(19) United States
 ${ }^{(12)}$ Patent Application Publication McNeel et al.

(10) Pub. No.: US 2022/0347282 A1
(43) Pub. Date: Nov. 3, 2022
(54) ANTI-TUMOR DNA VACCINE WITH PD-1

AND LAG-3 PATHWAY BLOCKADE
(71) Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION, Madison, WI (US)
(72) Inventors: Douglas McNeel, Madison, WI (US); Christopher D. Zahm, Madison, WI (US); Jena Moseman, Madison, WI (US)
(21) Appl. No.: 17/732,237
(22) Filed: Apr. 28, 2022

Related U.S. Application Data

(60) Provisional application No. 63/180,726, filed on Apr. 28, 2021.

Publication Classification

(51) Int. Cl.

A61K 39/00
A61P 35/00
A61K 39/395
A61P $37 / 04$
(52) U.S. Cl.

СРС A61K 39/001184 (2018.08); A61P 35/00 (2018.01); A61K 39/001102 (2018.08); A61K 39/001194 (2018.08); A61K 39/001106 (2018.08); A61K 39/001193 (2018.08); A61K 39/3955 (2013.01); A61P 37/04 (2018.01); A61K 2039/53 (2013.01); A61K 2039/884 (2018.08); A61K 2039/868 (2018.08); A61K 2039/892 (2018.08); A61K 2039/505 (2013.01); A61K 2039/572 (2013.01); A61K

2039/545 (2013.01)

(57)
 ABSTRACT

The present invention provides combination therapies and methods of treating cancer, including, cancers that are resistant to PD-1 therapy. The combination therapies described herein comprise a DNA vaccine to a tumor antigen, anti-PD-1 therapy, and an anti-LAG-3 therapy, which provides an increased T cell response against the cancer.

Specification includes a Sequence Listing.

Figure 1

Figure 2

σ

Figure 3

Figure 3 (Continued)
a

Figure 4 (Continued)

Figure 5

Figure 5 (Continued)

Figure 6

Figure 7
Tumor treatment studies: E.G7-OVA tumors in B6 mice

Figure 8

Figure 9

Figure 10

Figure 11

Days Post Tumor Implantation

Figure 12

Figure 13

Figure 14

Days Post Tumor Implantation

- pTVCAIgC
- pTVGA-aPD-1+aLAG3
- pTVG-AR-lgG
=A ETVGAR-APD-ADAGS

ANTI-TUMOR DNA VACCINE WITH PD-1 AND LAG-3 PATHWAY BLOCKADE

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of priority under 35 U.S.C. § 119(e) of U.S. Provisional Application No. $63 / 180,726$, filed Apr. 28, 2021, the contents of which is incorporated herein by reference in its entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

[0002] This invention was made with government support under CA219154 awarded by the National Institutes of Health. The government has certain rights in the invention.

SEQUENCE LISTING

[0003] A Sequence Listing accompanies this application and is submitted as an ASCII text file of the sequence listing named "960296_04284_ST25.txt" which is 57,623 bytes in size and was created on Apr. 28, 2022. The sequence listing is electronically submitted via EFS-Web with the application and is incorporated herein by reference in its entirety.

BACKGROUND

[0004] The blockade of T-cell immune checkpoint receptors to enable the activity of tumor-specific T cells has revolutionized the treatment of cancer. Notably, an antibody blocking cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) was the first of these agents that was FDA approved in 2010 for the treatment of metastatic melanoma ${ }^{1}$. Other immune checkpoint receptors were discovered as markers of cell death and exhausted, non-functional T cells that had experienced long-term antigen exposure ${ }^{2}$. In particular, the programmed death 1 (PD-1) receptor, while initially thought to indicate T cell exhaustion, was subsequently found to function by preventing functional Th1 CD8 +T cells from causing autoimmunity ${ }^{3}$. The immunosuppressive activity of PD-1 is executed following ligand (PD-L1) encounter on self (including tumor) cells resulting in the activation of a signaling pathway that attenuates cytotoxic T cell activity ${ }^{3-5}$. As a result, remarkable antitumor activity can be achieved by blocking PD-1/PD-L1 ligation using antibodies, and this approach has led to multiple new FDA approvals over the last 5 years, underscoring the power of this single immune checkpoint ${ }^{6-8}$.
[0005] The general rationale for use of T-cell checkpoint blockade as cancer therapies is that ligand-induced checkpoint signaling leads to the activation of regulatory pathways within tumor-reactive T cells and thus blocking ligand interaction can remove the negative signal to allow for eradication of tumor cells. As PD-1 and other checkpoints operate through distinct mechanisms but result in similar outcomes, it follows that simultaneous blockade could have a synergistic effect. Indeed, a number of murine and clinical studies have been conducted using PD-1 blockade with other checkpoint blocking therapies ${ }^{9-13}$. Preclinical studies demonstrate that blocking checkpoints with complementary mechanisms of action can result in the expansion of unique T-cell repertoires and activate adaptive anti-tumor immunity ${ }^{10}$. Furthermore, a randomized, double-blind, phase 3 study of PD-1 blockade alone or in a dual blockade combination with CTLA-4 blockade in patients with metastatic
melanoma found a median progression-free survival of 11.5 months with the combination and 6.9 months with single agent PD-1 blockade ${ }^{9}$. Similar results in patients with renal cell cancer have led to the FDA approval of CTLA-4 and PD-1 dual blockade for the treatment of metastatic renal cell cancer and melanoma ${ }^{14,15}$.
[0006] In previous studies, the inventors found that DNA or peptide vaccine-induced activation of tumor-specific, CD8+ T cells led to increased expression of multiple checkpoint receptors that could mitigate the anti-tumor response following vaccination. More specifically, the inventors found that antigens with high-affinity for MHC-I increased contact time between CD8 + T cells and APCs, which led to increases in multiple immune checkpoints, including PD-1, CTLA-4, lymphocyte activation gene-3 (LAG-3), and T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) on responding cells when compared to cells activated with lower affinity epitopes. Additionally, the reduced anti-tumor efficacy could be recovered when vaccines encoding highaffinity epitopes were combined with PD-1 or PD-L1 blocking antibodies ${ }^{16,17}$. In a separate study, the inventors found that immunization approaches leading to increased antigen expression also led to increased LAG-3 on tumor antigenspecific CD8+ T cells, which was likewise capable of interfering with the anti-tumor response. Again, the reduced anti-tumor efficacy could be recovered when vaccination was combined with LAG-3 blocking antibodies ${ }^{18}$. These data demonstrate that blocking the regulatory pathways induced with vaccination can enhance anti-tumor responses and indicate checkpoint receptor upregulation as a major mechanism of tumor resistance to vaccination. Furthermore, these data demonstrate that T -cell activating therapies can result in the expression of multiple, different checkpoint receptors, and hence combination blockade might be preferable. This is particularly relevant for anti-tumor DNA vaccines, which result in tumor-antigen presentation via professional APC and/or bystander cells. Presentation by multiple cell types may increase the diversity of responding T cells and likewise the complexity of checkpoint expression profiles on these populations ${ }^{18,19}$. Consequently, the inventors hypothesized that blockade of multiple checkpoints may be necessary to elicit CD8+ T cells with greater anti-tumor activity in the context of anti-tumor immunization.

SUMMARY OF INVENTION

[0007] The present invention is a method of enhancing DNA vaccine activity through the addition of inhibitors to the PD-1 and LAG-3 checkpoint pathways. The inventors have surprisingly discovered an enhancement of PD-1 expression and LAG-3 in T cells after treatment with a DNA vaccine. Using a combination of inhibitors for PD-1 and LAG-3 (antibodies against PD-1 and LAG-3) with a DNA vaccine resulted in an increase in T cell activity, which is not seen with other combinations of inhibitors, such as using inhibitors of the CTLA-4 or TIM-3 pathways. The blockade of PD-1 and LAG-3 pathways caused a more robust immune response to the inventors' DNA vaccine in a prostate cancer mouse model.
[0008] In one aspect, the disclosure provides a method of treating a subject having cancer, the method comprising administering an anti-tumor vaccine and a combination of a PD-1 inhibitor and an LAG-3 inhibitor, wherein the com-
bination is effective in increasing the efficacy of the antitumor vaccine and treating the cancer.
[0009] In another aspect, the disclosure provides a method of increasing the anti-tumor T cell response to a tumor antigen in a subject having cancer, the method comprising administering an effective amount of a DNA vaccine and a combination of PD-1 inhibitor and an LAG-3 inhibitor, wherein the combination is effective in increasing the antitumor T cell immune response.
[0010] In a further embodiment, the disclosure provides a method of increasing the immune response to a tumor antigen on a cell in a subject, the method comprising contacting the subject with at least one vaccine directed to said tumor antigen, at least one PD-1 inhibitor and at least one LAG-3 inhibitor, wherein the immune response to said tumor antigen is increased relative to a subject treated with the tumor vaccine alone.
[0011] In yet another embodiment, the disclosure provides a kit for eliciting an anti-tumor response, the kit comprising: at least one DNA vaccine to a tumor antigen; at least one PD-1 inhibitor; and at least one LAG-3 inhibitor.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1. T-cell activation by professional APCs can lead to distinct immune checkpoint expression on CD8+T cells. Splenocytes were prepared from the spleens of OT-1 mice and separated into T cells (CD8+) and B-cells (CD19+) using MACS. DC (CD11c+) were prepared from the spleens of Flt3 ligand-treated B6 mice. T cells were stimulated with a control peptide (No Stim), the SIINFEKL peptide alone (No APC), or the SIINFEKL peptide in combination with either B cells or DC. After 72 hours the cells were collected and the checkpoint and $4-1 \mathrm{BB}$ expression analyzed by flow cytometry. Shown is the mean fluorescence intensity (MFI) and standard error of the mean of $4-1 \mathrm{BB}, \mathrm{PD}-1$, CTLA-4, TIM-3, or LAG-3 on CD8+T cells from triplicate assessments (panel A), and a representative histogram for each marker (panel B). Asterisks indicate $\mathrm{p}<0.05$ by one-way ANOVA with Bonferroni's multiple comparisons correction. Results are from one experiment ($\mathrm{N}=3$ mice per group) and are representative of two similar, independent experiments.
[0013] FIG. 2. Blockade of PD-1 or LAG-3 improves anti-tumor activity of activated CD8+T-cells. As shown in panel A, B6 mice were inoculated with 1×10^{6} PD-L1expressing E.G7-OVA cells. After ten days, 1×10^{6} OT- 1 T cells, stimulated with or without peptide and with or without DC as in FIG. 1, were adoptively transferred into the tumor-bearing mice. The following day, mice were treated with IgG isotype control (gray), PD-1 blocking (red), LAG-3 blocking (purple), or a combination of both PD-1 and LAG-3 blocking antibodies (green). Tumor growth was measured as indicated on the X axes. Shown in panel B are the growth curves for mice that received T cells which had not been incubated with DC and a nonspecific peptide (No Stim), T without DC cells stimulated with SIINFEKL peptide alone (No APC), or T cells stimulated with peptide in the presence of DC (DC). Panel C shows the same data grouped by checkpoint blockade treatment rather than T-cell stimulation conditions. Measurements for individual mice are shown in Supplemental FIG. 10. Asterisks indicate $\mathrm{p}<0.05$ as assessed by 2 -way ANOVA with Bonferroni's multiple comparisons test. Results are from one experiment with $\mathrm{N}=6$ mice per group.
[0014] FIG. 3. DNA vaccination can elicit CD8+T cells differentially expressing PD-1 and LAG-3. Panel A: six-week-old HHDII HLA-A2+ mice were immunized with pTVG4 empty vector, the native pTVG-SSX2 DNA vaccine (SSX2), pTVG-SSX2 ${ }^{H A}\left(\mathrm{SSX}^{H A}\right)$, or MIP-SSX2. Mice were euthanized at the time points indicated and splenocytes were assessed by flow cytometry gated on CD3+ CD8+ tetramer + cells (panels B and $\mathrm{D}, \mathrm{n}=6$ mice/time/condition) or following stimulation with an HLA-A2-restricted peptide epitope (SSX2 p103-111) to determine the number of responding cells via intracellular cytokine analysis (panel C, $\mathrm{n}=3 \mathrm{mice} /$ timepoint $)$. In panel C , comparisons are of total cytokine-secreting $\mathrm{CD} 8+\mathrm{T}$ cells at each time point between vaccine-treated or pTVG4 control-treated animals. For all panels, asterisks indicate $\mathrm{p}<0.05$ by two-way ANOVA with Bonferroni's multiple comparisons correction. MFI=mean fluorescence intensity. Results are from one experiment and are representative of two similar, independent experiments.
[0015] FIG. 4. PD-1 blockade is superior to LAG-3 blockade when used in combination with an anti-tumor DNA vaccine in an α PD- 1 sensitive tumor. Panel A : six-week-old HHDII (HLA-A2+) mice were inoculated s.c. with SSX2+ HLA-A2+ sarcoma cells and immunized with pTVG4 empty vector, pTVG-SSX2 (SSX2), pTVG-SSX2 ${ }^{H A}\left(\mathrm{SSX}^{H A}\right)$, or MIP-SSX2 in combination with α PD-1, α LAG-3, both $\alpha \mathrm{PD}-1 / \alpha \mathrm{LAG}-3$, or IgG control. Tumor growth was measured over time. Panel B: shown are the tumor growth curves for each vaccine group. Animals with tumors greater than $2 \mathrm{~cm}^{3}$ in size were euthanized, and data were censored at $2 \mathrm{~cm}^{3}$. Panel C : data are presented as survival plots using the time to death or when tumors reached $2 \mathrm{~cm}^{3}$ in size, whichever occurred first. Individual tumor measurements are shown in Supplemental FIG. 13. Asterisks in panel B indicate $\mathrm{p}<0.05$ as assessed by mixed-effects model with Geisser-Greenhouse correction and Tukey's multiple comparisons test with individual variances; $N=6$ mice/time point/condition. n. s. $=$ not significant. Results are from one experiment ($\mathrm{N}=6$) and are representative of two similar, independent experiments. For data points above the Y axis, statistical comparisons are indicated on the figure legends. In panel C, asterisks indicate $\mathrm{p}<0.05$ as assessed by log-rank test.
[0016] FIG. 5. Vaccination with PD-1 and LAG-3 blockade is superior to vaccination with either blockade alone in $\alpha \mathrm{PD}-1$ resistant prostate cancer model. As shown in panel A, six-week-old FVB mice ($\mathrm{n}=20$ per group) were inoculated s.c. with $10^{6} \mathrm{MyC}-\mathrm{CaP}$ cells and immunized with pTVG4 empty vector or $\mathrm{pTVG}-\mathrm{AR}$ in combination with IgG control, $\alpha \mathrm{PD}-1, \alpha \mathrm{LAG}-3$, or both $\alpha \mathrm{PD}-1 / \alpha \mathrm{LAG}-3$ antibodies. Tumor growth was measured over time. Panel B: Shown are the mean tumor growth curves and standard deviations; individual tumor measurements are shown in Supplemental FIG. 15. Animals with tumors greater than $2 \mathrm{~cm}^{3}$ in size were euthanized, and data were censored at $2 \mathrm{~cm}^{3}$. Panel C : data are presented as survival plots using the time to death or when tumors reached $2 \mathrm{~cm}^{3}$ in size, whichever occurred first. Results shown are from one experiment and representative of three independent experiments. Panel D: Shown are the number of CD8+ (top) and CD4 (bottom) tumor-infiltrating lymphocytes per gram of tumor tissue collected at day 29 as determined by flow cytometry (gating strategy shown in Supplemental FIG. 11). Panel E: Shown are the distribution of effector memory ($\mathrm{T}_{E M}, \mathrm{CD} 44+\mathrm{CD} 62 \mathrm{~L}^{l o}$), resident memory ($\mathrm{T}_{R M}, \mathrm{CD} 69+\mathrm{CD} 103+$), central memory
($\mathrm{T}_{C M}$, CD44+ CD62L+), and naïve ($\mathrm{T}_{N V}, \mathrm{CD} 44-\mathrm{CD} 62 \mathrm{~L}+$) cells among the CD8+T cells. Asterisks indicate $\mathrm{p}<0.05$ assessed by the mixed-effects model with Geisser-Greenhouse correction and Tukey's multiple comparisons test with individual variances (panel B), by log-rank test (panel C), or by the one-way ANOVA with Tukey's multiple comparisons test (panels D and E).
[0017] FIG. 6. Co-culture experimental methods schematic. Shown in A-C are flow diagrams for the isolation/ purification of DCs (A), T cells (B) and B cells (C). Panel D indicates which cells were cultured together for the studies described in relation to FIG. 1.
[0018] FIG. 7. Immunization studies in HHD-II mice. Shown is a schematic flow diagram of the experiments conducted using SSX2-targeted DNA vaccines in HHD-II mice.
[0019] FIG. 8. Tumor treatment studies: E.G7-OVA tumors in B6 mice. Shown is a schematic flow diagram for the studies using adoptive transfer of T cells to E.G7-OVA tumor-bearing mice.
[0020] FIG. 9. Tumor treatment studies: SSX2+ sarcomas in HHD-II mice. Shown is a schematic flow diagram of the experiments conducted using SSX2+ sarcomas in HHD-II mice.
[0021] FIG. 10. Tumor treatment studies: MycCaP tumors in FVB mice. Shown is a schematic flow diagram of the experiments conducted using DNA vaccines with T-cell checkpoint blockade in MycCaP tumor-bearing FVB mice. [0022] FIG. 11. Gating strategy for tumor-infiltration T cells (TIL) analysis. Shown is the flow cytometry gating strategy employed to assess TIL and memory phenotypes. From left to right, top to bottom, all cells were evaluated by forward and side scatter to include lymphocytes, gated for live events, then gated for CD45 expression, then CD3+ CD8 + cells were gated for the expression of memory markers as shown.
[0023] FIG. 12. Individual growth curves for FIG. 2, OVA-expressing tumor study. B6 mice were inoculated with 1×106 PD-L1-expressing E.G7-OVA cells. After ten days, 1×106 OT- 1 T cells, stimulated with or without peptide and with or without APC as in FIG. 1, were adoptively transferred into the tumor-bearing mice. The following day, mice were treated with IgG isotype control (top row), PD-1 blocking (second row), LAG-3 blocking (third row), or a combination of both PD-1 and LAG-3 blocking antibodies (fourth row). Tumor growth was measured as indicated on the X axes. Shown are the individual tumor measurements for each mouse per day following tumor implantation, and the median tumor size. Results are from one experiment with $\mathrm{N}=6$ mice per group.
[0024] FIG. 13. Representative histograms and dot plots for FIG. 3. Six-week-old HHDII HLA-A2+ mice were immunized with p TVG4 empty vector, the native $\mathrm{pTVG}-$ SSX2 DNA vaccine, pTVG-SSX2HA, or MIP-SSX2. Splenocytes obtained from mice at different time points were assessed by flow cytometry for expression of various markers, as described in FIG. 3. Shown are representative data for expression of $4-1 \mathrm{BB}$, LAG-3, and PD-1 expression four days following treatment with the different vaccines (panel A). Panel B shows representative dot plots for the intracellular cytokine analysis. The upper left plot shows the gating of live, lymphocyte scatter for CD3 (X axis) by CD8 (Y axis). The indicated gate was used to evaluate expression of the individual cytokines as shown in the other plots. Panel

C shows the evaluation for CD44 and CD62L expression gated on live/CD3+/CD8+/tetramer+ cells. Quadrants are based on FMO gating performed at each time point.
[0025] FIG. 14. Individual growth curves for FIG. 4, SSX2/HLA-A2 tumor study. Six week-old HHDII (HLA$\mathrm{A} 2+$) mice were inoculated s.c. with SSX2+ HLA-A2+ sarcoma cells and immunized with pTVG4 empty vector (top row), pTVG-SSX2 (second row), pTVG-SSX2HA (third row), or MIP-SSX2 (fourth row) in combination with IgG control (first column), α PD-1 (second column), aLAG-3 (third column), or both α PD-1/aLAG-3 (fourth column), as described in FIG. 4. Tumor growth was measured over time. Shown are the individual tumor measurements for each animal per group and the median (line) for each treatment.
[0026] FIG. 15. Vaccination with PD-1 and LAG-3 blockade is superior to antibody treatment alone in MycCaP prostate tumors. Six-week-old FVB mice ($\mathrm{n}=10$ per group) were inoculated s.c. with $106 \mathrm{MyC}-\mathrm{CaP}$ cells and immunized with pTVG4 empty vector or pTVG-AR in combination with IgG control or α PD-1 and $\alpha \mathrm{LAG}-3$ antibodies. Tumor growth was measured over time (panel A). Animals with tumors greater than 2 cm 3 in size were euthanized, and data are censored at 2 cm 3 . Kaplan-Meier curves depicting either the time of death or when the tumor reached 2 cm 3 in size, whichever occurred first (panel B). Panel C: In a separate study, six-week-old FVB mice ($\mathrm{n}=5$ per group) were inoculated s.c. with $106 \mathrm{MyC}-\mathrm{CaP}$ cells and immunized the following day and weekly with pTVG4 empty vector or $\mathrm{pTVG}-\mathrm{AR}$. Groups received IgG control, α PD-1, $\alpha \mathrm{LAG}-3$, or both $\alpha \mathrm{PD}-1$ and $\alpha \mathrm{LAG}-3$ antibodies the day after each immunization. On day 29 , tumors were collected, digested with collagenase, and evaluated for the presence of CD11b+Gr-1+ (MDSC) cells or CD4+FoxP3+ (Treg) among live cells. These are expressed as an absolute number per gram of tumor. Panel D: Individual growth curves for mice from FIG. 5A. Asterisks in panels A and C indicate $\mathrm{p}<0.05$ assessed by the mixed-effects model with GeisserGreenhouse correction or two-way ANOVA, both with Tukey's multiple comparisons test with individual variances.

DETAILED DESCRIPTION

[0027] The present invention provides compositions, kits and methods for increasing an immune response to tumor antigens, resulting in the ability to treat or reduce tumor burden in a subject having cancer. The present inventors have found that combinations of PD-1 and LAG-3 blockade in the context of anti-tumor vaccination enhanced vaccine induced anti-tumor responses with all the vaccines tested, especially in cancers that are resistant to PD-1 therapy. In the prostate cancer model, which is resistant to single-agent PD-1 blockade using a vaccine encoding a naturally expressed tumor antigen, the dual blockade group demonstrated greater therapeutic efficacy than other treatment groups. These results indicate that depending on which cells are presenting antigen, tumor-reactive CD8 T cells can activate with distinct patterns of checkpoint receptor expression and dual blockade of PD-1 and LAG-3 can provide significant benefit over either blockade alone in PD-1 resistant MycCaP prostate tumors.
[0028] The inventors' method is based on the finding that T-cell activation following vaccination resulted in the expression of PD-1, LAG-3, CTLA-4, and TIM-3 check-
point receptors. However, in the absence of professional APC, activated CD8+ T cells expressed only LAG-3. The inventors found that the combination checkpoint blockade following vaccination including LAG-3 blockade can result in antigen presentation through non-professional APC. Not to be bound by any theory, but the inventors believe there are two negative feedback loops at play in the anti-tumor T cell response, the first in which excess TCR stimulation leads to the expression of PD-1 and other inhibitory receptors and molecules; and the second negative feedback loop that is regulated independently of PD-1 and involves LAG-3 expression, and consequently that the use of PD-1 and LAG-3 in a dual checkpoint blockade strategy provides advantages following vaccination with a tumor antigen.
[0029] The data collected by the inventors demonstrates that following vaccination in a subject having a PD-1 therapy resistant tumor, there is a benefit of treating with both an anti-PD-1 inhibitor and a LAG-3 inhibitor.
[0030] In one embodiment, the present disclosure provides a method of treating a subject having cancer, preferably a cancer that is resistant to anti-PD-1 therapy. The method comprises administering an effective amount of an antitumor vaccine and a combination of a PD-1 inhibitor and a LAG-3 inhibitor, wherein the combination of the PD-1 inhibitor and LAG-3 inhibitor is capable of increasing the immune response to the anti-tumor vaccine and in treating the cancer.
[0031] The anti-tumor vaccine is a composition comprising a tumor antigen or a polynucleotide encoding the tumor antigen. In one embodiment, the anti-tumor vaccine is a DNA vaccine
[0032] The term "tumor antigen" or "cancer antigen" refers to a protein that is specifically found on tumor cells or may be a molecule that is greatly upregulated on tumor cells. The term antigen refers to the ability of the protein to elicit an immune response when presented by antigen presenting cells to T cells. Suitable tumor antigens are known in the art, and will vary depending on the type of tumor being treated. [0033] In some embodiments, the tumor antigen is synovial sarcoma X breakpoint 2 (SSX2), androgen receptor ligand-binding domain (AR LBD), prostate-specific antigen (PSA), human epidermal growth factor receptor 2 (HER-2/ neu), or prostatic acid phosphatase (PAP). In some embodiments, the antigen is a fragment or epitope of the antigen protein.
[0034] In some embodiments, the anti-tumor vaccine is a DNA vaccine. Any DNA vaccine that targets cancer may be used with the present methods. DNA vaccines against prostate cancer, breast cancer, ovarian cancer, sarcoma, lymphoma, among others, are known and understood in the art.
[0035] In some embodiments, the anti-tumor vaccine is a DNA vaccine comprises a polynucleotide encoding the tumor antigen. For example, suitable tumor antigens include, but are not limited to, synovial sarcoma X breakpoint 2 (SSX2), androgen receptor ligand-binding domain (AR LBD), prostate-specific antigen (PSA), human epidermal growth factor receptor 2 (HER-2/neu), and prostatic acid phosphatase (PAP).
[0036] Suitable prostate cancer vaccines for use in the present methods include, for example, recombinant DNA vaccines that encode an androgen receptor or fragments thereof. Suitable recombinant DNA vaccines are disclosed in U.S. Pat. Nos. $7,910,565,8,513,210$ and $8,962,590$, each of which is incorporated herein by reference in its entirety.

In some embodiments, the DNA vaccine comprises the pTVG-AR vector, which encodes the ligand-binding domain of the human androgen receptor gene inserted into the pTVG 4 vector to create the immunization vector p TVG-AR, as disclosed in U.S. Pat. No. 7,910,565. Androgen receptor genes are known and have been cloned from many species. For example, the human, mouse, rat, dog, chimpanzee, macaque, and lemur androgen receptor mRNA that correspond to cDNA along with amino acid sequences can be found at GenBank Accession Nos. NM_000044 (cDNASEQ ID NO:1 and amino acid sequence-SEQ ID NO:2), NM_013476 (cDNA-SEQ ID NO:3 and amino acid sequence-SEQ ID NO:4), NM_012502 (cDNA-SEQ ID NO:5 and amino acid sequence-SEQ ID NO:6), NM_001003053, NM_001009012, U94179, and U94178, respectively. According to another embodiment, the DNA vaccine comprises a polynucleotide operatively linked to a transcriptional regulatory element (e.g., a promoter such as a heterologous promoter) wherein the polynucleotide encodes a member selected from (i) a mammalian androgen receptor (e.g., a human androgen receptor), (ii) a fragment of the androgen receptor that comprises the ligand-binding domain, (iii) a fragment of the ligand-binding domain defined by SEQ ID NO:9 (LLLFSIIPV, amino acids 811-819 of SEQ ID NO:2); (iv) a fragment of the ligand-binding domain defined by SEQ ID NO:10 (RMLYFAPDLV, amino acids 761-770 of SEQ ID NO:2), (v) a fragment of the ligand-binding domain defined by SEQ ID NO:11 (FLCMKALLL, amino acids 805-813 of SEQ ID NO:2), and (vi) a fragment of the ligand-binding domain defined by SEQ ID NO:12 (QLTKLLDSV, amino acids 859-867 of SEQ ID NO:2), wherein administration of said vaccine to a subject induces a cytotoxic immune reaction against cells expressing androgen receptor.
[0037] Other suitable DNA vaccines encode native or modified SSX2 peptides, as described in Smith et al. 2011 (Vaccines targeting the cancer-testis antigen SSX-2 elicit HLA-A2 epitopes specific cytolytic T cells. J. Immunother. 2011:34:569-80) and Smith et al. 2014 (DNA vaccines encoding altered peptide ligands for SSX2 enhance epitopespecific CD8+ T cell immune responses. Vaccine 2014:32: 1707-15), each of which is incorporated herein by reference in its entirety. In some embodiments, the DNA vaccines encoding native or modified SSX2 peptides comprise pTVG-SSX2 ${ }^{H 4}$ (KASEKIFYV (SEQ ID NO: 13) and/or RLQGISPKI (SEQ ID NO: 8)), MIP-SSX2, details for which can be found in Colluru V T, Zahm C D, McNeel D G. Mini-intronic plasmid vaccination elicits tolerant LAG3 (+) CD8(+) T cells and inferior antitumor responses. Oncoimmunology. 2016; 5(10):e1223002, which is incorporated by reference herein in its entirety. Other suitable prostate cancer vaccines include vaccines then encode prostatic acid phosphatase (PAP), for example, those described in U.S. Pat. No. 7,179,797, U.S. application Ser. Nos. 11/615,778, and 15/430,012, each of which is incorporated herein by reference in its entirety.
[0038] Suitable dosages and schedules for administering the DNA vaccine would be readily understood by one skilled in the art. An appropriate dosage would depend upon several factors, including the patient (age, weight, etc.), the DNA vaccine in use, the route of administration, and the additional drugs administered in combination with the vaccine. For example, the DNA vaccine may be administered at about
$10 \mu \mathrm{~g}$ to -1 mg per dose (e.g., $100 \mu \mathrm{~g}$). The vaccine may be administered using a standard schedule over a period of months or years.
[0039] The methods further comprise a combination of a LAG-3 inhibitor and a PD-1 inhibitor. Lymphocyte activation gene-3 (LAG-3; CD223) is a type I transmembrane protein expressed on the cell surface of activated $\mathrm{CD4}^{+}$and $\mathrm{CD8}^{+} \mathrm{T}$ cells and subsets of NK and dendritic cells (Triebel F, et al., J. Exp. Med. 1990; 171:1393-1405; Workman C J, et al., J. Immunol. 2009; 182(4): 1885-91). LAG-3 negatively regulates T cell signaling and functions. Suitable LAG-3 checkpoint inhibitors include, but are not limited to, for example, anti-LAG-3 antibody. Anti-LAG-3 antibodies are known in the art and commercially available, for example, relatlimab (Bristol-Myers Squibb). Suitable antibodies are also described in U.S. Pat. No. 9,908,936, the contents of which are incorporated by reference in their entirety. Other suitable LAG-3 checkpoint inhibitors include molecules that can prevent binding of LAG-3 to its ligands (e.g. major histocompatibility class II (MEW II) and/or Galectin-3) or molecules that inhibit signaling through the LAG-3 pathway. Not to be bound by any theory, but the inventors hypothesize that the combination of LAG-3 blockade with PD-1 inhibitor works better than the combination of PD-1 with other checkpoint inhibitors because of the expression levels of PD-1 and LAG3 on CD8+ T cells, making the combination blockade more effective in eliciting an anti-tumor $\mathrm{CD} 8+\mathrm{T}$ cell response.
[0040] The term "antibody" as used herein also includes an "antigen-binding portion" of an antibody. The term "antigen-binding portion," as used herein, refers to one or more fragments of an antibody that retain the ability to specifically bind to an antigen (e.g., polypeptide or fragment thereof of LAG-3) and block signaling through the LAG-3 pathway. Examples of binding fragments encompassed within the term "antigen-binding portion" of an antibody include, but are not limited to, (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CHI domains; (ii) a $\mathrm{F}\left(\mathrm{ab}^{\prime}\right) 2$ fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CHI domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al, (1989) Nature 341:544-546), which consists of a VH domain; and (vi) an isolated complementarity determining region (CDR).
[0041] Antibodies used in the methods may be polyclonal or monoclonal; xenogeneic, allogeneic, or syngeneic; or modified forms thereof (e.g., humanized, chimeric, etc.). Suitable antibodies may be fully human or humanized. Preferably, antibodies of the invention bind specifically or substantially specifically to the antigen (e.g. LAG-3, polypeptides or fragments thereof). The term "monoclonal antibodies" refers to a population of antibody polypeptides that contain only one species of an antigen binding site capable of binding a particular epitope of an antigen, whereas the term "polyclonal antibodies" refers to a population of antibody polypeptides that contain multiple species of antigen binding sites capable of interacting with a particular antigen.
[0042] Suitable antibodies are able to inhibit or reduce at least one biological activity of the antigen (e.g. LAG-3) it binds. In certain embodiments, the antibodies or fragments thereof substantially or completely inhibit a given biological activity of the antigen.
[0043] For the present invention, inhibitors of PD-1 or PD-L1 are contemplated to be used in combination with the LAG-3 inhibitors described herein. PD-1 or PD-L1 inhibitors may include, but are not limited to, antibodies, peptides, small molecules, antisense RNAs, cDNAs, miRNAs, siRNAs, aptamers, oligonucleotides, and the like. Examples include, but are not limited to, nivolumab, an anti-PD-1 antibody, available from Bristol-Myers Squibb Co and described in U.S. Pat. Nos. 7,595,048, 8,728,474, 9,073,994, $9,067,999,8,008,449$ and 8,779,105; pembrolizumab, and anti-PD-1 antibody, available from Merck and Co and described in U.S. Pat. Nos. $8,952,136,83545509,8,900,587$ and EP2170959; atezolizumab is an anti-PD-L1 available from Genentech, Inc. (Roche) and described in U.S. Pat. No. 8,217,149; avelumab (Bavencio, Pfizer, formulation described in PCT Publ. WO2017097407), durvalumab (Imfinzi, Medimmune/AstraZeneca, WO2011066389), cemiplimab (Libtayo, Regeneron Pharmaceuticals Inc., Sanofi), spartalizumab (PDR001, Novartis), camrelizumav (AiRuiKa, Hengrui Medicine Co.), sintillimab (Tyvyt, Innovent Biologics/Eli Lilly), KN035 (Envafolimab, Tracon Pharmaceuticals); tislelizumab available from BeiGene and described in U.S. Pat. No. 8,735,553; among others and the like. Other PD-1 and PD-L1 that are in development may also be used in the practice of the present invention, including, for example, PD-1 inhibitors including toripalimab (JS-001, Shanghai Junshi Biosciences), dostarlimab (GlaxoSmithKline), INCMGA00012 (Incyte, MarcoGenics), AMP-224 (AstraZeneca/MedImmune and GlaxoSmithKline), AMP-514 (AstraZeneca), and PD-L1 inhibitors including AUNP12 (Aurigene and Laboratoires), CA-170 (Aurigen/Curis), and BMS-986189 (Bristol-Myers Squibb), among others. The term "checkpoint inhibitor therapy" refers to the form of cancer immunotherapy that block inhibitory checkpoints and thereby restore immune system function. Such therapies are known by those skilled in the art. In some embodiments, the PD-1 inhibitor is selected from the group consisting of Nivolumab (anti-PD-1), Pembrolizumab (anti-PD-1), and combinations thereof. In some embodiments, the PD-L1 inhibitor is selected from atezolizumab, avelumab, and durvalumab, among others. CTLA-4 inhibitors are not contemplated for use in the present invention, as described in the examples, CTLA-4 inhibitors do not act through the same pathway as the PD-1/PD-L1 inhibitors with respect to NLRP3 inhibitors, and as such, the combination of such does not produce the desired outcome as described herein, demonstrating the combination is unpredictable without knowledge of the underlying signaling mechanism, as described herein.
[0044] In the methods described herein the combination of the PD-1 inhibitor and the LAG-3 inhibitor preferably are administered after the initial administration of the anti-tumor vaccine. In some embodiments, "booster" or additional dosages of the anti-tumor vaccine are provided in intervals after the initial administration, e.g., 4 weeks, 6 weeks, 10 weeks, 12 weeks, 3 -months, 6 months, 12 months after the initial administration.
[0045] An "effective treatment" refers to treatment producing a beneficial effect, e.g., amelioration of at least one symptom of a cancer. A beneficial effect can take the form of an improvement over baseline, i.e., an improvement over a measurement or observation made prior to initiation of therapy according to the method. A beneficial effect can also take the form of reducing, inhibiting or preventing further
growth of cancer cells, reducing, inhibiting or preventing metastasis of the cancer cells or invasiveness of the cancer cells or metastasis or reducing, alleviating, inhibiting or preventing one or more symptoms of the cancer or metastasis thereof. Such effective treatment may, e.g., reduce patient pain, reduce the size or number of cancer cells, may reduce or prevent metastasis of a cancer cell, or may slow cancer or metastatic cell growth. The
[0046] The terms "cancer," "tumor" or "malignancy" are used throughout this description interchangeably and refer to the diseases of abnormal cell growth. While the present disclosure is directed to the treatment of prostate cancer, in some embodiments, castrate-resistant prostate cancer, one of skill in the art could readily extend the present teachings to other known solid cancers using cancer specific DNA vaccines. Suitable cancers include, without limitation, breast cancer, prostate cancer, cervical cancer, ovarian cancer, pancreatic cancer, glioblastoma, melanoma, renal cell carcinoma, melanoma, colon cancer, colorectal cancer, sarcoma, kidney cancer, and those summarized in "Cancer DNA vaccines: current preclinical and clinical developments and future perspectives" Lopes et al. Journal of Experimental and Clinical Cancer Research" 38, 146 (2019), the contents of which are incorporated by reference in its entirety. Preferably, the cancer is breast cancer, cervical cancer, colorectal cancer, prostate cancer, lymphoma and sarcoma, and more preferably a cancer that is resistant to PD-1 therapy.
[0047] As used herein, "castrate-resistant prostate cancer" refers to prostate cancer that keeps growing even when the amount of testosterone in the body is reduced to very low levels. Many early-stage prostate cancers need normal levels of testosterone to grow, but castrate-resistant prostate cancers do not. Thus, castrate-resistant prostate cancer describes prostate cancer that is no longer responding to treatments that reduce androgens in the subject.
[0048] The terms "metastasis" or "secondary tumor" refer to cancer cells that have spread to a secondary site, e.g., outside of the original primary cancer site. Secondary sites include, but are not limited to, for example, the lymphatic system, skin, distant organs (e.g., liver, stomach, pancreas, brain, etc.) and the like and will differ depending on the site of the primary tumor.
[0049] Preferably, in some embodiments, the tumor is resistant to PD-1 therapy. The term "refractory" or "resistant" to checkpoint inhibitors or PD-1/PD-L1 inhibitors refers to subjects that have been treated with the checkpoint inhibitors and/or PD-1/PD-L1 inhibitors and the cancer has either developed resistance to the therapy or has responded poorly or not responded to the treatment with the inhibitors even at the beginning of treatment.
[0050] The terms "subject" and "patient" are used interchangeably and refer to any animal (e.g., a mammal), including, but not limited to, humans, non-human primates, rodents, and the like, which is to be the recipient of a particular treatment. Typically, the terms "subject" and "patient" are used interchangeably herein in reference to a mammalian, for example, human, subject. Preferably, the human subject has a cancer, and in some embodiments, a cancer resistant to PD-1 therapy.
[0051] For purposes of the present invention, "treating" or "treatment" describes the management and care of a subject for combating the disease, condition, or disorder. Treating includes the administration of the multicell conjugate or
composition described herein to reduce, prevent, ameliorate and/or improve the onset of the symptoms or complications, alleviating the symptoms or complications, or reducing or eliminating the disease, condition, or disorder.
[0052] For example, treating cancer in a subject includes the reducing, repressing, delaying or preventing cancer growth, reduction of tumor volume, and/or preventing, repressing, delaying or reducing metastasis of the tumor. Treating cancer in a subject also includes the reduction of the number of tumor cells within the subject. The term "treatment" can be characterized by at least one of the following: (a) reducing, slowing or inhibiting growth of cancer and cancer cells, including slowing or inhibiting the growth of metastatic cancer cells; (b) preventing further growth of tumors; (c) reducing or preventing metastasis of cancer cells within a subject; and (d) reducing or ameliorating at least one symptom of cancer. In some embodiments, the optimum effective amount can be readily determined by one skilled in the art using routine experimentation.
[0053] The present disclosure further provides a method of increasing the anti-tumor immune response, and in some embodiments, a T cell response to a tumor antigen in a subject having cancer, the method comprising administering an effective amount of a DNA vaccine, and a combination of a PD-1 inhibitor and a LAG-3 inhibitor, wherein the combination is effective in increasing the anti-tumor immune response to the tumor antigen of the vaccine as compared to the vaccine alone.
[0054] In some embodiments, the anti-tumor immune response is a cellular immune response. Preferably, the cellular immune response is a T cell response. Suitable T cell responses include, for example, a CD8+ T cell response or a cytotoxic T lymphocyte (CTL) response. Cellular immune responses are understood by one skilled in the art, and include the ability to kill tumor cells. Activation of CD8+ T cells leads to programmed cell death of the tumor cells. In some embodiments, anti-tumor immune response is measured by assessing the cytotoxicity of T cells, for example, by cytotoxicity assays known in the art, or by assessing production of effector molecules, e.g., interferon gamma (IFN- γ), tumor necrosis factor α (TNF α), etc., by T cells from the subject.
[0055] As used herein, the terms "administering" and "administration" refer to any method of providing a pharmaceutical preparation to a subject. Such methods are well known to those skilled in the art and include, but are not limited to, oral administration, transdermal administration, administration by inhalation, nasal administration, topical administration, intravaginal administration, ophthalmic administration, intraaural administration, intratumoral administration, rectal administration, sublingual administration, buccal administration, and parenteral administration, including injectable such as intravenous administration, intra-arterial administration, intramuscular administration, intradermal administration, intrathecal administration, and subcutaneous administration. Administration can be continuous or intermittent. The vaccine and the inhibitors described herein may be administered via different routes, for example, the vaccine may be administered by injection (e.g., intramuscular, intradermal, etc.) while the inhibitors may be administered by intravenous administration, oral administration, etc. depending of the inhibitor selected.
[0056] In another embodiment, the present disclosure provides compositions and kits for eliciting an anti-tumor response to a tumor cell. The composition or kit comprises at least one DNA vaccine to a tumor antigen; at least one PD-1 inhibitor; and at least one LAG-3 inhibitor. In some embodiments, the anti-tumor vaccine is a DNA vaccine to the tumor antigen, wherein the tumor antigen is synovial sarcoma X breakpoint 2 (SSX2), androgen receptor ligandbinding domain (AR LBD), prostate-specific antigen (PSA), human epidermal growth factor receptor 2 (HER-2/neu), or prostatic acid phosphatase (PAP).
[0057] The inhibitors and vaccines used in the methods of the present invention may be formulated in any form that is appropriate for administration to the subject. For example, one or more of the inhibitors or vaccines may be formulated with a pharmaceutically acceptable carrier. The term "pharmaceutically acceptable carrier" refers to any carrier, diluent or excipient that is compatible with the other ingredients of the formulation and not deleterious to the recipient. Preferably, the pharmaceutically acceptable carrier is chosen in accordance with the selected route of administration and standard pharmaceutical practice for each agent. For example, for oral administration, the active ingredient may be combined with one or more solid inactive ingredients for the preparation of tablets, capsules, pills, powders, granules or other suitable oral dosage forms. For instance, the active agent may be combined with excipients such as fillers, binders, humectants, disintegrating agents, solution retarders, absorption accelerators, wetting agents absorbents or lubricating agents. Alternatively, for parenteral administration, the active agent may be mixed with a suitable carrier or diluent such as water, an oil (e.g., a vegetable oil), ethanol, saline solution (e.g., phosphate buffer saline or saline), aqueous dextrose (glucose) and related sugar solutions, glycerol, or a glycol such as propylene glycol or polyethylene glycol. Stabilizing agents, antioxidant agents and preservatives may also be added. Suitable antioxidant agents include sulfite, ascorbic acid, citric acid and its salts, and sodium EDTA. Suitable preservatives include benzalkonium chloride, methyl- or propyl-paraben, and chlorbutanol. The composition for parenteral administration may take the form of an aqueous or nonaqueous solution, dispersion, suspension or emulsion.
[0058] Further, inhibitors or vaccines used in the methods of the present invention may be formulated into dosage forms according to standard practices in the field of pharmaceutical preparations. See, e.g., Alphonso Gennaro, ed., Remington's Pharmaceutical Sciences, 18th Ed., (1990) Mack Publishing Co., Easton, Pa. Suitable dosage forms may comprise, for example, tablets, capsules, solutions, parenteral solutions, injectable solutions, troches, suppositories, or suspensions. For antibodies, suitable dosages forms are typically solutions.
[0059] The present invention has been described in terms of one or more preferred embodiments, and it should be appreciated that many equivalents, alternatives, variations, and modifications, aside from those expressly stated, are possible and within the scope of the invention.
[0060] It should be apparent to those skilled in the art that many additional modifications beside those already described are possible without departing from the inventive concepts. In interpreting this disclosure, all terms should be interpreted in the broadest possible manner consistent with the context. Variations of the term "comprising" should be
interpreted as referring to elements, components, or steps in a non-exclusive manner, so the referenced elements, components, or steps may be combined with other elements, components, or steps that are not expressly referenced. Embodiments referenced as "comprising" certain elements are also contemplated as "consisting essentially of" and "consisting of" those elements. The term "consisting essentially of" and "consisting of" should be interpreted in line with the MPEP and relevant Federal Circuit interpretation. The transitional phrase "consisting essentially of" limits the scope of a claim to the specified materials or steps "and those that do not materially affect the basic and novel characteristic(s)" of the claimed invention. "Consisting of" is a closed term that excludes any element, step or ingredient not specified in the claim. For example, with regard to sequences "consisting of" refers to the sequence listed in the SEQ ID NO. and does refer to larger sequences that may contain the SEQ ID as a portion thereof.
[0061] The references cited herein are explicitly incorporated by reference in their entireties.

Exemplary Embodiments

[0062] In one embodiment, a method of treating a subject having cancer is provided. The method comprises administering an anti-tumor vaccine and a combination of a PD-1 inhibitor and an LAG-3 inhibitor, wherein the combination is effective in increasing the efficacy of the anti-tumor vaccine and treating the cancer.
[0063] In another embodiment, a method of increasing the anti-tumor T cell response to a tumor antigen in a subject having cancer is provided. The method comprises administering an effective amount of a DNA vaccine and a combination of PD-1 inhibitor and an LAG-3 inhibitor, wherein the combination is effective in increasing the anti-tumor T cell immune response. In some aspects, the subject has a cancer resistant to PD-1.
[0064] The method of any one of the preceding embodiments, the subject has a cancer selected from breast cancer, cervical cancer, colorectal cancer, prostate cancer, lymphoma and sarcoma.
[0065] In some aspects, the DNA vaccine comprises a polynucleotide encoding the tumor antigen, wherein the tumor antigen is selected from the group consisting of synovial sarcoma X breakpoint 2 (SSX2), androgen receptor ligand-binding domain (AR LBD), prostate-specific antigen (PSA), human epidermal growth factor receptor 2 (HER-2/ neu), and prostatic acid phosphatase (PAP). In a preferred aspect, the cancer is prostate cancer. the cancer is prostate cancer.
[0066] The method of any one of the preceding embodiments, wherein the cancer is castrate resistant prostate cancer.
[0067] The method of any one of the preceding embodiments wherein the PD-1 inhibitor is an anti-PD 1 antibody.
[0068] The method of any one of the preceding embodiments, wherein the LAG-3 inhibitor is an anti-LAG3 antibody.
[0069] The method of any one of embodiments described herein, wherein the immune response is a cellular immune response. In some aspects, the immune response is a CD8+ T cell response. In some aspects, the anti-tumor vaccine is a DNA vaccine to the tumor antigen.
[0070] The method of any one of the preceding embodiments, wherein the combination of the PD-1 inhibitor and the LAG-3 inhibitor is administered after the anti-tumor vaccine in the subject.
[0071] In another embodiment, the disclosure provides a method of increasing the immune response to a tumor antigen on a cell in a subject, the method comprising contacting the subject with at least one vaccine directed to said tumor antigen, at least one PD-1 inhibitor and at least one LAG-3 inhibitor, wherein the immune response to said tumor antigen is increased relative to a subject treated with the tumor vaccine alone. In some aspects, the immune response is a cellular immune response. In some aspects, the immune response is a $\mathrm{CD} 8+\mathrm{T}$ cell response. In some aspects, the PD-1 inhibitor is an anti-PD1 antibody.
[0072] In some aspects of the methods of any one of embodiments, the LAG-3 inhibitor is an anti-LAG3 antibody. In some aspects, the tumor vaccine is a DNA vaccine. In some aspects, the tumor is a prostate cancer. In some aspects, the tumor is resistant to PD-1 inhibitor treatment alone.
[0073] In another embodiment, the disclosure provides a kit for eliciting an anti-tumor response, the kit comprising: at least one DNA vaccine to a tumor antigen; at least one PD-1 inhibitor; and at least one LAG-3 inhibitor. In some embodiments, the DNA vaccine to the tumor antigen, wherein the tumor antigen is synovial sarcoma X breakpoint 2 (SSX2), androgen receptor ligand-binding domain (AR LBD), prostate-specific antigen (PSA), human epidermal growth factor receptor 2 (HER-2/neu), or prostatic acid phosphatase (PAP).
[0074] It should be apparent to those skilled in the art that many additional modifications beside those already described are possible without departing from the inventive concepts. In interpreting this disclosure, all terms should be interpreted in the broadest possible manner consistent with the context. Variations of the term "comprising" should be interpreted as referring to elements, components, or steps in a non-exclusive manner, so the referenced elements, components, or steps may be combined with other elements, components, or steps that are not expressly referenced. Embodiments referenced as "comprising" certain elements are also contemplated as "consisting essentially of" and "consisting of" those elements. The term "consisting essentially of" and "consisting of" should be interpreted in line with the MPEP and relevant Federal Circuit interpretation. The transitional phrase "consisting essentially of" limits the scope of a claim to the specified materials or steps "and those that do not materially affect the basic and novel characteristic(s)" of the claimed invention. "Consisting of" is a closed term that excludes any element, step or ingredient not specified in the claim. For example, with regard to sequences "consisting of" refers to the sequence listed in the SEQ ID NO. and does refer to larger sequences that may contain the SEQ ID as a portion thereof.
[0075] The invention will be more fully understood upon consideration of the following non-limiting examples.

EXAMPLE 1

[0076] In this example, rational dual checkpoint blockade combinations and test these combinations in tumor models. The inventors used three separate murine tumor models targeting different antigens with different vaccines: C57BL/6 mice implanted with E.G7-OVA tumors express-
ing ovalbumin which the inventors previously modified to overexpress PD-L1 (PD-L1 ${ }^{\text {high }}$), 19 an HLA-A2+ HLADR1+ (HHD-II) mouse model in which mice were implanted with sarcoma cells expressing the human synovial sarcoma X breakpoint 2 (SSX2) protein as a tumor antigen, 20 and FVB mice implanted with MycCaP prostate tumor cells, using a vaccine targeting the native androgen receptor (AR).21-23 Using OT-1 mice, the inventors assessed immune checkpoint expression on $\mathrm{CD} 8+\mathrm{T}$ cells following activation by antigen alone or by antigen presented by professional APC. The inventors found that PD-1, CTLA-4, LAG-3, and TIM-3 were all upregulated in the presence of professional APC. However, in the absence of professional APC, LAG-3 was the only checkpoint molecule expressed, suggesting LAG-3 as a rational target for dual blockade in combination with anti-tumor vaccination. Subsequent studies focused on anti-tumor vaccination in the presence or absence of PD-1, LAG-3, or dual PD-1/LAG-3 antibody blockade. The inventors found that in a model less responsive to vaccination and PD-1 blockade anti-tumor vaccination produced a greater anti-tumor response when used in combination with both PD-1 and LAG-3 blockade.

Materials and Methods:

Mice

[0077] HLA-A2.01/HLA-DR1-expressing (HHDII-DR1) mice on a C57BL/6 background were obtained from Charles River Labs courtesy of Dr. François Lemonnier. 24 OT-1 (Stock No: 003831), C57BL/6 J (B6, Stock No: 000664), and FVB/NJ (FVB, Stock No: 001800) mice were purchased from The Jackson Laboratory (Jax, Bar Harbor, Mass.). All mice were maintained and treated in microisolator cages under aseptic conditions, and all experiments were conducted under an IACUC-approved protocol that conforms to the NIH guide for the care and use of laboratory animals.

Cell Lines

[0078] E.G7-OVA (derivative of EL4) cells were obtained from ATCC (Manassas, Va., Cat. \#CRL-2113) and maintained via the ATCC-recommended culture methods. E.G7OVA cells were lentivirally transduced to express PD-L1, as previously described. 19 The A2/sarcoma cell line expressing SSX2 (A2/Sarc-SSX2) was generated as previously described. 16 The MycCaP cell line was obtained from ATCC (Cat \#CRL-3255) and cultured according to their instructions. All cell lines used were authenticated and tested for mycoplasma.

Peptides

[0079] Peptides encoding the $\mathrm{H} 2 \mathrm{~K}^{b}$-restricted epitope from chicken ovalbumin (SIINFEKL) and the HLA-A2 restricted epitope of SSX2 (RLQGISPKI) were synthesized, and the purity and identity confirmed by mass spectrometry and gas chromatography (LifeTein, LLC., Hillsborough, N.J.). Peptides were dissolved in DMSO ($2 \mathrm{mg} / \mathrm{ml}$) and stored at $-80^{\circ} \mathrm{C}$. until required.

In Vitro Assay

[0080] Splenocyte Stimulation
[0081] Spleens were collected from OT-1 mice, processed through a mesh screen, and splenocytes were isolated by centrifugation after red blood cell osmotic lysis with ammo-
nium chloride/potassium chloride lysis buffer $(0.15 \mathrm{M}$ $\mathrm{NH} 4 \mathrm{Cl}, 10 \mathrm{mM}$ KHCO3, 0.1 mM EDTA). Splenocytes were cultured at $2 \times 10^{6} / \mathrm{mL}$ in RPMI 1640 medium supplemented with L-glutamine, 10% fetal calf serum (FCS), $200 \mathrm{U} / \mathrm{mL}$ penicillin/streptomycin, 1% sodium pyruvate, 1% HEPES, $50 \mu \mathrm{M} \beta-\mathrm{MeOH}$, and $2 \mu \mathrm{~g} / \mathrm{mL}$ SIINFEKL (SEQ ID NO: 7) peptide or the HLA-A2 restricted sequence from SSX2 (RLQGISPKI (SEQ ID NO: 8)) as a nonspecific control.
[0082] Co-Culture Experiments (FIG. 6)
[0083] B cells or dendritic cells (DCs) were enriched from splenocytes of OT-1 or B6 mice inoculated with F1t3 ligandexpressing B16 tumor cells25 using PE-labeled antibodies specific for either CD19 or CD11c (StemCell, Seattle, Wash., Cat. \#17,684) as previously described. 26 Similarly, CD8 +T cells were isolated using a negative selection CD8+ T-cell isolation kit (StemCell, Cat. \#19,853). After enrichment, each APC subset, and a subset of purified T cells, were cultured as described above with $2 \mu \mathrm{~g} / \mathrm{mL}$ SIINFELK (SEQ ID NO: 7) or the HLA-A2 sequence from SSX2 (RLQGISPKI (SEQ ID NO: 8)) as a nonspecific control peptide. Naïve OT-1 T cells were added to each cell type at a $1: 1$ ratio and incubated for three days, after which cells were stained and analyzed by flow cytometry with the following panel: CD3-FITC (BD 555,274), CD4-BUV395 (BD 563,790), CD8-BUV805 (BD 564,920), LAG-3-BV711 (BD 563, 179), PD1-PECF594 (BD 562,523), TIM3-APC (eBioscience 17-5871-82), CTLA4-PECy7 (Tonbo 60-1522-U100), 41BB-PerCPeF710 (eBioscience 46-1371-82), and Live/ Dead Ghost dye 780 (Tonbo, San Diego, Calif. 13-0865T100).
[0084] Immunization Studies
[0085] The construction of DNA vaccines encoding SSX2 was previously described. 20 Six- to to eight-week-old HHDII-DR1 mice were randomized into treatment groups and immunized intradermally (i.d.) with the $100 \mu \mathrm{~g}$ pTVG4 control vector, $\mathrm{pTVG}-\mathrm{SSX} 2$, $\mathrm{pTVG}-S S X 2{ }^{H A}$, or MIP-SSX2 DNA vaccines (FIG. 7). At 2, 4, 7, 10, and 14 days after immunization, a group from each treatment type were euthanized, their spleens collected and SSX2-tetramer+ CD8 T cells assessed by flow cytometry directly for surface markers or stimulated with the dominant HLA-A2 restricted epitope of SSX2; p103-111, RLQGISPKI (SEQ ID NO: 8), for 16 hours (8 alone and 8 in the presence of BD GolgiStop [BD Biosciences, Cat. \#554,724]) and activation and cytokine production of all CD8 T cells assessed by intracellular cytokine staining and flow cytometry using standard protocols provided by BD biosciences. A flow panel for direct analysis of surface markers was as described above, with the addition of SSX2 p103 tetramer-APC.
[0086] Tumor Treatment Studies

E.G7-OVA Tumors in B6 Mice (FIG. 8)

[0087] Six- to ten-week-old female B6 mice were injected subcutaneously (s.c.) with 106 ovalbumin-expressing E.G7OVA PD-L1high cells. Seven to ten days postinjection, when tumors were palpable and similarly sized $(\sim 0.1 \mathrm{~cm} 3)$, mice were randomized into treatment groups and OT-1 splenocytes were harvested and SIINFEKL-specific CD8+T cells and DC were isolated as previously described. 26 OT-1 CD8 + T cells were stimulated for 36 hours in the presence of $2 \mu \mathrm{~g} / \mathrm{mL}$ SIINFEKL (SEQ ID NO: 7) or vehicle control with or without a $1: 1$ ratio of DC as described above. Following stimulation, three groups of T cells were isolated: those that received vehicle (No Stim), those that were simulated in the
absence of DCs (No APC), and those that were stimulated in the presence of DCs (DC). Ten days after tumor implantation, 106 of each T cell subset were adoptively transferred via intraperitoneal (i.p.) injection into the E.G7-OVA PD-L1high tumor-bearing mice. The day following transfer, mice were given $100 \mu \mathrm{~g} \alpha \mathrm{PD}-1, \alpha \mathrm{LAG}-3$, both $\alpha \mathrm{PD}-1$ and $\alpha \mathrm{LAG}-3$, or IgG control. Tumor volume was measured with calipers three times weekly until tumors reach 2 cm 3 or death and calculated in cubic centimeters using the following formula: $(\pi / 6)^{*}(\text { long axis, } \mathrm{cm})^{*}$ (short axis, cm$) 2$. Animals with tumors larger than 2 cm 3 were compassionately euthanized.

SSX2+ Sarcomas in HHD-II Mice (FIG. 9)

[0088] Six- to eight-week-old female HHDII-DR1 mice were inoculated with $10^{5} \mathrm{~A} 2 / \mathrm{Sarc}-\mathrm{SSX} 2$ cells administered s.c. in 50% Matrigel (Corning, Tewksbury, Mass. Cat. $\# 354,248$). The following day, mice were immunized i.d. with $100 \mu \mathrm{~g}$ pTVG4 control vector, p TVG-SSX2, pTVGSSX $2^{H A}$, or MIP-SSX2 DNA, and the day after that, each vaccine group was administered $100 \mu \mathrm{~g}$ i.p. α PD-1, α LAG3 , both $\alpha \mathrm{PD}-1 / \alpha \mathrm{LAG}-3$, or IgG control antibodies. Tumor volume was measured over time, with endpoints as above.

MycCaP Tumors in FVB Mice (FIG. 10)

[0089] 6-to 9-week-old male FVB mice were injected s.c. with $10^{6} \mathrm{MycCaP}$ cells on day 0 . Beginning the next day (day 1) and continuing weekly, mice were immunized i.d. with 100 ug p TVG4 control vector or p TVG-AR vaccine. The following day (day 2), and weekly thereafter, mice were injected i.p. with $100 \mu \mathrm{~g}$ of $\operatorname{IgG}, \alpha \mathrm{PD}-1, \alpha \mathrm{LAG}-3$, or both α PD-1/ $\alpha \mathrm{LAG}-3$ ($100 \mu \mathrm{~g}$ each). Tumor volume was measured over time, with endpoints as above. In a parallel study, tumors were also collected on day 29 , digested with collagenase, and assessed by flow cytometry as described above, with the gating strategy as shown in FIG. 11.

Statistical Analyses

[0090] Comparison of group means was performed using GraphPad Prism software, v8.4.3. Analysis of Variance (ANOVA) followed by the Bonferroni multiple-comparison post-hoc procedure was used to compare individual group means. Where ANOVA was not possible, comparison of group means was performed using the mixed effects model with Geisser-Greenhouse correction. Survival analysis was conducted using a Mantel-Cox log-rank test. For all comparisons, P values equal to or less than 0.05 were considered statistically significant.

Results

T-Cell Activation by Professional APCs can Lead to Distinct Immune Checkpoint Expression on CD8 \pm T Cells
[0091] As described earlier, the inventors' previous work has demonstrated that differences in T-cell priming from anti-tumor vaccination can lead to expression of different checkpoint receptors which can impede the anti-tumor efficacy of vaccine induced $\mathrm{CD} 8+\mathrm{T}$ cells.16-18.19 To evaluate this further, the inventors first assessed the expression of checkpoints immediately following antigen encounter by activating OT-1 CD8+T cells with SIINFEKL peptide in the presence or absence of professional APC (DCs or B cells). Shown in FIG. 1 are the mean fluorescence intensities (MFI)
of 4-1BB (CD137, as a marker of T-cell activation), PD-1, CTLA-4, TIM-3, and LAG-3 on OT-1 CD8+T cells activated in the presence or absence (No Stim) of cognate SIINFEKL (SEQ ID NO: 7) peptide. Expression of all the checkpoint receptors and $4-1 \mathrm{BB}$ was increased on cells stimulated in the presence of professional APCs (either B cells or DC). Expression of TIM-3 was slightly (but not significantly, $p=0.086$) lower when B cells were used as professional APC compared to DC. However, when T cells were stimulated alone without professional APC, the only checkpoint receptor with increased expression was LAG-3. This suggests that activation with co-stimulation leads to expression of other receptors and LAG-3 is increased with activation in the absence of a co-stimulatory signal

Blockade of PD-1 or LAG-3 Improves Anti-Tumor Activity of Activated $\mathrm{CD} 8 \pm$ T-Cells
[0092] To determine directly whether expression of specific receptors interferes with anti-tumor response and whether blocking activation-induced checkpoint receptors can ameliorate the anti-tumor response, naïve OT-1+ $\mathrm{CD} 8+\mathrm{T}$ cells, or $\mathrm{OT}-1+\mathrm{CD} 8+\mathrm{T}$ cells that were stimulated in vitro with or without APC (DC), were adoptively transferred to B6 mice bearing PD-L1 ${ }^{\text {high }}$ E.G7-OVA tumors. Following the transfer, mice were administered IgG isotype, $\alpha P D-1$, α LAG-3, or both α PD- 1 and α LAG-3 monoclonal antibodies (FIG. $2 a$). As shown in FIG. $2 b$, all groups that received checkpoint blockade had marked reductions in tumor growth when compared to IgG. However, LAG-3 blockade was most effective when used with T cells stimulated without APC (FIG. $2 c$). Blockade of both PD-1 and LAG-3 produced a greater delay in tumor growth when compared to IgG or LAG-3, however the response following dual blockade was not significantly greater when compared to PD-1 alone in this model (individual growth curves shown in FIG. 12).

DNA Vaccination Can Elicit CD8 \pm T Cells Differentially Expressing PD-1 and LAG-3
[0093] The inventors next wished to determine how PD-1 and/or LAG-3 blockade, when used concurrently with DNA vaccination, would affect the resulting Th1 CD8+T-cell response. For this, the inventors first evaluated HLA-A2/ DR1 + HHD-II mice vaccinated with different plasmid vectors encoding SSX2. Specifically, pTVG-SSX2 ${ }^{H A}$ encodes two epitopes with high HLA-A2 affinity and was previously demonstrated to elicit antigen-specific CD8+T cells with higher PD-1 expression compared to a vector encoding the native SSX2 epitopes (pTVG-SSX2). 16 The other construct, mini-intronic plasmid SSX2 (MIP-SSX2), encodes the native SSX2 protein in a mini-intronic plasmid resulting in prolonged expression of SSX2 in vivo, and was previously demonstrated to elicit antigen-specific CD8+T cells with higher LAG-3 expression compared to pTVG-SSX2.18 Mice were immunized with one of these modified vaccines, the native $\mathrm{pTVG}-\mathrm{SS} 2$ vaccine, or empty vector (pTVG 4). Splenocytes from immunized animals were collected at 2,4 , 7,10 and 14 days after immunization to assess checkpoint expression and memory phenotype (FIG. 3a). As shown in FIG. $3 b$, immunization with $\mathrm{pTVG}-\mathrm{SSX} 2^{H A}$ led to p 103 (the dominant HLA-A2 epitope for SSX2) tetramer+ CD8+T cells with increased PD-1 expression when compared to the other vaccines (representative histograms are shown in FIG.
13). Immunization with MIP-SSX2 predominantly induced LAG-3 expression, with lower expression of PD-1 compared to the other vectors. These findings were consistent with the inventors' previous findings. 16•18 As shown in FIG. 3c, vaccination with any of the SSX2 constructs elicited CD8+T cells with similar Th1 cytokine profiles following in vitro stimulation with the p103 peptide epitope. As shown in FIG. 3d, each of the SSX2 vaccines led to a similar transition from central to effector CD8 memory, which is expected following cytotoxic T-cell expansion (representative dot plots in FIG. 13). 27
PD-1 Blockade is Superior to LAG-3 Blockade when Used in Combination with an Anti-Tumor Vaccine in an α PD-1 Sensitive Tumor
[0094] The inventors next wished to determine whether PD-1 and LAG-3 blockade was superior to either alone when used in combination with these anti-tumor DNA vaccines. 6- to 8 -week-old HLA-A2+ HHD-II mice were inoculated with SSX2-expressing sarcoma cells. As shown in FIG. $4 a$, the mice were immunized with pTVG4 control vector, pTVG-SSX2, pTVG-SSX $2^{H A}$, or MIP-SSX2 DNA vaccines one day following tumor implantation and at weekly intervals thereafter. The day following each immunization, mice were administered α PD-1, $\alpha L A G-3$, both α PD-1/ $\alpha \mathrm{LAG}-3$, or IgG control antibodies. Shown in FIG. 4 are the mean tumor sizes (4B) and survival curves (4C) from each treatment group (individual data points are shown in FIG. 14). Consistent with the inventors' previous findings, and despite the similar cytokine expression profile and memory phenotype of $\mathrm{CD} 8+\mathrm{T}$ cells described in FIG. 3, pTVG-SSX $2^{H / 4}$ and MIP-SSX2 vaccines were inferior to the native $\mathrm{pTVG}-\mathrm{SSX} 2$ vaccine when used without T-cell checkpoint blockade ($\mathrm{pTVG}-\mathrm{SSX} 2$ vs $\mathrm{pTVG}-\mathrm{SSX}^{H A} \mathrm{p}=0$. 036; pTVG-SSX2 vs MIP-SSX2 p=0.026). However, when the altered vaccines were used in combination with checkpoint blockade, all blocking antibodies resulted in reduced tumor growth when compared to IgG control. As in the PD-L1 ${ }^{\text {high }}$ E.G7-OVA tumors, both α PD-1 and the α PD-1/ $\alpha \mathrm{LAG}-3$ combination slowed tumor growth to a greater extent and prolonged survival when compared to $\alpha \mathrm{LAG}-3$ alone with antigen-specific vaccination. However, the response to vaccination with dual $\alpha \mathrm{PD}-1 / \alpha \mathrm{LAG}-3$ blockade was not significantly greater than blockade with α PD-1 alone ($\mathrm{p} T V G-S S X 2 \mathrm{p}=0.99$; $\mathrm{pTVG-SSX} 2^{\mathrm{HA}} \mathrm{p}=0.84$; MIP$\operatorname{SSX} 2 \mathrm{p}=0.92$), which in this model was highly effective. A treatment response was observed with $\alpha \mathrm{LAG}-3$ and control vector in this particular experiment, but not observed in repeated studies (data not shown).
In a Prostate Cancer Model, Vaccination with PD-1 and LAG-3 Blockade is Superior to Vaccination with Either Blockade Alone
[0095] The inventors next wished to evaluate vaccination with checkpoint blockade in a murine model less responsive to PD-1 blockade. Prostate cancers have been considered mostly resistant to single-agent PD-1 blockade in clinical trials, and previous reports using the murine MycCaP prostate cancer model have demonstrated that while it does respond to anti-tumor vaccination, it does not respond to PD-1/PD-L1 blockade.23-28-30 As shown in FIG. 5a, six-to-nine-week-old male FVB mice were inoculated with MycCaP cells and immunized with the pTVG4 control or a DNA vaccine encoding the native ligand-binding domain of the androgen receptor ($\mathrm{pTVG}-\mathrm{AR} \mathrm{)}$. immunization and weekly thereafter, mice were treated with
$\alpha \mathrm{PD}-1, \alpha \mathrm{LAG}-3$, both $\alpha \mathrm{PD}-1 / \alpha \mathrm{LAG}-3$, or IgG control. As shown in FIG. $5 b$ and FIG. $5 c$, all vaccine combinations slowed the growth of tumors when compared to the vaccine with IgG; however, the combination of α PD-1 and $\alpha \mathrm{LAG}-3$ with vaccine led to a significant reduction in tumor growth compared to vaccination with either antibody alone. Treatment of mice with $\alpha \mathrm{PD}-1$ and/or $\alpha \mathrm{LAG}-3$ without vaccine showed little anti-tumor effect in this model (FIG. 15). In a duplicate study, tumors were collected at day 29 for further evaluation. The combination treatment led to a slight increase (not significant) in the number of infiltrating CD4+ and $\mathrm{CD} 8+\mathrm{T}$ cells (FIG. 5 d), as well as an unexpected increase in tumor-infiltrating MDSC (FIG. 15). Further evaluation of tumor-infiltrating $\mathrm{CD} 8+\mathrm{T}$ cells showed these to be predominantly of an effector memory and tissueresident memory phenotype (FIG. 5e).

Discussion

[0096] In this example, the inventors investigated the activation-induced expression of immune checkpoint receptors on CD8+T cells and how that expression is affected by T-cells which had been activated by professional or "nonprofessional" APC. Based on this information, the inventors identified a rational combination of checkpoint inhibitors to use with anti-tumor vaccination. The inventors report that T cells stimulated in the absence of professional APC increased expression of LAG-3 but not PD-1, CTLA-4, or TIM3, while T cells stimulated with APC displayed an increase in all checkpoint receptors observed. The inventors thus focused on combinations of PD-1 and LAG-3 blockade in the context of anti-tumor vaccination. Using DNA vaccines that the inventors have previously demonstrated can lead to antigen-specific $\mathrm{CD} 8+\mathrm{T}$ cells with increased expression of PD-1 or LAG-3, the inventors found that either checkpoint blockade successfully enhanced vaccine induced anti-tumor responses with all the vaccines tested; however, the inventors found no specific advantage to vaccination with dual PD-1/LAG-3 blockade over vaccine with PD-1 blockade alone in murine models that were robustly sensitive to PD-1 blockade. 19 In the prostate cancer model, which is resistant to single-agent PD-1 blockade, and using a vaccine encoding a naturally expressed tumor antigen, the dual blockade group demonstrated greater therapeutic efficacy than other treatment groups. These results indicate the following: 1) depending on which cells are presenting antigen, tumor-reactive $\mathrm{CD} 8+\mathrm{T}$ cells can be activated with distinct patterns of checkpoint receptor expression; 2) dual blockade of PD-1 and LAG-3 can provide significant benefit over either blockade alone in PD-1 resistant MycCaP prostate tumors; 3) the upregulation of other checkpoint receptors (e.g. TIM-3, CTLA-4, VISTA, CD160, BTLA etc.), and the persistence of some tumors despite activation of a Th1 biased T-cell response and targeted checkpoint blockade suggest that combination strategies with vaccine and other checkpoint blocking antibodies could be the focus of future investigations.
[0097] The inventors' approach was based on the finding that T-cell activation following vaccination resulted in the expression of PD-1, LAG-3, CTLA-4, and TIM-3 checkpoint receptors. Of note, the inventors did see a slight decrease in TIM-3 following stimulation with B cells as professional APC (FIG. 1), suggesting there could be differences in T cell function following stimulation by different professional APC types. However, in the absence of profes-
sional APC, activated CD8+T cells expressed only LAG-3. The inventors reasoned that combination checkpoint blockade following vaccination should consequently include LAG-3 blockade, as vaccines, and notably DNA vaccines, can result in antigen presentation through nonprofessional APC. The inventors have previously shown that, during T-cell activation, a longer contact time between the CD8+T cell and the APC (i.e. longer exposure to TCR signaling and co-stimulation), resulted in elevated PD-1 expression that persisted for months after antigen exposure. 19 These data suggest the existence of a negative feedback loop in which excess TCR stimulation leads to the expression of PD-1 and other inhibitory receptors and molecules. Given the current study, LAG-3 expression appears to be dependent on TCR stimulation, but not necessarily co-stimulation. This suggests LAG-3 expression may be part of a second negative feedback loop that is regulated independently of PD-1, and consequently that the use of PD- 1 and LAG-3 in a dual checkpoint blockade strategy could be advantageous following vaccination with a tumor antigen.
[0098] The inventors' data demonstrate that if CD8+T cells are activated in a way that leads to the expression LAG-3 alone; then, their anti-tumor activity is improved with LAG-3 blockade. However, following vaccination, there was little benefit to adding LAG-3 blockade to vaccine with PD-1 blockade in the OVA-expressing or SSX2 sarcoma models. It is possible that this is entirely due to the first two model systems being exquisitely sensitive to PD-1 blockade with vaccination. The inventors had specifically used E.G7-OVA tumor cells transfected to express PD-L1 as a model at least partially responsive to PD-1 blockade, compared with E.G7-OVA cells that do not express PD-L1. 31 In addition, the inventors had previously demonstrated that OVA-specific $\mathrm{CD} 8+\mathrm{T}$ cells infiltrating these tumors following treatment had increased LAG-3 expression. 31 However, use of this cell line with checkpoint blockade, and the inventors' model using SSX2 DNA vaccination with PD-1 blockade alone, resulted in eradication of tumors in many animals. Hence, demonstrating a benefit with combined blockade was challenging in these models. Notwithstanding, the inventors used the SSX2 sarcoma model specifically because the inventors' prior data demonstrated that altered vaccines could elicit $\mathrm{CD} 8+\mathrm{T}$ cells with preferential expression of PD-1 or LAG-3, and hence might respond differently to vaccination with checkpoint blockade. It is conceivable that in these tumor models because the antigens targeted are not normal "self" proteins expressed in the host, the majority of antigen-specific $\mathrm{CD} 8+\mathrm{T}$ cells were activated by professional APC and predominantly expressed PD-1. However, the inventors' data are consistent with a report that combined PD-1 and LAG-3 blockade was effective when used in combination with a viral vaccine targeting non-self antigens. 32 Together, these data suggest that this combination might be more effective than vaccination with PD-1 blockade alone, particularly for tumors less responsive to PD-1 blockade.
[0099] In the inventors' tumor studies, while some tumors were eradicated, many were not. This was despite demonstrating activation of $\mathrm{CD} 8+\mathrm{T}$ cells, the infiltration of tumors by $\mathrm{CD} 8+\mathrm{T}$ cells and blocking one or more of the checkpoint inhibitory receptors. The inventors have similarly found in patients with advanced prostate cancer, treated with vaccine and PD-1 blockade, that while some had evidence of disease response, this was often not durable 33 Certainly many
additional mechanisms of tumor immune evasion are present, but the observation that blocking multiple checkpoint receptors following vaccine leads to increased anti-tumor response suggests that combination blockade should be further explored, both in the clinic and in further preclinical studies. The inventors' findings in the MycCaP tumor model that CD11b+Gr-1+ MDSC were increased following treatment suggest that this could be an additional mechanism of resistance. Hence, the inventors' future studies will explore anti-tumor vaccines with other combinations of checkpoint blockade and/or therapies that reduce other immunosuppressive cells and pathways upregulated in the tumor microenvironment following anti-tumor vaccination. 34

REFERENCES

[0100] 1. Tang F, Du X, Liu M, Zheng P, Liu Y. Anti-CTLA-4 antibodies in cancer immunotherapy: selective depletion of intratumoral regulatory T cells or checkpoint blockade? Cell Biosci. 2018; 8:30. doi: doi.org/10.1186/s13578-018-0229-z.
[0101] 2. Jin H T, Anderson A C, Tan W G, West E E, Ha S J, Araki K, Freeman G J, Kuchroo V K, A hmed R. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc Natl Acad Sci USA. 2010; 107(33):14733-10. doi: doi.org/ 10.1073/pnas. 1009731107.
[0102] 3. Pardoll D M. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012; 12(4):252-264. doi: doi.org/10.1038/nre3239.
[0103] 4. Riley J L. PD-1 signaling in primary T cells. Immunol Rev. 2009; 229(1):114-125. doi: doi.org/10. 1111/j.1600-065X.2009.00767.x.
[0104] 5. Hui E, Cheung J, Zhu J, Su X, Taylor M J, Wallweber H A, Sasmal D K, Huang J, Kim J. M, Mellman I, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 2017; 355(6332):1428-1433. doi://doi.org/10.1126/science.aaf1292.
[0105] 6. Hodi F S, O'Day S J, McDermott D F et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010; 363(8): 711-723. doi://doi.org/10.1056/NEJMoa1003466.
[0106] 7. Hamid O, Robert C, Daud A, Hodi F S, Hwu W J, Kefford R, Wolchok J D, Hersey P, Joseph R W, Weber J S, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013; 369(2):134-144. doi:doi.org/10.1056/NEJMoa1305133.
[0107] 8. Sakuishi K, Apetoh L, Sullivan J M, Blazar B R, Kuchroo V K, Anderson A C. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010; 207(10):21872194. doi:doi.org/10.1084/jem. 20100643.
[0108] 9. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob J J, Cowey C L, Lao C D, Schadendorf D, Dummer R, Smylie M, Rutkowski P, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015; 373(1):23-34. doi:doi.org/ 10.1056/NEJMoa1504030.
[0109] 10. Crosby E J, Wei J, Yang X Y, Lei G, Wang T, Liu C X, Agarwal P, Korman A J, Morse M A, Gouin K , et al. Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-nega-
tive breast tumors. Oncoimmunology. 2018; 7(5): e1421891. doi:doi.org/10.1080/2162402X.2017. 1421891.
[0110] 11. Fiegle E, Doleschel D, Koletnik S, Rix A, Weiskirchen R, Borkham-Kamphorst E, Kiessling F, Lederle W. Dual CTLA-4 and PD-L1 blockade inhibits tumor growth and liver metastasis in a highly aggressive orthotopic mouse model of colon cancer. Neoplasia. 2019; 21(9):932-944. doi:doi.org/10.1016/j.neo. 2019.07.006.
[0111] 12. Shi L Z, Goswami S, Fu T, Guan B, Chen J, Xiong L, Zhang J, Ng Tang D, Zhang X, Vence L, et al. Blockade of CTLA-4 and PD-1 enhances adoptive T-cell therapy efficacy in an ICOS mediated manner. Cancer Immunol Res. 2019; 7(11):1803-1812. doi:doi. org/10.1158/2326-6066.CIR-18-0873.
[0112] 13. Kos S, Lopes A, Preat V, Cemazar M, Lampreht Tratar U, Ucakar B, Vanvarenberg K, Sersa G, Vandermeulen G. Intradermal DNA vaccination combined with dual CTLA-4 and PD-1 blockade provides robust tumor immunity in murine melanoma. PLoS One. 2019; 14(5): 0 0217762. Doi doi.org/10.1371/journal.pone. 0217762.
[0113] 14. DiGiulio S (2015) FDA approves Opdivoyervoy combo for melanoma, first combo immunotherapy regimen for cancer. FDA Actions Updates. journals.lww.com/oncology-times/blog/fdaactionsandupdates/pages/post.aspx?PostID=116. 2020
[0114] 15. Motzer R J, Tannir N M, McDermott D F, Aren Frontera O, Melichar B, Choueiri T K, Plimack E R, Barthelemy P, Porta C, George S, et al. Nivolumab plus ipilimumab versus sunitinib in advanced Renalcell carcinoma. N Engl J Med. 2018; 378(14):12771290. doi: doi.org/10.1056/NEJMoa1712126.
[0115] 16. Rekoske B T, Smith H A, Olson B M, Maricque B B, McNeel D G. PD-1 or PD-L1 blockade restores antitumor efficacy following SSX2 Epitopemodified DNA vaccine immunization. Cancer Immunol Res. 2015; 3(8):946-955. doi: doi.org/10.1158/ 2326-6066.CIR-14-0206.
[0116] 17. Zumwalde N A, Domae E, Mescher M F, Shimizu Y. ICAM-1-Dependent homotypic aggregates regulate CD8 T cell effector function and differentiation during T cell activation. The Journal of Immunology. 2013; 191(7):3681-3693. doi: doi.org/10.4049/jimmunol. 1201954 .
[0117] 18. Colluru V T, Zahm C D, McNeel D G. Mini-intronic plasmid vaccination elicits tolerant LAG3(+) CD8(+) T cells and inferior antitumor responses. Oncoimmunology. 2016; 5(10):e1223002. doi: doi.org/10.1080/2162402X.2016.1223002.
[0118] 19. Zahm C D, Colluru V T, McNeel D G. Vaccination with high-affinity epitopes impairs antitumor efficacy by increasing PD-1 expression on CD8(+) T cells. Cancer Immunol Res. 2017; 5(8):630-641. doi: doi.org/10.1158/2326-6066.CIR-16-0374.
[0119] 20. Smith H A, McNeel D G. Vaccines targeting the cancer-testis antigen SSX-2 elicit HLA-A2 epitopespecific cytolytic T cells. J Immunother (Hagerstown, Md: 1997). 2011; 34(8):569-580. doi: doi.org/10.1097/ СЈ.0b013e31822b5b1d.
[0120] 21. Smith H A, Rekoske B T, McNeel D G. DNA vaccines encoding altered peptide ligands for SSX2 enhance epitope-specific $\mathrm{CD} 8+\mathrm{T}$-cell immune
responses. Vaccine. 2014; 32(15):1707-1715. doi: doi. org/10.1016/j.vaccine.2014.01.048.
[0121] 22. Smith H A, McNeel D G. Vaccines targeting the cancer-testis antigen SSX-2 elicit HLA-A2 epitopespecific cytolytic T cells. J Immunother. 2011; 34(8): 569-580. doi: doi.org/10.1097/CJI. 0b013e31822b5b1d.
[0122] 23. Olson B M, Bradley E S, Sawicki T, Zhong W, Ranheim E A, Bloom J E, Colluru V T, Johnson L E, Rekoske B T, Eickhoff J C, et al. Safety and immunological efficacy of a DNA vaccine encoding the androgen receptor Ligand-binding domain (AR-LBD). Prostate. 2017; 77(7):812-821. doi: doi.org/10.1002/ pros. 23321.
[0123] 24. Pajot A, Michel M L, Fazilleau N, Pancre V, Auriault C, Ojcius D M, Lemonnier F A, Lon e Y C. A mouse model of human adaptive immune functions: HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class IIknockout mice. Eur J Immunol. 2004; 34(11):30603069. doi: doi.org/10.1002/eji. 200425463.
[0124] 25. Kapadia D, Sadikovic A, Vanloubbeeck Y, Brockstedt D, Fong L. Interplay between CD8alpha+ dendritic cells and monocytes in response to Listeria monocytogenes infection attenuates T cell responses. PloS One. 2011; 6(4):e19376. doi: doi.org/10.1371/ journal.pone. 0019376.
[0125] 26. Colluru V T, McNeel D G. B lymphocytes as direct antigen-presenting cells for anti-tumor DNA vaccines. Oncotarget. 2016; 7(42):67901-67918. doi: doi.org/10.18632/oncotarget. 12178.
[0126] 27. Schlub T E, Badovinac V P, Sabel J T, Harty J T, Davenport M P. Predicting CD62L expression during the $\mathrm{CD} 8(+)$ T-cell response in vivo. Immunol Cell Biol. 2010; 88(2):157-164. doi:https://doi.org/10. 1038/icb.2009.80.
[0127] 28. Philippou Y, Sjoberg H T, Murphy E, Alyacoubi S, Jones K I, Gordon-Weeks A N, Phyu S, Parkes E E, Gillies McKenna W, Lamb A D, et al. Impacts of combining anti-PD-L1 immunotherapy and radiotherapy on the tumour immune microenvironment in a
murine prostate cancer model. Br J Cancer. 2020; 123(7):1089-1100. doi:https://doi.org/10.1038/s41416-020-0956-x.
[0128] 29. Olson B M, Johnson L E, McNeel D G. The androgen receptor: a biologically relevant vaccine target for the treatment of prostate cancer. Cancer Immunology, Immunotherapy: CII. 2013; 62(3):585-596. doi:https://doi.org/10.1007/s00262-012-1363-9.
[0129] 30. Olson B M, Gamat M, Seliski J, Sawicki T, Jeffery J, Ellis L, Drake C G, Weichert J, McN eel D G. Prostate cancer cells express more Androgen Receptor (AR) following androgen deprivation, improving recognition by AR-specific T cells. Cancer Immunol Res. 2017; 5(12):1074-1085. doi:https://doi.org/10.1158/ 2326-6066.CIR-16-0390.
[0130] 31. Zahm C D, Colluru V T, McNeel D G. Vaccination with High-affinity epitopes impairs antitumor efficacy by increasing PD-1 expression on CD8(+) T cells. Cancer Immunol Res. 2017; 5(8):630-641. doi:https://doi.org/10.1158/2326-6066.CIR-16-0374.
[0131] 32. Roy S, Coulon P G, Prakash S, Srivastava R, Geertsema R, Dhanushkodi N, Lam C, Nguyen V, Gorospe E, Nguyen A M, et al. Blockade of PD-1 and LAG-3 immune checkpoints combined with vaccination restores the function of antiviral Tissue-resident CD8(+) TRM cells and reduces ocular herpes simplex infection and disease in HLA transgenic rabbits. J Virol. 2019; 93. doi:https://doi.org/10.1128/JVI.0082719.
[0132] 33. McNeel D G, Eickhoff J C, Wargowski E, Zahm C, Staab M J, Straus J, Liu G. Concurrent, but not sequential, PD-1 blockade with a DNA vaccine elicits anti-tumor responses in patients with metastatic, cas-tration-resistant prostate cancer. Oncotarget. 2018; $9(39): 25586-25596$. doi:https://doi.org/10.18632/oncotarget. 25387.
[0133] 34. Zahm C D, Johnson L E, McNeel D G. Increased indoleamine 2,3-dioxygenase activity and expression in prostate cancer following targeted immunotherapy. Cancer Immunol Immunother. 2019; 68(10):1661-1669. doi:https://doi.org/10.1007/s00262-019-02394-w.

```
<160> NUMBER OF SEQ ID NOS: 13
<210> SEQ ID NO 1
<211> LENGTH: 10667
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 1
agcgccccct cogagatcce ggggagccag cttgctggga gagcgggacg gtccggagca 60
agcccagagg cagaggaggc gacagaggga aaaagggccg agctagccgc tccagtgctg 120
tacaggagce gaagggacgc accacgccag ccccagcccg gctccagcga cagccaacge 180
ctcttgcagc gcggcggctt cgaagccgcc gcccggagct gccctttcct cttcggtgaa 240
gtttttaaaa gctgctaaag actcggagga agcaaggaaa gtgcctggta ggactgacgg 300
ctgcotttgt cotcctcotc tccaccocgc ctcccoccac cotgccttcc ccocctcccc }36
cgtcttctct ccogcagetg cctcagtcgg ctactctcag ccaacccccc tcaccaccct 420
```

tctccccacc cgccceccog ccccogtcgg cccagcgctg ccagcocgag tttgcagaga 480
ggtaactcce tttggctgcg agcgggegag ctagctgcac attgcaaaga aggctcttag 540
gagccaggcg actggggagc ggcttcagca ctgcagccac gacccgcetg gttaggctgc 600
acgeggagag aaccetctgt tttcccccac tctctctcca cctcctcctg ccttccceac 660
cccgagtgcg gagccagaga tcaaaagatg aaaaggcagt caggtcttca gtagccaaaa 720
aacaaaacaa acaaaaacaa aaaagccgaa ataaaagaaa aagataataa ctcagttctt 780
atttgcacct acttcagtgg acactgaatt tggaaggtgg aggattttgt ttttttctt 840
taagatctgg gcatcttttg aatctaccct tcaagtatta agagacagac tgtgagccta 900
gcagggcaga tcttgtccac egtgtgtctt cttctgcacg agactttgag gctgtcagag 960
cgctttttgc gtggttgctc ccgcaagttt ccttctctgg agcttcccgc aggtgggcag 1020
ctagctgcag cgactaccgc atcatcacag cctgttgaac tcttctgagc aagagaaggg 1080
gaggcggggt aagggaagta ggtggaagat tcagccaagc tcaaggatgg aagtgcagtt 1140
agggctggga agggtctacc ctcggccgcc gtccaagacc taccgaggag ctttccagaa 1200
tctgttccag agcgtgcgcg aagtgatcca gaacccgggc cccaggcacc cagaggccgc 1260
gagcgcagca cetcceggcg ccagtttgct getgctgcag cagcagcagc agcagcagca 1320
gcagcagcag cagcagcagc agcagcagca gcagcagcag cagcaagaga ctagccecag 1380
gcagcagcag cagcagcagg gtgaggatgg ttctccecaa gcecatcgta gaggececac 1440
aggctacctg gtcctggatg aggaacagca accttcacag cogcagtcgg ccetggagtg 1500
ccaccccgag agaggttgcg tcccagagce tggagcegce gtggccgcca gcaaggggct 1560
gcegcagcag ctgccagcac ctccggacga ggatgactca getgececat ceacgttgtc 1620
cetgctggge cecactttcc ceggcttaag cagctgctcc gctgacctta a agacatcct 1680
gagcgaggce agcaccatgc aactccttca gcaacagcag caggaagcag tatccgaagg 1740
cagcagcagc gggagagcga gggaggcctc gggggctccc acttcctcca aggacaatta 1800
cttagggggc acttcgacca tttctgacaa cgccaaggag ttgtgtaagg cagtgtcggt 1860
gtccatgggc ctgggtgtgg aggcgttgga gcatctgagt ccaggggaac agcttcgggg 1920
ggattgcatg tacgccccac ttttgggagt tccacccgct gtgcgtccca ctcettgtgc 1980
cccattggcc gaatgcaaag gttctctgct agacgacagc gcaggcaaga gcactgaaga 2040
tactgctgag tattcccctt tcaagggagg ttacaccaaa gggctagaag gcgagagcet 2100
aggctgctct ggcagcgctg cagcagggag ctccgggaca cttgaactgc cgtctaccct 2160
gtctctctac aagtccggag cactggacga ggcagctgcg taccagagtc gcgactacta 2220
caactttcca ctggctctgg coggaccgcc gccccetcog cogcctcccc atceccacge 2280
tcgcatcaag ctggagaacc egctggacta cggcagcgce tgggcggctg cggcggegca 2340
gtgcegctat ggggacctgg cgagcetgca tggcgcgggt gcagcgggac ceggttctgg 2400
gtcaccetca gccgccgett cctcatcctg gcacactctc ttcacagecg aagaaggeca 2460
gttgtatgga cegtgtggtg gtggtggggg tggtggcggc ggcggcggcg gcggcggegg 2520
cggcggcgge ggcggcggeg gcggcgagge gggagctgta gccecctacg gctacactcg 2580
gccccctcag gggctggcgg gccaggaaag cgacttcacc gcacctgatg tgtggtaccc 2640
tggcggcatg gtgagcagag tgccetatcc cagtcccact tgtgtcaaaa gcgaaatggg 2700
cccctggatg gatagctact ceggacctta cggggacatg cgtttggaga ctgccaggga 2760
ccatgttttg cccattgact attactttcc accccagaag acctgcctga tctgtggaga 2820
tgaagcttct gggtgtcact atggagctct cacatgtgga agctgcaagg tcttcttcaa 2880
aagagcegct gaagggaaac agaagtacct gtgcgccagc agaaatgatt gcactattga 2940
taaattccga aggaaaaatt gtccatcttg tcgtcttcgg aaatgttatg aagcagggat 3000
gactctggga gcccggaagc tgaagaaact tggtaatctg aaactacagg aggaaggaga 3060
ggcttccagc accaccagcc ccactgagga gacaacccag aagctgacag tgtcacacat 3120
tgaaggctat gaatgtcagc ccatctttct gaatgtcctg gaagccattg agccaggtgt 3180
agtgtgtgct ggacacgaca acaaccagcc cgactccttt gcagccttgc tctctagcct 3240
caatgaactg ggagagagac agcttgtaca cgtggtcaag tgggccaagg ccttgcctgg 3300
cttccgcaac ttacacgtgg acgaccagat ggctgtcatt cagtactcct ggatggggct 3360
catggtgttt gccatggget ggcgatcctt caccaatgtc aactccagga tgctctactt 3420
cgcccctgat ctggttttca atgagtaccg catgcacaag tcccggatgt acagccagtg 3480
tgtccgaatg aggcacctct ctcaagagtt tggatggctc caaatcaccc cccaggaatt 3540
cctgtgcatg aaagcactgc tactcttcag cattattcca gtggatggge tgaaaaatca 3600
aaaattcttt gatgaacttc gaatgaacta catcaaggaa ctcgatcgta tcattgcatg 3660
caaaagaaaa aatcccacat cetgetcaag acgettctac cagctcacca agctectgga 3720
ctccgtgcag cetattgcga gagagctgca tcagttcact tttgacetgc taatcaagtc 3780
acacatggtg agcgtggact ttccggaaat gatggcagag atcatctctg tgcaagtgce 3840
caagatcctt tctgggaaag tcaagcccat ctatttccac acccagtgaa gcattggaaa 3900
ccetatttcc ccaccccagc tcatgccccc ttcagatgt cttctgcetg ttataactct 3960
gcactactcc tctgcagtgc cttggggaat ttcctctatt gatgtacagt ctgtcatgaa 4020
catgttcctg aattctattt gctgggcttt tetttctct thctctcctt tcttttct 4080
cttccctccc tatctaaccc tcccatggca cottcagact ttgcttccca ttgtggctcc 4140
tatctgtgtt ttgaatggtg ttgtatgcct ttaaatctgt gatgatcctc atatggccca 4200
gtgtcaagtt gtgcttgttt acagcactac tctgtgccag ccacacaaac gtttacttat 4260
cttatgccac gggaagttta gagagctaag attatctggg gaaatcaaaa caaaaacaag 4320
caaacaaaaa aaaaaagcaa aaacaaaaca aaaaataagc caaaaaacct tgctagtgtt 4380
ttttcctcaa aaataaataa ataaataaat aaatacgtac atacatacac acatacatac 4440
aaacatatag aaatccccaa agaggccaat agtgacgaga aggtgaaaat tgcaggccca 4500
tggggagtta ctgatttttt catctcctcc ctccacggga gactttattt tctgccaatg 4560
gctattgcca ttagagggca gagtgacccc agagctgagt tgggcagggg ggtggacaga 4620
gaggagagga caaggagggc aatggagcat cagtacctgc ccacagcett ggtccetggg 4680
ggctagactg ctcaactgtg gagcaattca ttatactgaa aatgtgcttg ttgttgaaaa 4740
tttgtctgca tgttaatgce tcacccccaa accettttct ctctcactct ctgcetccaa 4800
cttcagattg actttcaata gtttttctaa gacctttgaa ctgaatgttc tcttcagcea 4860
aaacttggcg acttccacag aaaagtctga ccactgagaa gaaggagagc agagatttaa 4920
ccctttgtaa ggccccattt ggatccaggt ctgctttctc atgtgtgagt cagggaggag 4980
ctggagccag aggagaagaa aatgatagct tggctgttct cctgcttagg acactgactg 5040
aatagttaaa ctctcactgc cactaccttt tccccacctt taaaagacct gaatgaagtt 5100
ttctgccaaa ctccgtgaag ccacaagcac cttatgtcct cecttcagtg ttttgtgggc 5160
ctgaatttca tcacactgca tttcagccat ggtcatcaag cctgtttgct tcttttgggc 5220
atgttcacag attctctgtt aagagccccc accaccaaga aggttagcag gccaacagct 5280
ctgacatcta tctgtagatg ccagtagtca caaagatttc ttaccaactc tcagatcgct 5340
ggagccetta gacaaactgg aaagaaggca tcaaagggat caggcaagct gggcgtcttg 5400
cccttgtccc ccagagatga taccctccca gcaagtggag aagttctcac ttccttcttt 5460
agagcagcta aaggggctac ccagatcagg gttgaagaga aaactcaatt accagggtgg 5520
gaagaatgaa ggcactagaa ccagaaaccc tgcaaatgct cttcttgtca cccagcatat 5580
ccacctgcag aagtcatgag aagagagaag gaacaaagag gagactctga ctactgaatt 5640
aaatcttca gcggcaaagc ctaaagccag atggacacca tctggtgagt ttactcatca 5700
tcctcctctg ctgctgattc tgggctctga cattgcccat actcactcag attccccacc 5760
tttgttgctg cetcttagtc agagggaggc caaaccattg agactttcta cagaaccatg 5820
gcttctttcg gaaaggtctg gttggtgtgg ctccaatact ttgccaccca tgaactcagg 5880
gtgtgccctg ggacactggt tttatatagt cttttggcac acctgtgttc tgttgacttc 5940
gttcttcaag cccaagtgca agggaaaatg tccacctact ttctcatctt ggcetctgce 6000
tccttactta gctcttaatc tcatctgttg aactcaagaa atcaagggce agtcatcaag 6060
ctgcccattt taattgattc actctgtttg ttgagaggat agtttctgag tgacatgata 6120
tgatccacaa gggtttcett ccctgatttc tgcattgata ttaatagcca aacgaacttc 6180
aaaacagctt taataacaa gggagagggg aacctaagat gagtaatatg ccaatccaag 6240
actgctggag aaaactaaag ctgacaggtt ccctttttgg ggtgggatag acatgttctg 6300
gttttcttta ttattacaca atctggctca tgtacaggat cacttttagc tgttttaaac 6360
agaaaaaat atccaccact cttttcagtt acactaggtt acattttaat aggtccttta 6420
catctgtttt ggaatgattt tcatcttttg tgatacacag attgaattat atcattttca 6480
tatctctcct tgtaaatact agaagctctc ctttacattt ctctatcaaa ttttcatct 6540
ttatgggttt cccaattgtg actcttgtct tcatgaatat atgtttttca tttgcaaaag 6600
ccaaaaatca gtgaaacagc agtgtaatta aaagcaacaa ctggattact ccaaatttcc 6660
aaatgacaaa actagggaaa aatagcctac acaagccttt aggcctactc tttctgtgct 6720
tgggtttgag tgaacaaagg agattttagc ttggctctgt tctcccatgg atgaaaggag 6780
gaggattttt tttttctttt ggccattgat gttctagcca atgtaattga cagaagtctc 684
attttgcatg cgctctgctc tacaaacaga gttggtatgg ttggtatact gtactcacct 6900
gtgagggact ggccactcag acccacttag ctggtgagct agaagatgag gatcactcac 6960
tggaaaagtc acaaggacca tctccaaaca agttggcagt gctcgatgtg gacgaagagt 7020
gaggaagaga aaaagaagga gcaccaggga gaaggctccg tctgtgctgg gcagcagaca 7080
gctgccagga tcacgaactc tgtagtcaaa gaaaagagtc gtgtggcagt ttcagctctc 7140
gttcattggg cagctcgcet aggcccagce tctgagctga catgggagtt gttggattct 7200
ttgettcata getttttcta tgccataggc aatattgttg ttcttggaaa gtttattatt 7260

				565					570					575	
Cys	Gly	Ser	$\begin{aligned} & \text { Cys } \\ & 580 \end{aligned}$	Lys	Val	Phe	Phe	$\begin{aligned} & \text { Lys } \\ & 585 \end{aligned}$	Arg	Ala	Al	Glu	$\begin{aligned} & \text { Gly } \\ & 590 \end{aligned}$	Lys	Gln
Lys	Tyr	$\begin{aligned} & \text { Leu. } \\ & 595 \end{aligned}$	Cys	Ala	Ser	Arg	$\begin{aligned} & \text { Asn } \\ & 600 \end{aligned}$	Asp	Cys	Thr	I l	$\begin{aligned} & \text { Asp } \\ & 605 \end{aligned}$	Lys	Phe	Arg
Arg	$\begin{aligned} & \text { Lys } \\ & 610 \end{aligned}$	Asn	Cys	Pro	Ser	$\begin{aligned} & \text { Cys } \\ & 615 \end{aligned}$	Arg	Leu	Arg	Lys	$\begin{aligned} & \text { Cys } \\ & 620 \end{aligned}$	TYr	Glu	Ala	Gly
$\begin{aligned} & \text { Met } \\ & 625 \end{aligned}$	Thr	Leu	$1 \mathrm{y}$	Ala	$\begin{aligned} & \text { Arg } \\ & 630 \end{aligned}$	Lys I	Leu	Lys	Lys	$\begin{aligned} & \text { Leu } \\ & 635 \end{aligned}$	Gl	As	Leu	Lys	$\begin{aligned} & \text { Leu } \\ & 640 \end{aligned}$
Gln	Glu	Glu.	Gly	$\begin{gathered} \text { Glu } \\ 645 \end{gathered}$	Ala	Ser	Ser	Thr	$\begin{aligned} & \text { Thr } \\ & 650 \end{aligned}$	Ser	Pro	Thr	Glu	$\begin{aligned} & \text { Glu } \\ & 655 \end{aligned}$	Thr
Thr	Gln	Lys	$\begin{aligned} & \text { Leu } \\ & 660 \end{aligned}$	Thr	Val	Ser H	His	Ile 665	Glu	Gly		Glu	$\begin{aligned} & \text { Cys } \\ & 670 \end{aligned}$	Gln	Pro
Ile	Phe	Leu 675	Asn	Val	Leu	Glu	$\begin{aligned} & \text { Ala } \\ & 680 \end{aligned}$	Ile	Glu	Pro	Gl	$\begin{aligned} & \text { Val } \\ & 685 \end{aligned}$	val	Cys	Ala
Gly	$\begin{aligned} & \mathrm{His} \\ & 690 \end{aligned}$	Asp	Asn	Asn	Gln	$\begin{aligned} & \text { Pro } 7 \\ & 695 \end{aligned}$	Asp	Ser	Phe	Ala	$\begin{aligned} & \text { Ala } \\ & 700 \end{aligned}$	Leu		Ser	Ser
$\begin{aligned} & \text { Leu } \\ & 705 \end{aligned}$	Asn	Glu	u	Gly	$\begin{aligned} & \text { Glu } \\ & 710 \end{aligned}$	Arg	Gln	Leu	Val	His 715			Lys	Trp	$\begin{aligned} & \text { Ala } \\ & 720 \end{aligned}$
Lys	Ala	Leu.	Pro	$\begin{aligned} & \text { Gly } \\ & 725 \end{aligned}$	Phe	Arg	Asn	Leu	$\begin{aligned} & \mathrm{His} \\ & 730 \end{aligned}$	Val	As	Asp	Gln	$\begin{aligned} & \text { Met } \\ & 735 \end{aligned}$	Ala
Val	Ile	Gln	$\begin{aligned} & \text { Tyr } \\ & 740 \end{aligned}$	Ser	Trp	Met	Gly	$\begin{aligned} & \text { Leu } \\ & 745 \end{aligned}$	Met	Val	Phe	Ala	$\begin{aligned} & \text { Met } \\ & 750 \end{aligned}$	Gly	Trp
Arg	Ser	$\begin{aligned} & \text { Phe } \\ & 755 \end{aligned}$	Thr	Asn	al	Asn	$\begin{aligned} & \text { Ser } \\ & 760 \end{aligned}$	Arg	Met	Leu	Tyr	$\begin{aligned} & \text { Phe } \\ & 765 \end{aligned}$		Pro	Asp
Leu	$\begin{aligned} & \text { Val } \\ & 770 \end{aligned}$	Phe	Asn	Glu	Tyr	$\begin{aligned} & \text { Arg } \\ & 775 \end{aligned}$	Met	His	Lys	Ser	$\begin{aligned} & \text { Arg } \\ & 780 \end{aligned}$	Met			Gln
$\begin{aligned} & \text { Cys } \\ & 785 \end{aligned}$	Val	Arg	Met	Arg	$\begin{aligned} & \text { His } \\ & 790 \end{aligned}$	Leu	Ser	Gln	Glu	Phe 795	Gly	Trp	Leu	Gln	$\begin{aligned} & \text { Ile } \\ & 800 \end{aligned}$
Thr	Pro	Gln	lu	$\begin{aligned} & \text { Phe } \\ & 805 \end{aligned}$	Leu	Cys	Met	Lys	$\begin{aligned} & \text { Ala } \\ & 810 \end{aligned}$	Leu	Leu	Leu	Phe	$\begin{aligned} & \text { Ser } \\ & 815 \end{aligned}$	Ile
Ile		Val	$\begin{aligned} & \text { Asp } \\ & 820 \end{aligned}$	Gly	Leu	Lys	Asn	$\begin{aligned} & \text { Gln } \\ & 825 \end{aligned}$	Lys	Phe		Asp	$\begin{aligned} & \text { Glu } \\ & 830 \end{aligned}$	Leu	Arg
Met	Asn	$\begin{aligned} & \text { Tyr } \\ & 835 \end{aligned}$	Ile	Lys	Glu	Leu	$\begin{aligned} & \text { Asp } \\ & 840 \end{aligned}$	Arg	Ile	Ile		$\begin{aligned} & \text { Cys } \\ & 845 \end{aligned}$	Lys	Arg	Lys
Asn	$\begin{aligned} & \text { Pro } \\ & 850 \end{aligned}$	Thr	Ser	Cys	Ser	$\begin{aligned} & \text { Arg } \\ & 855 \end{aligned}$	Arg	Phe	Tyr	Gln	$\begin{aligned} & \text { Leu } \\ & 860 \end{aligned}$	Thr	Lys	Leu	Leu
$\begin{aligned} & \text { Asp } \\ & 865 \end{aligned}$	Ser	Val	Gln	Pro	$\begin{aligned} & \text { Ile } \\ & 870 \end{aligned}$	Ala	Arg	Glu	Leu	$\begin{aligned} & \text { His } \\ & 875 \end{aligned}$	Gln	Phe	Thr	Phe	$\begin{aligned} & \text { Asp } \\ & 880 \end{aligned}$
Leu	Leu	Ile	Lys	$\begin{aligned} & \text { Ser } \\ & 885 \end{aligned}$	His	Met	Val	Ser	$\begin{aligned} & \text { Val } \\ & 890 \end{aligned}$	Asp	Phe	Pro	Glu	$\begin{aligned} & \text { Met } \\ & 895 \end{aligned}$	Met
Ala	Glu	Ile	$\begin{aligned} & \text { Ile } \\ & 900 \end{aligned}$	Ser	Val	Gln	Val	$\begin{aligned} & \text { Pro } \\ & 905 \end{aligned}$	Lys	Ile	Leu	Ser	$\begin{aligned} & \text { Gly } \\ & 910 \end{aligned}$	Lys	Val
Lys	Pro	Ile 915	Tyr	Phe	His	Thr	$\begin{aligned} & \mathrm{Gln} \\ & 920 \end{aligned}$								

```
<210> SEQ ID NO 3
<211> LENGTH: 10063
<212> TYPE: DNA
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 3
```


-continued

cagcgccccc tcggagatcc ctaggagcca gcctgctggg agaaccagag ggtccggagc 60
aaacctggag gctgagaggg catcagaggg gaaaagactg agctagccac tccagtgcca 120
tacagaagct taagggacgc accacgccag ccccagccca gcgacagcca acgectgttg 180
cagagcggcg gcttcgaagc cgccgcccag gagctgccet ttcctcttcg gtgaagtttc 240
taaaagctgc gggagactca gaggaagcaa ggaaagtgtc cggtaggact acggctgcct 300
ttgtcctctt cccctctacc cttaccccct cotgggtccc ctctccagga getgactagg 360
caggctttct ggccaaccet ctcccctaca cccccagctc tgccagccag tttgcacaga 420
ggtaaactcc ctttggctga gagtagggga gcttgttgca cattgcaagg aaggcttttg 480
ggagcccaga gactgaggag caacagcacg cccaggagag tccctggttc caggttctog 540
cccctgcacc tcctcctgec cgcccctcac cctgtgtgtg gtgttagaaa tgaaaagatg 600
aaaaggcagc tagggtttca gtagtcgaaa gcaaaacaaa agctaaaaga aaacaaaaag 660
aaatagccc agttcttatt tgcacctgct tcagtggact ttgaatttgg aaggcagagg 720
atttcccctt ttccctcccg tcaaggtttg agcatctttt aatctgttct tcaagtattt 780
agagacaaac tgtgtaagta gcagggcaga tcctgtcttg cgcgtgcett cctttactgg 840
agactttgag gttatctggg cactcccccc acccaccccc cetcctgcaa gttttcttcc 900
ccggagcttc ccgcaggtgg gcagctagct gcagatacta catcatcagt caggagaact 960
cttcagagca agagacgagg aggcaggata agggaattcg gtggaagcta cagacaagct 1020
caaggatgga ggtgcagtta gggetgggaa gggtctacce acggccccca tccaagacct 1080
atcgaggage gttccagat ctgttccaga gcgtgegcga agcgatccag aacccgggce 1140
ccaggcacce tgaggccget aacatagcac ctcccggcgc etgtttacag cagaggcagg 1200
agactagcec coggcggcgg cggcggcagc agcacactga ggatggttct cctcaagcec 1260
acatcagagg ccccacaggc tacctggccc tggaggagga acagcagcct tcacagcagc 1320
aggcagcctc cgagggccac cetgagagca gctgcctccc cgagcctggg gcggccaccg 1380
ctcctggcaa ggggctgccg cagcagccac cagctcctcc agatcaggat gactcagctg 1440
ccccatccac gttgtccctg ctgggcccca ctttcccagg cttaagcagc tgctccgccg 1500
acattaaaga cattttgaac gaggccggca ccatgcaact tcttcagcag cagcaacaac 1560
agcagcagca ccaacagcag caccaacagc accaacagca gcaggaggta atctccgaag 1620
gcagcagcge aagagccagg gaggccacgg gggctccctc ttcctccaag gatagttacc 1680
tagggggcaa ttcaaccata tctgacagtg ccaaggagtt gtgtaaagca gtgtctgtgt 1740
ccatgggatt gggtgtggaa gcattggaac atctgagtcc aggggaacag cttcggggag 1800
actgcatgta cgcgtcgctc ctgggaggtc cacccgcggt gcgtcccact ccttgtgcge 1860
cgctgcccga atgcaaaggt cttcccctgg acgaaggccc aggcaaaagc actgaagaga 1920
ctgctgagta ttcctctttc aagggaggtt acgccaaagg attggaaggt gagagcttgg 1980
ggtgctctgg cagcagtgaa gcaggtagct ctgggacact tgagatcocg tcctctctgt 2040
ctctgtataa atctggagca ctagacgagg cagcagcata ccagaatcge gactactaca 2100
actttcegct ggctetgtcc gggecgecge accccecgec cectacecat ccacacgece 2160
gtatcaagct ggagaaccca ttggactacg gcagcgcctg ggctgcggcg gcagcgcaat 2220
gccgctatgg ggacttgggt agtctacatg gagggagtgt agccgggccc agcactggat 2280
-continued
cgcccccagc caccacctct tcttcctggc atactctctt cacagctgaa gaaggccaat 2340
tatatgggce aggaggcggg ggcggcagca gcagcccaag cgatgccggg cotgtagcce 2400
cctatggcta cactcggcec cctcaggggc tgacaagcca ggagagtgac tactctgcct 2460
ccgaagtgtg gtatcctggt ggagttgtga acagagtacc ctatcccagt cccaattgtg 2520
tcaaaagtga aatgggacct tggatggaga actactccgg accttatggg gacatgcgtt 2580
tggacagtac cagggaccat gttttaccca tcgactatta ctttccaccc cagaagacct 2640
gcctgatctg tggagatgaa gcttctggct gtcactacgg agctctcact tgtggcagct 2700
gcaaggtctt cttcaaaaga gccgctgaag ggaaacagaa gtatctatgt gccagcagaa 2760
acgattgtac cattgataaa tttcggagga aaaattgccc atcttgtcgt ctccggaaat 2820
gttatgaagc agggatgact ctgggagctc gtaagctgaa gaaacttgga aatctaaac 2880
tacaggagga aggagaaaac tccaatgctg gcagccccac tgaggaccca tcccagaaga 2940
tgactgtatc acacattgaa ggctatgaat gtcagcctat ctttcttaac gtcetggaag 3000
ccattgagcc aggagtggtg tgtgccggac atgacaacaa ccaaccagat tcctttgctg 3060
ccttgttatc tagcctcaat gagcttggag agaggcagct tgtgcatgtg gtcaagtggg 3120
ccaaggcett gcctggcttc cgcaacttgc atgtggatga ccagatggcg gtcattcagt 3180
attcctggat gggactgatg gtatttgcca tgggttggcg gtccttcact aatgtcaact 3240
ccaggatgct ctactttgca cetgacttgg tttcaatga gtaccgcatg cacaagtctc 3300
ggatgtacag ccagtgtgtg aggatgaggc acctgtctca agagtttgga tggctccaaa 3360
taacccccca ggaattcetg tgcatgaaag cactgctgct cttcagcatt attccagtgg 3420
atgggctgaa aaatcaaaaa ttctttgatg aacttcgaat gaactacatc aaggaactcg 348
atcgcatcat tgcatgcaaa agaaagaatc ccacatcctg ctcaaggegc ttctaccagc 3540
tcaccaagct cctggattct gtgcagccta ttgcaagaga gctgcatcag ttcacttttg 3600
acctgctaat caagtcccat atggtgagcg tggactttcc tgaaatgatg gcagagatca 3660
tctctgtgca agtgcecaag atcctttctg ggaaagtcaa gcceatctat ttccacacac 3720
agtgaagatt tggaaaccct aatacccaaa acccaccttg ttccctttcc agatgtcttc 3780
tgcctgttat ataactctgc actacttctc tgcagtgcet tgggggaaat tcctctactg 3840
atgtacagtc tgtcgtgaac aggttcctca gttctatttc ctgggcttct ccttcttttt 3900
ttttcttctt ccctccctct thcaccctcc catggcacat tttgaatctg ctgcgtattg 3960
tggctcctgc ctttgttttg atttctgttg tatttctttg aatctgtgat gatcctcttg 4020
tggcccagtg tcaattgtgc ttgtttatag cactgtgctg tgtgccaacc aagcaaatgt 4080
ttactcacct tatgccatgg caaatttaga gagctataag tatctggaga agaaacaaac 4140
agagagaata aaaagcaaaa acaaaaccaa aaaataaaaa aaacacaaac aaaaaacaaa 4200
accaacaaac aaaacatgct aggtttgttt cttcgtggta tacaaataaa cacataggat 4260
tcccaaagaa gccgacagtg actagaagaa agtaaaaaat tacaaatcca cgaggagtca 4320
ctgtttttgt tcatcctgtt tctctgtggg aaacttcagt tgttgttaat ggctattgcc 4380
attaaagagc aggttgaccc caaagcttta ctgatagggt agagagaaaa gaggacaagg 4440
agggcagatg gataaccatt acctccccac agcetttgtc cetgagtect agagtgctca 4500
gttgcagtgt agttccttgt actgaaatgt gettcttgtt tgaaaacttg tctgcatgtg 4560
aatgcctctt ccttccaatc cttttctctc thacctctg cttccaccot caattgactt 4620
tcaatagctt ttctcagagc tttgtactat atgctctctt tagccaaaac ttggccactt 4680
tcactgaagt tatgtcagtg agaagaaagt ggaaaggtct gactctttgg aaggctctat 4740
tcagatttat gttcatattt ccatgtgtga gccatagcgg agctttgtga ctggagtcag 4800
aggaaaagga agtgatggct tagccattct cccattagag atagtgaatg atgatgccat 4860
agtgcaatca tcctttcctc tgcttttaaa ggacctagag accccatgca gccacattct 4920
ccctgcacaa gtcttcagtg ttcagtggcc ctgaacttca ccaaaatgca tttaagccaa 4980
ggtggtaaag cttgtacact tctttggacg tgtttgtaga cactgctaag atctccctct 5040
caccaccacc acaaaggcta gcaggccagc agccacagca tctatgttta gatgttaata 5100
gcataaaaga catctcactc aatgtctttc atcaacagta aatttctgga gccettagaa 5160
aattggaaa gaaagcatca aagggaccag acaaaatggg catcttgccc ttgtcctcca 5220
gagacaatat attcctccea agtggagaaa tgtcaatttc ctcctcagaa caattaaagg 528
ggctacccag accatggtgg aagagaaaac taagtaaccc agctgagaaa aatgaagaca 5340
ctagaaccag aaagcacagg actttttcct ttccatccag catacccatt ggcagaaata 5400
atggaaggaa aagagaaggc cagaagaaaa tacagactgc tgaagtcttc agaggcaaag 5460
tctaaagcca gatgaatacc atctggctag atgggcatca gtttgctcat cctcctctat 5520
tgecattgct gggetgactt tggceaaagt tacttcgaat ctccaccata gttgtcecct 5580
ctcagtcaga gggtgcagga ccactgaaac attctatcca cegtgactct cattggacag 5640
atctggccgg tgtggctaca aatagactgc acccataaac tcagggcaag ccetgggtca 570
ctggtttcat gtagtctgtt gacagccttc tttactgtgg actctgttcc tcaaccttga 576
gtgcaggagg aatgcacatc tacttttgce ttgtatcat tcctcctcac tcagctctc 5820
acctccctgc agaccttaag aaatcagggg ccagctgcca agctgactct tttggttggt 5880
actatgttaa ctgaaaaggt gatttccgaa ggacaggttt tcttccctga tttctttgtt 5940
gctattaata gcaaaacaa acttgcaaaa caacttcttt aacaaggaag ggaggatata 6000
tacaatgggt gatatggtaa tccaaccctg cttgacaaaa actgaagctg acaggttaca 6060
tttaaaaaca aaacaaaaca aaacgggaca gtttctgatt tgctttgtga caacaccatc 6120
tggcttatgt acaggagctc tcttagctgt tccttaaaca gaaaaaaaat cattactcct 6180
tttagttaaa tttggttaca ttttaatagt ttctttacat ctattctgaa gcaattttg 6240
tcttctgtgg tacatggatt ttattataac attctaatat ttgtctttgt aaatactaga 6300
gactctttga tccatttctc taggaagttt tccatcttat ggagttctga atcatgactt 6360
ttatctttat gaatgtatat getttttact tgcaaaagce aaaagagtg aaacagcagt 642
gcaattaaag caacaccaac taaactccaa atttccaagt gacaatatta gagaaaaaca 6480
gcatacacat ggctttatgc ctactgcttc tgcggtgggg tttgggtgcg caatggaaac 6540
tgtagcttgg ctgtgttctc ccacacaagt gaagaagaga ttggtttttg ctttttgga 6600
ttttgtgttt cttttctgtt ttgtttget tggtttgtt ttgctttgct ttcttggce 6660
atcaatgttc caactaatat gattggcgga gcacgtgctc tgctcagtag agtgaatgtt 6720
gctggtgcac tatgctcacc tgtgaacggc tggccatttc tccattcata tggttaagat 6780
ggaagatgag gatcacttac cagagaagtc aaggtgatca tctccaaaga ggtttacagt 6840
gcttggtagg aatggaaaat gaggacaaga aaaagaggag aaccatggag aaggcccaac 6900
tgggcaggac agcagccagc tgccaaagtc acgaactctg ggattcaaga agagtcgtgt 6960
agtgctttca actctcatcc gcaggcagct cactgtgtgt ggactctgag ctgacacggg 7020
agttggcttc tttgttccat agattttcta tgccacaggc aatattattg ttcttggaaa 7080
gttcattatt ttttaaatt accttactct cagaaaggga tttttttgaa ggattctgtc 7140
atatatcttt ggaaaacaga aaatcagtaa tatgtatatt tttatgtatg ttcactggca 7200
ctaaaaaaaa aaaaaaaaag aaagaaaaa aaagagaaaa aaaaagctt cactctgtcc 7260
tttgggtagt tgctgaggtt aattgtccag gttgagaaat gtgcttctgc taacatcctt 7320
ctctgtccac actctatttc taagtacata taggcatata taggaagata tattcaacac 7380
actttaagaa aaaagtatgt ccaccatcca catgataacc acaatgatac tccacaaatt 7440
acatgacttt aagcttcaag caacttctaa ctgattcatt catttatagc cttgccctct 7500
tctttccctt aaatttggec cagcacaaag acccaagcea cecttatacc tccetaagac 7560
ttaagccagc accagacttc agaaggtttt ctgaagacaa ctgacttgct atccctgcat 7620
gaccetagca tggtcctgca aacacaagag actaattata attctcctcc actaattgcc 7580
tgggtcacag gtcattgggc caaggccatg attcttatgc ttacgaacca ctaatgctaa 7740
cctactagat taaatcctga actgaaagtt aaaagaagcc atttagcatg tgaaacttct 7800
tggagtaaga agtttctgtc ecggetgect ttgcaaacag gtttgetttc accacttatc 7860
tccttgaaaa tctttgaagg cctttttttt ttaagtagaa aaggagatga aagcattata 7920
ttatgtaacc aaagattata ttgtatctaa gataccaaat tttttaaggg cagggaagga 7980
gcaagcatta gtgcctcttt ggtaaattat ccaaagacag actgaaggac ttttctgatg 8040
attgacttag aagactttgt ggggaggggt tgtctcacaa tatacatatt tagaagtgtt 8100
gagaataatt tggggggaaa tgggattata gtgtccttca ctaactgatt ttataagcag 8160
aactagcttt ccttttttt tttttaag tagttacaaa gcaaattctt aagctccat 8220
ctttgcatgg ttagaaatgg agctggtctt ggccactgtg tttactagtg cccatgttag 8280
cttatttgaa gatgtgaagc ccttgataag aaggggtaca tttaaaggat tagatttttg 8340
cactagaagg agggcaggca gaaaccctca tttctgccca gtttggacag cacaaaaagt 8400
tctctgcagt ttaaggcaga aagttgaaat atattgtaaa tgagtatttg tatccatgtt 8460
tcaaaactga attctatata tagatgtaat gtgttctgat agctttacct ttctctgcac 8520
ctttatattt ggttccaggt catatctgat gccatgtact tgtaagagag gttgcagtta 8580
catttttgga tgctctctca gaatggataa gacacctgga ttgatcagat aactgagatc 8640
tcttccettc ttgggcetgg tgttgaggce ttgcaaaggg gtggaagagg aaagggtagg 8700
gtacatgatg tattgcactt tactagctta agacggatga atgtggaaag ggtggtgaaa 8760
tttcattgaa aatgcctagg aattgcaata gggagaaatc cagatgtggg gccaggtgce 8820
cacccaaagg actggccagc agcetcttca tgggatctga ggcattggga aaaggaaggc 8880
tatttcettg gttttcacca tccttgttag agaagggcag ttgcetggtc ttgggaacct 8940
ggagcaaacg ctccttctgt cacatcaatt ctttcccetg caattgaggt gctettgcta 9000
ctgggtgtce gtgtgctcta attctggttc tggatatgtt ctgtaaagat tttgataatt 9060
gctaatgtat ttttctctgt taaaaattg ttagtgtgtt agaagtcata tctctgtagg 9120

$<210>$ SEQ ID NO 4
$<211>$ LENGTH: 899
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Mus musculus
$<400>$ SEQUENCE: 4

		595					600					605		
Arg	$\begin{aligned} & \text { Lys } \\ & 610 \end{aligned}$	Leu	Lys L	Lys I	Leu	$\begin{aligned} & \text { Gly } \\ & 615 \end{aligned}$					$\begin{aligned} & \text { Gln } \\ & 620 \end{aligned}$			Gly Glu
$\begin{aligned} & \text { Asn } \\ & 625 \end{aligned}$	Ser	Asn	Ala	Gly	$\begin{aligned} & \text { Ser } \\ & 630 \end{aligned}$	Pro	Thr	Glu	As		Ser		Lys	$\begin{array}{r} \text { Met } \operatorname{Thr} \\ 640 \end{array}$
Val	Ser H	His	Ile 6	$\begin{aligned} & \mathrm{Glu} \\ & 645 \end{aligned}$	Gly	Tyr	Gl	Cys	$\begin{aligned} & \text { Glr } \\ & 650 \end{aligned}$		Ile	Phe		$\begin{aligned} & \text { Asn Val } \\ & 655 \end{aligned}$
Leu	Glu	Ala	$\begin{aligned} & \text { Ile } \\ & 660 \end{aligned}$	Glu	Pro	Gly		$\begin{aligned} & \text { Val } \\ & 665 \end{aligned}$			Gly	His	Asp 670	Asn Asn
Gln	Pro	$\begin{aligned} & \text { Asp } \\ & 675 \end{aligned}$	$\text { Ser } \mathrm{F}$	Phe	Ala	Ala	$\begin{aligned} & \text { Leu } \\ & 680 \end{aligned}$	Leu	Ser	S		$\begin{aligned} & \text { Asn } \\ & 685 \end{aligned}$	Glu	Leu Gly
Glu	Arg 690	Gln	Leu V		His	$\begin{aligned} & \mathrm{Val} \\ & 695 \end{aligned}$		Lys			$\begin{aligned} & \text { Lys } \\ & 700 \end{aligned}$			Pro Gly
$\begin{aligned} & \text { Phe } \\ & 705 \end{aligned}$	Arg	Asn L	Leu H	His	$\begin{aligned} & \text { Val } \\ & 710 \end{aligned}$	Asp	Asp	Gln	Met	Al	Val	Ile	Gln	$\begin{array}{r} \text { Tyr Ser } \\ 720 \end{array}$
Trp	Met	Gly L	Leu	$\begin{aligned} & \text { Met } \\ & 725 \end{aligned}$	Val				$\begin{aligned} & \mathrm{Gly} \\ & 730 \end{aligned}$	Tr	Arg	Ser	Phe	$\begin{aligned} & \text { Thr Asn } \\ & 735 \end{aligned}$
Val	Asn S	Ser	Arg M 740	Met	Leu	Tyr		$\begin{aligned} & \text { Ala } \\ & 745 \end{aligned}$	Pr				$\begin{aligned} & \text { Phe } \\ & 750 \end{aligned}$	Asn Glu
Tyr	Arg	$\begin{aligned} & \text { Met } \\ & 755 \end{aligned}$	His L	LYS :	ser	$r g$	$\begin{aligned} & \text { Met } \\ & 760 \end{aligned}$	Tyr			Cys	$\begin{aligned} & \mathrm{Val} \\ & 765 \end{aligned}$	Arg	Met Arg
His	$\begin{aligned} & \text { Leu } \\ & 770 \end{aligned}$	Ser	Gln	Glu	Phe	$\begin{aligned} & \text { Gly } \\ & 775 \end{aligned}$	Trp	Leu	Gln	Il	$\begin{aligned} & \text { Thr } \\ & 780 \end{aligned}$	Pro	Gln	Glu Phe
$\begin{aligned} & \text { Leu } \\ & 785 \end{aligned}$	Cys	Met	Lys A	Ala	$\begin{aligned} & \text { Leu } \\ & 790 \end{aligned}$		Le	Phe	Se	795	Ile	Pro	Val	$\begin{array}{r} \text { Asp Gly } \\ 800 \end{array}$
Leu	Lys A	Asn		$\begin{aligned} & \text { Lys } \\ & 805 \end{aligned}$	Phe	Phe	Asp	Glu	Lel 810		Met	Asn	Tyr	$\begin{aligned} & \text { Ile Lys } \\ & 815 \end{aligned}$
Glu	Leu A	Asp	$\begin{aligned} & \text { Arg I } \\ & 820 \end{aligned}$	Ile	Ile	la	Cy	$\begin{aligned} & \text { Lys } \\ & 825 \end{aligned}$					$\begin{aligned} & \text { Thr } \\ & 830 \end{aligned}$	Ser Cys
Ser	Arg	$\begin{aligned} & \text { Arg } \\ & 835 \end{aligned}$	Phe T	Tyr	Gln	Leu	$\begin{aligned} & \text { Thr } \\ & 840 \end{aligned}$				Asp	$\begin{aligned} & \text { Ser } \\ & 845 \end{aligned}$		Gln Pro
Ile	$\begin{aligned} & \text { Ala } \\ & 850 \end{aligned}$	Arg	Glu I	Leu	His	$\begin{aligned} & \mathrm{Gln} \\ & 855 \end{aligned}$			Ph		$\begin{aligned} & \text { Leu } \\ & 860 \end{aligned}$	Leu	Ile	Lys Ser
$\begin{aligned} & \text { His } \\ & 865 \end{aligned}$	Met	Val	Ser	Val	Asp 870	Phe	Pro	Glu	Met	Met		Glu	Ile	$\begin{array}{r} \text { Ile Ser } \\ 880 \end{array}$
Val	Gln V	Val P	Pro I	$\begin{aligned} & \text { Lys } \\ & 885 \end{aligned}$	Ile		Ser	Gly	$\begin{aligned} & \text { Lys } \\ & 890 \end{aligned}$	Va	Lys	Pro	Ile	$\begin{aligned} & \text { Tyr Phe } \\ & 895 \end{aligned}$

His Thr Gln
$<210>$ SEQ ID NO 5
$<211>$ LENGTH: 4136
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Rattus norvegicus
$<400>$ SEQUENCE: 5
atccctagga gccagcctgc tgggagaacc agagggtccg gagcaaacct ggaggctgag
-continued
tacccctacc cctcctgggt cccetctccc tgagcggact aggcaggctt cctggccagc 360
cctctcccet acaccaccag ctctgccagc cagtttgcac agaggtaact ccetttggct 420
gaaagcagac gagcttgttg cccattggaa gggaggcttt tgggagccca gagactgagg 480
agcaacagca cgctggagag tccetgattc caggttctcc cocetgcacc tcctactgce 540
cgcccctcac cotgtgtgtg cagctagaat tgaaaagatg aaaagacagt tggggcttca 600
gtagtcgaaa gcaaaacaaa agcaaaaaga aaacaaaaag aaaatagccc agttcttatt 660
tgcacctgct tcagtggaca ttgactttgg aaggcagaga attttccttc cccccagtca 720
agctttgagc atcttttaat ctgttcttca agtatttagg gacaaactgt gaaactagca 780
gggcagatcc tgtctagcgc gtgccttcct ttacaggaga ctttgaggct atctgggcgc 840
tccccccccc ctccctgcaa gttttcttcc ctggagcttc cogcaggtgg gcagctagct 900
gcagatacta catcatcagt cagtagaact cttcagagca agagacgagg aggcaggata 960
agggaattcg gtggaagcta gagacaagct aaaggatgga ggtgcagtta gggctgggaa 1020
gggtctaccc acggcccccg tccaagacct atcgaggagc gttccagaat ctgttccaga 1080
gcgtgcgcga agcgatccag aacccgggcc ccaggcacce tgaggccgct agcatagcac 1140
ctcceggtgc ctgtttacag cagcggcagg agactagcce ceggcggcgg cggcggcagc 1200
agcaccctga ggatggctct cctcaagccc acatcagagg caccacaggc tacctggccc 1260
tggaggagga acagcagcet tcacagcagc agtcagcetc egagggccac cetgagagcg 1320
gctgcetcce ggagcetgga getgccacgg ctcctggcaa ggggetgecg cagcagceac 1380
cagctcctcc agatcaggat gactcagctg ccccatccac gttgtcocta ctgggcceca 1440
ctttcccagg cttaagcagc tgctccgcag acattaaaga catcctgage gaggceggca 1500
ccatgcaact tcttcagcag cagcagcaac agcaacagca gcagcagcag cagcagcagc 1560
agcagcagca acagcagcag gaggtaatat ccgaaggcag cagcagcgtg agagcaaggg 1620
aggccactgg ggctccctct tcctccaagg atagttacct agggggcaat tcgaccatat 1680
ctgacagtgc caaggagttg tgtaaagcag tgtctgtgtc catggggttg ggtgtggaag 1740
cactggaaca tctgagtcca ggggagcagc ttcggggcga ctgcatgtac gcgtcgctcc 1800
tgggaggtcc acccgccgtg cgtcccactc cttgtgcgcc tctggccgaa tgcaaaggtc 1860
tttccctgga cgaaggccog ggcaaaggca ctgaagagac tgctgagtat tcctctttca 1920
agggaggtta cgccaaaggg ttggaaggtg agagtctggg ctgctctggc agcagtgaag 1980
caggtagctc tgggacactt gagatcccgt cctcactgtc tctgtataag tctggagcag 2040
tagacgaggc agcagcatac cagaatcgcg actactacaa ctttccgctc gctetgtccg 2100
ggecgccgca cccccogcec cetacccatc cacacgcceg catcaagetg gagaaccegt 2160
tggactacgg cagcgcctgg gctgcggcgg cagcgcaatg ccgctatggg gacttggcta 2220
gcctacatgg agggagtgta gccggaccea gcactggatc gcceccagcc accgcetctt 2280
cttcctggca tactctcttc acagctgaag aaggceaatt atatgggcca ggaggcgggg 2340
geggeagcag tagcecaage gatgetggge ctgtagecec ctatggetac acteggecec 2400
ctcaggggct ggcaagccag gagggtgact tctctgcctc tgaagtgtgg tatcctggtg 2460
gagttgtgaa cagagtcccc tatcccagtc ccagttgtgt taaaagtgaa atgggacctt 2520
ggatggagaa ctactccgga ccttatgggg acatgcgttt ggacagtacc agggaccacg 2580

ttttacccat	cgactattac ttcccacccc agaagacctg	cotgatctgt ggagatgaag	2640
cttctggttg	tcactacgga gctctcactt gtggcagctg	caaggtcttc ttcaaaagag	2700
ctgcggaagg	gaaacagaag tatctatgtg ccagcagaaa	tgattgcacc attgataaat	2760
tteggaggaa	aaattgtcca tegtgtcgtc tccggaaatg	ttatgaagca gggatgactc	2820
tgggagctcg	taagctgaag aaacttggaa atctcaaact	acaggaagaa ggagaaaact	2880
ccagtgetgg	tagccocact gaggacceat cccagaagat	gactgtatca cacattgaag	2940
gctatgaatg	tcaacctatc tttcttaatg tcctggaagc	cattgagcca ggagtggtgt	3000
gtgceggaca	tgacaacaac cagcotgatt cotttgctgc	cttgttatct agtctcaacg	3060
agcttggcga	gagacagctt gtacatgtgg tcaagtgggc	caaggcettg cctggcttcc	3120
gcaacttgca	tgtggatgac cagatggcag tcattcagta	ttcctggatg ggactgatgg	3180
tatttgccat	gggttggcgg tccttcacta atgtcaactc	taggatgctc tactttgcac	3240
ctgacctggt	tttcaatgag tatcgcatgc acaagtctcg	aatgtacagc cagtgcgtga	3300
ggatgaggca	cctttctcaa gagtttggat ggctccagat	aaccocccag gaattcctgt	3360
gcatgaaagc	actgctactc ttcagcatta ttccagtgga	tgggctgaaa aatcaaaaat	3420
tctttgatga	acttcgaatg aactacatca aggaacttga	tcgcatcatt gcatgcaaaa	3480
gaaaaaatcc	cacatcctgc tcaaggegct tctaccagct	caccaagctc ctggattctg	3540
tgcagcetat	tgcaagagag ctgcatcaat tcacttttga	cetgetaatc aagtcceata	3600
tggtgagcgt	ggactttcet gaaatgatgg cagagatcat	ctctgtgcaa gtgcecaaga	3660
tcotttctgg	gaaagtcaag cccatctatt tccacacaca	gtgaagattt ggaaacceta	3720
atacccaaac	ccacctgtt ccctttcag atgtcttctg	cotgttatat aactetgcac	3780
tacttctctg	cagtgcottg ggggaaattc ctctactgat	gtacagtctg tcatgaacat	3840
gttccecagt	tctatttcet gggcttttcc ttctttcttt	ttcttcttct ctgcetctct	3900
taccotccoa	tggcacattt tgaatccgct gcgtgttgtg	gctcctgcct gtgttttgag	3960
ttttgttgta	tttcttcaag tctgtgatga tcttcttgtg	gcceagtgtc aactgtgctt	4020
gtttatagca	ctgtgctgtg tgccaaccaa gcaaatgttt	actcacctta tgccatggca	4080
agtttagaga	gctataagta tcttgggaag aaacaaacag	agagagtaaa aaaacc	4136

<210	$>$ SEQ ID NO 6
$<211>$ LENGTH: 902	
$<212>$ TYPE: PRT	
$<213>$ ORGANISM: Rattus norvegicus	
$<400>$ SEQUENCE: 6	


```
Ile Tyr Phe His Thr Gln
<210> SEQ ID NO 7
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic peptide
<400> SEQUENCE: 7
Ser Ile Ile Asn Phe Glu Lys Leu
<210> SEQ ID NO 8
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic peptide
<400> SEQUENCE: 8
Arg Leu Gln Gly Ile Ser Pro Lys Ile
\(<210>\) SEQ ID NO 9
\(<211>\) LENGTH: 9
\(<212>\) TYPE: PRT
\(<213>\) ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Synthetic peptide
\(<400>\) SEQUENCE: 9
Leu Leu Leu Phe Ser Ile Ile Pro Val
```

$<210>S E Q$ ID NO 10
<211> LENGTH: 10
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Synthetic peptide
$<400>$ SEQUENCE: 10
Arg Met Leu Tyr Phe Ala Pro Asp Leu Val
$<210>S E Q$ ID NO 11
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
$<220>$ FEATURE
$<223>$ OTHER INFORMATION: Synthetic peptide
<400 > SEQUENCE: 11
Phe Leu Cys Met Lys Ala Leu Leu Leu
15
$<210>$ SEQ ID NO 12
$<211>$ LENGTH: 9
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic peptide

```
<400> SEQUENCE: 12
Gln Leu Thr Lys Leu Leu Asp Ser Val
<210> SEQ ID NO 13
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic peptide
<400> SEQUENCE: 13
Lys Ala Ser Glu Lys Ile Phe Tyr Val
1 5
```

1. A method of treating a subject having cancer, the method comprising administering an anti-tumor vaccine and a combination of a PD-1 inhibitor and an LAG-3 inhibitor, wherein the combination is effective in increasing the efficacy of the anti-tumor vaccine and treating the cancer.
2. The method of claims $\mathbf{1}$, wherein the subject has a cancer resistant to PD-1 inhibitor.
3. The method of claim 1 , wherein the subject has a cancer selected from breast cancer, cervical cancer, colorectal cancer, prostate cancer, lymphoma and sarcoma.
4. The method of claim 1 , wherein the cancer is prostate cancer.
5. The method of claim $\mathbf{1}$, wherein the cancer is castrateresistant prostate cancer.
6. The method of claim 1 , wherein the DNA vaccine comprises a polynucleotide encoding the tumor antigen, wherein the tumor antigen is selected from the group consisting of synovial sarcoma X breakpoint 2 (SSX2), androgen receptor ligand-binding domain (AR LBD), prostatespecific antigen (PSA), human epidermal growth factor receptor 2 (HER-2/neu), and prostatic acid phosphatase (PAP).
7. The method of claim 1, wherein the DNA vaccine comprises a DNA vaccine selected from the group consisting of pTVG-SSX2, pTVG-SSX2 ${ }^{\text {HA }}$, MIP-SSX 2 , and pTVG-AR.
8. The method of claim 1, wherein the PD-1 inhibitor is an anti-PD-1 monoclonal antibody and the LAG-3 inhibitor is an anti-LAG3 monoclonal antibody.
9. The method of claim $\mathbf{1}$, wherein the combination of the PD-1 inhibitor and the LAG-3 inhibitor is administered after the anti-tumor vaccine in the subject.
10. A method of increasing the anti-tumor T cell response to a tumor antigen in a subject having cancer, the method comprising administering an effective amount of a DNA vaccine and a combination of PD-1 inhibitor and an LAG-3
inhibitor, wherein the combination is effective in increasing the anti-tumor T cell immune response.
11. The method of claim 10, wherein the subject has a cancer resistant to PD-1 inhibitor
12. The method of claim 9, wherein the subject has a cancer selected from breast cancer, cervical cancer, colorectal cancer, prostate cancer, lymphoma and sarcoma.
13. The method of claim 10, wherein the cancer is prostate cancer.
14. The method of claim $\mathbf{1 0}$, wherein the cancer is castrate-resistant prostate cancer.
15. The method of claim 10 , wherein the DNA vaccine comprises a polynucleotide encoding the tumor antigen, wherein the tumor antigen is selected from the group consisting of synovial sarcoma X breakpoint 2 (SSX2), androgen receptor ligand-binding domain (AR LBD), prostatespecific antigen (PSA), human epidermal growth factor receptor 2 (HER-2/neu), and prostatic acid phosphatase (PAP).
16. The method of claim $\mathbf{1 0}$, wherein the DNA vaccine comprises a DNA vaccine selected from the group consisting of pTVG-SSX2, pTVG-SSX2 ${ }^{H 4}$, MIP-SSX2, and pTVG-AR.
17. The method of claim 10, wherein the PD-1 inhibitor is an anti-PD-1 monoclonal antibody and the LAG-3 inhibitor is an anti-LAG3 monoclonal antibody.
18. The method of claim 10 , wherein the immune response is a CD8+ T cell response.
19. The method of claim 10 , wherein the combination of the PD-1 inhibitor and the LAG-3 inhibitor is administered after the anti-tumor vaccine in the subject.
20. A kit for eliciting an anti-tumor response, the kit comprising:
at least one DNA vaccine to a tumor antigen;
at least one PD-1 inhibitor; and
at least one LAG-3 inhibitor.
