470 Tvr		Glv	Glv	Val	475 Val	Asn	Aro	Val	Pro	480 Tvr
AIU	DCI	oru	var	485	-	110	Gry	Cry	490	var	ADII	nrg	Var	495	191

-continued	

Pro	Ser	Pro	Ser 500	Сүз	Val	Lys	Ser	Glu 505	Met	Gly	Pro	Trp	Met 510	Glu	Asn
Tyr	Ser	Gly 515	Pro	Tyr	Gly	Asp	Met 520	Arg	Leu	Asp	Ser	Thr 525	Arg	Asp	His
Val	Leu 530	Pro	Ile	Asp	Tyr	Tyr 535	Phe	Pro	Pro	Gln	Lys 540	Thr	Суз	Leu	Ile
Cys 545	Gly	Asp	Glu	Ala	Ser 550	Gly	Сув	His	Tyr	Gly 555	Ala	Leu	Thr	Сув	Gly 560
Ser	Суз	Lys	Val	Phe 565	Phe	Lys	Arg	Ala	Ala 570	Glu	Gly	ГЛЗ	Gln	Lys 575	Tyr
Leu	Сув	Ala	Ser 580	Arg	Asn	Asp	Сув	Thr 585	Ile	Asp	Lys	Phe	Arg 590	Arg	Lys
Asn	Сув	Pro 595	Ser	Сүв	Arg	Leu	Arg 600	Lys	Сув	Tyr	Glu	Ala 605	Gly	Met	Thr
Leu	Gly 610	Ala	Arg	Lys	Leu	Lys 615	Lys	Leu	Gly	Asn	Leu 620	Lys	Leu	Gln	Glu
Glu 625	Gly	Glu	Asn	Ser	Ser 630	Ala	Gly	Ser	Pro	Thr 635	Glu	Asp	Pro	Ser	Gln 640
LÀa	Met	Thr	Val	Ser 645	His	Ile	Glu	Gly	Tyr 650	Glu	Сүз	Gln	Pro	Ile 655	Phe
Leu	Asn	Val	Leu 660	Glu	Ala	Ile	Glu	Pro 665	Gly	Val	Val	СЛа	Ala 670	Gly	His
Asp	Asn	Asn 675	Gln	Pro	Aab	Ser	Phe 680	Ala	Ala	Leu	Leu	Ser 685	Ser	Leu	Asn
Glu	Leu 690	Gly	Glu	Arg	Gln	Leu 695	Val	His	Val	Val	Lys 700	Trp	Ala	Lys	Ala
Leu 705	Pro	Gly	Phe	Arg	Asn 710	Leu	His	Val	Asp	Asp 715	Gln	Met	Ala	Val	Ile 720
Gln	Tyr	Ser	Trp	Met 725	Gly	Leu	Met	Val	Phe 730	Ala	Met	Gly	Trp	Arg 735	Ser
Phe	Thr	Asn	Val 740	Asn	Ser	Arg	Met	Leu 745	Tyr	Phe	Ala	Pro	Asp 750	Leu	Val
Phe	Asn	Glu 755	Tyr	Arg	Met	His	Lys 760	Ser	Arg	Met	Tyr	Ser 765	Gln	Сув	Val
Arg	Met 770	Arg	His	Leu	Ser	Gln 775	Glu	Phe	Gly	Trp	Leu 780	Gln	Ile	Thr	Pro
Gln 785	Glu	Phe	Leu	Сүз	Met 790	Lys	Ala	Leu	Leu	Leu 795	Phe	Ser	Ile	Ile	Pro 800
Val	Asp	Gly		Lys 805		Gln	Lys		Phe 810		Glu	Leu	Arg	Met 815	Asn
Tyr	Ile	Lys	Glu 820	Leu	Asp	Arg	Ile	Ile 825	Ala	Сүз	LÀa	Arg	Lys 830	Asn	Pro
Thr	Ser	Суз 835	Ser	Arg	Arg	Phe	Tyr 840	Gln	Leu	Thr	Lys	Leu 845	Leu	Asp	Ser
Val	Gln 850	Pro	Ile	Ala	Arg	Glu 855	Leu	His	Gln	Phe	Thr 860	Phe	Asp	Leu	Leu
Ile 865	Lys	Ser	His	Met	Val 870	Ser	Val	Asp	Phe	Pro 875	Glu	Met	Met	Ala	Glu 880
Ile	Ile	Ser	Val	Gln 885	Val	Pro	Lys	Ile	Leu 890	Ser	Gly	ГЛЗ	Val	Lys 895	Pro

```
-continued
```

Ile Tyr Phe His Thr Gln 900 <210> SEQ ID NO 7 <211> LENGTH: 8 <212> TYPE: PRT <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223 > OTHER INFORMATION: Synthetic peptide <400> SEQUENCE: 7 Ser Ile Ile Asn Phe Glu Lys Leu 1 5 <210> SEQ ID NO 8 <211> LENGTH: 9 <212> TYPE: PRT <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic peptide <400> SEQUENCE: 8 Arg Leu Gln Gly Ile Ser Pro Lys Ile 1 5 <210> SEQ ID NO 9 <211> LENGTH: 9 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic peptide <400> SEQUENCE: 9 Leu Leu Phe Ser Ile Ile Pro Val 1 5 <210> SEQ ID NO 10 <211> LENGTH: 10 <212> TYPE: PRT <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic peptide <400> SEQUENCE: 10 Arg Met Leu Tyr Phe Ala Pro Asp Leu Val 1 5 10 <210> SEQ ID NO 11 <211> LENGTH: 9 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic peptide <400> SEQUENCE: 11 Phe Leu Cys Met Lys Ala Leu Leu 1 5 <210> SEQ ID NO 12 <211> LENGTH: 9 <212> TYPE: PRT <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic peptide

<400> SEQUENCE: 12

Gln Leu Thr Lys Leu Leu Asp Ser Val 1 5 <210> SEQ ID NO 13 <211> LENGTH: 9 212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic peptide <400> SEQUENCE: 13 Lys Ala Ser Glu Lys Ile Phe Tyr Val 1 5

1. A method of treating a subject having cancer, the method comprising administering an anti-tumor vaccine and a combination of a PD-1 inhibitor and an LAG-3 inhibitor, wherein the combination is effective in increasing the efficacy of the anti-tumor vaccine and treating the cancer.

2. The method of claims **1**, wherein the subject has a cancer resistant to PD-1 inhibitor.

3. The method of claim 1, wherein the subject has a cancer selected from breast cancer, cervical cancer, colorectal cancer, prostate cancer, lymphoma and sarcoma.

4. The method of claim 1, wherein the cancer is prostate cancer.

5. The method of claim 1, wherein the cancer is castrate-resistant prostate cancer.

6. The method of claim 1, wherein the DNA vaccine comprises a polynucleotide encoding the tumor antigen, wherein the tumor antigen is selected from the group consisting of synovial sarcoma X breakpoint 2 (SSX2), androgen receptor ligand-binding domain (AR LBD), prostate-specific antigen (PSA), human epidermal growth factor receptor 2 (HER-2/neu), and prostatic acid phosphatase (PAP).

7. The method of claim 1, wherein the DNA vaccine comprises a DNA vaccine selected from the group consisting of pTVG-SSX2, pTVG-SSX2^{*HA*}, MIP-SSX2, and pTVG-AR.

8. The method of claim **1**, wherein the PD-1 inhibitor is an anti-PD-1 monoclonal antibody and the LAG-3 inhibitor is an anti-LAG3 monoclonal antibody.

9. The method of claim **1**, wherein the combination of the PD-1 inhibitor and the LAG-3 inhibitor is administered after the anti-tumor vaccine in the subject.

10. A method of increasing the anti-tumor T cell response to a tumor antigen in a subject having cancer, the method comprising administering an effective amount of a DNA vaccine and a combination of PD-1 inhibitor and an LAG-3 inhibitor, wherein the combination is effective in increasing the anti-tumor T cell immune response.

11. The method of claim 10, wherein the subject has a cancer resistant to PD-1 inhibitor

12. The method of claim **9**, wherein the subject has a cancer selected from breast cancer, cervical cancer, colorectal cancer, prostate cancer, lymphoma and sarcoma.

13. The method of claim 10, wherein the cancer is prostate cancer.

14. The method of claim 10, wherein the cancer is castrate-resistant prostate cancer.

15. The method of claim 10, wherein the DNA vaccine comprises a polynucleotide encoding the tumor antigen, wherein the tumor antigen is selected from the group consisting of synovial sarcoma X breakpoint 2 (SSX2), androgen receptor ligand-binding domain (AR LBD), prostate-specific antigen (PSA), human epidermal growth factor receptor 2 (HER-2/neu), and prostatic acid phosphatase (PAP).

16. The method of claim **10**, wherein the DNA vaccine comprises a DNA vaccine selected from the group consisting of pTVG-SSX2, pTVG-SSX2^{*HA*}, MIP-SSX2, and pTVG-AR.

17. The method of claim **10**, wherein the PD-1 inhibitor is an anti-PD-1 monoclonal antibody and the LAG-3 inhibitor is an anti-LAG3 monoclonal antibody.

18. The method of claim **10**, wherein the immune response is a CD8+ T cell response.

19. The method of claim **10**, wherein the combination of the PD-1 inhibitor and the LAG-3 inhibitor is administered after the anti-tumor vaccine in the subject.

20. A kit for eliciting an anti-tumor response, the kit comprising:

at least one DNA vaccine to a tumor antigen;

at least one PD-1 inhibitor; and

at least one LAG-3 inhibitor.

* * * * *