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ments, a method comprises: receiving image data ; providing 
the image data to a trained spiking neural network (SNN), 
the SNN comprising a plurality of neurons, each of the 
plurality of neurons associated with a respective initializa­
tion value VO of a plurality of initialization values, wherein 
a first layer of the trained SNN comprises a first subset of the 
plurality of neurons, and a second layer of the trained SNN 
comprises a second subset of the plurality of neurons, and 
wherein a mean of the plurality of initialization values is 
about 0.5, and a standard deviation of the initialization 
values is at least 0.05 ; receiving output from the trained 
SNN at a time step -i:, wherein the output is based on 
activations of neurons in an output layer of the trained SNN, 
and wherein -i; is in a range of 1 to T; and classifying the 
image data based on output of the trained SNN at time step 
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Enhanced SNN 

Fewer spikes 

FIG. 3C 

Spiking Neural Network (SNN) 
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SYSTEMS, METHODS, AND MEDIA FOR 
GENERATING AND USING SPIKING 

NEURAL NETWORKS WITH IMPROVED 
EFFICIENCY 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

[0001] NIA 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

[0002] NIA 

BACKGROUND 

[0003] In recent years, improvements in computer vision 
tasks have focused on improving accuracy. For example, 
over the past decade, the computer vision community has 
largely embraced an "accuracy first" philosophy in which 
"state-of-the-art" usually implies achieving the highest 
accuracy for a particular task. However, improved accuracy 
for a particular task may not be useful practically if the task 
cannot be performed quickly (e.g., with low latency), or if 
the amount of power expended to perform the task is 
relatively high. 
[0004] Accordingly, new systems, methods, and media for 
generating spiking neural networks with improved effi­
ciency are desirable. 

SUMMARY 

[0005] In accordance with some embodiments of the dis­
closed subject matter, systems, methods, and media for 
generating and using spiking neural networks with improved 
efficiency are provided. 
[0006] In accordance with some embodiments of the dis­
closed subject matter, a method for using a spiking neural 
network with improved efficiency is provided, the method 
comprising: receiving image data; providing the image data 
to a trained spiking neural network (SNN), the SNN com­
prising a plurality of neurons, each of the plurality of 
neurons associated with a respective initialization value V 0 

of a plurality of initialization values, wherein a first layer of 
the trained SNN comprises a first subset of the plurality of 
neurons, and a second layer of the trained SNN comprises a 
second subset of the plurality of neurons, and wherein a 
mean of the plurality of initialization values is about 0.5, and 
a standard deviation of the initialization values is at least 
0.05 ; receiving output from the trained SNN at a time step 
,:, wherein the output is based on activations of neurons in 
an output layer of the trained SNN, and wherein ,: is in a 
range of 1 to T; and performing a computer vision task 
associated with the image data based on output of the trained 
SNN at time step i:. 

[0007] In some embodiments, method of claim 1, the 
output is indicative of a neuron in the output layer that had 
the most activations up to time i:. 
[0008] In some embodiments, the computer vision task 
comprises classification of the image data, and the neuron in 
the output layer that had the most activations up to time step 
,: corresponds to a first class of a plurality of classes. 

[0009] In some embodiments, the method further com­
prises: receiving output from the trained SNN at a time step 
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,:' subsequent to time step i:; and performing the computer 
vision task based on output of the trained SNN at step time 
,:'. 

[001 OJ In some embodiments, the image data comprises an 
array of pixels each associated with a value, and providing 
the image data to the trained SNN comprises: generating, for 
each pixel, a spike train based on the value associated with 
the pixel, wherein spikes are generated at a rate that is 
proportional to the value associated with the pixel; and 
providing, to each neuron of a plurality of neurons in an 
input layer of the trained SNN, a spike train associated with 
a respective pixel of the plurality of pixels. 
[0011] In some embodiments, the image data comprises a 
plurality of spike streams generated by an imaging device. 
[0012] In some embodiments, the imaging device com­
prises a light detection and ranging (LiDAR) device. 
[0013] In some embodiments, the trained SNN was gen­
erated based on a trained analog neural network (ANN). 
[0014] In some embodiments, the ANN was trained using 
a loss function LANN and the ANN was refined using a 
penalized loss function L'ANN that included LANN and one or 
more penalized terms. 
[0015] In some embodiments, the penalized loss function 
L'ANNis represented by the relationship: L'ANN=LANN+A.aLa+ 
A L where L is an activation loss term based on B values 
a;s;;iated with batch normalization layers of the trained 
ANN, Ls is a synaptic sparsity loss term based on weights of 
the trained ANN, and "-a and "-s are penalty values. 
[0016] In some embodiments, the method further com­
prises: refining the trained SNN using a loss function LsNN· 
[0017] In some embodiments, the loss function LsNN 
includes an accuracy term, a latency term, and a power 
consumption term. 
[0018] In some embodiments, the loss function LsNN is 
represented by the relationship: LsNN=A.MM+A.LbL+A.pbp 
where M is a minimum error 1-a,, a, represents an accuracy 
of the trained SNN at a particular time step, b L represents a 
latency of the trained SNN, bP represents power consump­
tion of the trained SNN, and AM, "-D and Ap are penalty 
values. 
[0019] In some embodiments, refining the SNN further 
comprises: applying, to each of the plurality of neurons, a 
scaling factor "l°Jj, wherein H is a set of scaling factors for the 
plurality of neurons; providing first labeled training data to 
the trained SNN; receiving first output from the trained SNN 
for the first labeled training data; calculating a first loss 
based on the first labeled training data and the first output 
from the trained SNN using the loss function LsNN; adjusting 
values of the scaling factors in H based on the loss; applying 
the adjusted scaling factors to the plurality of neurons of the 
trained SNN; providing second labeled training data to the 
trained SNN; receiving second output from the trained SNN 
for the second labeled training data; and calculating a second 
loss based on the second labeled training data and the second 
output from the trained SNN using the loss function LsNN· 
[0020] In some embodiments, refining the SNN further 
comprises: setting an initialization value V0 for each of the 
plurality of neurons, wherein I includes a set of initialization 
values; providing first labeled training data to the trained 
SNN; receiving first output from the trained SNN for the first 
labeled training data; calculating a first loss based on the first 
labeled training data and the first output from the trained 
SNN using the loss function LSNN; adjusting values of the 
initialization values in I based on the loss; applying the 
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adjusted initialization values to the plurality of neurons of 
the trained SNN; providing second labeled training data to 
the trained SNN; receiving second output from the trained 
SNN for the second labeled training data; and calculating a 
second loss based on the second labeled training data and the 
second output from the trained SNN using the loss function 
LsNN 

[0021] In some embodiments, the ANN is a convolutional 
neural network (CNN). 
[0022] In some embodiments, an output ej,, of a neuron j 
of the plurality of neurons is represented by the relationship: 

{ I if VJ,1" I 
8 J,I = 0 else 

where j represents a neuron index, t represents a current time 
step, and Vj,, represents a neuron membrane potential at time 
step t, Vj,o is the initialization value of neuron j, wherein the 
neuron membrane potential Vj., of neuron j is represented by 
the relationship: Vj_,=Vj.,_ 1-®j.,- i+Ij.,, where Ij_,represents an 
incoming current at time t, and the incoming current Ij., is 
represented by the relationship: Ij_,=sj_,wj+bj, where sj., 
represents a binary-valued vector of incoming spikes at time 
step t, including one entry for each incoming synapse to 
neuron j, wj represents a vector of synaptic weights associ­
ated with incoming synapses, and bj represents a neuron bias 
of neuron j . 
[0023] In accordance with some embodiments of the dis­
closed subject matter, a system for using a spiking neural 
network with improved efficiency is provided, the system 
comprising: at least one processor that is configured to: 
receive image data; provide the image data to a trained 
spiking neural network (SNN), the SNN comprising a plu­
rality of neurons, each of the plurality of neurons associated 
with a respective initialization value VO of a plurality of 
initialization values, wherein a first layer of the trained SNN 
comprises a first subset of the plurality of neurons, and a 
second layer of the trained SNN comprises a second subset 
of the plurality of neurons, and wherein a mean of the 
plurality of initialization values is about 0.5, and a standard 
deviation of the initialization values is at least 0.05; receive 
output from the trained SNN at a time step t, wherein the 
output is based on activations of neurons in an output layer 
of the trained SNN, and wherein tis in a range of 1 to T; and 
perform a computer vision task associated with the image 
data based on output of the trained SNN at time step t. 

[0024] In some embodiments, the at least one processor 
comprises a neuromorphic processor. 
[0025] In some embodiments, the system further com­
prises: an image data source in communication with the at 
least one processor, the image data source comprising an 
array of single-photon avalanche photodiodes (SPADs); and 
wherein the at least one processor that is further configured 
to: receive the image data from the image data source. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0026] Various objects, features, and advantages of the 
disclosed subject matter can be more fully appreciated with 
reference to the following detailed description of the dis­
closed subject matter when considered in connection with 
the following drawings, in which like reference numerals 
identify like elements. 
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[0027] FIG. 1 shows an example of a system for generat­
ing and using spiking neural networks with improved effi­
ciency in accordance with some embodiments of the dis­
closed subject matter. 
[0028] FIG. 2 shows an example of hardware that can be 
used to implement a data source, a computing device, and a 
server, shown in FIG. 1 in accordance with some embodi­
ments of the disclosed subject matter. 
[0029] FIG. 3A shows a conceptual example of computa­
tions at various layers of a trained analog neural network 
(ANN) and prediction accuracy of the ANN for a particular 
set of synchronous inputs at various points in time after the 
inputs are provided. 
[0030] FIG. 3B shows a conceptual example of computa­
tions at various layers of a trained spiking neural network 
(SNN) and prediction accuracy of the SNN for a particular 
set of asynchronous inputs at various points in time as the 
inputs are provided. 
[0031] FIG. 3C shows a conceptual example of computa­
tions at various layers of a trained SNN refined using 
techniques described herein and prediction accuracy of the 
SNN for the particular set of asynchronous inputs at various 
points in time as the inputs are provided. 
[0032] FIG. 4A shows an example of a topology of spiking 
neural network (SNN) that can be enhanced using mecha­
nisms described herein in accordance with some embodi­
ments of the disclosed subject matter. 
[0033] FIG. 4B shows an example of scaling of incoming 
weights and outgoing weights of a neuron in an SNN that 
can be used to enhance efficiency of an SNN using mecha­
nisms described herein in accordance with some embodi­
ments of the disclosed subject matter. 
[0034] FIG. 4C shows an example of hardware that can be 
used to implement an SNN trained and refined using tech­
niques described herein. 
[0035] FIG. 5 shows an example of a flow for training, 
refining, and using SNNs with improved efficiency in accor­
dance with some embodiments of the disclosed subject 
matter. 
[0036] FIG. 6 shows an example of a process for training, 
refining, and using SNNs with improved efficiency to clas­
sify image data in accordance with some embodiments of 
the disclosed subject matter. 
[0037] FIG. 7 shows an example of efficiency improve­
ments that can be realized using mechanisms described 
herein for enhancing SNN efficiency in accordance with 
some embodiments of the disclosed subject matter. 
[0038] FIG. 8 shows another example of efficiency 
improvements that can be realized using mechanisms 
described herein for enhancing SNN efficiency in accor­
dance with some embodiments of the disclosed subject 
matter. 
[0039] FIG. 9A shows an example illustrating an effect of 
bath normalization on ANN activation sparsity that can be 
used in connection with mechanisms described herein for 
enhancing SNN efficiency in accordance with some embodi­
ments of the disclosed subject matter. 
[0040] FIG. 9B shows an example illustrating activation 
maps for the two batch normalization values of FIG. 9A. 
[0041] FIG. 10 shows examples of efficiency improve­
ments realized using mechanisms described herein to 
enhance SNNs derived from various ANN model architec­
tures. 
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[0042] FIG.11 shows example of efficiency improvements 
in multiple measures of efficiency realized using various 
mechanisms described herein to enhance SNNs derived 
from a convolutional MNIST model. 

DETAILED DESCRIPTION 

[0043] In accordance with various embodiments, mecha­
nisms (which can, for example, include systems, methods, 
and media) for generating and using spiking neural networks 
with improved efficiency are provided. 
[0044] In many computer vision tasks, latency and power 
use are important factors that can impact performance of a 
computer vision system. For example, real time applica­
tions, such as mixed reality (MR), augmented reality (AR), 
virtual reality (VR), embodied perception, and autonomous 
navigation, computer vision tasks ( e.g. , image classification, 
scene measurement, etc.) may require low latency to operate 
successfully. Additionally, many real time applications may 
be performed by a power constrained system (e.g., a battery 
powered system). In many computer vision tasks, fran1e­
based, floating-point inferences may incur unavoidable tem­
poral delays and high energy costs, making such techniques 
ill-suited for resource-constrained real-time applications. 
For example, as deep learning applications have matured, 
new axes in the performance space have begun to emerge for 
new classes of applications (e.g., embodied perception, 
autonomous navigation, AR, MR, and VR) where latency 
and power consmnption may be as important as accuracy. In 
such applications, it is important to consider not just overall 
accuracy, but a notion of streaming accuracy indicative of 
whether the computer vision task is performed with suffi­
cient accuracy while adhering to a set of time and power 
constraints. 
[0045] In some embodiments, mechanisms described 
herein can improve the efficiency of computer-vision tasks 
using spike-based streaming perception techniques, which 
can integrate latency and accuracy, resulting in a smooth 
latency-accuracy trade-off curve (e.g. , a Pareto optimal 
trade-off curve). Mechanisms described herein can utilize 
spiking neural networks (SNNs), which perfom1 inference 
via temporal sequences of discrete spikes rather than float­
ing-point values used in conventional floating point neural 
networks (FNNs). As described below, in an SNN, a neuron 
can be activated when a "membrane potential" reaches a 
threshold, and the neuron can output a spike when it is 
activated (e.g., as described below in connection with EQ. 
(3)). In an FNN, nodes can activated each time an input is 
received ( e.g., by calculating a weighted sum of inputs from 
nodes in a previous layer, adding a bias, and passing through 
an activation function), and the output associated with a 
node can be represented as a floating point value. Note that 
FNNs are described herein as analog neural networks 
(ANN), as nodes in a FNNs can output values that essen­
tially analog (e.g., values that vary continuously). However, 
both FNNs and SNNs are types of artificial neural networks. 
[0046] In general, SNNs can operate in an asynchronous 
and distributed fashion, facilitating relatively rapid, low­
power inferences. Mechanisms described herein can lever­
age unique characteristics of SNNs to reduce latency and 
power consumption by 1-2 orders of magnitude. 
[0047] Mechanisms described herein can facilitate spike­
based streaming perception, an approach that can integrate 
latency and accuracy into a single evaluation space. In SNNs 
artificial neurons can exchange information via temporal 
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sequences of discrete spikes, in contrast with the continu­
ous-valued activations in conventional ANN s. Each spike 
denotes an event, and information is encoded in the fre­
quency and timing of spikes. 

[0048] Through asynchronous spike-based computation 
SNNs can generate predictions more quickly than an ANN 
with a similar number of layers (e.g., SNNs can facilitate 
pseudo-instantaneous information processing) and can 
increase the accuracy of predictions as more data is received, 
which can lead to a smooth accuracy-latency tradeoff (e.g., 
a Pareto optimal curve archetypical of "anytime algo­
rithms"). For example, a robot navigating in a dynamic 
environment often needs to make decisions quickly (e.g., to 
avoid obstacles). Such situations require short reaction times 
often inaccessible to the synchronous processing of ANN­
based perception. Deep SNNs can provide earlier (though 
potentially less precise) estimates, which can improve when 
given more processing time. These properties can make 
SNNs suitable for both processes that benefit from fast 
decision-making and slower, more deliberate processes, 
such as long-term path planning. Such hierarchical fast and 
slow reasoning is thought to be similar to human decision­
making processes, and can pave the way for new classes of 
dynamic control techniques where Pareto optimal operating 
points are identified in-situ, at the time-granularity of indi­
vidual spikes. 

[0049] The discrete nature of asynchronous spikes pro­
vided as input to SNNs can result in non-differentiable 
network dynamics, precluding the use of gradient-based 
training techniques that are conm1only used with ANNs . 
One workaround to this potential limitation is to first train an 
ANN (e.g., using conventional gradient-based training tech­
niques), and mapping the ANNs weights to an equivalent 
SNN. Such ANN to SNN conversion can generate SNNs that 
are highly accurate, but the resulting models can exhibit 
inefficient firing patterns. In some embodiments, mecha­
nisms described herein can be used to alter the weights, 
sparsity, and/or initialization conditions to improve the effi­
ciency of SNNs, for example, via reduced latency and/or 
reduced power consumption in a converted SNN. Such 
enhancements can push the Pareto optimal tradeoff curve of 
upward (e.g., as shown in FIGS. 3B and 3C, described 
below) . 

[0050] In some embodiments, SNN neuron firing rates can 
be scaled at the neuron level without changing the under­
lying network representation, which can result in a network 
that exhibits improved accuracy, reduced latency, and/or 
reduced power consumption. 

[0051] As described below in connection with FIGS. 3B 
and 3C, due to the asynchronous propagation of spikes, 
SNNs display transient dynamics in which firing rates (and 
thus, accuracy) evolves over time before achieving steady­
state behavior. In some embodiments, transient dynamics of 
an SNN can be adjusted by varying the initialization of the 
model. For example, mechanisms described herein can be 
used to select an initialization that can dramatically reduce 
latency. 

[0052] In general, SNNs can exploit weight and activation 
sparsity, because SNNs generate inferences in terms of 
single spikes. In some embodiments, mechanisms described 
herein can adjust the sparsity of the model representation of 
an SNN (e.g., during training of an ANN from which the 
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SNN is generated), which can substantially reduce compu­
tation and power consumption without significantly impact­
ing accuracy. 
[0053] Note that although mechanisms described herein 
are generally described in connection with the task of image 
classification on single, relatively static scenes ( e.g., over the 
time period over which the output of the SNN settles at a 
steady state). However, this is merely an example, and 
mechanisms described herein can be used to perform other 
tasks, such as object detection, segmentation, and tracking, 
and can be used to implement SNNs trained to evaluate 
time-varying data (e.g., video data). 
[0054] FIG. 1 shows an example 100 of a system for 
generating and using spiking neural networks with improved 
efficiency in accordance with some embodiments of the 
disclosed subject matter. As shown in FIG. 1, a computing 
device 110 can receive image data from an image data 
source 102. In some embodiments, computing device 110 
can execute at least a portion of a computer vision system 
104 to perfom1 a computer vision task, such as image 
classification, object detection, image segmentation, object 
tracking, and/or any other suitable computer vision task. 
[0055] In some embodiments, computing device 110 can 
execute at least a portion of a computer vision system 104 
to use an SNN to perform a computer vision task with 
improved efficiency (e.g., with reduced latency and/or 
reduced power consumption). 
[0056] Additionally or alternatively, in some embodi­
ments, computing device 110 can communicate data 
received from image data source 102 to a server 120 over a 
communication network 108, which can execute at least a 
portion of computer vision system 104. In such embodi­
ments, server 120 can return information to computing 
device 110 (and/or any other suitable computing device) 
indicative of an output of one or more SNNs used to 
implement computer vision system 104 to take an action 
based on an outcome of the computer vision task. In some 
embodiments, computer vision system 104 can execute one 
or more portions of process 600 described below in con­
nection with FIG. 6. 
[0057] In some embodiments, computing device 110 and/ 
or server 120 can be any suitable computing device or 
combination of devices, such as a desktop computer, a 
laptop computer, a smartphone, a tablet computer, a wear­
able computer, a server computer, a virtual machine being 
executed by a physical computing device, etc. 
[0058] In some embodiments, image data source 102 can 
be any suitable source of image data (e.g., asynchronously 
generated image data) and/or other data that can be used to 
evaluate characteristics of a physical environn1ent of image 
data source 102. For example, image data source 102 can 
one or more digital cameras that generate and/or output 
color image data, monochrome image data, image data 
representing light from one or more wavelengths outside the 
visible spectrum (e.g. , infrared (IR), near infrared (NIR), 
ultraviolet (lN), x-ray, etc.), two-dimensional image data, 
three-dimensional image data, any other suitable image data, 
or any suitable combination thereof. In a more particular 
example, image data source 102 can include an imaging 
device configured to detect arrival of individual photons 
(e.g. , using avalanche photodiodes), such imaging devices 
described in U.S. patent application Ser. No. 16/844,899, 
filed Apr. 9, 2020, and titled "Systems, methods, and media 
for high dynamic range quanta burst imaging." As another 
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example, image data source 102 can be a light detection and 
ranging (LiDAR) device that generates and/or outputs data 
indicative of distance to one or more points in a physical 
environment of the LiDAR device (e.g. , corresponding to 
one or more objects, surfaces, etc.). As yet another example, 
image data source 102 can be any other suitable device that 
can produce asynchronous image data. 

[0059] In some embodiments, image data source 102 can 
be local to computing device 110. For exan1ple, image data 
source 102 can be incorporated with computing device 110 
(e.g., computing device 110 can be configured as part of a 
device for capturing and/or storing image data). As another 
example, image data source 102 can be connected to com­
puting device 110 by a cable, a direct wireless link, etc. 
Additionally or alternatively, in some embodiments, image 
data source 102 can be located locally and/or remotely from 
computing device 110, and can communicate image data to 
computing device 110 (and/or server 120) via a communi­
cation network (e.g. , communication network 108). 

[0060] In some embodiments, communication network 
108 can be any suitable communication network or combi­
nation of communication networks. For example, commu­
nication network 108 can include a Wi-Fi network (which 
can include one or more wireless routers , one or more 
switches, etc.), a peer-to-peer network (e.g., a Bluetooth 
network), a cellular network (e.g. , a 3G network, a 4G 
network, a 5G network, etc., complying with any suitable 
standard, such as CDMA, GSM, LTE, LTE Advanced, NR, 
etc.), a wired network, etc. In some embodiments, commu­
nication network 108 can be a local area network, a wide 
area network, a public network (e.g., the Internet), a private 
or semi-private network (e.g., a corporate or university 
intranet), any other suitable type of network, or any suitable 
combination of networks. Communications links shown in 
FIG. 1 can each be any suitable communications link or 
combination of communications links, such as wired links, 
fiber optic links, Wi-Fi links, Bluetooth links, cellular links, 
etc. 

[0061] FIG. 2 shows an example 200 of hardware that can 
be used to implement image data source 102, computing 
device 110, and/or server 120 in accordance with some 
embodiments of the disclosed subject matter. As shown in 
FIG. 2, in some embodiments, computing device 110 can 
include a processor 202, a display 204, one or more inputs 
206, one or more communication systems 208, and/or 
memory 210. In some embodiments, processor 202 can be 
any suitable hardware processor or combination of proces­
sors, such as a central processing unit (CPU), a graphics 
processing unit (GPU), an application specific integrated 
circuit (ASIC), a field-progranimable gate array (FPGA), 
etc. In a particular example, processor 202 can be a neuro­
morphic processor or neuromorphic processors configured 
to implement neurons for an SNN using hardware level. As 
another more particular example, processor 202 can be 
implemented using conventional hardware configured to 
implement neurons for an SNN using firmware and/or 
software to simulate neurons. In some embodiments, display 
204 can include any suitable display devices, such as a 
computer monitor, a touchscreen, a television, etc. In some 
embodiments, inputs 206 can include any suitable input 
devices and/or sensors that can be used to receive user input, 
such as a keyboard, a mouse, a touchscreen, a microphone, 
etc. 
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[0062] In some embodiments, communications systems 
208 can include any suitable hardware, firmware, and/or 
software for communicating information over communica­
tion network 108 and/or any other suitable communication 
networks. For example, communications systems 208 can 
include one or more transceivers, one or more communica­
tion chips and/or chip sets, etc. In a more particular example, 
communications systems 208 can include hardware, firm­
ware and/or software that can be used to establish a Wi-Fi 
connection, a Bluetooth connection, a cellular connection, 
an Ethernet connection, etc. 
[0063] In some embodiments, memory 210 can include 
any suitable storage device or devices that can be used to 
store instructions, values, etc ., that can be used, for example, 
by processor 202 to perform a computer vision task, to 
present content using display 204, to communicate with 
server 120 via communications system(s) 208, etc. Memory 
210 can include any suitable volatile memory, non-volatile 
memory, storage, or any suitable combination thereof. For 
example, memory 210 can include random access memory 
(RAM), read-only memory (ROM), electronically-erasable 
programmable read-only memory (EEPROM), one or more 
flash drives, one or more hard disks, one or more solid state 
drives, one or more optical drives, etc. In some embodi­
ments, memory 210 can have encoded thereon a computer 
program for controlling operation of computing device 110. 
For example, in such embodiments, processor 202 can 
execute at least a portion of the computer program to use an 
SNN(s) in the perfomiance of one or more computer vision 
tasks, present content (e.g. , images, information about an 
object included in image data, information about distances 
to one or more points in a scene, etc.), receive information 
and/or content from server 120, transmit information to 
server 120, etc. As another example, processor 202 can 
execute at least a portion of the computer program to 
implement computer vision system 104. As yet another 
example, processor 202 can execute at least a portion of 
process 600 described below in connection with FIG. 6. 
[0064] In some embodiments, server 120 can include a 
processor 212, a display 214, one or more inputs 216, one or 
more communications systems 218, and/or memory 220. In 
some embodiments, processor 212 can be any suitable 
hardware processor or combination of processors, such as a 
CPU, a GPU, an ASIC, an FPGA, etc. In some embodi­
ments, display 214 can include any suitable display devices, 
such as a computer monitor, a touchscreen, a television, etc. 
In some embodiments, inputs 216 can include any suitable 
input devices and/or sensors that can be used to receive user 
input, such as a keyboard, a mouse, a touchscreen, a micro­
phone, etc. 
[0065] In some embodiments, communications systems 
218 can include any suitable hardware, firmware, and/or 
software for communicating information over communica­
tion network 108 and/or any other suitable communication 
networks. For example, communications systems 218 can 
include one or more transceivers, one or more communica­
tion chips and/or chip sets, etc. In a more particular example, 
comn1w1ications systems 218 can include hardware, firm­
ware and/or software that can be used to establish a Wi-Fi 
connection, a Bluetooth connection, a cellular connection, 
an Ethernet connection, etc. 
[0066] In some embodiments, memory 220 can include 
any suitable storage device or devices that can be used to 
store instructions, values, etc. , that can be used, for example, 
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by processor 212 to present content using display 214, to 
communicate with one or more computing devices 110, etc. 
Memory 220 can include any suitable volatile memory, 
non-volatile memory, storage, or any suitable combination 
thereof. For example, memory 220 can include RAM, ROM, 
EEPROM, one or more flash drives, one or more hard disks, 
one or more solid state drives, one or more optical drives, 
etc. In some embodiments, memory 220 can have encoded 
thereon a server program for controlling operation of server 
120. For example, in such embodiments, processor 212 can 
execute at least a portion of the server program to use an 
SNN(s) in the performance of one or more computer vision 
tasks, transmit content (e.g., images, information about an 
object included in image data, information about distances 
to one or more points in a scene, etc.) to a computing device 
(e.g., computing device 110), receive information and/or 
content from computing device 110, transmit information to 
computing device 110, etc. As another example, processor 
212 can execute at least a portion of the computer program 
to implement computer vision system 104. As yet another 
example, processor 212 can execute at least a portion of 
process 600 described below in connection with FIG. 6. 
[0067] In some embodiments, image data source 102 can 
include a processor 222, one or more sensors 224, one or 
more communications systems 226, and/or memory 228. In 
some embodiments, processor 222 can be any suitable 
hardware processor or combination of processors, such as a 
CPU, a GPU, an ASIC, an FPGA, etc. In some embodi­
ments, sensor(s) 224 can be any suitable components to 
generate image data (e.g. , asynchronously) representing a 
portion of a scene. For example, sensor(s) 224 can include 
a CMOS sensor, a CCD sensor, an array of single-photon 
avalanche diodes (SPADs), an array of jots (e.g., as 
described in U.S. patent application Ser. No. 16/844,899), a 
LiDAR sensor, etc. Although not shown, image data source 
102 can include one or more light sources (e.g., a LiDAR 
light source, a light source for structured light imaging, a 
modulated light source for continuous time-of-flight imag­
ing, etc.). 
[0068] Note that, although not shown, image data source 
102 can include any suitable inputs and/or outputs. For 
example, image data source 102 can include input devices 
and/or sensors that can be used to receive user input, such as 
a keyboard, a mouse, a touchscreen, a microphone, a track­
pad, a trackball , hardware buttons, software buttons, etc. As 
another example, image data source 102 can include any 
suitable display devices, such as a computer monitor, a 
touchscreen, a television, etc., one or more speakers, etc. 
[0069] In some embodiments, communications systems 
226 can include any suitable hardware, firmware, and/or 
software for communicating information to computing 
device 110 (and, in some embodiments, over communication 
network 108 and/or any other suitable communication net­
works). For example, communications systems 226 can 
include one or more transceivers, one or more communica­
tion chips and/or chip sets, etc. In a more particular example, 
communications systems 226 can include hardware, firm­
ware and/or software that can be used to establish a wired 
connection using any suitable port and/or communication 
standard (e.g., VGA, DVI video, USB, RS-232, etc.), Wi-Fi 
connection, a Bluetooth connection, a cellular connection, 
an Ethernet connection, etc. 
[0070] In some embodiments, memory 228 can include 
any suitable storage device or devices that can be used to 
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store instructions, values, image data, etc., that can be used, 
for example, by processor 222 to: control sensor(s) 224, 
and/or receive outputs from sensor(s) 224; generate image 
data; present content (e.g., images, a user interface, etc.) 
using a display; communicate with one or more computing 
devices 110; etc. Memory 228 can include any suitable 
volatile memory, non-volatile memory, storage, or any suit­
able combination thereof. For example, memory 228 can 
include RAM, ROM, EEPROM, one or more flash drives, 
one or more hard disks, one or more solid state drives, one 
or more optical drives, etc. In some embodiments, memory 
228 can have encoded thereon a program for controlling 
operation of image data source 102. For example, in such 
embodiments, processor 222 can execute at least a portion of 
the program to generate image data, transmit information 
and/or content (e.g., image data) to one or more computing 
devices 110, receive infonnation and/or content from one or 
more computing devices 110, transmit information and/or 
content (e.g. , image data) to one or more servers 120, receive 
information and/or content from one or more servers 120, 
receive instructions from one or more devices (e.g. , a 
personal computer, a laptop computer, a tablet computer, a 
smartphone, etc.), etc. As another example, processor 222 
can execute at least a portion of the program to implement 
computer vision system 104. As yet another example, pro­
cessor 222 can execute at least a portion of process 600 
described below in connection with FIG. 6. 

[0071] FIG. 3A shows a conceptual example of computa­
tions at various layers of a trained analog neural network 
(ANN) and prediction accuracy of the ANN for a particular 
set of synchronous inputs at various points in time after the 
inputs are provided. FIGS. 3B and 3C show conceptual 
examples of computations at various layers of a trained 
spiking neural network (SNN) and prediction accuracy of 
the SNN for a particular set of asynchronous inputs at 
various points in time as the inputs are provided, and 
computations and predication accuracy of an SNN enhanced 
using techniques described herein. FIG. 30 shows an 
example of hardware that can be used to implement an SNN 
trained and refined using techniques described herein. 

[0072] As shown in FIG. 3A, in an ANN, processing 
proceeds one layer at a time, and no output is available until 
the final layer finishes processing. As shown in FIG. 3B, a 
conventional SNN can provide an output much earlier than 
the ANN, as inputs can propagate through the layers rela­
tively quickly. The accuracy of the initial output is lower 
than the output of the ANN, however, as the SNN reaches a 
steady state, the accuracy improves to a similar level as the 
output provided by the ANN. 

[0073] In some embodiments, mechanisms described 
herein can be used to shift the latency-accuracy curve 
toward lower latency, and can reduce power consumption by 
reducing the number of activations, while at least maintain­
ing a similar steady state accuracy. As shown in FIG. 3C, 
mechanisms described herein can provide an initial output in 
about the same amount of time as the conventional SNN 
represented by FIG. 3B, and can increase in accuracy more 
quickly (e.g. , reaching a similar steady state accuracy sig­
nificantly sooner than the conventional SNN). Additionally, 
as shown in FIG. 3C, the number of spikes (representing 
neuron activations) can be reduced using mechanisms 
described herein, which can reduce the number of compu­
tations performed by the system, thereby having the poten­
tial to reduce power consumption. 
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[0074] In some embodiments, mechanisms described 
herein can have a greater impact on efficiency when imple­
mented on neuromorphic hardware, such as chips based on 
the Loihi architecture developed by Intel, Corporation head­
quartered in Santa Clara, Calif. Neuromorphic hardware is 
still a relatively nascent technology, and limited access to 
such hardware has limited widespread adoption of SNN s for 
computer vision applications. As described below in con­
nection with TABLES I and 2, mechanisms described herein 
were tested using an SNN simulator (sometimes referred to 
herein as SaRNN). The simulator was developed in connec­
tion with mechanisms described herein to demonstrate effi­
ciency improvements that can be realized using mechanisms 
described herein. SaRNN is orders of magnitude faster than 
other SNN simulators, which facilitates simulation of SNNs 
with complexities that were previously infeasible. SaRNN 
also supports relatively simple mapping to neuromorphic 
platforms such as the Spinking Nueral Network Architecture 
(SpiNNaker) developed by the Advanced Processor Tech­
nologies Research Group (APT) at the Department of Com­
puter Science, University of Manchester using the PyNN 
API made available via NeuralEnsemble(dot)org using the 
PyNN language described in Davison, et al., "PyNN: a 
common interface for neuronal network simulators," Front. 
Neuroinform, 2:11 (2009). 
(0075] As described above in connection with FIGS. 3B 
and 3C, mechanisms described herein can improve latency 
and reduce power consmnption. The latency and power 
consumption of a trained SNN can be measured after 
training is completed. However, defining metrics that can be 
used to represent the latency and power consumption of an 
SNN can faci litate training and/or refinement of an SNN that 
is configured to improve those metrics (e.g., by including 
terms based on the metrics in the loss function). 

[0076] Multiple metrics can be defined to attempt to 
quantify latency and power consumption of an SNN. For 
example, given the smooth latency-accuracy tradeo:ff curve 
shown in FIGS. 3B and 3C, a possible latency metric can be 
defined based on a measurement of the number of time steps 
required for the curve to cross a predetermined accuracy 
threshold. However, such a metric can be sensitive to the 
choice of threshold, and the result does not vary smoothly 
with network dynamics (e.g., a model can take 8 or 9 time 
steps to cross the threshold, but not 8.5 time steps). 

(0077] In some embodiments, latency can be defined 
based on the area above the accuracy-time curve (shown 
shaded in FIG. 3C). In general, an SNN can generate an 
output (sometimes referred to herein as an inference) at each 
of T time steps. The accuracy of the SNN at each step can 
be represented by a value a,, such that the instantaneous 
accuracy at each time step can be represented by values a1 , 

a2, •. • , ar and aANN can represent the asymptotic ANN 
accuracy (e.g. , the accuracy of the ANN prior to conver­
sion). Latency can be represented by a metric referred to 
herein as L-briskness, which can be defined as a value bv 
where 

(I) 

L-briskness can represent a comparison of the total error 
(over all time steps) to that of a model which immediately 
achieves maximum accuracy. Note that lower values of 
L-briskness correspond to lower latency, as lowering 
L-briskness corresponds to "lifting" the accuracy-latency 
curve shown in FIG. 3C such that the area above the curve 
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is reduced (e.g., L-briskness for the SNN in FIG. 3C is 
higher than L-briskness for the SNN in FIG. 3B). 
[0078] In some embodiments, power consumption can be 
defined based on number of synaptic events that occur at 
each of the T time steps. The number of synaptic events 
processed by the SNN at each step can be represented by a 
value et, such that the number of events at each time step can 
be represented by values e1, e2 , ... , eT. Power consumption 
can be represented by a metric referred to herein as P-brisk­
ness, which can be defined as a value bp, where 

(2) 

Note that spiking events are represented in FIGS. 3B and 3C, 
but spiking events and synaptic evens, while related, are 
different events. When a neuron in the SNN spikes (some­
times referred to herein as a spiking event), one synaptic 
event is triggered for each of the outgoing synapses asso­
ciated with the neuron. The metrics L-briskness and/or 
P-briskness are used herein to evaluate the efficiency of 
SNNs with different characteristics (e.g., number of neurons, 
parameters, weights, initialization values, etc.). 
[0079] FIG. 4A shows an example of a topology of spiking 
neural network (SNN) that can be enhanced using mecha­
nisms described herein in accordance with some embodi­
ments of the disclosed subject matter. In generally, SNNs are 
structurally similar to many ANNs, with neurons connected 
by weighted synapses to form a network. SNN neurons can 
communicate by passing spikes (which is sometimes can 
referred to as "current" based on similarities to electrical 
current carried by synapses in the brain). Incoming current 
on a synapse can change a value associated with the neuron 
(which is sometimes referred to as the "membrane potential" 
(voltage) of a neuron), and may cause the neuron to spike if 
a certain threshold condition is met. 
[0080] The relatively simple topology shown in FIG. 4A 
includes an input layer, one hidden layer, and an output 
layer. For example, the input layer can include p neurons, the 
hidden layer can include q neurons, and the output layer can 
include n neurons. In a particular example, an example SNN 
was generated using techniques described herein from an 
ANN having 128 input nodes, 128 nodes in a hidden layer, 
and 10 output nodes, in which each layer is fully connected 
to each preceding layer. Such an ANN is described as Dense 
MNIST in Appendix A, which is hereby incorporated herein 
by reference in its entirety. An SNN converted from such an 
ANN can include p=128 neurons in the input layer, q=128 
neurons in the hidden layer, and n=lO neurons in the output 
layer. 
[0081] FIG. 4B shows an example of scaling of incoming 
weights and outgoing weights of a neuron in an SNN that 
can be used to enhance efficiency of an SNN using mecha­
nisms described herein in accordance with some embodi­
ments of the disclosed subject matter. As described in more 
detail below in connection with EQ. (6) and in connection 
with FIG. 5, each incoming connection to a neuron, which 
can be referred to as a synapse, can be associated with a 
weight W, which can impact how much a spike from a 
neuron in a previous layer impacts the neuron. As described 
below in connection with FIG. 5, an SNN can be refined by 
scaling the incoming weights of a neuron by a factor T], and 
the incoming connection from that neuron to downstream 
neurons can be scaled by a factor 1/T]. Effectively scaling 
steady-state firing rates can facilitate high accuracy, low 
latency, and low power consumption. Mechanisms 
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described herein can be used to implement a scaling tech­
nique, which can explicitly account for some loss and can 
scale at the level of each neuron. 
[0082] FIG. 4C shows an example of hardware that can be 
used to implement an SNN, which can be trained and 
enhanced using techniques described herein. An SNN can be 
implemented using neuromorphic hardware, such as proces­
sors developed for SpiNNaker. 
[0083] In some embodiments, there are various axes of 
components and parameters that can be selected in process 
of configuring an SNN. For example, many different net­
work topologies can be used to implement an SNN (e.g., by 
varying the number of neurons at each layer, the number of 
layers, etc.). Given a particular network topology, some of 
the axes that can be adjusted include the neuron model used 
to implement the neurons, the spike coding scheme, and the 
training technique(s) used. 
[0084] The neuron model can characterize how individual 
neurons respond to input, update an internal state (e.g. , 
membrane potential), and produce an output. For example, 
some neuron models are intended to approximate the elec­
trical dynamics of biological neurons. For simplicity, 
mechanisms described herein are described in connection 
with a more abstract model, which is sometimes referred to 
as a non-leaky integrate and fire (NL-IAF) neuron. This 
model has several computational advantages. For example, 
the NL-IAF neuron model allows SNN training via conver­
sion from a trained ANN. As another example, the NL-IAF 
neuron model has a lower computational cost of simulation 
than models that are intended to more closely approximate 
biological neurons. In a more particular example, neuron 
updates for NL-IAF neurons can be calculated using only 
multiplication and addition, whereas some other neuron 
models use exponentiation, which is generally more 
resource intensive. Additionally, matrix multiplication can 
be used to efficiently compute many updates in parallel. As 
yet another example, the NL-IAF neuron model does not 
utilize hand-tuned parameters (e.g., a refractory period or 
response time). 
[0085] The NL-IAF model can be represented using the 
relationship: 

{
) jf Vj,I 2:) 

eJ,t = 0 else ' 
(3) 

where j represents the neuron index, t represents the current 
time step, and Vj., represents the neuron membrane potential. 
The neuron can fire when the potential exceeds a pre­
specified threshold (e.g., 1 in EQ. (3), however this is merely 
an example). The variable ej., can indicate whether a spike 
is fired by the j neuron at time t. 
[0086] After a spike, the membrane potential can be reset 
by subtraction. Accordingly, if Ij ., is used to represent the 
incoming current at time t, the membrane potential Vj at time 
t can be represented using the relationship: 

(4) 

[0087] The incoming current Ij., can be represented using 
the relationship: 

(5) 

where sj,, can represent a binary-valued vector (e.g., 1 for a 
spike, 0 otherwise) of incoming spikes at time t, including 
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one entry for each incoming synapse, w1 can represent a 
vector of synaptic weights associated with incoming syn­
apses, and b1 can represent the neuron bias of neuron j. 

[0088] FIG. 5 shows an example 500 of a flow for training, 
enhancing, and using SNNs with improved efficiency in 
accordance with some embodiments of the disclosed subject 
matter. In some embodiments, mechanisms described herein 
can be used to train and refine an SNN to perfom1 at least a 
portion of a computer vision task, such as classification of 
image data (e.g., classifying an image as including a par­
ticular class of object), segmentation of a portion of an 
image (e.g., identifying which portion(s) of an image rep­
resents an object that falls within a particular class, or that 
has particular characteristics). Note that although mecha­
nisms described herein are general described in connection 
with image data, this is merely an example, and mechanisms 
described herein can be used to refine an SNN trained to 
perform a task associated with any suitable sequential data, 
such as image data, audio data, spatial data, seismography 
data, etc. Sequential data may or may not be time-series 
data. 

[0089] Note that SNNs are often non-differentiable (see, 
e.g., EQ. (4)), so conventional backpropagation caruiot be 
used for training an SNN. There are various classes of SNN 
training techniques that can be used in lieu of backpropo­
gation of an SNN directly. For example, spike-based back­
propagation techniques have been developed that use a 
differentiable proxy to approximate non-differentiable 
dynamics. As another example, local learning techniques 
have been developed that adjust synapse weights using only 
locally available information (e.g., pre and post-synaptic 
firing times). As yet another example, ANN conversion 
techniques have been developed that can generate synapse 
weights for an SNN with a similar topology to the ANN 
based on weights associated with corresponding nodes of the 
ANN. In some embodiments, mechanisms described herein 
can use ANN to SNN conversion techniques. In ANN to 
SNN conversion, an ANN can be trained using conventional 
backpropagation and the resulting weights can be copied to 
an SNN. In comparison to spike-based backpropagation and 
local learning, ANN conversion can achieve higher accuracy 
and can scale better to large-scale datasets ( e.g., datasets like 
ImageNet). However, some mechanisms described herein 
can be used in connection with SNN training techniques 
other than ANN to SNN conversion. For example, rather 
than starting with an untrained ANN (e.g., as described 
below in connection with 502-512), process 500 can start 
with an untrained SNN (e.g., in lieu of a trained SNN at 
514). In such an example, 502-512 can be omitted, and 
process 500 can start at 514 (with an untrained SNN rather 
than a trained SNN). 

[0090] As shown in FIG. 5, labeled training data 502 can 
be used to train an untrained ANN 504. In some embodi­
ments, labeled training data 502 can include any suitable 
data. For example, labeled training data 502 can include 
images that depict various classes of objects, with each 
image labeled based on the object(s) that is included in the 
image. Such training data can be used to train an ANN to 
perform an image classification task ( e.g., to predict whether 
an object of a particular class is present in an unlabeled 
image). In a more particular example, labeled training data 
502 can include images from the ImageNet database labeled 
based on the object class in the image. As another example, 
can include images that depict one or more classes of 
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objects, with each pixel of the image labeled as correspond­
ing to a particular category, such as a particular object, 
background, etc. Such training data can be used to train an 
ANN to perform an image segmentation task ( e.g. , to predict 
which pixels of an unlabeled image, if any, depict a particu­
lar type of object). Note that these are merely an examples, 
and labeled training data 502 can include any suitable data 
labeled using any suitable techniques. 
[0091] In some embodiments, untrained ANN 504 can be 
trained (e.g., using computing device 110, using server 120, 
using computer vision system 104) using labeled training 
data 502. In some embodiments, untrained ANN 504 can 
have any suitable topology, such as a topology described in 
Appendix A, or any other suitable topology. For example, 
the ANN can be a relatively simple feed forward network 
(e.g., similar to the network shown in FIG. 4A). As another 
example, the ANN can be a complex convolutional neural 
network (CNN) or other deep learning network. As yet 
another example, the ANN can be any other suitable feed 
forward network. In a more particular example, the ANN 
can be a relatively simple stacked architecture (e.g. , LeNet, 
AlexNet, VGG). As another more particular example, the 
ANN can be a residual architecture with skipped connec­
tions ( e.g., Res Net). As yet another more particular example, 
the ANN can be based on an architecture with early outputs 
(e.g., Inception). 
[0092] In some embodiments, untrained ANN 504 can be 
trained using any suitable optimizer, such as stochastic 
gradient descent, Adam (e.g. , based on an optimizer 
described in Kingma et al. , "Adam: A Method for Stochastic 
Optimization," available at arxiv(dot)org, 2014), RMSprop 
or any other suitable optimizer. As shown in FIG. 5, a 
particular labeled training sample can be provided as input 
to untrained ANN 504, which can generate output 506 
representing an inference or set of inferences for the image 
and/or each pixel of time image ( e.g., based on the type of 
task that the ANN is being trained to perform). 
(0093] In some embodiments, labeled training data 502 
can be formatted in any suitable format. For example, 
labeled training data 502 can be formatted as a color image 
(e.g., an RGB image). As another example, labeled training 
data 502 can be formatted as a monochrome image, such as 
a grayscale image. As yet another example, labeled training 
data 502 can be formatted as depth values (e.g., representing 
LiDAR data, representing 3D image data). As still another 
example, labeled training data 502 can be formatted as an 
image in which each pixel is associated with one or more 
intensity values (e.g. , a single grayscale value, RGB inten­
sity values, etc .) and a depth value. In some embodiments, 
intensity values associated with different colors can be input 
to untrained ANN 504 using different charuiels. For 
example, untrained ANN 504 can have a first channel 
corresponding to red, a second channel corresponding to 
green, and a third channel corresponding to blue. As another 
example, untrained ANN 504 can have a first channel 
corresponding to an intensity value (e.g., a grayscale value, 
a red value, etc.), another channel corresponding to a depth 
value, and any other suitable cham1els (e.g., corresponding 
to green and blue values). 
(0094] In some embodiments, output 506 can formatted in 
any suitable format. For example, output 506 can be for­
matted as a set of predicted classifications (e.g., a value 
associated with various classes that the ANN is being trained 
to classify). As another example, output 506 can be format-
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ted as a mask indicating which pixels correspond to a 
particular type of object. In a more particular example, if the 
ANN is being trained to segment a particular object, output 
506 can include a value for each pixel indicating whether the 
pixel depicts a particular object (e.g., where a 1 indicates 
that the object is present in the pixel and a O indicates that 
the object is not present). In such an example, if there are n 
possible object classes, the output layer can be configured 
with n channels, such that the output channel has dimensions 
of height*width*n (h*w*n), such that each pixel is associ­
ated with n output nodes, with one output node correspond­
ing to each class, and the output of each node can indicate 
a probability of membership in that class. At each pixel, the 
predicted class can the node with the highest output prob­
ability. 
[0095] In some embodiments, output 506 generated for a 
training image can be compared to the label associated with 
the training to evaluate the perfonnance of untrained ANN 
504. For example, a loss value can be calculated using loss 
function LANN Any suitable loss function L ANN can be used 
to train untrained ANN 504, which can vary based on the 
task which untrained ANN 504 is being trained to perform. 
[0096] In some embodiments, the loss value can be used 
to adjust weights of untrained ANN 504. For example, a loss 
calculation 508 can be performed ( e.g. , by computing device 
110, by server 120, by material decomposition system 104) 
to generate a loss value that can represent a performance of 
untrained ANN 504. The loss value generated by loss 
calculation 508 can be used to adjust weights of untrained 
ANN 504. 
[0097] In some embodiments, after training has converged 
(and the untrained ANN 504 performs adequately on test 
data), untrained ANN 504 with final weights can be used to 
implement as a trained ANN 510. 
[0098] Additionally, in some embodiments, after training 
has converged, untrained ANN 504 can be further trained 
(e.g. , which can be referred to as fine-tuning or refining) 
using an adjusted loss function L'ANN that is configured to 
encourage sparsity in the SNN. As described below in 
connection with EQ. (11 ), untrained ANN 504 can be refined 
using a penalized loss function L'ANN> that can encourage 
sparsity (e.g. , reducing the number of spike events). In some 
embodiments, a trained ANN can be fine tuned using penal­
ized loss function L'AN N to promote sparsity in an SNN 
generated from the trained ANN. For example, an ANN that 
has previously been trained to perform a computer vision 
task based on synchronous data can be fine-tuned for con­
version to an SNN to perform the same computer vision task 
based on asynchronous data without retraining the ANN. 
Alternatively, in some embodiments, untrained ANN 504 
can be trained ( e.g. , from scratch) using loss function L'ANM 
such that training and of untrained ANN 504 is combined 
with fine-tuning to encourage sparsity. Note that in some 
applications described herein, training untrained ANN using 
L ANN and refining using L'ANN produced superior results 
(e.g. , better accuracy and/or sparsity). However, training 
untrained ANN 504 from scratch using L'ANN can result in a 
more efficient SNN (e.g., with better sparsity) than an ANN 
trained using only LANN (and in some applications, may 
produce better results than training and refining). 
[0099] In some embodiments, trained ANN 510 can be 
converted (e.g., using computing device 110, using server 
120, using computer vision system 104) to a trained SNN 
514 at 512 using any suitable technique or combination of 
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techniques. The topology of the ANN can be configured to 
facilitate conversion from ANN to SNN. For example, a 
rectified linear unit (ReLU) activation function can be used 
to implement activations in the ANN with relatively few 
exceptions ( e.g., a final layer can be implemented using a 
softmax activation function). Using ReLU for activations 
can ensure that a valid mapping of nodes of the ANN to 
NL-IAF neurons is possible. As another example, max 
pooling layers can be omitted (e.g., average pooling layers 
can be used in lieu of max pooling). Note that this is merely 
an example, and other neuron models can correspond to 
different activation functions. For example, a sigmoid acti­
vation function can be represented using a leaky integrate 
and fire neuron model. In such an example, an SNN imple­
mented using leaky integrate and fire neurons can be con­
verted from an ANN implemented using sigmoid activation 
functions (e.g., in lieu of ReLU activation functions). 
[0100] In some embodiments, a computing device (e.g. , 
using computing device 110, using server 120, using com­
puter vision system 104) executing the conversion at 512 
can use multiple techniques to convert an ANN (e.g., an 
appropriately implemented ANN that uses ReLU and omits 
max pooling layers) to an SNN (e.g. , with NL-IAF neurons). 
For example, the computing device can substitute a neuron 
for each node in the ANN, and can generate a synapse 
between nodes of different layers based on connections 
between nodes in the ANN. In a more particular example, for 
two fully connected layers (e.g., i and i+l), the computing 
device can replace each node in layer I with a neuron, and 
can replace each node in layer i+l with a neuron. The 
computing device can generate a synapse between each 
neuron in layer i and each neuron in layer i+l. 
[0101] As another more particular example, for two layers 
(e.g., i and i+l) of a convolutional network (e.g. , imple­
mented using a 3x3 convolution filter operation between 
layers), the computing device can replace each node in layer 
i with a neuron, and can replace each node in layer i+l with 
a node. If layer i+ 1 of the ANN has an output of 32x32x64, 
layer i+l of the SNN can include 32x32x64 neurons, and the 
computing device can generate a synapse from each of 
3x3x64 neurons (i.e., 576 neurons) in layer i to each neuron 
in layer i+l. In such an example, synapse weights can be 
taken from the convolution kernel, and can be scaled by the 
batch normalization ~L parameter, and the bias associated 
with neuron can be taken from the convolution bias, and 
then scaled and offset using the batch normalization µ and a 
parameters. 
[0102] As another example, the computing device can 
adjust the model weights for various neurons based on the 
batch normalization transforms associated with the neuron. 
This can incorporate batch normalization transforms form 
the ANN into the weights for the neurons, as the SNN does 
not include batch normalization. As another example, the 
computing device can apply data-based normalization to the 
ANN to dive the maximum activation toward 1 (the maxi­
mum possible firing rate). In a more particular example, the 
computing device can pass training data through the ANN 
and, at each layer, can scale the weights and biases such that 
the maximum activation becomes 1. As yet another example, 
the computing device can discard any ReLU activations, and 
can copy ANN layers to the SNN. 
[0103] In some embodiments, the computing device can 
configure a preliminary input layer (e.g., prior to a first layer 
of neurons, which are referred to in FIG. 4A as an input 



�����������������	
 ��
����������

US 2022/0358346 Al 

layer) to convert floating-point values (e.g., image pixel 
intensities) to spike trains ( e.g., for refinement of the SNN 
with additional training data). Alternatively, in some 
embodiments, during refinement the computing device can 
convert floating-point values (e.g., image pixel intensities) 
to spike trains prior to providing input to the first layer of 
neurons (e.g. , the input layer). In some embodiments, a rate 
coding technique can be used to convert floating-point 
values into spike trains. For example, the input layer or the 
computing device can generate a spike train with a firing rate 
(e.g. , the number of spikes per time step) that equals the 
floating-point pixel intensity. In some embodiments, a pre­
liminary input layer can be omitted (and/or removed) from 
an SNN that is to be used with a data source that natively 
produces spike trains rather than floating point values (e.g., 
an image sensor configured to output pulses when single 
photons are detected). In such embodiments, the input spike 
trains can be provided to inputs of the neurons in the input 
layer (e.g., rather than a preliminary input layer converting 
floating point values to spike trains). Note that mechanisms 
described herein can produce outputs more quickly than 
conventional ANNs (e.g., providing a fast, relatively accu­
rate result) regardless of whether the data source is a 
synchronous or asynchronous data source. For example, as 
described above in connection with FIGS. 3A to 3C, using 
an SNN rather than a conventional ANN can produce 
relatively fast and accurate output much sooner than an 
output is produced by the conventional ANN. Using mecha­
nisms described herein can further reduce latency and 
improve power consumption of the SNN. 

[0104] In some embodiments, the computing device can 
configure a final output layer to generate values indicative of 
a prediction about the input data based on the states and 
spike trains of output neurons. For example, an SNN trained 
as a classifier can be configured with an output layer that 
identifies a "most activated" neuron, and predicts a classi­
fication based on the class associated with that neuron. In 
such an example, as output neurons update at each time step, 
the prediction can change over time (e.g., output neuron 1 
can be most active initially, but output neuron 3 may become 
most active as time advances). Note that the smooth Pareto 
optimal accuracy-latency curve of FIGS. 3B and 3C can be 
attributed to the ability of the prediction to change over time 
as changes in the most activated neuron change. By contrast, 
the output of an ANN is generated at a specific time step, and 
does not change (e.g. , as shown in FIG. 3A). 

[0105] In some embodiments, labeled asynchronous data 
516 can be used to refine trained SNN 514. In some 
embodiments, labeled asynchronous data 516 can include 
any suitable data, such as data described above in connection 
with labeled training data 502. Note that although labeled 
asynchronous data 516 is described herein as asynchronous 
data, this is merely for convenience, and labeled asynchro­
nous data 516 can be formatted as floating point values, and 
a preliminary input layer of trained SNN 514 can convert the 
data to spike trains. In some embodiments, labeled asyn­
chronous data 516 can be formatted in any suitable format, 
such as a fonnat(s) described above in connection with 
labeled training data 502. 
[0106] In some embodiments, trained SNN 514 can be 
refined (e.g., using computing device 110, using server 120, 
using computer vision system 104) using labeled asynchro­
nous data 516 using any suitable technique or combination 
of techniques. For example, in some embodiments, trained 
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SNN 514 can be refined using any suitable optimizer, such 
as a derivative-free optimizer (e.g., because the NL-IAF 
neuron model is not differentiable). For example, the Sub­
Plex algorithm included in the NLopt Nonlinear Optimiza­
tion Package. However, this is merely an example, and any 
suitable optimizer can be used during refinement of trained 
SNN 514, such as constrained optimization by linear 
approximations (COBYLA), principal axis (PRAXIS), 
Nelder-Mead simplex, or any other suitable derivative-free 
optimizer. As shown in FIG. 5, a particular labeled training 
sample from labeled asynchronous data 516 can be provided 
as input to trained SNN 514, which can generate output 518 
representing an inference or set of inferences for the input 
and/or each pixel of time image ( e.g., based on the type of 
task that the SNN is being trained to perfonn). 
[0107] In some embodiments, output 518 can formatted in 
any suitable format. For example, output 518 can be for­
matted as a set of predicted classifications ( e.g. , a value 
associated with various classes that the ANN is being trained 
to classify). As another example, output 518 can be format­
ted as a mask indicating which pixels correspond to a 
particular type of object. In a more particular example, if the 
SNN is trained to segment a particular object(s), output 518 
can include a value for each pixel indicating whether the 
pixel depicts a particular object. For example, if there are n 
possible object classes, the output layer can be configured 
with n channels, such that the output channel has dimensions 
of height*width*n (h*w*n), such that each pixel is associ­
ated with n output neurons, with one output neuron corre­
sponding to each class. At each pixel, the predicted class can 
be based on the most activated neuron of the n neurons 
associated with the pixel. 
[0108] In some embodiments, output 518 generated for a 
labeled input (e.g., input image) can be compared to the 
label associated with the labeled input to evaluate the 
performance of trained SNN 514. For example, a loss value 
can be calculated using a loss function L sNN Any suitable 
loss function L sNN can be used to refine trained SNN 514, 
such as a loss based on latency briskness ( e.g. , described 
above in connection with EQ. (1)) and/or a loss based on 
power briskness (e.g., described above in connection with 
EQ. (2)). 
[0109] In some embodiments, the loss value can be used 
to adjust properties of trained SNN 514. For example, a loss 
calculation 520 can be performed ( e.g., by computing device 
110, by server 120, by material decomposition system 104) 
to generate a loss value that can represent a performance of 
trained SNN 514. The loss value generated by loss calcu­
lation 520 can be used to adjust properties of trained SNN 
544. 
[0110] A spike cocling scheme can define the correspon­
dence between a spike train and a real-valued activation. In 
general, a spike coding scheme is not explicitly imple­
mented for an SNN, but instead arises implicitly from the 
neuron model. Examples of coding schemes include tem­
poral coding and rate coding. A temporal spike coding 
scheme can encode activations based on the absolute firing 
times of the neurons. A rate spike coding scheme can encode 
activations based on mean firing rates of the neurons. Rate 
coding offers many advantages, including ease of interpre­
tation, naturally pairing with the NL-IAF neuron model, and 
robustness to noise in spike arrival times. A disadvantage of 
rate coding in general is the large nmnber of spikes that may 
be required to represent each activation. However, mecha-
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nisms described herein can reduce the number of spikes that 
represent each activation, mitigating this potential disadvan­
tage of rate coding and thereby increasing the performance 
of computing devices that utilize rate coding to make 
predictions. 
[0111] Characteristics of an SNN, such as accuracy, 
latency, and power consumption of the SNN are related to 
the firing rates of the neurons in the SNN. A spiking neuron 
j can be characterized as having an output spike train ®j.I, 
0j_2 , . . . , e j ,T• A steady-state firing rate rj,~ can be 
represented using the relationship: 

r j.= = lim (1 r '\'T ®1., ) 
T➔oo ~ = O 

(6) 

Adjustments to the SNN that cause changes to steady-state 
firing rates can impact model properties . Mechanisms 
described herein can adjust properties of an SNN to change 
the steady-state firing rate of neurons of the SNN to values 
that achieve desirable model properties, such as high accu­
racy, low latency, and/or low power consumption (e.g., via 
an optimization process). In a more particular example, 
neurons with low firing rates (e.g., a relatively small value 
of r) may take many time steps to produce a first spike as an 
output, whereas neurons with firing rates greater than 1 
(which can be referred to as a relatively large value of r) can 
saturate and code an incorrect value. Combining many 
neurons in a network results in more complex and subtle 
behaviors that emerge from interactions of the neurons. 
[0112] In a rate coded SNN, scaling the activation of a 
neuron by a factor 172'.0 can impact a steady-state firing rate 
of the neuron (e.g., scaling the neuron by factor 17 can 
change the value of r). Additionally, in some embodiments, 
mechanisms described herein can change the activation 
scale 17 without altering the network representation or sub­
stantially negatively impacting accuracy. For example, 
mechanisms described herein can scale weights of down­
stream neurons to reduce or eliminate an adverse impact that 
activation scale 17 may otherwise cause. 
[0113] In some embodiments, mechanisms described 
herein can iteratively (e.g., using an optimization process) 
adjust activation scaling fac tors 17 associated with neurons of 
an SNN to improve perfonnance and/or efficiency of the 
SNN (e.g. , resulting in reduced latency and/or reduced 
power consumption). 
[0114] A scaling set H can be defined that include scaling 
factors 17 for a network N (e.g., all scaling factors 17 for the 
network). For example, 17j2'.0 can be an activation scaling 
factor for the j'h neuron in network N, and scaling set 
H={ll) can include all scaling factors for the network N. 
[0115] In some embodiments, mechani sms described 
herein can refine trained SNN 514 based on some loss L sNN 

(e.g., based on latency briskness and/or power briskness) on 
the output (e.g., output 518) and dynamics of the SNN. In 
some embodiments, mechanisms described herein can use 
an initial scaling set H0 for the trained SNN (e.g., trained 
SNN 514). During a refinement process for trained SNN 
514, mechanisms described herein can considerably reduce 
LsNN from the value of LsNN generated using scaling set H0 

by explicitly refining LsNN over H. For example, L sNN can be 
evaluated by simulating the SNN (e.g., using computing 
device 110, using server 120, using computer vision system 
104); which can accurately reflect spiking temporal dynam-
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ics. Many loss function L sNN can be used to refine an SNN, 
and a particular example is described below. 
[0116] Conventional techniques for scaling neurons gen­
erally only allow scaling at the level of the layer, based on 
the assumption that more granular scaling would cause the 
SNN to depart from the ANN representation. However, as 
described below, mechanisms described herein can be used 
to scale at more granular scale than the layer level without 
causing the SNN to depart from the ANN representation 
(e.g., without significantly impacting accuracy). For 
example, if layer i+ 1 is weighted, it is possible to scale layer 
i at the neuron level without altering the network represen­
tation. 
[0117] In some embodiments, mechanisms described 
herein can scale the activation of neuron j by 17j by multi­
plying the incoming weights (e.g., weights of incoming 
synapses) and bias by llp Additionally, mechanisms 
described herein can isolate the change by multiplying the 
outgoing weights by l/17j (e.g., as shown in FIG . 4B). The 
net result of such "isolated scaling" can be that only the 
activation of neuron j changes, so the ANN representation 
and output are substantially preserved. 
[0118] In some embodiments, "neuron-level scaling" can 
be applied at the channel level in convolutions (e.g., due to 
consequences of weight sharing between neurons in the 
same channel). For example, a convolution layer 
[0119] Additionally, in some embodiments, unweighted 
pooling layers generally lack adjustable weights, and 
accordingly cannot be scaled (e.g., if the layer i+l is an 
unweighted pooling layer, such as a max pooling layer). In 
some embodiments, mechanisms described herein can use 
weighted pooling (e.g., average pooling) in the ANN and, 
before conversion, such weighted pooling can be replaced 
with an equivalent depthwise convolution. 
[0120] In some embodiments, mechanisms described 
herein can use a loss function L sNN that can be represented 
using the relationship: 

(7) 

where M can be the minimum of the error 1-a, over all t, and 
AM, Av and Ap can be tradeoff hyperparameters that indicate 
the relative importance of accuracy, latency, and power 
consumption, respectively. In some embodiments, tradeoff 
hyperparameters can be set manually. As described above, 
when a neuron model is not differentiable, a derivative-free 
optimizer can be used to perform an optimization process 
based on L sNN· 

[0121] In some embodiments, mechanisms described 
herein can refine the SNN by varying scaling factors of the 
SNN at various levels of granularity. For example, mecha­
nisms described herein can perform model-level scaling 
(e.g., using one global 17), layer-level scaling (e.g., using one 
17 per layer), and neuron-level scaling (e.g., using one 17 per 
neuron) in that order. Without a performant SNN simulator, 
the derivative-free optimizations can take an impractical 
amount of time to perform. Accordingly, in some embodi­
ments, mechanisms described herein can use a simulator 
(e.g., the SaRNN simulator described above) which can 
simulates a wide range of SNN architectures with practical 
and relatively short computational times (e.g., orders of 
magnitude lower computational times than conventional 
SNN simulators). For example, SaRNN can achieves com­
putational gains by implementing spiking layers as custom 
TensorFlow recurrent neural network (RNN) layers and 
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compiling models to static, highly optimized TensorFlow 
graphs. SaRNN can support Message Passing Interface 
(MPI), facilitating parallel processing via division of data 
over multiple GPUs and/or compute nodes . Additionally, 
SaRNN supports ANN conversion, SNN saving and loading, 
firing rate scaling, and simulation with other backends via 
PyNN. 
[0122] In some embodiments, an SNN response can be 
divided into multiple states, which can indicate where on the 
accuracy curve the output of the SNN falls. For example, an 
SNN can have a network initial state, a network steady state, 
and a network transient state. In some embodiments, an 
initial state I of an SNN N can be characterized by a set of 
initial neuron potentials V 0, and can be expressed as 
I={V 0}. An SNN N can be in a steady state at time T is, for 
all netirons jE N and all times -r:2:T, the following relationship 
is satisfied for some e>O: 

Ir - ~ '\'7 e I < ,. ;,oo TLJ=O J,t 

(8) 

In some embodiments, an SNN N is in a transient state if it 
is not yet in a steady state, and is no longer in the initial state. 
[0123] In an SNN, a direct relationship exists between the 
duration of the transient state and the latency of the network 
(e.g., as shown conceptually in FIGS. 3B and 3C). The 
temporal evolution of a spiking neural network generally 
depends on multiple factors , the sequence of inputs, the 
network parameters, and the initial state. In general, the 
sequence of inputs cannot be controlled, as the sequence of 
inputs to a deployed SNN can be expected to be novel. 
However, two of these factors can be adjusted. For example, 
adjusting the scaling of each neuron (e.g., using scaling 
factor T]) and changing the sparseness of the network can 
both alter the network parameters. As another example, the 
initial state of the SNN can be adjusted, and the initial state 
VO can strongly influence the duration of the transient state. 
[0124] In general, neurons can be initialized to a single 
common global value, or different neurons can be initialized 
with different values. For example, in some embodiments, 
mechanisms described herein can initialize all neurons with 
a global V 0. In many conventional SNNs, neurons are all 
initialized to a global value V 0=O, which can be referred to 
as a "cold start" initial model state. A cold start can result in 
relatively high latency (e.g., depicted in FIG. 3B). As 
described below, if a global values is used, a value V 0=O.5, 
which can be referred to as a "warm start" initial model state, 
can represents a more natural state and can improve perfor­
mance (e.g. , as shown in FIG. 8). 
[0125] In some embodiments, mechanisms described 
herein can refine the SNN over the SNNs initial state by 
allowing I to vary between neurons. For example, initial 
state I can be incorporated into the loss function described 
above in connection with EQ. (7) to create L5N,v(H, I). At 
each phase, the dimensionality of the search space can be 
increased ( e.g., doubled) to include one value of VO for each 
value of TJp Explicitly refining the SNN based on ihe initial 
state I (e.g., potentials V 0) can steepen the convergence 
curve, and reduce latency (e.g., as described below in 
connection with FIG. 7). Note that because layer i must 
converge to its steady-state for layer i+ 1 to receive an 
accurate input, the steepening effect can stack as the network 
gets deeper (e.g., the improvement in latency can be greater 
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for deeper networks compared to use of a global V 0). Note 
that although refinement based on I is described as being 
performed concurrently with refinement based on H, this is 
merely an example, and mechanisms described herein can 
refine an SNN based on I without refining based on H (e.g., 
using a loss function LsNN(I), rather than LsNN(H, I)). 
[0126] Note that refinement based on H and I target SNN 
dynamics, leaving the underlying ANN representation sub­
stantially unchanged. However, the ANN representation 
itself may cause inefficiency in the SNN. For example, 
although there have been approaches for sparsifying ANN 
representations (e.g. , adjusting properties of the ANN to 
reduce the number of calculations needed to produce an 
output), ANN sparsity often does not directly translate into 
concrete efficiency gains for an SNN generated based on an 
ANN conversion. The unit of computation in an ANN is a 
matrix product, and sparse matrix multiplication algorithms 
often require high levels of sparsity to be effective. How­
ever, in an SNN, the unit of computation is a spike rather 
than a matrix product. Accordingly, sparsifying the neuron 
activations of an SNN can reduce the number of spikes, and 
sparsifying the weights can reduce the synaptic events 
generated per spike. In some embodiments, mechanisms 
described herein can adjust training of the ANN (e.g., at 
502-508) by incorporating an activation loss term La and/or 
a synaptic sparsity loss term Ls, each of which is described 
below. 
[0127] In some embodiments, activation loss term La can 
leverage batch normalization (BN) in the ANN. For 
example, as illustrated in FIG. 9A, the BN ~ parameter can 
control the mean of the activation distribution, and can be 
used to change the number of positive (e.g., nonzero after 
ReLU) ac tivations. 
[0128] In some embodiments, mechanisms described 
herein can use an activation loss term La represented by the 
relationship: 

1 '\' 11, ( ( /3, ) ) La= --Lile - erf - + 1 , 
~Ilk 2 .,/2 

(9) 

where nk represents the number of neurons in the SNN 
corresponding to the k'h BN ~ value ~k- In the BN after 
convolution, nk can correspond to the number of pixels per 
channel, and after a fully-connected layer nk can be 1. 
[0129] In some embodiments, mechanisms described 
herein can use a synaptic sparsity loss term Ls represented by 
the relationship: 

(10) 

where mk represents the number of synapses corresponding 
to the k'h penalized weight wk· In a convolution, mk can 
correspond to the number of pixels per channel, and in a 
fully-connected layer mk can be 1. The Ls term can use an Ll 
(lasso) penalty to push weights very near zero, and after fine 
tuning of the ANN (e.g., using loss function L'ANN), weights 
with magnitude less than some value E can be removed. In 
some embodiments, E can be set to any suitable value, where 
a higher value produces an SNN that is more sparse. 
However, as the value increases, the accuracy of the SNN 
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may decrease. For example, E can be set to a value that is 
much smaller than 0.01. In a more particular example, 
results described below in connection with FIGS. 8, 9B, 10, 
and 11 were generated using a value of E=l0-4 . 

[0130] In some embodiments, mechanisms described 
herein can use a penalized loss function L'ANN that incorpo­
rates La and/or Ls. In some embodiments, the penalized loss 
L'ANN can be represented using the relationship: 

(11) 

where LANN can represent the loss used during initial train­
ing of an ANN, and "-a and "-s can be tradeoff hyperparam­
eters that indicate the relative importance of activation 
sparsity and synaptic sparsity, respectively. In some embodi­
ments, tradeoff hyperparameters can be set manually. Note 
that this is merely an example, and the ANN can be 
fine-tuned using one of La and Ls while omitting the other 
( e.g. , using L'Al\W=LAlvl0""-aLa or L'AJ\W=LAJvl0-A.sLJ. In 
some embodiments, minimizing L'AJ\W can encourages an 
SNN representation with fewer nonzero activations, which 
can reduce the total number of spikes. Additionally or 
alternatively, in some embodiments, minimizing L'ANN can 
encourages an SNN representation with fewer weights, 
which can reduce the number of synaptic events per spike. 
However, adjusting the activations and weights can main­
taining approximately the same underlying network repre­
sentation of the ANN and SNN. Accordingly, by reducing 
the number of spikes and/or synaptic events per spike, 
refining the ANN to sparsify the SNN can significantly 
reduce the power consumption of the SNN ( e.g. , which can 
be quantified using the P-briskness metric bP described 
above in connection with EQ. (2)) while maintaining similar 
overall accuracy. In some embodiments, ANN 504 can 
refined ( e.g. , using L'ANN) using any suitable optimizer, such 
as stochastic gradient descent, Adam, RMS prop or any other 
suitable optimizer. However, using stochastic gradient 
descent may produce superior results when used with the Ll 
penalty, as adaptive optimizers (e.g. , Adam or RMSprop) 
can incorrectly weight the penalty term. 
[0131] In some embodiments, after refinement has con­
verged, trained SNN 514 with final weights and initialization 
values can be used to implement a refined trained SNN 522, 
which can be used in a computer vision task (e.g. , by 
computer vision system 104). In some embodiments, refine­
ment of trained SNN 514 can be omitted ( e.g., represented 
in FIG. 5 by the dotted block arrow between 512 and 522), 
and trained SNN 514 can be used in lieu of refined trained 
SNN 522. For example, trained SNN 514 can exhibit 
improved power efficiency via refinement of the ANN using 
loss function L'Al\W, and refinement using loss function LsNN 
can be omitted. However, in general, refinement using loss 
function Lsl\W can be expected to further improve efficiency 
of the SNN ( e.g., latency and power efficiency). 
[0132] As shown in FIG. 5, unlabeled asynchronous data 
524 can be provided as input to refined trained SNN 522, 
which can generate one or more outputs 526 representing an 
inference or set of inferences for the input data and/or each 
pixel of input (e.g. , based on the type of task that the SNN 
is being trained to perform). 
[0133] FIG. 6 shows an example 600 of a process for 
training, enhancing, and using SNNs with improved effi­
ciency to classify image data in accordance with some 
embodiments of the disclosed subject matter. As shown in 
FIG. 6, at 602, process 600 can train an ANN to perform a 
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machine vision task or a task related to machine vision. In 
some embodiments, process 600 can use any suitable tech­
nique or combination of techniques to train the ANN, such 
as techniques described above in connection with 502-510 
of FIG. 5. 
[0134] Alternatively, in some embodiments, process 600 
can receive, at 602, a representation of an ANN that has been 
pre-trained to perform a machine vision task or a task related 
to machine vision. 502-510 of FIG. 5. 
[0135] At 604, process 600 can adjust parameters of the 
trained ANN to sparsify the SNN to be generated by 
conversion of the ANN, reducing latency and/or power 
consumption of the SNN. In some embodiments, process 
600 can adjust the ANN using any suitable technique or 
combination of techniques that lead to the SNN being 
sparsified ( e.g. , reducing the number of activations and/or 
synaptic events by the SNN compared to the number of 
activations and/or synaptic events produced before adjust­
ment of the ANN. For example, in some embodiments, 
process 600 can use techniques described above in connec­
tion with EQS. (9) to (11). In a more particular example, 
process 600 can use a loss function L'AJ\W to fine tune an 
ANN that was trained using a loss function LAJ\W· In such an 
example, loss function L'AJ\W can include an activation loss 
term La and/or a synaptic sparsity loss term Ls. In some 
embodiments, process 600 can omit 604. For example, an 
SNN can be refined without sparsifying the SNN (e.g. , using 
a loss function L5~H, I), LsN~H) , or LSN~I)), which can 
improve efficiency of the SNN regardless of whether the 
SNN has been sparsified. 
[0136] At 606, process 600 can convert the trained and 
ANN to an SNN using any suitable technique or combina­
tion of techniques. For example process 600 can use tech­
niques described above in connection with 512 of FIG. 5. In 
some embodiments, process 600 can omit 602-606. For 
example, process 600 can receive a trained SNN which may 
or may not have been converted from an ANN, and may or 
may not have been sparsified using techniques described 
herein. Alternatively, in some embodiments, process 600 can 
train an SNN using any suitable SNN training techniques. 
[0137] At 608, process 600 can adjust neuron weights of 
the SNN to improve accuracy, to reduce latency, and/or to 
reduce power consumption. In some embodiments, process 
600 can use any suitable technique or combination of 
techniques to adjust neuron weights of the SNN. For 
example, as described above in connection with 514-520, 
process 600 can use a loss function Lsl\W that is calculated 
based on performance of the SNN after adjusting neuron 
weights (e.g., as described above in connection with EQ. 
(7)). 
[0138] In some embodiments, process 600 can adjust one 
or more values in a set of neuron scaling weights H ( e.g., as 
described above in connection with 514 of FIG. 5), and can 
use L= to determine whether the changes to the set of 
neuron scaling weights H improved performance of the 
SNN. As described above in connection with EQ. 7, LsNN 
can include an accuracy term (e.g., including M(H)), a 
latency term (e.g. , including bL (H)), and/or a power con­
sumption term (e.g., including bp(H)). 
(0139] In some embodiments, process 600 can select a 
global neuron scaling weight (e.g. , YJgZo baI) using Lsl\W to 
identify a value for YJgZoba I that minimizes Lsl\W when applied 
to H0 • Additionally or alternatively, in some embodiments, 
process 600 can find a set of layer-level neuron scaling 
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weights (e.g. , 11;) that minimize L sNN· For example, if the 
SNN includes five layer, process 600 can adjust each of five 
layer-level neuron scaling weights 11; for 1:<=;i:<=;5. 

[0140] In some embodiments, process 600 can find a set of 
neuron-level neuron scaling weights (e.g., 11) that minimize 
LsNN· As described above in connection with FIG. 4B, 
process 600 can weight each neuron by a scaling weight llp 
by multiplying a bias of each neuron by llp and multiplying 
a weight applied to each outgoing synapse by llllj at the 
neuron on the other end of the synapse. 

[0141] For example, if neurons j in layer i and j+ 1 in layer 
i+ 1 of an SNN network N, process 600 can find a global 
scaling weight ll gtobat that minimizes L sNN by iteratively 
adjusting and applying values of ll stobat such that the 
weights associated with neuron j after fine-tuning the global 
scaling weight can be expressed as ll s tobat *wj and ll stobat *bp 
when i is the input layer, and the weights associated with 
neuron j+ 1 after fine-tuning the global scaling weight can be 
expressed as w + 1 and b+1 • As described below in connection 
with neuron-l~vel sca{ing (and above in connection with 
FIG. 4B), each neuron input can be weighted by global 
scaling weight ll stobat and each outgoing weight from the 
neuron can be weighted by ll11810baL· Accordingly, the end 
result of global scaling can be that only the input layer is 
scaled by ll sLobaL after global fine-tuning, while the other 
layers are unaffected by global scaling. In such an example, 
process 600 can find layer-level scaling weights 11; that 
minimize L sNN by iteratively adjusting and applying values 
of 11 ; to each layer. The weights associated with neuron j 
after fine-tuning the layer-level scaling weights can be 
expressed as 

1 1 
-r,; * 'lgtobal *WJ and -r,i * T/gtobat *bi 
17t-1 17t-l 

(note that as described above, ll sLobat can be omitted for 
layers other than the input layer, and for the input layer, 

can be omitted as there is no previous layer to which weight 
11;-i was applied), while the weights associated with neuron 
j+ 1 after fine-tuning the layer-level scaling weights can be 
expressed as 

1 
- T/i+l * 1Jglobal *Wj+l - 1Ji+l * 1Jglobal *bj+l· 
l] j l]j 

Continuing the example, process 600 can find neuron-level 
scaling weights that minimize LsNN by iteratively adjusting 
and applying values of llj to each neuron. The weights 
associated with neuron j after fine-tuning the neuron-level 
scaling weights can be expressed as 

1 1 
---171* -TJt *lJgtobat*WJ and 
17t,incoming T/ i- 1 
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-continued 
1 1 

---1]1* -'l;* 'lgtobat*b1 
T/i,incoming 1Ji-l 

hp where llj.;ncoming is a product of the neuron level scaling 
weights applied to each neuron in level i-1 to which neuron 
j is connected. Similarly, weights associated with neuronj+l 
after fine-tuning the neuron-level scaling weights can be 
expressed as 

1 
----,,j+ l * -T/i *T/globat*Wj+ l and 
T/J+ l ,incoming 'li 

1 
----l]J+ l * -T/i *T/gfobat *bj+l , 
1/J+l,in coming T/i- 1 

hp where llj+J ,incoming is a product of the ne~ron level 
scaling weights applied to each neuron m level 1 to which 
neuron j is connected, including llp Note that neurons in the 
final layer can remain unscaled (e.g. , during neuron level 
scaling), due to the absence of outgoing weights to scale 
(e.g., there are no incoming weights for neurons in a next 
layer, because there is not a next layer). 

[0142] At 610, process 600 can find a set of neuron 
initialization values (e.g., V 0) that minimize L sNN· As 
described above in connection with 514 of FIG. 5, process 
600 can select an initialization value for each neuron starting 
from initial values. For example, process 600 can start from 
an initial global value, such as V 0=0 or V 0=O.5, or initial 
values that vary between neurons (e.g., randomly, using 
predetermined values, etc.). 

[0143] In some embodiments, process 600 can adjust one 
or more values in initial state I (e.g. , as described above in 
connection with 514 of FIG. 5), and can use L sNN to 
determine whether the changes to the set of initialization 
values improved performance of the SNN. As described 
above in connection with EQ. 7, L sNN can include an 
accuracy term (e.g. , including M(I)), a latency term (e.g. , 
including bL (I)), and/or a power consumption term (e.g. , 
including bp(I)). 

[0144] In some embodiments, process 600 can use an 
initial global neuron initialization value (e.g., VO "'") using 
L sNN to identify a val~e for_ V 0,,o1,a, that m!nimfzes L sNN· 
Additionally or alternatively, m some embodiments, process 
600 can find a set of layer-level and/or neuron level initial­
ization values (e.g., V0) that minimize L sNN· 

[0145] In some emb~diments, after fine-tuning of initial­
ization values, a mean initialization values can be about 0.5 
(e.g., within about 10% of 0.5), and the standard deviation 
of the initialization values of each neuron can be greater than 
10% of the mean. For example, the standard deviation can 
be at least about 10% of the mean initialization value (e.g., 
at least 0.05 for a mean initialization value of about 0.5). As 
another example, the standard deviation can be at least about 
15% of the mean initialization value (e.g., at least 0.075 for 
a mean initialization value of about 0.5). As yet another 
example, the standard deviation can be at least about 20% of 
the mean initialization value (e.g., at least 0.1 for a mean 
initialization value of about 0.5). As still another example, 
the standard deviation can be at least about 25% of the mean 
initialization value (e.g., at least 0.125 for a mean initial­
ization value of about 0.5). 
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[0146] In some embodiments, 608 and 610 can be per­
formed simultaneously. For example, process 600 can use a 
loss function that refines the SNN based on both neuron 
scaling weights Hand neuron initialization values Va (e.g., 
as described above in connection with EQ. (7)). Alterna­
tively, in some embodiments, process 600 can omit 608 
and/or 610. For example, process 600 can fine tune the SNN 
using neuron scaling weights H alone, initialization state I 
alone, using neuron scaling weights Hand initialization state 
I serially (e.g., as shown in FIG. 6), using neuron scaling 
weights Hand initialization state I concurrently (e.g. , using 
a single loss function LsNN), or using neither neuron scaling 
weights H and initialization state I (e.g., process 600 can 
sparsify the SNN at 604, and can omit 608 and 610). 
[0147] At 612, process 600 can provide any suitable data 
as input to the SNN. For example, process 600 can provide 
image data formatted similarly to the image data used to 
train the ANN from which the SNN was converted (and/or 
used to train and/or refine the SNN). In a more particular 
example, process 600 can provide image data formatted in 
any suitable format described above in connection with 502 
of FIG. 5. Note that although process 600 is described in 
connection with image data, this is merely an example, and 
process 600 can be used with any suitable sequential data. 
[0148] At 614, process 600 can begin receiving output 
( e.g. , for time step t) from the SNN. For example, if process 
600 is configured to perform a computer vision task that uses 
a classification of image data, process 600 can receive an 
output indicative of a classification of the input image data. 
[0149] At 616, process 600 can perform a computer vision 
task based on a current output of the SNN. For example, 
process 600 can make an inference about a physical envi­
ronment captured in the image data, such as the presence or 
absence of particular types of obstacles, which can be used 
to plan a route for autonomous navigation. In some embodi­
ments, process 600 can determine a current time step asso­
ciated with the input data, and can infer a confidence in the 
output based on the current time step (e.g., based on where 
the time step falls on a latency-accuracy trade-off curve). 
Note that this is merely an example, and process 600 can 
perform any suitable computer vision task(s), and/or tasks 
related to other applications associated with other types of 
data. 
[0150] Process 600 can return to 612 to receive additional 
data (e.g., for time step t+I) , or alternatively can return to 
612 to receive new data (e.g., starting at t=O). 
[0151] FIG. 7 shows an example of efficiency improve­
ments that can be realized using mechanisms described 
herein for enhancing SNN efficiency in accordance with 
some embodiments of the disclosed subject matter. As 
described above in connection with FIGS. 3B and 3C, before 
converging to a steady state, an SNN spends time in a 
transient state. As described above, choices of an initial state 
I has a strong effect on the duration of the transient state. As 
shown in FIG. 7, a poor choice of initial state I (represented 
as baseline in FIG. 7) can cause layers to converge relatively 
slowly to their steady-state firing rates. This can have a 
cascading effect in later layers, resulting in a long transient 
state and high latency. Refining the SNN using techniques 
described herein can reduce latency by reducing the tran­
sient time associated with each layer (e.g., based on neuron 
initialization values). 
[0152] FIG. 8 shows another example of efficiency 
improvements that can be realized using mechanisms 
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described herein for enhancing SNN efficiency in accor­
dance with some embodiments of the disclosed subject 
matter. The results described in connection with FIGS. 8, 
9B, 10, and 11 were generated using simulations of SNNs 
trained and refined using techniques described herein. For 
example, four ANNs were trained: dense MNIST, convolu­
tional MNIST, and convolutional CIFAR-10/100. Additional 
description of the model architectures and experiment 
parameters are described in Appendix A. After initial train­
ing sparsity fine-tuning was performed (e.g., as described 
above in connection with 604). The ANNs were then con­
verted to SNNs, and a derivative-free optimization over 
L5N,v(H, I) was performed. Optimization was performed in 
three phases (global, layer, and neuron) for 100, 1000, and 
10000 iterations, respectively (i.e., the optimization was 
performed for both H and I simultaneously at each of the 
global, layer, and neuron levels, with one element of I for 
each element of H). 
[0153] The results described in connection with FIGS. 8, 
9B, 10, and 11 are based on a comparison of the final models 
to versions of the models generated without using tech­
niques described herein (e.g. , omitting 604, 608, and 610 
from process 600; using loss function L ANN at 508 of FIG. 
5, omitting 514-520, and using V0=0). 
[0154] As shown in FIG. 8, there is a clear relationship 
between the global Va and latency. For most models, Va=0.5 
(e.g., a "warm start") gives the lowest latency. 
[0155] FIG. 9A shows an example illustrating an effect of 
bath normalization on ANN activation sparsity that can be 
used in connection with mechanisms described herein for 
enhancing SNN efficiency in accordance with some embodi­
ments of the disclosed subject matter, and FIG. 9B shows an 
example illustrating activation maps for the two batch 
normalization values of FIG. 9A. As described above, spar­
sity in SNN weights and activations can improve efficiency. 
As shown in FIG. 9A, batch normalization can be used to 
control ANN activation sparsity. Shifting the batch normal­
ization to the left can reduce the number of nonzero acti­
vations (illustrated with shading in FIG. 9A). As shown in 
the left panel of FIG. 9B, the ANN with B=l activates on 
many regions of the input that are not relevant (note that 
activation is shown by shading, and non-activation is shown 
in white). In the right panel of FIG. 9B, an ANN refined to 
sparsify activations (e.g., by shifting B to left) learned not to 
activate in uninteresting parts of the image, dramatically 
reducing the number of activations for a particular input. 
[0156] FIG. 10 shows examples of efficiency improve­
ments realized using mechanisms described herein to 
enhance SNNs derived from various ANN model architec­
tures. In FIG. 10 improvements in L-briskness and P-brisk­
ness are shown (e.g., an improvement of 101 in L-briskness 
can correspond to a reduction in L-briskness by an order of 
magnitude, whereas an improvement factor of 1 oa indicates 
no improvement). Although the SNNs were explicitly opti­
mized for bL and bp, improvements in threshold-based 
metrics (e.g., time or synaptic events before an accuracy 
threshold is crossed) were also observed, which are 
described further in Appendix A. 
[0157] FIG. 11 shows example of efficiency improvements 
in multiple measures of efficiency realized using various 
mechanisms described herein to enhance SNNs derived 
from a convolutional MNIST model. As shown in FIG. 11, 
applying different techniques described herein can each 
improve one or more performance metrics. For example, 
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using techniques described above in connection with 608 
(referred to in FIG. 11 as steady-state refinement) for refin­
ing neuron weights improves both latency (e.g., measured 
using L-briskness as described above in connection with 
EQ. (1)) and power consumption (e.g., measured using 
P-briskness as described above in connection with EQ. (2)). 
As another example, using techniques described above in 
connection with 610 (referred to in FIG. 11 as transient 
refinement) for refining initialization state further improves 
latency and power consumption. As yet another example, 
using techniques described above in connection with 604 
(referred to in FIG. 11 as sparsity refinement) for sparsifying 
the SNN activations and synaptic events can further 
improves power consumption, but did not have a substantial 
impact on latency. Note that the bar for transient refinement 
shows improvement when applying both steady-state refine­
ment techniques and transient refinement techniques, and 
the bar for sparsity refinement shows improvement when 
applying steady-state refinement techniques, transient 
refinement techniques, and sparsity refinement techniques. 
[0158] In addition to simulations described above in con­
nection with FIGS. 8 to 11, mechanisms described herein 
were also applied to a simulated ImageNet model, which 
shows scalability of techniques described herein. The 
MobileNet architecture was used based on its high efficiency 
and compatibility with conversion constraints described 
above in connection with 512 of FIG. 5. To reduce the time 
for training and optimization, all images were downsized to 
160x160. Because the goal of the simulation is not to 
achieve state-of-the-art ANN accuracy, the simulation was 
configured to provide relatively simple, reproducible train­
ing over maximum accuracy. The ANN achieved 49.09% 
validation accuracy for correctly classifying an unlabeled 
input image ( e.g., the most active output neuron at the steady 
state of the SNN corresponds to the correct classification), 
and 74.92% validation accuracy for including the correct 
classification in the top 5 classifications of an unlabeled 
input image (e.g., the output neuron corresponding to the 
correct classification was in the top 5 most active output 
neurons of the SNN). 

[0159] Note that simulations of SNNs took considerably 
longer times for an ImageNet model than for the simpler 
MNIST and CIFAR models. To reduce optimization times, 
the neuron-level phase was eliminated and the length of the 
layer-level phase was reduced by half (from 1000 to 500 
iterations). Additionally, instead of simulating the entire 
training dataset at each iteration of refinement, a small 
fraction (e.g., 1000 items rather than approximately 1.28 
million items in the full training set) of the dataset was 
simulated. Although reducing dataset size can cause over­
fitting for neuron-level optimization, overfitting did not 
seem to occur for global or layer-level optimization, even 
with relatively small datasets. With the above changes, the 
SNN optimization process took less time (e.g. , four days 
total to optimize the SNN) than the training process for the 
original ANN (which was longer than four days). 

[0160] Results of the simulations are shown in TABLE 1, 
which are for a duration of 1000 time steps. The "before" 
model is an SNN converted from the ANN prior to applying 
sparsity refinement techniques, and without application of 
steady-state or transient refinement techniques. Note the 
substantial accuracy difference between the "before" and 
"after" models. Because accuracy curves tend to flatten with 
time, the "before" model can take thousands of extra steps 
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to reach the same accuracy ( e.g., after 1000 steps, the 
"before" model had still not reached the steady-state accu­
racy of the ANN). After just 1000 steps, the "after" model is 
relatively close to the ANN accuracy of 49.09%. 

TABLE 1 

Metric Before After 

max{a,} 30.06% 46.29% 
bL 762 342 
bp 4.99e9 l.14e9 

[0161] In addition to reductions in bL and bp, note the 
dramatic improvement in peak accuracy after 1000 steps. 
[0162] Additionally, techniques described herein were 
applied to a simulated version of SpiNNaker, a neuromor­
ph.ic system that is part of the Human Brain Project, which 
can demonstrate improvements that can be realized by 
applying mechanisms described herein on a full-stack SNN­
based perception system. 
[0163] PyNN API was used to simulate SpiNNaker mod­
els (functionality built into SaRNN). The SpiNNaker neuron 
model has three differences from NL-IAF: (1) Neurons reset 
to zero after spiking instead ofby subtraction; (2) spikes take 
one time step to traverse a synapse (e.g. , rather than zero); 
and (3) neurons have a refractory period of one time step. 
These behaviors were implemented in the simulation, which 
can demonstrate that techniques described herein are gen­
eralizable to neuromorphic hardware, such as SpiNNaker. 
[0164] TABLE 2 shows results for the dense MNIST 
model described above in connection with FIG. 8. Because 
of delays added for synaptic transmission and refractory 
periods, it takes some minimum amount of time (e.g., about 
6 time steps) for a signal to propagate from the input to the 
output, which may have contributed to the smaller observed 
decrease in bL compared to the results described in connec­
tion with FIGS. 10 and 11. 

TABLE 2 

Metric Before After 

max{a,} 84.00% 97.80% 
bL 31.7 9.54 
bp 4.17e3 1.0le3 

TABLE 2 includes results based on a simulation in which 
three refinement techniques described herein were applied to 
the dense MNIST model , and evaluated on SpiNNaker. Note 
that the PyNN simulation code used to perform the simu­
lations did not support measuring synaptic events, so bL is 
expressed in terms of spiking events. 
[0165] In some embodiments, any suitable computer read­
able media can be used for storing instructions for perform­
ing the functions and/or processes described herein. For 
example, in some embodiments, computer readable media 
can be transitory or non-transitory. For example, non-tran­
sitory computer readable media can include media such as 
magnetic media (such as hard disks, floppy disks, etc.), 
optical media (such as compact discs, digital video discs, 
Blu-ray discs, etc.), semiconductor media (such as RAM, 
Flash memory, electrically programmable read only memory 
(EPROM), electrically erasable programmable read only 
memory (EEPROM), etc.), any suitable media that is not 
fleeting or devoid of any semblance of permanence during 



�����������������	
 ��
����������

US 2022/0358346 Al 

transmission, and/or any suitable tangible media. As another 
example, transitory computer readable media can include 
signals on networks, in wires, conductors, optical fibers, 
circuits, or any suitable media that is fleeting and devoid of 
any semblance of pemianence during transmission, and/or 
any suitable intangible media. 

[0166] It should be noted that, as used herein, the tenn 
mechanism can encompass hardware, software, firmware, or 
any suitable combination thereof. 

[0167] It should be understood that the above-described 
steps of the processes of FIGS. 5 and 6 can be executed or 
performed in any order or sequence not limited to the order 
and sequence shown and described in the figures. Also, some 
of the above steps of the processes of FIGS. 5 and 6 can be 
executed or performed substantially simultaneously where 
appropriate or in parallel to reduce latency and processing 
times. 

[0168] Although the invention has been described and 
illustrated in the foregoing illustrative embodiments, it is 
understood that the present disclosure has been made only 
by way of example, and that numerous changes in the details 
of implementation of the invention can be made without 
departing from the spirit and scope of the invention, which 
is limited only by the claims that follow. Features of the 
disclosed embodiments can be combined and rearranged in 
various ways. 

What is claimed is: 

1. A method for using a spiking neural network with 
improved efficiency, the method comprising: 

receiving image data; 

providing the image data to a trained spiking neural 
network (SNN), the SNN comprising a plurality of 
neurons, each of the plurality of neurons associated 
with a respective initialization value VO of a plurality of 
initialization values, 

wherein a first layer of the trained SNN comprises a 
first subset of the plurality of neurons, and a second 
layer of the trained SNN comprises a second subset 
of the plurality of neurons, and 

wherein a mean of the plurality of initialization values 
is about 0.5, and a standard deviation of the initial­
ization values is at least 0.05; 

receiving output from the trained SNN at a time step -i:, 

wherein the output is based on activations of neurons in 
an output layer of the trained SNN, and 

wherein "t is in a range of 1 to T; and 

classifying the image data based on output of the trained 
SNN at time step -i:. 

2. A method for using a spiking neural network with 
improved efficiency, the method comprising: 

receiving data; 

providing the data to a trained spiking neural network 
(SNN), the SNN comprising a plurality of neurons, 
each of the plurality of neurons associated with a 
respective initialization value V0 of a plurality of ini­
tialization values, 

wherein a first layer of the trained SNN comprises a 
first subset of the plurality of neurons, and a second 
layer of the trained SNN comprises a second subset 
of the plurality of neurons, and 
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wherein a mean of the plurality of initialization values 
is about 0.5, and a standard deviation of the initial­
ization values is at least 0.05; 

receiving output from the trained SNN at a time step -i:, 

wherein the output is based on activations of neurons in 
an output layer of the trained SNN, and 

wherein "t is in a range of 1 to T; and 
performing a task associated with the data based on output 

of the trained SNN at time step -i:. 

3. The method of claim 2, 
wherein the output is indicative of a neuron in the output 

layer that had the most activations up to time "t. 

4. The method of claim 3, 
wherein the data comprises image data, 
wherein the task comprises a computer vision task that 

includes classification of the image data, and 
wherein the neuron in the output layer that had the most 

activations up to time step -i: corresponds to a first class 
of a plurality of classes. 

5. The method of claim 2, further comprising: 
receiving output from the trained SNN at a time step -i:' 

subsequent to time step -i:; and 
performing the task based on output of the trained SNN at 

step time -i:'. 

6. The method of claim 2, wherein data comprises image 
data comprising an array of pixels each associated with a 
value, and 

providing the data to the trained SNN comprises: 
generating, for each pixel, a spike train based on the 

value associated with the pixel, wherein spikes are 
generated at a rate that is proportional to the value 
associated with the pixel; and 

providing, to each neuron of a plurality of neurons in an 
input layer of the trained SNN, a spike train associ­
ated with a respective pixel of the plurality of pixels. 

7. The method of claim 2, wherein the data comprises 
image data comprising a plurality of spike streams generated 
by an imaging device. 

8. The method of claim 7, wherein the imaging device 
comprises a light detection and ranging (LiDAR) device. 

9. The method of claim 2, wherein the trained SNN was 
generated based on a trained analog neural network (ANN). 

10. The method of claim 9, wherein the ANN was trained 
using a loss function LANN and the ANN was refined using 
a penalized loss function L'ANN that included L ANN and one 
or more penalized terms. 

11. The method of claim 10, wherein the penalized loss 
function L'ANN is represented by the relationship: 

L'ANN~LAm,+/...J.,. +/...,L,, 

where La is an activation loss term based on B values 
associated with batch normalization layers of the trained 
ANN, Ls is a synaptic sparsity loss term based on weights of 
the trained ANN, and Aa and As are penalty values. 

12. The method of claim 2, further comprising: 
refining the trained SNN using a loss function LsNN· 
13. The method of claim 12, wherein the loss function 

LsNN includes an accuracy term, a latency term, and a power 
consumption term. 

14. The method of claim 13, wherein the loss function 
LsNN is represented by the relationship: 

Lsmr/...MM+ /...LbL+/...pbp, 

where M is a minimum error 1-a,, a, represents an accuracy 
of the trained SNN at a particular time step, b L represents a 
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latency of the trained SNN, bP represents power consump­
tion of the trained SNN, and AM, Av and Ap are penalty 
values. 

15. The method of claim 12, wherein refining the SNN 
further comprises: 

applying, to each of the plurality of neurons, a scaling 
factor T]j, wherein H is a set of scaling factors for the 
plurality of neurons; 

providing first labeled training data to the trained SNN; 
receiving first output from the trained SNN for the first 

labeled training data; 
calculating a first loss based on the first labeled training 

data and the first output from the trained SNN using the 
loss function LsNN; 

adjusting values of the scaling factors in H based on the 
loss; 

applying the adjusted scaling factors to the plurality of 
neurons of the trained SNN; 

providing second labeled training data to the trained SNN; 
receiving second output from the trained SNN for the 

second labeled training data; and 
calculating a second loss based on the second labeled 

training data and the second output from the trained 
SNN using the loss function L sNN-

16. The method of claim 12, wherein refining the SNN 
further comprises: 

setting an initialization value VO for each of the plurality 
of neurons, wherein I includes a set of initialization 
values; 

providing first labeled training data to the trained SNN; 
receiving first output from the trained SNN for the first 

labeled training data; 
calculating a first loss based on the first labeled training 

data and the first output from the trained SNN using the 
loss function LsNN; 

adjusting values of the initialization values in I based on 
the loss; 

applying the adjusted initialization values to the plurality 
of neurons of the trained SNN; 

providing second labeled training data to the trained SNN; 
receiving second output from the trained SNN for the 

second labeled training data; and 
calculating a second loss based on the second labeled 

training data and the second output from the trained 
SNN using the loss function LsNN-

17. The method of claim 2, wherein the ANN is a 
convolutional neural network (CNN). 

18. The method of claim 2, 
wherein an output ej., of a neuron j of the plurality of 

neurons is represented by the relationship: 

{ I if v1,, ;a: I 
8 1·' = 0 else 
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where j represents a neuron index, t represents a current time 
step, and Vj., represents a neuron membrane potential at time 
step t, Vj.o is the initialization value of neuron j, 

wherein the neuron membrane potential Vj., of neuron j is 
represented by the relationship: 

where Ij., represents an incoming current at time t, and 
the incoming current Ij,, is represented by the relationship: 

where sj,, represents a binary-valued vector of incoming 
spikes at time step t, including one entry for each incoming 
synapse to neuron j , wj represents a vector of synaptic 
weights associated with incoming synapses, and bj repre­
sents a neuron bias of neuron j. 

19. The method of claim 2, wherein the data comprises 
time-series data. 

20. A system for using a spiking neural network with 
improved efficiency, the system comprising: 

at least one processor that is configured to: 

receive data; 

provide the data to a trained spiking neural network 
(SNN), the SNN comprising a plurality of neurons, 
each of the plurality of neurons associated with a 
respective initialization value VO of a plurality of 
initialization values, 

wherein a first layer of the trained SNN comprises a 
first subset of the plurality of neurons, and a 
second layer of the trained SNN comprises a 
second subset of the plurality of neurons, and 

wherein a mean of the plurality of initialization 
values is about 0.5, and a standard deviation of the 
initialization values is at least 0.05; 

receive output from the trained SNN at a time step t, 

wherein the output is based on activations of neurons 
in an output layer of the trained SNN, and 

wherein t is in a range of 1 to T; and 

perform a task associated with the data based on output 
of the trained SNN at time step t. 

21. The system of claim 20, wherein the at least one 
processor comprises a neuromorphic processor. 

22. The system of claim 21, wherein the data comprises 
image data, the system further comprising: 

an image data source in communication with the at least 
one processor, the image data source comprising an 
array of single-photon avalanche photodiodes 
(SPADs); and 

wherein the at least one processor that is further config­
ured to: 

receive the image data from the image data source. 

* * * * * 


