
�����������������	
 ��
���������

1111111111111111 IIIIII IIIII 111111111111111 1111111111 lllll 111111111111111 1111111111 11111111
US 20220358346Al

c19) United States
c12) Patent Application Publication

GUPTA et al.
(IO) Pub. No.: US 2022/0358346 Al
(43) Pub. Date: Nov. 10, 2022

(54) SYSTEMS, METHODS, AND MEDIA FOR
GENERATING AND USING SPIKING
NEURAL NETWORKS WITH IMPROVED
EFFICIENCY

(52) U.S. Cl.

(57)

CPC G06N 3/049 (2013.01); G06N 3/08
(2013.01); G06N 3/0481 (2013.01)

ABSTRACT

(71) Applicant: Wisconsin Alumni Research
Foundation, Madison, WI (US)

In accordance with some embodiments, systems, methods,
and media for generating and using spiking neural networks
with improved efficiency are provided. In some embodi­
ments, a method comprises: receiving image data ; providing
the image data to a trained spiking neural network (SNN),
the SNN comprising a plurality of neurons, each of the
plurality of neurons associated with a respective initializa­
tion value VO of a plurality of initialization values, wherein
a first layer of the trained SNN comprises a first subset of the
plurality of neurons, and a second layer of the trained SNN
comprises a second subset of the plurality of neurons, and
wherein a mean of the plurality of initialization values is
about 0.5, and a standard deviation of the initialization
values is at least 0.05 ; receiving output from the trained
SNN at a time step -i:, wherein the output is based on
activations of neurons in an output layer of the trained SNN,
and wherein -i; is in a range of 1 to T; and classifying the
image data based on output of the trained SNN at time step
"t.

(72) Inventors: Mohit GUPTA, Madison, WI (US) ;
Matthew DUTSON, Madison, WI (US)

(21) Appl. No.: 17/246,219

(22) Filed: Apr. 30, 2021

Publication Classification

(51) Int. Cl.
G06N 3/04
G06N 3/08

(2006.01)
(2006.01)

l.!lQ

r~''\, __
j)

,'\,/41---------.
Comrnunkation Net,s ork_ f

i(),,--..,_
~- l.,.,.,.,,,,.,.,. ,.,.._,...,.'S

! I

: Con1nuter \/isl.on:
: Systern :
! ' L--------~--'

' I y

~,y_
I
I

: .!n13,ge Dai;i. Source
I ' I I L ________________ s

104---.....
~--l.. ~- ---~ --,
I !

:-Co1.1lrn1h~r \/ fa ion!
: Sys:en: :
' t
L ·-----~----!

�����������������	
 ��
���������

Patent Application Publication

C

Nov. 10, 2022 Sheet 1 of 12

r--------1 !
I i
I t i

R ~
I 0
I '/;
I

~
I
I
I

r:
8 L--~----J

US 2022/0358346 Al

0
:-,,o,o;
~

�����������������	

��
���������

!02

~

110

\..

222,

'))8' , .. , .. ()

')()')'
.... ~ , .k. '

Image Data Source

224\

Ptoce&-Snr A s,~t•<1o·rr ~)),.., \,, .J.~ - ' , ,

"Vi --._ \. '
Memory ~

.lo.
r

Communictitions
System(s)

Coinpmi.ng Device

208\

•

... ..
Proceswr ,.. Comnrnnications

Systern(s)

204~ 2Hl~

Display ...
~ ~ Memory

206\

lnpnt(s) ~

200

-~~-
...,, 108

Comrnunkation Ni:.twork

:+-1-- -- ---

~~

120

~ Server I l

FIC' ·, .. J. '

')1·,--._
L '--•· \

Processor

214~

''16,
£. . '

Disp1ay

Jnput{S)

,,,. -

I+-

218 \ ,Ir

Communications
Syskm(s)

·, ·,(\""'
"-w I ____i

...
~ Memory

--= = ;-
=
> "C

"C -.... (')

= Q' •
0 =
--= = O" -.... (')

=
0 =
z
0
~
~o
N
0
N
N

'J)

=­~
~
N
0
N

('.j
'J)

N
0
N
N --0
w
Ul
00
w
~
0'I

>

�����������������	
 ��
���������

Patent Application Publication Nov. 10, 2022 Sheet 3 of 12 US 2022/0358346 Al

Analog Neural NebNork (ANN)

No output until last
layer finishes

···-·-·-·-·-············ ······-·-·-·-·-········

'••············· ··················· ·····················

··.-.-,·.···························

Enhanced SNN

Fewer spikes

FIG. 3C

Spiking Neural Network (SNN)

�����������������	

��
��	������

Inputs {e .g.j spike trains) Outputs {e.g., inferences)

sG"!e;J by 'i

~.JL
out put !ayer

input !ayer hidden layer

FIG. 4A

F[G. 4B

Neuromorphic Inference

FIG, 4C

--= = ;-
=
> "C

"C -.... (')

= Q" •
0 =
--= = O" -.... (')

=
0 =
z
0
~
~o
N
0
N
N

'J)

=­~
~
~

0
N

('.j
'J)

N
0
N
N --0
w
Ul
00
w
~
0'I

>

�����������������	

��
��
������

r--- --"""'---~
I ";/)') l 1----I x .>c.&, I I ------- - -----
! i· . l . A I
r .ahdt d. i- - --+.l -~.fJ.1 1
1 •1·· . • l I u· . I
I• . rauung Data 1 .. -+i 'utra:ined ANN 1 ··- l I I . . . I

'- -- --r - ---- l ---------,-------- '
--1 I .I

l I

-- i I I
I - -----=-~ I
i >,('''' I .J.. 1 •·· .th I ,. ____ v __
i · . I I _ _ ,.

1 Loss t 1 ~Q(--. 1
I ('· ·i · .• *-M--!), ~ I
1 .. a ~:ul mt{Hi 1 1 0 '1 ;, i
I (l ' , . . I I • .. tp,,t I

1 , ·,\N:-, ! L ,\N:d i i..--------1 .., ___________ ,

I >
son
i---------,

"' i) ! ! LL:,_
T r »i·i·, ,,cl ,11'•.TN ! i -'- . •U . -'-"-· .(>.<- ~ .~

.,___,,__,,,,.,..,,,_,..___,,.,.,.,..,i

/A....
I >

V / /
L s.

-----------1 -- ">J"?
! ,,_...... . I
I Co···ve'"',;nn of Trained !

/
.. -~ I ~•1 A:~-~ .io SNN _ _,

/ .. -· - .--· -··:
\'v· : : \ ... :
- -\ ----1 ---1 ----

, - - 51,; I- I 51 4 I 524

I Labeled I - ~ Tn•inerl SNN I ~ Unlabeled
I i\ synchw_ nmcs I ,- -+i__ ___ - - - - ~ '-. "'-. , Asynd _, ro-nnus
I Ila:!_ _ _ I I "- "- , Data
---· I '- "' •

I , I ~ "'-A ···.,·
.- _t._ - -' - I _ j._ - I "- J __ ___J....._ __ I _i2fl _

I
5
2n I r -18 ;,, 522 1----i ou_tpt_it .

J
0

---· I "NN. ·1) l ct on \ I Loss. i-<- - Output I Rdind T,ained " ' . I rm . ' •
! C<1lculat1on I I · __
1 (Ls"'"d I s-------

t---

-- - ·t r;:iit:ing,-- ---

-- --trained--- --
- -- -- refin ed- ---- -

F·JG' " 1 . ~'

--= = ;-
=
> "C

"C -.... (')

= c-.
0 =
--= = O" -.... (')

=
0 =
z
0
~
~
N
0
N
N

'J)

=­~
~
Ul
0
N

('.j
'J)

N
0
N
N --0
w
Ul
00
w
~
0'I

>

�����������������	
 ��
���������

Patent Application Publication Nov. 10, 2022 Sheet 6 of 12 US 2022/0358346 Al

JiQ_Q

~------------------------------ 602

fRAIN ANALOG NEURAL I\T f\V ORK. (ANN) OR REC EIVE TRAINED ANN J

J. 606---------------...:..----------------,
CONVERT ANN TO SPIKING NEURAL N ET\VORK (SNNl J

-4- 608 ..---------- --- -------- -------- ----,
ADJUST NEURON \VE!GHTS OF 5NN TO IMPROVE ACCURACY AND/OR

REDUCE LAT ENCY A ND .POWER CO.NSUMPTJON

i 610 ~--------------....._ ______________ _
ADJUST NEURON INTrL'\LlZ.ATlON VALUES TO REDUCE LATENCY

i 612 - - - --- - --- - --- - -"--- - --- - --- - --- -
PROV Ii. l EI MAGED AT AT OT HE SNN

! 614
..---------------.J

RECH VE OUTPUT FROM THE SNN

! 616
---------"------~J

PERFORM COMPUTER \lISION TASK BAS.ED ON CURRENT OUTPUT

·F.1G f 1 .J. J

�����������������	
 ��
���������

Patent Application Publication Nov. 10, 2022 Sheet 7 of 12 US 2022/0358346 Al

l

ii
M N .r-1

JaAel Aq
a:ie..1 ~u !J!:J. u eBl,AJ

�����������������	
 ��
���������

Patent Application Publication Nov. 10, 2022 Sheet 8 of 12

0 -::::

\L.
·,:::::::.

·i,\:
\

'l. ··~t
:::::.
·t~:.
\\ 0
Vt rl >

C:
0 u

',¾. oc
\\,, 1

~\fa. u
1::::,.)
:=::: :::: -::=::,
--~ .. ·==t:-l t ·\,,.

'lt :,- IR ~l-II ts _. -• 11: ti • - ts ,i: ~\\!:• 11 IR lll Ill ~I II. -• 111 jf llt

u
:::==··

II ,£~f V .,,,,,,,,,,,/'''

II :1rr,,t''f
II 1,r lt
Il .:I:: if

i1
~f'

J

0
·r-l

1-
(f) -z
~
(I)
(/)

C:
(I)

0

I

I­
V) -z
~
>
C
0 u

a
'l""""l

I

a:::
tJ:: -u u

C--:1
l
0
~

I

US 2022/0358346 Al

.
0

Ct) .
0

t-.
0

.
0

tC .
0 ,.-.._

1-- ,_ ..

~
00 . .

0 V
~

W;,.;

C'~ .
0

r-l .
0

0
•

0

�����������������	
 ��
����������

Patent Application Publication Nov. 10, 2022 Sheet 9 of 12

1+ == ,~j JOJ

A+!Suap A:t!I !9 eqo.td

Qr')
--.;;._

US 2022/0358346 Al

.,,.,....__
~ ti
~

�����������������	
 ��
����������

Patent Application Publication Nov. 10, 2022 Sheet 10 of 12 US 2022/0358346 Al

::;::::::: !\:
-.-..... :.,.,. '\.}.;J,w

�����������������	
 ��
����������

Patent Application Publication

t­
t./1 -z
2
(1)
V)

C:
{l)

0

I­
ll) -z
~
>
C
0 u

0
M

I
ct::
<C
LL -u

II
~_,
-t~ -·

0
0
M

I er::
<t:·
LL -u

t~"~. ._,
r-l

Nov. 10, 2022 Sheet 11 of 12

t""'{
.,-., ._
~

0 .-.
•,~ !

1--i

US 2022/0358346 Al

V)
(I)
(I)
C:

.:x..
(I}

~

..n
I

CL

V)
U1
(I)
C:

..:£,
V1
~

_o
I

_j

u
?>.-

tu
~

�����������������	

��
����������

~

0
4-1-u

10:3

Conventiona l SN N

Steady-state refinement

p@r@rrnr:::uv1 Transient refinement

I< < I Sparsity refinement

.ro ··1· .) ,:> 4- . . { . - , , '··•~.:-... .. :.-

4-l
C
(1)

E .
© '] f) 1 •.••••••w ❖•❖•❖•❖.•.❖•❖•❖•❖•❖.•.• • >
0
~

a..
$'.'.: - 10()

L-briskness P-briskness
Metric

FIG. l]

--= = ;-
=
> "C

"C -.... (')

= Q" •
0 =
--= = O" -.... (')

=
0 =
z
0
~
~o
N
0
N
N

'J)

=­~
~
N
0 -.
N

('.j
'J)

N
0
N
N --0
w
Ul
00
w
~
0'I

>

�����������������	
 ��
����������

US 2022/0358346 Al

SYSTEMS, METHODS, AND MEDIA FOR
GENERATING AND USING SPIKING

NEURAL NETWORKS WITH IMPROVED
EFFICIENCY

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] NIA

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

[0002] NIA

BACKGROUND

[0003] In recent years, improvements in computer vision
tasks have focused on improving accuracy. For example,
over the past decade, the computer vision community has
largely embraced an "accuracy first" philosophy in which
"state-of-the-art" usually implies achieving the highest
accuracy for a particular task. However, improved accuracy
for a particular task may not be useful practically if the task
cannot be performed quickly (e.g., with low latency), or if
the amount of power expended to perform the task is
relatively high.
[0004] Accordingly, new systems, methods, and media for
generating spiking neural networks with improved effi­
ciency are desirable.

SUMMARY

[0005] In accordance with some embodiments of the dis­
closed subject matter, systems, methods, and media for
generating and using spiking neural networks with improved
efficiency are provided.
[0006] In accordance with some embodiments of the dis­
closed subject matter, a method for using a spiking neural
network with improved efficiency is provided, the method
comprising: receiving image data; providing the image data
to a trained spiking neural network (SNN), the SNN com­
prising a plurality of neurons, each of the plurality of
neurons associated with a respective initialization value V 0

of a plurality of initialization values, wherein a first layer of
the trained SNN comprises a first subset of the plurality of
neurons, and a second layer of the trained SNN comprises a
second subset of the plurality of neurons, and wherein a
mean of the plurality of initialization values is about 0.5, and
a standard deviation of the initialization values is at least
0.05 ; receiving output from the trained SNN at a time step
,:, wherein the output is based on activations of neurons in
an output layer of the trained SNN, and wherein ,: is in a
range of 1 to T; and performing a computer vision task
associated with the image data based on output of the trained
SNN at time step i:.

[0007] In some embodiments, method of claim 1, the
output is indicative of a neuron in the output layer that had
the most activations up to time i:.
[0008] In some embodiments, the computer vision task
comprises classification of the image data, and the neuron in
the output layer that had the most activations up to time step
,: corresponds to a first class of a plurality of classes.

[0009] In some embodiments, the method further com­
prises: receiving output from the trained SNN at a time step

1
Nov. 10, 2022

,:' subsequent to time step i:; and performing the computer
vision task based on output of the trained SNN at step time
,:'.

[001 OJ In some embodiments, the image data comprises an
array of pixels each associated with a value, and providing
the image data to the trained SNN comprises: generating, for
each pixel, a spike train based on the value associated with
the pixel, wherein spikes are generated at a rate that is
proportional to the value associated with the pixel; and
providing, to each neuron of a plurality of neurons in an
input layer of the trained SNN, a spike train associated with
a respective pixel of the plurality of pixels.
[0011] In some embodiments, the image data comprises a
plurality of spike streams generated by an imaging device.
[0012] In some embodiments, the imaging device com­
prises a light detection and ranging (LiDAR) device.
[0013] In some embodiments, the trained SNN was gen­
erated based on a trained analog neural network (ANN).
[0014] In some embodiments, the ANN was trained using
a loss function LANN and the ANN was refined using a
penalized loss function L'ANN that included LANN and one or
more penalized terms.
[0015] In some embodiments, the penalized loss function
L'ANNis represented by the relationship: L'ANN=LANN+A.aLa+
A L where L is an activation loss term based on B values
a;s;;iated with batch normalization layers of the trained
ANN, Ls is a synaptic sparsity loss term based on weights of
the trained ANN, and "-a and "-s are penalty values.
[0016] In some embodiments, the method further com­
prises: refining the trained SNN using a loss function LsNN·
[0017] In some embodiments, the loss function LsNN
includes an accuracy term, a latency term, and a power
consumption term.
[0018] In some embodiments, the loss function LsNN is
represented by the relationship: LsNN=A.MM+A.LbL+A.pbp
where M is a minimum error 1-a,, a, represents an accuracy
of the trained SNN at a particular time step, b L represents a
latency of the trained SNN, bP represents power consump­
tion of the trained SNN, and AM, "-D and Ap are penalty
values.
[0019] In some embodiments, refining the SNN further
comprises: applying, to each of the plurality of neurons, a
scaling factor "l°Jj, wherein H is a set of scaling factors for the
plurality of neurons; providing first labeled training data to
the trained SNN; receiving first output from the trained SNN
for the first labeled training data; calculating a first loss
based on the first labeled training data and the first output
from the trained SNN using the loss function LsNN; adjusting
values of the scaling factors in H based on the loss; applying
the adjusted scaling factors to the plurality of neurons of the
trained SNN; providing second labeled training data to the
trained SNN; receiving second output from the trained SNN
for the second labeled training data; and calculating a second
loss based on the second labeled training data and the second
output from the trained SNN using the loss function LsNN·
[0020] In some embodiments, refining the SNN further
comprises: setting an initialization value V0 for each of the
plurality of neurons, wherein I includes a set of initialization
values; providing first labeled training data to the trained
SNN; receiving first output from the trained SNN for the first
labeled training data; calculating a first loss based on the first
labeled training data and the first output from the trained
SNN using the loss function LSNN; adjusting values of the
initialization values in I based on the loss; applying the

�����������������	
 ��
���	������

US 2022/0358346 Al

adjusted initialization values to the plurality of neurons of
the trained SNN; providing second labeled training data to
the trained SNN; receiving second output from the trained
SNN for the second labeled training data; and calculating a
second loss based on the second labeled training data and the
second output from the trained SNN using the loss function
LsNN

[0021] In some embodiments, the ANN is a convolutional
neural network (CNN).
[0022] In some embodiments, an output ej,, of a neuron j
of the plurality of neurons is represented by the relationship:

{ I if VJ,1" I
8 J,I = 0 else

where j represents a neuron index, t represents a current time
step, and Vj,, represents a neuron membrane potential at time
step t, Vj,o is the initialization value of neuron j, wherein the
neuron membrane potential Vj., of neuron j is represented by
the relationship: Vj_,=Vj.,_ 1-®j.,- i+Ij.,, where Ij_,represents an
incoming current at time t, and the incoming current Ij., is
represented by the relationship: Ij_,=sj_,wj+bj, where sj.,
represents a binary-valued vector of incoming spikes at time
step t, including one entry for each incoming synapse to
neuron j, wj represents a vector of synaptic weights associ­
ated with incoming synapses, and bj represents a neuron bias
of neuron j .
[0023] In accordance with some embodiments of the dis­
closed subject matter, a system for using a spiking neural
network with improved efficiency is provided, the system
comprising: at least one processor that is configured to:
receive image data; provide the image data to a trained
spiking neural network (SNN), the SNN comprising a plu­
rality of neurons, each of the plurality of neurons associated
with a respective initialization value VO of a plurality of
initialization values, wherein a first layer of the trained SNN
comprises a first subset of the plurality of neurons, and a
second layer of the trained SNN comprises a second subset
of the plurality of neurons, and wherein a mean of the
plurality of initialization values is about 0.5, and a standard
deviation of the initialization values is at least 0.05; receive
output from the trained SNN at a time step t, wherein the
output is based on activations of neurons in an output layer
of the trained SNN, and wherein tis in a range of 1 to T; and
perform a computer vision task associated with the image
data based on output of the trained SNN at time step t.

[0024] In some embodiments, the at least one processor
comprises a neuromorphic processor.
[0025] In some embodiments, the system further com­
prises: an image data source in communication with the at
least one processor, the image data source comprising an
array of single-photon avalanche photodiodes (SPADs); and
wherein the at least one processor that is further configured
to: receive the image data from the image data source.

BRIEF DESCRIPTION OF THE DRAWINGS

[0026] Various objects, features, and advantages of the
disclosed subject matter can be more fully appreciated with
reference to the following detailed description of the dis­
closed subject matter when considered in connection with
the following drawings, in which like reference numerals
identify like elements.

2
Nov. 10, 2022

[0027] FIG. 1 shows an example of a system for generat­
ing and using spiking neural networks with improved effi­
ciency in accordance with some embodiments of the dis­
closed subject matter.
[0028] FIG. 2 shows an example of hardware that can be
used to implement a data source, a computing device, and a
server, shown in FIG. 1 in accordance with some embodi­
ments of the disclosed subject matter.
[0029] FIG. 3A shows a conceptual example of computa­
tions at various layers of a trained analog neural network
(ANN) and prediction accuracy of the ANN for a particular
set of synchronous inputs at various points in time after the
inputs are provided.
[0030] FIG. 3B shows a conceptual example of computa­
tions at various layers of a trained spiking neural network
(SNN) and prediction accuracy of the SNN for a particular
set of asynchronous inputs at various points in time as the
inputs are provided.
[0031] FIG. 3C shows a conceptual example of computa­
tions at various layers of a trained SNN refined using
techniques described herein and prediction accuracy of the
SNN for the particular set of asynchronous inputs at various
points in time as the inputs are provided.
[0032] FIG. 4A shows an example of a topology of spiking
neural network (SNN) that can be enhanced using mecha­
nisms described herein in accordance with some embodi­
ments of the disclosed subject matter.
[0033] FIG. 4B shows an example of scaling of incoming
weights and outgoing weights of a neuron in an SNN that
can be used to enhance efficiency of an SNN using mecha­
nisms described herein in accordance with some embodi­
ments of the disclosed subject matter.
[0034] FIG. 4C shows an example of hardware that can be
used to implement an SNN trained and refined using tech­
niques described herein.
[0035] FIG. 5 shows an example of a flow for training,
refining, and using SNNs with improved efficiency in accor­
dance with some embodiments of the disclosed subject
matter.
[0036] FIG. 6 shows an example of a process for training,
refining, and using SNNs with improved efficiency to clas­
sify image data in accordance with some embodiments of
the disclosed subject matter.
[0037] FIG. 7 shows an example of efficiency improve­
ments that can be realized using mechanisms described
herein for enhancing SNN efficiency in accordance with
some embodiments of the disclosed subject matter.
[0038] FIG. 8 shows another example of efficiency
improvements that can be realized using mechanisms
described herein for enhancing SNN efficiency in accor­
dance with some embodiments of the disclosed subject
matter.
[0039] FIG. 9A shows an example illustrating an effect of
bath normalization on ANN activation sparsity that can be
used in connection with mechanisms described herein for
enhancing SNN efficiency in accordance with some embodi­
ments of the disclosed subject matter.
[0040] FIG. 9B shows an example illustrating activation
maps for the two batch normalization values of FIG. 9A.
[0041] FIG. 10 shows examples of efficiency improve­
ments realized using mechanisms described herein to
enhance SNNs derived from various ANN model architec­
tures.

�����������������	
 ��
���
������

US 2022/0358346 Al

[0042] FIG.11 shows example of efficiency improvements
in multiple measures of efficiency realized using various
mechanisms described herein to enhance SNNs derived
from a convolutional MNIST model.

DETAILED DESCRIPTION

[0043] In accordance with various embodiments, mecha­
nisms (which can, for example, include systems, methods,
and media) for generating and using spiking neural networks
with improved efficiency are provided.
[0044] In many computer vision tasks, latency and power
use are important factors that can impact performance of a
computer vision system. For example, real time applica­
tions, such as mixed reality (MR), augmented reality (AR),
virtual reality (VR), embodied perception, and autonomous
navigation, computer vision tasks (e.g. , image classification,
scene measurement, etc.) may require low latency to operate
successfully. Additionally, many real time applications may
be performed by a power constrained system (e.g., a battery
powered system). In many computer vision tasks, fran1e­
based, floating-point inferences may incur unavoidable tem­
poral delays and high energy costs, making such techniques
ill-suited for resource-constrained real-time applications.
For example, as deep learning applications have matured,
new axes in the performance space have begun to emerge for
new classes of applications (e.g., embodied perception,
autonomous navigation, AR, MR, and VR) where latency
and power consmnption may be as important as accuracy. In
such applications, it is important to consider not just overall
accuracy, but a notion of streaming accuracy indicative of
whether the computer vision task is performed with suffi­
cient accuracy while adhering to a set of time and power
constraints.
[0045] In some embodiments, mechanisms described
herein can improve the efficiency of computer-vision tasks
using spike-based streaming perception techniques, which
can integrate latency and accuracy, resulting in a smooth
latency-accuracy trade-off curve (e.g. , a Pareto optimal
trade-off curve). Mechanisms described herein can utilize
spiking neural networks (SNNs), which perfom1 inference
via temporal sequences of discrete spikes rather than float­
ing-point values used in conventional floating point neural
networks (FNNs). As described below, in an SNN, a neuron
can be activated when a "membrane potential" reaches a
threshold, and the neuron can output a spike when it is
activated (e.g., as described below in connection with EQ.
(3)). In an FNN, nodes can activated each time an input is
received (e.g., by calculating a weighted sum of inputs from
nodes in a previous layer, adding a bias, and passing through
an activation function), and the output associated with a
node can be represented as a floating point value. Note that
FNNs are described herein as analog neural networks
(ANN), as nodes in a FNNs can output values that essen­
tially analog (e.g., values that vary continuously). However,
both FNNs and SNNs are types of artificial neural networks.
[0046] In general, SNNs can operate in an asynchronous
and distributed fashion, facilitating relatively rapid, low­
power inferences. Mechanisms described herein can lever­
age unique characteristics of SNNs to reduce latency and
power consumption by 1-2 orders of magnitude.
[0047] Mechanisms described herein can facilitate spike­
based streaming perception, an approach that can integrate
latency and accuracy into a single evaluation space. In SNNs
artificial neurons can exchange information via temporal

3
Nov. 10, 2022

sequences of discrete spikes, in contrast with the continu­
ous-valued activations in conventional ANN s. Each spike
denotes an event, and information is encoded in the fre­
quency and timing of spikes.

[0048] Through asynchronous spike-based computation
SNNs can generate predictions more quickly than an ANN
with a similar number of layers (e.g., SNNs can facilitate
pseudo-instantaneous information processing) and can
increase the accuracy of predictions as more data is received,
which can lead to a smooth accuracy-latency tradeoff (e.g.,
a Pareto optimal curve archetypical of "anytime algo­
rithms"). For example, a robot navigating in a dynamic
environment often needs to make decisions quickly (e.g., to
avoid obstacles). Such situations require short reaction times
often inaccessible to the synchronous processing of ANN­
based perception. Deep SNNs can provide earlier (though
potentially less precise) estimates, which can improve when
given more processing time. These properties can make
SNNs suitable for both processes that benefit from fast
decision-making and slower, more deliberate processes,
such as long-term path planning. Such hierarchical fast and
slow reasoning is thought to be similar to human decision­
making processes, and can pave the way for new classes of
dynamic control techniques where Pareto optimal operating
points are identified in-situ, at the time-granularity of indi­
vidual spikes.

[0049] The discrete nature of asynchronous spikes pro­
vided as input to SNNs can result in non-differentiable
network dynamics, precluding the use of gradient-based
training techniques that are conm1only used with ANNs .
One workaround to this potential limitation is to first train an
ANN (e.g., using conventional gradient-based training tech­
niques), and mapping the ANNs weights to an equivalent
SNN. Such ANN to SNN conversion can generate SNNs that
are highly accurate, but the resulting models can exhibit
inefficient firing patterns. In some embodiments, mecha­
nisms described herein can be used to alter the weights,
sparsity, and/or initialization conditions to improve the effi­
ciency of SNNs, for example, via reduced latency and/or
reduced power consumption in a converted SNN. Such
enhancements can push the Pareto optimal tradeoff curve of
upward (e.g., as shown in FIGS. 3B and 3C, described
below) .

[0050] In some embodiments, SNN neuron firing rates can
be scaled at the neuron level without changing the under­
lying network representation, which can result in a network
that exhibits improved accuracy, reduced latency, and/or
reduced power consumption.

[0051] As described below in connection with FIGS. 3B
and 3C, due to the asynchronous propagation of spikes,
SNNs display transient dynamics in which firing rates (and
thus, accuracy) evolves over time before achieving steady­
state behavior. In some embodiments, transient dynamics of
an SNN can be adjusted by varying the initialization of the
model. For example, mechanisms described herein can be
used to select an initialization that can dramatically reduce
latency.

[0052] In general, SNNs can exploit weight and activation
sparsity, because SNNs generate inferences in terms of
single spikes. In some embodiments, mechanisms described
herein can adjust the sparsity of the model representation of
an SNN (e.g., during training of an ANN from which the

�����������������	
 ��
����������

US 2022/0358346 Al

SNN is generated), which can substantially reduce compu­
tation and power consumption without significantly impact­
ing accuracy.
[0053] Note that although mechanisms described herein
are generally described in connection with the task of image
classification on single, relatively static scenes (e.g., over the
time period over which the output of the SNN settles at a
steady state). However, this is merely an example, and
mechanisms described herein can be used to perform other
tasks, such as object detection, segmentation, and tracking,
and can be used to implement SNNs trained to evaluate
time-varying data (e.g., video data).
[0054] FIG. 1 shows an example 100 of a system for
generating and using spiking neural networks with improved
efficiency in accordance with some embodiments of the
disclosed subject matter. As shown in FIG. 1, a computing
device 110 can receive image data from an image data
source 102. In some embodiments, computing device 110
can execute at least a portion of a computer vision system
104 to perfom1 a computer vision task, such as image
classification, object detection, image segmentation, object
tracking, and/or any other suitable computer vision task.
[0055] In some embodiments, computing device 110 can
execute at least a portion of a computer vision system 104
to use an SNN to perform a computer vision task with
improved efficiency (e.g., with reduced latency and/or
reduced power consumption).
[0056] Additionally or alternatively, in some embodi­
ments, computing device 110 can communicate data
received from image data source 102 to a server 120 over a
communication network 108, which can execute at least a
portion of computer vision system 104. In such embodi­
ments, server 120 can return information to computing
device 110 (and/or any other suitable computing device)
indicative of an output of one or more SNNs used to
implement computer vision system 104 to take an action
based on an outcome of the computer vision task. In some
embodiments, computer vision system 104 can execute one
or more portions of process 600 described below in con­
nection with FIG. 6.
[0057] In some embodiments, computing device 110 and/
or server 120 can be any suitable computing device or
combination of devices, such as a desktop computer, a
laptop computer, a smartphone, a tablet computer, a wear­
able computer, a server computer, a virtual machine being
executed by a physical computing device, etc.
[0058] In some embodiments, image data source 102 can
be any suitable source of image data (e.g., asynchronously
generated image data) and/or other data that can be used to
evaluate characteristics of a physical environn1ent of image
data source 102. For example, image data source 102 can
one or more digital cameras that generate and/or output
color image data, monochrome image data, image data
representing light from one or more wavelengths outside the
visible spectrum (e.g. , infrared (IR), near infrared (NIR),
ultraviolet (lN), x-ray, etc.), two-dimensional image data,
three-dimensional image data, any other suitable image data,
or any suitable combination thereof. In a more particular
example, image data source 102 can include an imaging
device configured to detect arrival of individual photons
(e.g. , using avalanche photodiodes), such imaging devices
described in U.S. patent application Ser. No. 16/844,899,
filed Apr. 9, 2020, and titled "Systems, methods, and media
for high dynamic range quanta burst imaging." As another

4
Nov. 10, 2022

example, image data source 102 can be a light detection and
ranging (LiDAR) device that generates and/or outputs data
indicative of distance to one or more points in a physical
environment of the LiDAR device (e.g. , corresponding to
one or more objects, surfaces, etc.). As yet another example,
image data source 102 can be any other suitable device that
can produce asynchronous image data.

[0059] In some embodiments, image data source 102 can
be local to computing device 110. For exan1ple, image data
source 102 can be incorporated with computing device 110
(e.g., computing device 110 can be configured as part of a
device for capturing and/or storing image data). As another
example, image data source 102 can be connected to com­
puting device 110 by a cable, a direct wireless link, etc.
Additionally or alternatively, in some embodiments, image
data source 102 can be located locally and/or remotely from
computing device 110, and can communicate image data to
computing device 110 (and/or server 120) via a communi­
cation network (e.g. , communication network 108).

[0060] In some embodiments, communication network
108 can be any suitable communication network or combi­
nation of communication networks. For example, commu­
nication network 108 can include a Wi-Fi network (which
can include one or more wireless routers , one or more
switches, etc.), a peer-to-peer network (e.g., a Bluetooth
network), a cellular network (e.g. , a 3G network, a 4G
network, a 5G network, etc., complying with any suitable
standard, such as CDMA, GSM, LTE, LTE Advanced, NR,
etc.), a wired network, etc. In some embodiments, commu­
nication network 108 can be a local area network, a wide
area network, a public network (e.g., the Internet), a private
or semi-private network (e.g., a corporate or university
intranet), any other suitable type of network, or any suitable
combination of networks. Communications links shown in
FIG. 1 can each be any suitable communications link or
combination of communications links, such as wired links,
fiber optic links, Wi-Fi links, Bluetooth links, cellular links,
etc.

[0061] FIG. 2 shows an example 200 of hardware that can
be used to implement image data source 102, computing
device 110, and/or server 120 in accordance with some
embodiments of the disclosed subject matter. As shown in
FIG. 2, in some embodiments, computing device 110 can
include a processor 202, a display 204, one or more inputs
206, one or more communication systems 208, and/or
memory 210. In some embodiments, processor 202 can be
any suitable hardware processor or combination of proces­
sors, such as a central processing unit (CPU), a graphics
processing unit (GPU), an application specific integrated
circuit (ASIC), a field-progranimable gate array (FPGA),
etc. In a particular example, processor 202 can be a neuro­
morphic processor or neuromorphic processors configured
to implement neurons for an SNN using hardware level. As
another more particular example, processor 202 can be
implemented using conventional hardware configured to
implement neurons for an SNN using firmware and/or
software to simulate neurons. In some embodiments, display
204 can include any suitable display devices, such as a
computer monitor, a touchscreen, a television, etc. In some
embodiments, inputs 206 can include any suitable input
devices and/or sensors that can be used to receive user input,
such as a keyboard, a mouse, a touchscreen, a microphone,
etc.

�����������������	
 ��
����������

US 2022/0358346 Al

[0062] In some embodiments, communications systems
208 can include any suitable hardware, firmware, and/or
software for communicating information over communica­
tion network 108 and/or any other suitable communication
networks. For example, communications systems 208 can
include one or more transceivers, one or more communica­
tion chips and/or chip sets, etc. In a more particular example,
communications systems 208 can include hardware, firm­
ware and/or software that can be used to establish a Wi-Fi
connection, a Bluetooth connection, a cellular connection,
an Ethernet connection, etc.
[0063] In some embodiments, memory 210 can include
any suitable storage device or devices that can be used to
store instructions, values, etc ., that can be used, for example,
by processor 202 to perform a computer vision task, to
present content using display 204, to communicate with
server 120 via communications system(s) 208, etc. Memory
210 can include any suitable volatile memory, non-volatile
memory, storage, or any suitable combination thereof. For
example, memory 210 can include random access memory
(RAM), read-only memory (ROM), electronically-erasable
programmable read-only memory (EEPROM), one or more
flash drives, one or more hard disks, one or more solid state
drives, one or more optical drives, etc. In some embodi­
ments, memory 210 can have encoded thereon a computer
program for controlling operation of computing device 110.
For example, in such embodiments, processor 202 can
execute at least a portion of the computer program to use an
SNN(s) in the perfomiance of one or more computer vision
tasks, present content (e.g. , images, information about an
object included in image data, information about distances
to one or more points in a scene, etc.), receive information
and/or content from server 120, transmit information to
server 120, etc. As another example, processor 202 can
execute at least a portion of the computer program to
implement computer vision system 104. As yet another
example, processor 202 can execute at least a portion of
process 600 described below in connection with FIG. 6.
[0064] In some embodiments, server 120 can include a
processor 212, a display 214, one or more inputs 216, one or
more communications systems 218, and/or memory 220. In
some embodiments, processor 212 can be any suitable
hardware processor or combination of processors, such as a
CPU, a GPU, an ASIC, an FPGA, etc. In some embodi­
ments, display 214 can include any suitable display devices,
such as a computer monitor, a touchscreen, a television, etc.
In some embodiments, inputs 216 can include any suitable
input devices and/or sensors that can be used to receive user
input, such as a keyboard, a mouse, a touchscreen, a micro­
phone, etc.
[0065] In some embodiments, communications systems
218 can include any suitable hardware, firmware, and/or
software for communicating information over communica­
tion network 108 and/or any other suitable communication
networks. For example, communications systems 218 can
include one or more transceivers, one or more communica­
tion chips and/or chip sets, etc. In a more particular example,
comn1w1ications systems 218 can include hardware, firm­
ware and/or software that can be used to establish a Wi-Fi
connection, a Bluetooth connection, a cellular connection,
an Ethernet connection, etc.
[0066] In some embodiments, memory 220 can include
any suitable storage device or devices that can be used to
store instructions, values, etc. , that can be used, for example,

5
Nov. 10, 2022

by processor 212 to present content using display 214, to
communicate with one or more computing devices 110, etc.
Memory 220 can include any suitable volatile memory,
non-volatile memory, storage, or any suitable combination
thereof. For example, memory 220 can include RAM, ROM,
EEPROM, one or more flash drives, one or more hard disks,
one or more solid state drives, one or more optical drives,
etc. In some embodiments, memory 220 can have encoded
thereon a server program for controlling operation of server
120. For example, in such embodiments, processor 212 can
execute at least a portion of the server program to use an
SNN(s) in the performance of one or more computer vision
tasks, transmit content (e.g., images, information about an
object included in image data, information about distances
to one or more points in a scene, etc.) to a computing device
(e.g., computing device 110), receive information and/or
content from computing device 110, transmit information to
computing device 110, etc. As another example, processor
212 can execute at least a portion of the computer program
to implement computer vision system 104. As yet another
example, processor 212 can execute at least a portion of
process 600 described below in connection with FIG. 6.
[0067] In some embodiments, image data source 102 can
include a processor 222, one or more sensors 224, one or
more communications systems 226, and/or memory 228. In
some embodiments, processor 222 can be any suitable
hardware processor or combination of processors, such as a
CPU, a GPU, an ASIC, an FPGA, etc. In some embodi­
ments, sensor(s) 224 can be any suitable components to
generate image data (e.g. , asynchronously) representing a
portion of a scene. For example, sensor(s) 224 can include
a CMOS sensor, a CCD sensor, an array of single-photon
avalanche diodes (SPADs), an array of jots (e.g., as
described in U.S. patent application Ser. No. 16/844,899), a
LiDAR sensor, etc. Although not shown, image data source
102 can include one or more light sources (e.g., a LiDAR
light source, a light source for structured light imaging, a
modulated light source for continuous time-of-flight imag­
ing, etc.).
[0068] Note that, although not shown, image data source
102 can include any suitable inputs and/or outputs. For
example, image data source 102 can include input devices
and/or sensors that can be used to receive user input, such as
a keyboard, a mouse, a touchscreen, a microphone, a track­
pad, a trackball , hardware buttons, software buttons, etc. As
another example, image data source 102 can include any
suitable display devices, such as a computer monitor, a
touchscreen, a television, etc., one or more speakers, etc.
[0069] In some embodiments, communications systems
226 can include any suitable hardware, firmware, and/or
software for communicating information to computing
device 110 (and, in some embodiments, over communication
network 108 and/or any other suitable communication net­
works). For example, communications systems 226 can
include one or more transceivers, one or more communica­
tion chips and/or chip sets, etc. In a more particular example,
communications systems 226 can include hardware, firm­
ware and/or software that can be used to establish a wired
connection using any suitable port and/or communication
standard (e.g., VGA, DVI video, USB, RS-232, etc.), Wi-Fi
connection, a Bluetooth connection, a cellular connection,
an Ethernet connection, etc.
[0070] In some embodiments, memory 228 can include
any suitable storage device or devices that can be used to

�����������������	
 ��
����������

US 2022/0358346 Al

store instructions, values, image data, etc., that can be used,
for example, by processor 222 to: control sensor(s) 224,
and/or receive outputs from sensor(s) 224; generate image
data; present content (e.g., images, a user interface, etc.)
using a display; communicate with one or more computing
devices 110; etc. Memory 228 can include any suitable
volatile memory, non-volatile memory, storage, or any suit­
able combination thereof. For example, memory 228 can
include RAM, ROM, EEPROM, one or more flash drives,
one or more hard disks, one or more solid state drives, one
or more optical drives, etc. In some embodiments, memory
228 can have encoded thereon a program for controlling
operation of image data source 102. For example, in such
embodiments, processor 222 can execute at least a portion of
the program to generate image data, transmit information
and/or content (e.g., image data) to one or more computing
devices 110, receive infonnation and/or content from one or
more computing devices 110, transmit information and/or
content (e.g. , image data) to one or more servers 120, receive
information and/or content from one or more servers 120,
receive instructions from one or more devices (e.g. , a
personal computer, a laptop computer, a tablet computer, a
smartphone, etc.), etc. As another example, processor 222
can execute at least a portion of the program to implement
computer vision system 104. As yet another example, pro­
cessor 222 can execute at least a portion of process 600
described below in connection with FIG. 6.

[0071] FIG. 3A shows a conceptual example of computa­
tions at various layers of a trained analog neural network
(ANN) and prediction accuracy of the ANN for a particular
set of synchronous inputs at various points in time after the
inputs are provided. FIGS. 3B and 3C show conceptual
examples of computations at various layers of a trained
spiking neural network (SNN) and prediction accuracy of
the SNN for a particular set of asynchronous inputs at
various points in time as the inputs are provided, and
computations and predication accuracy of an SNN enhanced
using techniques described herein. FIG. 30 shows an
example of hardware that can be used to implement an SNN
trained and refined using techniques described herein.

[0072] As shown in FIG. 3A, in an ANN, processing
proceeds one layer at a time, and no output is available until
the final layer finishes processing. As shown in FIG. 3B, a
conventional SNN can provide an output much earlier than
the ANN, as inputs can propagate through the layers rela­
tively quickly. The accuracy of the initial output is lower
than the output of the ANN, however, as the SNN reaches a
steady state, the accuracy improves to a similar level as the
output provided by the ANN.

[0073] In some embodiments, mechanisms described
herein can be used to shift the latency-accuracy curve
toward lower latency, and can reduce power consumption by
reducing the number of activations, while at least maintain­
ing a similar steady state accuracy. As shown in FIG. 3C,
mechanisms described herein can provide an initial output in
about the same amount of time as the conventional SNN
represented by FIG. 3B, and can increase in accuracy more
quickly (e.g. , reaching a similar steady state accuracy sig­
nificantly sooner than the conventional SNN). Additionally,
as shown in FIG. 3C, the number of spikes (representing
neuron activations) can be reduced using mechanisms
described herein, which can reduce the number of compu­
tations performed by the system, thereby having the poten­
tial to reduce power consumption.

6
Nov. 10, 2022

[0074] In some embodiments, mechanisms described
herein can have a greater impact on efficiency when imple­
mented on neuromorphic hardware, such as chips based on
the Loihi architecture developed by Intel, Corporation head­
quartered in Santa Clara, Calif. Neuromorphic hardware is
still a relatively nascent technology, and limited access to
such hardware has limited widespread adoption of SNN s for
computer vision applications. As described below in con­
nection with TABLES I and 2, mechanisms described herein
were tested using an SNN simulator (sometimes referred to
herein as SaRNN). The simulator was developed in connec­
tion with mechanisms described herein to demonstrate effi­
ciency improvements that can be realized using mechanisms
described herein. SaRNN is orders of magnitude faster than
other SNN simulators, which facilitates simulation of SNNs
with complexities that were previously infeasible. SaRNN
also supports relatively simple mapping to neuromorphic
platforms such as the Spinking Nueral Network Architecture
(SpiNNaker) developed by the Advanced Processor Tech­
nologies Research Group (APT) at the Department of Com­
puter Science, University of Manchester using the PyNN
API made available via NeuralEnsemble(dot)org using the
PyNN language described in Davison, et al., "PyNN: a
common interface for neuronal network simulators," Front.
Neuroinform, 2:11 (2009).
(0075] As described above in connection with FIGS. 3B
and 3C, mechanisms described herein can improve latency
and reduce power consmnption. The latency and power
consumption of a trained SNN can be measured after
training is completed. However, defining metrics that can be
used to represent the latency and power consumption of an
SNN can faci litate training and/or refinement of an SNN that
is configured to improve those metrics (e.g., by including
terms based on the metrics in the loss function).

[0076] Multiple metrics can be defined to attempt to
quantify latency and power consumption of an SNN. For
example, given the smooth latency-accuracy tradeo:ff curve
shown in FIGS. 3B and 3C, a possible latency metric can be
defined based on a measurement of the number of time steps
required for the curve to cross a predetermined accuracy
threshold. However, such a metric can be sensitive to the
choice of threshold, and the result does not vary smoothly
with network dynamics (e.g., a model can take 8 or 9 time
steps to cross the threshold, but not 8.5 time steps).

(0077] In some embodiments, latency can be defined
based on the area above the accuracy-time curve (shown
shaded in FIG. 3C). In general, an SNN can generate an
output (sometimes referred to herein as an inference) at each
of T time steps. The accuracy of the SNN at each step can
be represented by a value a,, such that the instantaneous
accuracy at each time step can be represented by values a1 ,

a2, •. • , ar and aANN can represent the asymptotic ANN
accuracy (e.g. , the accuracy of the ANN prior to conver­
sion). Latency can be represented by a metric referred to
herein as L-briskness, which can be defined as a value bv
where

(I)

L-briskness can represent a comparison of the total error
(over all time steps) to that of a model which immediately
achieves maximum accuracy. Note that lower values of
L-briskness correspond to lower latency, as lowering
L-briskness corresponds to "lifting" the accuracy-latency
curve shown in FIG. 3C such that the area above the curve

�����������������	
 ��
����������

US 2022/0358346 Al

is reduced (e.g., L-briskness for the SNN in FIG. 3C is
higher than L-briskness for the SNN in FIG. 3B).
[0078] In some embodiments, power consumption can be
defined based on number of synaptic events that occur at
each of the T time steps. The number of synaptic events
processed by the SNN at each step can be represented by a
value et, such that the number of events at each time step can
be represented by values e1, e2 , ... , eT. Power consumption
can be represented by a metric referred to herein as P-brisk­
ness, which can be defined as a value bp, where

(2)

Note that spiking events are represented in FIGS. 3B and 3C,
but spiking events and synaptic evens, while related, are
different events. When a neuron in the SNN spikes (some­
times referred to herein as a spiking event), one synaptic
event is triggered for each of the outgoing synapses asso­
ciated with the neuron. The metrics L-briskness and/or
P-briskness are used herein to evaluate the efficiency of
SNNs with different characteristics (e.g., number of neurons,
parameters, weights, initialization values, etc.).
[0079] FIG. 4A shows an example of a topology of spiking
neural network (SNN) that can be enhanced using mecha­
nisms described herein in accordance with some embodi­
ments of the disclosed subject matter. In generally, SNNs are
structurally similar to many ANNs, with neurons connected
by weighted synapses to form a network. SNN neurons can
communicate by passing spikes (which is sometimes can
referred to as "current" based on similarities to electrical
current carried by synapses in the brain). Incoming current
on a synapse can change a value associated with the neuron
(which is sometimes referred to as the "membrane potential"
(voltage) of a neuron), and may cause the neuron to spike if
a certain threshold condition is met.
[0080] The relatively simple topology shown in FIG. 4A
includes an input layer, one hidden layer, and an output
layer. For example, the input layer can include p neurons, the
hidden layer can include q neurons, and the output layer can
include n neurons. In a particular example, an example SNN
was generated using techniques described herein from an
ANN having 128 input nodes, 128 nodes in a hidden layer,
and 10 output nodes, in which each layer is fully connected
to each preceding layer. Such an ANN is described as Dense
MNIST in Appendix A, which is hereby incorporated herein
by reference in its entirety. An SNN converted from such an
ANN can include p=128 neurons in the input layer, q=128
neurons in the hidden layer, and n=lO neurons in the output
layer.
[0081] FIG. 4B shows an example of scaling of incoming
weights and outgoing weights of a neuron in an SNN that
can be used to enhance efficiency of an SNN using mecha­
nisms described herein in accordance with some embodi­
ments of the disclosed subject matter. As described in more
detail below in connection with EQ. (6) and in connection
with FIG. 5, each incoming connection to a neuron, which
can be referred to as a synapse, can be associated with a
weight W, which can impact how much a spike from a
neuron in a previous layer impacts the neuron. As described
below in connection with FIG. 5, an SNN can be refined by
scaling the incoming weights of a neuron by a factor T], and
the incoming connection from that neuron to downstream
neurons can be scaled by a factor 1/T]. Effectively scaling
steady-state firing rates can facilitate high accuracy, low
latency, and low power consumption. Mechanisms

7
Nov. 10, 2022

described herein can be used to implement a scaling tech­
nique, which can explicitly account for some loss and can
scale at the level of each neuron.
[0082] FIG. 4C shows an example of hardware that can be
used to implement an SNN, which can be trained and
enhanced using techniques described herein. An SNN can be
implemented using neuromorphic hardware, such as proces­
sors developed for SpiNNaker.
[0083] In some embodiments, there are various axes of
components and parameters that can be selected in process
of configuring an SNN. For example, many different net­
work topologies can be used to implement an SNN (e.g., by
varying the number of neurons at each layer, the number of
layers, etc.). Given a particular network topology, some of
the axes that can be adjusted include the neuron model used
to implement the neurons, the spike coding scheme, and the
training technique(s) used.
[0084] The neuron model can characterize how individual
neurons respond to input, update an internal state (e.g. ,
membrane potential), and produce an output. For example,
some neuron models are intended to approximate the elec­
trical dynamics of biological neurons. For simplicity,
mechanisms described herein are described in connection
with a more abstract model, which is sometimes referred to
as a non-leaky integrate and fire (NL-IAF) neuron. This
model has several computational advantages. For example,
the NL-IAF neuron model allows SNN training via conver­
sion from a trained ANN. As another example, the NL-IAF
neuron model has a lower computational cost of simulation
than models that are intended to more closely approximate
biological neurons. In a more particular example, neuron
updates for NL-IAF neurons can be calculated using only
multiplication and addition, whereas some other neuron
models use exponentiation, which is generally more
resource intensive. Additionally, matrix multiplication can
be used to efficiently compute many updates in parallel. As
yet another example, the NL-IAF neuron model does not
utilize hand-tuned parameters (e.g., a refractory period or
response time).
[0085] The NL-IAF model can be represented using the
relationship:

{
) jf Vj,I 2:)

eJ,t = 0 else '
(3)

where j represents the neuron index, t represents the current
time step, and Vj., represents the neuron membrane potential.
The neuron can fire when the potential exceeds a pre­
specified threshold (e.g., 1 in EQ. (3), however this is merely
an example). The variable ej., can indicate whether a spike
is fired by the j neuron at time t.
[0086] After a spike, the membrane potential can be reset
by subtraction. Accordingly, if Ij ., is used to represent the
incoming current at time t, the membrane potential Vj at time
t can be represented using the relationship:

(4)

[0087] The incoming current Ij., can be represented using
the relationship:

(5)

where sj,, can represent a binary-valued vector (e.g., 1 for a
spike, 0 otherwise) of incoming spikes at time t, including

�����������������	
 ��
����������

US 2022/0358346 Al

one entry for each incoming synapse, w1 can represent a
vector of synaptic weights associated with incoming syn­
apses, and b1 can represent the neuron bias of neuron j.

[0088] FIG. 5 shows an example 500 of a flow for training,
enhancing, and using SNNs with improved efficiency in
accordance with some embodiments of the disclosed subject
matter. In some embodiments, mechanisms described herein
can be used to train and refine an SNN to perfom1 at least a
portion of a computer vision task, such as classification of
image data (e.g., classifying an image as including a par­
ticular class of object), segmentation of a portion of an
image (e.g., identifying which portion(s) of an image rep­
resents an object that falls within a particular class, or that
has particular characteristics). Note that although mecha­
nisms described herein are general described in connection
with image data, this is merely an example, and mechanisms
described herein can be used to refine an SNN trained to
perform a task associated with any suitable sequential data,
such as image data, audio data, spatial data, seismography
data, etc. Sequential data may or may not be time-series
data.

[0089] Note that SNNs are often non-differentiable (see,
e.g., EQ. (4)), so conventional backpropagation caruiot be
used for training an SNN. There are various classes of SNN
training techniques that can be used in lieu of backpropo­
gation of an SNN directly. For example, spike-based back­
propagation techniques have been developed that use a
differentiable proxy to approximate non-differentiable
dynamics. As another example, local learning techniques
have been developed that adjust synapse weights using only
locally available information (e.g., pre and post-synaptic
firing times). As yet another example, ANN conversion
techniques have been developed that can generate synapse
weights for an SNN with a similar topology to the ANN
based on weights associated with corresponding nodes of the
ANN. In some embodiments, mechanisms described herein
can use ANN to SNN conversion techniques. In ANN to
SNN conversion, an ANN can be trained using conventional
backpropagation and the resulting weights can be copied to
an SNN. In comparison to spike-based backpropagation and
local learning, ANN conversion can achieve higher accuracy
and can scale better to large-scale datasets (e.g., datasets like
ImageNet). However, some mechanisms described herein
can be used in connection with SNN training techniques
other than ANN to SNN conversion. For example, rather
than starting with an untrained ANN (e.g., as described
below in connection with 502-512), process 500 can start
with an untrained SNN (e.g., in lieu of a trained SNN at
514). In such an example, 502-512 can be omitted, and
process 500 can start at 514 (with an untrained SNN rather
than a trained SNN).

[0090] As shown in FIG. 5, labeled training data 502 can
be used to train an untrained ANN 504. In some embodi­
ments, labeled training data 502 can include any suitable
data. For example, labeled training data 502 can include
images that depict various classes of objects, with each
image labeled based on the object(s) that is included in the
image. Such training data can be used to train an ANN to
perform an image classification task (e.g., to predict whether
an object of a particular class is present in an unlabeled
image). In a more particular example, labeled training data
502 can include images from the ImageNet database labeled
based on the object class in the image. As another example,
can include images that depict one or more classes of

8
Nov. 10, 2022

objects, with each pixel of the image labeled as correspond­
ing to a particular category, such as a particular object,
background, etc. Such training data can be used to train an
ANN to perform an image segmentation task (e.g. , to predict
which pixels of an unlabeled image, if any, depict a particu­
lar type of object). Note that these are merely an examples,
and labeled training data 502 can include any suitable data
labeled using any suitable techniques.
[0091] In some embodiments, untrained ANN 504 can be
trained (e.g., using computing device 110, using server 120,
using computer vision system 104) using labeled training
data 502. In some embodiments, untrained ANN 504 can
have any suitable topology, such as a topology described in
Appendix A, or any other suitable topology. For example,
the ANN can be a relatively simple feed forward network
(e.g., similar to the network shown in FIG. 4A). As another
example, the ANN can be a complex convolutional neural
network (CNN) or other deep learning network. As yet
another example, the ANN can be any other suitable feed
forward network. In a more particular example, the ANN
can be a relatively simple stacked architecture (e.g. , LeNet,
AlexNet, VGG). As another more particular example, the
ANN can be a residual architecture with skipped connec­
tions (e.g., Res Net). As yet another more particular example,
the ANN can be based on an architecture with early outputs
(e.g., Inception).
[0092] In some embodiments, untrained ANN 504 can be
trained using any suitable optimizer, such as stochastic
gradient descent, Adam (e.g. , based on an optimizer
described in Kingma et al. , "Adam: A Method for Stochastic
Optimization," available at arxiv(dot)org, 2014), RMSprop
or any other suitable optimizer. As shown in FIG. 5, a
particular labeled training sample can be provided as input
to untrained ANN 504, which can generate output 506
representing an inference or set of inferences for the image
and/or each pixel of time image (e.g., based on the type of
task that the ANN is being trained to perform).
(0093] In some embodiments, labeled training data 502
can be formatted in any suitable format. For example,
labeled training data 502 can be formatted as a color image
(e.g., an RGB image). As another example, labeled training
data 502 can be formatted as a monochrome image, such as
a grayscale image. As yet another example, labeled training
data 502 can be formatted as depth values (e.g., representing
LiDAR data, representing 3D image data). As still another
example, labeled training data 502 can be formatted as an
image in which each pixel is associated with one or more
intensity values (e.g. , a single grayscale value, RGB inten­
sity values, etc .) and a depth value. In some embodiments,
intensity values associated with different colors can be input
to untrained ANN 504 using different charuiels. For
example, untrained ANN 504 can have a first channel
corresponding to red, a second channel corresponding to
green, and a third channel corresponding to blue. As another
example, untrained ANN 504 can have a first channel
corresponding to an intensity value (e.g., a grayscale value,
a red value, etc.), another channel corresponding to a depth
value, and any other suitable cham1els (e.g., corresponding
to green and blue values).
(0094] In some embodiments, output 506 can formatted in
any suitable format. For example, output 506 can be for­
matted as a set of predicted classifications (e.g., a value
associated with various classes that the ANN is being trained
to classify). As another example, output 506 can be format-

�����������������	
 ��
����������

US 2022/0358346 Al

ted as a mask indicating which pixels correspond to a
particular type of object. In a more particular example, if the
ANN is being trained to segment a particular object, output
506 can include a value for each pixel indicating whether the
pixel depicts a particular object (e.g., where a 1 indicates
that the object is present in the pixel and a O indicates that
the object is not present). In such an example, if there are n
possible object classes, the output layer can be configured
with n channels, such that the output channel has dimensions
of height*width*n (h*w*n), such that each pixel is associ­
ated with n output nodes, with one output node correspond­
ing to each class, and the output of each node can indicate
a probability of membership in that class. At each pixel, the
predicted class can the node with the highest output prob­
ability.
[0095] In some embodiments, output 506 generated for a
training image can be compared to the label associated with
the training to evaluate the perfonnance of untrained ANN
504. For example, a loss value can be calculated using loss
function LANN Any suitable loss function L ANN can be used
to train untrained ANN 504, which can vary based on the
task which untrained ANN 504 is being trained to perform.
[0096] In some embodiments, the loss value can be used
to adjust weights of untrained ANN 504. For example, a loss
calculation 508 can be performed (e.g. , by computing device
110, by server 120, by material decomposition system 104)
to generate a loss value that can represent a performance of
untrained ANN 504. The loss value generated by loss
calculation 508 can be used to adjust weights of untrained
ANN 504.
[0097] In some embodiments, after training has converged
(and the untrained ANN 504 performs adequately on test
data), untrained ANN 504 with final weights can be used to
implement as a trained ANN 510.
[0098] Additionally, in some embodiments, after training
has converged, untrained ANN 504 can be further trained
(e.g. , which can be referred to as fine-tuning or refining)
using an adjusted loss function L'ANN that is configured to
encourage sparsity in the SNN. As described below in
connection with EQ. (11), untrained ANN 504 can be refined
using a penalized loss function L'ANN> that can encourage
sparsity (e.g. , reducing the number of spike events). In some
embodiments, a trained ANN can be fine tuned using penal­
ized loss function L'AN N to promote sparsity in an SNN
generated from the trained ANN. For example, an ANN that
has previously been trained to perform a computer vision
task based on synchronous data can be fine-tuned for con­
version to an SNN to perform the same computer vision task
based on asynchronous data without retraining the ANN.
Alternatively, in some embodiments, untrained ANN 504
can be trained (e.g. , from scratch) using loss function L'ANM
such that training and of untrained ANN 504 is combined
with fine-tuning to encourage sparsity. Note that in some
applications described herein, training untrained ANN using
L ANN and refining using L'ANN produced superior results
(e.g. , better accuracy and/or sparsity). However, training
untrained ANN 504 from scratch using L'ANN can result in a
more efficient SNN (e.g., with better sparsity) than an ANN
trained using only LANN (and in some applications, may
produce better results than training and refining).
[0099] In some embodiments, trained ANN 510 can be
converted (e.g., using computing device 110, using server
120, using computer vision system 104) to a trained SNN
514 at 512 using any suitable technique or combination of

9
Nov. 10, 2022

techniques. The topology of the ANN can be configured to
facilitate conversion from ANN to SNN. For example, a
rectified linear unit (ReLU) activation function can be used
to implement activations in the ANN with relatively few
exceptions (e.g., a final layer can be implemented using a
softmax activation function). Using ReLU for activations
can ensure that a valid mapping of nodes of the ANN to
NL-IAF neurons is possible. As another example, max
pooling layers can be omitted (e.g., average pooling layers
can be used in lieu of max pooling). Note that this is merely
an example, and other neuron models can correspond to
different activation functions. For example, a sigmoid acti­
vation function can be represented using a leaky integrate
and fire neuron model. In such an example, an SNN imple­
mented using leaky integrate and fire neurons can be con­
verted from an ANN implemented using sigmoid activation
functions (e.g., in lieu of ReLU activation functions).
[0100] In some embodiments, a computing device (e.g. ,
using computing device 110, using server 120, using com­
puter vision system 104) executing the conversion at 512
can use multiple techniques to convert an ANN (e.g., an
appropriately implemented ANN that uses ReLU and omits
max pooling layers) to an SNN (e.g. , with NL-IAF neurons).
For example, the computing device can substitute a neuron
for each node in the ANN, and can generate a synapse
between nodes of different layers based on connections
between nodes in the ANN. In a more particular example, for
two fully connected layers (e.g., i and i+l), the computing
device can replace each node in layer I with a neuron, and
can replace each node in layer i+l with a neuron. The
computing device can generate a synapse between each
neuron in layer i and each neuron in layer i+l.
[0101] As another more particular example, for two layers
(e.g., i and i+l) of a convolutional network (e.g. , imple­
mented using a 3x3 convolution filter operation between
layers), the computing device can replace each node in layer
i with a neuron, and can replace each node in layer i+l with
a node. If layer i+ 1 of the ANN has an output of 32x32x64,
layer i+l of the SNN can include 32x32x64 neurons, and the
computing device can generate a synapse from each of
3x3x64 neurons (i.e., 576 neurons) in layer i to each neuron
in layer i+l. In such an example, synapse weights can be
taken from the convolution kernel, and can be scaled by the
batch normalization ~L parameter, and the bias associated
with neuron can be taken from the convolution bias, and
then scaled and offset using the batch normalization µ and a
parameters.
[0102] As another example, the computing device can
adjust the model weights for various neurons based on the
batch normalization transforms associated with the neuron.
This can incorporate batch normalization transforms form
the ANN into the weights for the neurons, as the SNN does
not include batch normalization. As another example, the
computing device can apply data-based normalization to the
ANN to dive the maximum activation toward 1 (the maxi­
mum possible firing rate). In a more particular example, the
computing device can pass training data through the ANN
and, at each layer, can scale the weights and biases such that
the maximum activation becomes 1. As yet another example,
the computing device can discard any ReLU activations, and
can copy ANN layers to the SNN.
[0103] In some embodiments, the computing device can
configure a preliminary input layer (e.g., prior to a first layer
of neurons, which are referred to in FIG. 4A as an input

�����������������	
 ��
����������

US 2022/0358346 Al

layer) to convert floating-point values (e.g., image pixel
intensities) to spike trains (e.g., for refinement of the SNN
with additional training data). Alternatively, in some
embodiments, during refinement the computing device can
convert floating-point values (e.g., image pixel intensities)
to spike trains prior to providing input to the first layer of
neurons (e.g. , the input layer). In some embodiments, a rate
coding technique can be used to convert floating-point
values into spike trains. For example, the input layer or the
computing device can generate a spike train with a firing rate
(e.g. , the number of spikes per time step) that equals the
floating-point pixel intensity. In some embodiments, a pre­
liminary input layer can be omitted (and/or removed) from
an SNN that is to be used with a data source that natively
produces spike trains rather than floating point values (e.g.,
an image sensor configured to output pulses when single
photons are detected). In such embodiments, the input spike
trains can be provided to inputs of the neurons in the input
layer (e.g., rather than a preliminary input layer converting
floating point values to spike trains). Note that mechanisms
described herein can produce outputs more quickly than
conventional ANNs (e.g., providing a fast, relatively accu­
rate result) regardless of whether the data source is a
synchronous or asynchronous data source. For example, as
described above in connection with FIGS. 3A to 3C, using
an SNN rather than a conventional ANN can produce
relatively fast and accurate output much sooner than an
output is produced by the conventional ANN. Using mecha­
nisms described herein can further reduce latency and
improve power consumption of the SNN.

[0104] In some embodiments, the computing device can
configure a final output layer to generate values indicative of
a prediction about the input data based on the states and
spike trains of output neurons. For example, an SNN trained
as a classifier can be configured with an output layer that
identifies a "most activated" neuron, and predicts a classi­
fication based on the class associated with that neuron. In
such an example, as output neurons update at each time step,
the prediction can change over time (e.g., output neuron 1
can be most active initially, but output neuron 3 may become
most active as time advances). Note that the smooth Pareto
optimal accuracy-latency curve of FIGS. 3B and 3C can be
attributed to the ability of the prediction to change over time
as changes in the most activated neuron change. By contrast,
the output of an ANN is generated at a specific time step, and
does not change (e.g. , as shown in FIG. 3A).

[0105] In some embodiments, labeled asynchronous data
516 can be used to refine trained SNN 514. In some
embodiments, labeled asynchronous data 516 can include
any suitable data, such as data described above in connection
with labeled training data 502. Note that although labeled
asynchronous data 516 is described herein as asynchronous
data, this is merely for convenience, and labeled asynchro­
nous data 516 can be formatted as floating point values, and
a preliminary input layer of trained SNN 514 can convert the
data to spike trains. In some embodiments, labeled asyn­
chronous data 516 can be formatted in any suitable format,
such as a fonnat(s) described above in connection with
labeled training data 502.
[0106] In some embodiments, trained SNN 514 can be
refined (e.g., using computing device 110, using server 120,
using computer vision system 104) using labeled asynchro­
nous data 516 using any suitable technique or combination
of techniques. For example, in some embodiments, trained

Nov. 10, 2022

SNN 514 can be refined using any suitable optimizer, such
as a derivative-free optimizer (e.g., because the NL-IAF
neuron model is not differentiable). For example, the Sub­
Plex algorithm included in the NLopt Nonlinear Optimiza­
tion Package. However, this is merely an example, and any
suitable optimizer can be used during refinement of trained
SNN 514, such as constrained optimization by linear
approximations (COBYLA), principal axis (PRAXIS),
Nelder-Mead simplex, or any other suitable derivative-free
optimizer. As shown in FIG. 5, a particular labeled training
sample from labeled asynchronous data 516 can be provided
as input to trained SNN 514, which can generate output 518
representing an inference or set of inferences for the input
and/or each pixel of time image (e.g., based on the type of
task that the SNN is being trained to perfonn).
[0107] In some embodiments, output 518 can formatted in
any suitable format. For example, output 518 can be for­
matted as a set of predicted classifications (e.g. , a value
associated with various classes that the ANN is being trained
to classify). As another example, output 518 can be format­
ted as a mask indicating which pixels correspond to a
particular type of object. In a more particular example, if the
SNN is trained to segment a particular object(s), output 518
can include a value for each pixel indicating whether the
pixel depicts a particular object. For example, if there are n
possible object classes, the output layer can be configured
with n channels, such that the output channel has dimensions
of height*width*n (h*w*n), such that each pixel is associ­
ated with n output neurons, with one output neuron corre­
sponding to each class. At each pixel, the predicted class can
be based on the most activated neuron of the n neurons
associated with the pixel.
[0108] In some embodiments, output 518 generated for a
labeled input (e.g., input image) can be compared to the
label associated with the labeled input to evaluate the
performance of trained SNN 514. For example, a loss value
can be calculated using a loss function L sNN Any suitable
loss function L sNN can be used to refine trained SNN 514,
such as a loss based on latency briskness (e.g. , described
above in connection with EQ. (1)) and/or a loss based on
power briskness (e.g., described above in connection with
EQ. (2)).
[0109] In some embodiments, the loss value can be used
to adjust properties of trained SNN 514. For example, a loss
calculation 520 can be performed (e.g., by computing device
110, by server 120, by material decomposition system 104)
to generate a loss value that can represent a performance of
trained SNN 514. The loss value generated by loss calcu­
lation 520 can be used to adjust properties of trained SNN
544.
[0110] A spike cocling scheme can define the correspon­
dence between a spike train and a real-valued activation. In
general, a spike coding scheme is not explicitly imple­
mented for an SNN, but instead arises implicitly from the
neuron model. Examples of coding schemes include tem­
poral coding and rate coding. A temporal spike coding
scheme can encode activations based on the absolute firing
times of the neurons. A rate spike coding scheme can encode
activations based on mean firing rates of the neurons. Rate
coding offers many advantages, including ease of interpre­
tation, naturally pairing with the NL-IAF neuron model, and
robustness to noise in spike arrival times. A disadvantage of
rate coding in general is the large nmnber of spikes that may
be required to represent each activation. However, mecha-

�����������������	
 ��
����������

US 2022/0358346 Al

nisms described herein can reduce the number of spikes that
represent each activation, mitigating this potential disadvan­
tage of rate coding and thereby increasing the performance
of computing devices that utilize rate coding to make
predictions.
[0111] Characteristics of an SNN, such as accuracy,
latency, and power consumption of the SNN are related to
the firing rates of the neurons in the SNN. A spiking neuron
j can be characterized as having an output spike train ®j.I,
0j_2 , . . . , e j ,T• A steady-state firing rate rj,~ can be
represented using the relationship:

r j.= = lim (1 r '\'T ®1.,)
T➔oo ~ = O

(6)

Adjustments to the SNN that cause changes to steady-state
firing rates can impact model properties . Mechanisms
described herein can adjust properties of an SNN to change
the steady-state firing rate of neurons of the SNN to values
that achieve desirable model properties, such as high accu­
racy, low latency, and/or low power consumption (e.g., via
an optimization process). In a more particular example,
neurons with low firing rates (e.g., a relatively small value
of r) may take many time steps to produce a first spike as an
output, whereas neurons with firing rates greater than 1
(which can be referred to as a relatively large value of r) can
saturate and code an incorrect value. Combining many
neurons in a network results in more complex and subtle
behaviors that emerge from interactions of the neurons.
[0112] In a rate coded SNN, scaling the activation of a
neuron by a factor 172'.0 can impact a steady-state firing rate
of the neuron (e.g., scaling the neuron by factor 17 can
change the value of r). Additionally, in some embodiments,
mechanisms described herein can change the activation
scale 17 without altering the network representation or sub­
stantially negatively impacting accuracy. For example,
mechanisms described herein can scale weights of down­
stream neurons to reduce or eliminate an adverse impact that
activation scale 17 may otherwise cause.
[0113] In some embodiments, mechanisms described
herein can iteratively (e.g., using an optimization process)
adjust activation scaling fac tors 17 associated with neurons of
an SNN to improve perfonnance and/or efficiency of the
SNN (e.g. , resulting in reduced latency and/or reduced
power consumption).
[0114] A scaling set H can be defined that include scaling
factors 17 for a network N (e.g., all scaling factors 17 for the
network). For example, 17j2'.0 can be an activation scaling
factor for the j'h neuron in network N, and scaling set
H={ll) can include all scaling factors for the network N.
[0115] In some embodiments, mechani sms described
herein can refine trained SNN 514 based on some loss L sNN

(e.g., based on latency briskness and/or power briskness) on
the output (e.g., output 518) and dynamics of the SNN. In
some embodiments, mechanisms described herein can use
an initial scaling set H0 for the trained SNN (e.g., trained
SNN 514). During a refinement process for trained SNN
514, mechanisms described herein can considerably reduce
LsNN from the value of LsNN generated using scaling set H0

by explicitly refining LsNN over H. For example, L sNN can be
evaluated by simulating the SNN (e.g., using computing
device 110, using server 120, using computer vision system
104); which can accurately reflect spiking temporal dynam-

11
Nov. 10, 2022

ics. Many loss function L sNN can be used to refine an SNN,
and a particular example is described below.
[0116] Conventional techniques for scaling neurons gen­
erally only allow scaling at the level of the layer, based on
the assumption that more granular scaling would cause the
SNN to depart from the ANN representation. However, as
described below, mechanisms described herein can be used
to scale at more granular scale than the layer level without
causing the SNN to depart from the ANN representation
(e.g., without significantly impacting accuracy). For
example, if layer i+ 1 is weighted, it is possible to scale layer
i at the neuron level without altering the network represen­
tation.
[0117] In some embodiments, mechanisms described
herein can scale the activation of neuron j by 17j by multi­
plying the incoming weights (e.g., weights of incoming
synapses) and bias by llp Additionally, mechanisms
described herein can isolate the change by multiplying the
outgoing weights by l/17j (e.g., as shown in FIG . 4B). The
net result of such "isolated scaling" can be that only the
activation of neuron j changes, so the ANN representation
and output are substantially preserved.
[0118] In some embodiments, "neuron-level scaling" can
be applied at the channel level in convolutions (e.g., due to
consequences of weight sharing between neurons in the
same channel). For example, a convolution layer
[0119] Additionally, in some embodiments, unweighted
pooling layers generally lack adjustable weights, and
accordingly cannot be scaled (e.g., if the layer i+l is an
unweighted pooling layer, such as a max pooling layer). In
some embodiments, mechanisms described herein can use
weighted pooling (e.g., average pooling) in the ANN and,
before conversion, such weighted pooling can be replaced
with an equivalent depthwise convolution.
[0120] In some embodiments, mechanisms described
herein can use a loss function L sNN that can be represented
using the relationship:

(7)

where M can be the minimum of the error 1-a, over all t, and
AM, Av and Ap can be tradeoff hyperparameters that indicate
the relative importance of accuracy, latency, and power
consumption, respectively. In some embodiments, tradeoff
hyperparameters can be set manually. As described above,
when a neuron model is not differentiable, a derivative-free
optimizer can be used to perform an optimization process
based on L sNN·

[0121] In some embodiments, mechanisms described
herein can refine the SNN by varying scaling factors of the
SNN at various levels of granularity. For example, mecha­
nisms described herein can perform model-level scaling
(e.g., using one global 17), layer-level scaling (e.g., using one
17 per layer), and neuron-level scaling (e.g., using one 17 per
neuron) in that order. Without a performant SNN simulator,
the derivative-free optimizations can take an impractical
amount of time to perform. Accordingly, in some embodi­
ments, mechanisms described herein can use a simulator
(e.g., the SaRNN simulator described above) which can
simulates a wide range of SNN architectures with practical
and relatively short computational times (e.g., orders of
magnitude lower computational times than conventional
SNN simulators). For example, SaRNN can achieves com­
putational gains by implementing spiking layers as custom
TensorFlow recurrent neural network (RNN) layers and

�����������������	
 ��
���	������

US 2022/0358346 Al

compiling models to static, highly optimized TensorFlow
graphs. SaRNN can support Message Passing Interface
(MPI), facilitating parallel processing via division of data
over multiple GPUs and/or compute nodes . Additionally,
SaRNN supports ANN conversion, SNN saving and loading,
firing rate scaling, and simulation with other backends via
PyNN.
[0122] In some embodiments, an SNN response can be
divided into multiple states, which can indicate where on the
accuracy curve the output of the SNN falls. For example, an
SNN can have a network initial state, a network steady state,
and a network transient state. In some embodiments, an
initial state I of an SNN N can be characterized by a set of
initial neuron potentials V 0, and can be expressed as
I={V 0}. An SNN N can be in a steady state at time T is, for
all netirons jE N and all times -r:2:T, the following relationship
is satisfied for some e>O:

Ir - ~ '\'7 e I < ,. ;,oo TLJ=O J,t

(8)

In some embodiments, an SNN N is in a transient state if it
is not yet in a steady state, and is no longer in the initial state.
[0123] In an SNN, a direct relationship exists between the
duration of the transient state and the latency of the network
(e.g., as shown conceptually in FIGS. 3B and 3C). The
temporal evolution of a spiking neural network generally
depends on multiple factors , the sequence of inputs, the
network parameters, and the initial state. In general, the
sequence of inputs cannot be controlled, as the sequence of
inputs to a deployed SNN can be expected to be novel.
However, two of these factors can be adjusted. For example,
adjusting the scaling of each neuron (e.g., using scaling
factor T]) and changing the sparseness of the network can
both alter the network parameters. As another example, the
initial state of the SNN can be adjusted, and the initial state
VO can strongly influence the duration of the transient state.
[0124] In general, neurons can be initialized to a single
common global value, or different neurons can be initialized
with different values. For example, in some embodiments,
mechanisms described herein can initialize all neurons with
a global V 0. In many conventional SNNs, neurons are all
initialized to a global value V 0=O, which can be referred to
as a "cold start" initial model state. A cold start can result in
relatively high latency (e.g., depicted in FIG. 3B). As
described below, if a global values is used, a value V 0=O.5,
which can be referred to as a "warm start" initial model state,
can represents a more natural state and can improve perfor­
mance (e.g. , as shown in FIG. 8).
[0125] In some embodiments, mechanisms described
herein can refine the SNN over the SNNs initial state by
allowing I to vary between neurons. For example, initial
state I can be incorporated into the loss function described
above in connection with EQ. (7) to create L5N,v(H, I). At
each phase, the dimensionality of the search space can be
increased (e.g., doubled) to include one value of VO for each
value of TJp Explicitly refining the SNN based on ihe initial
state I (e.g., potentials V 0) can steepen the convergence
curve, and reduce latency (e.g., as described below in
connection with FIG. 7). Note that because layer i must
converge to its steady-state for layer i+ 1 to receive an
accurate input, the steepening effect can stack as the network
gets deeper (e.g., the improvement in latency can be greater

12
Nov. 10, 2022

for deeper networks compared to use of a global V 0). Note
that although refinement based on I is described as being
performed concurrently with refinement based on H, this is
merely an example, and mechanisms described herein can
refine an SNN based on I without refining based on H (e.g.,
using a loss function LsNN(I), rather than LsNN(H, I)).
[0126] Note that refinement based on H and I target SNN
dynamics, leaving the underlying ANN representation sub­
stantially unchanged. However, the ANN representation
itself may cause inefficiency in the SNN. For example,
although there have been approaches for sparsifying ANN
representations (e.g. , adjusting properties of the ANN to
reduce the number of calculations needed to produce an
output), ANN sparsity often does not directly translate into
concrete efficiency gains for an SNN generated based on an
ANN conversion. The unit of computation in an ANN is a
matrix product, and sparse matrix multiplication algorithms
often require high levels of sparsity to be effective. How­
ever, in an SNN, the unit of computation is a spike rather
than a matrix product. Accordingly, sparsifying the neuron
activations of an SNN can reduce the number of spikes, and
sparsifying the weights can reduce the synaptic events
generated per spike. In some embodiments, mechanisms
described herein can adjust training of the ANN (e.g., at
502-508) by incorporating an activation loss term La and/or
a synaptic sparsity loss term Ls, each of which is described
below.
[0127] In some embodiments, activation loss term La can
leverage batch normalization (BN) in the ANN. For
example, as illustrated in FIG. 9A, the BN ~ parameter can
control the mean of the activation distribution, and can be
used to change the number of positive (e.g., nonzero after
ReLU) ac tivations.
[0128] In some embodiments, mechanisms described
herein can use an activation loss term La represented by the
relationship:

1 '\' 11, ((/3,)) La= --Lile - erf - + 1 ,
~Ilk 2 .,/2

(9)

where nk represents the number of neurons in the SNN
corresponding to the k'h BN ~ value ~k- In the BN after
convolution, nk can correspond to the number of pixels per
channel, and after a fully-connected layer nk can be 1.
[0129] In some embodiments, mechanisms described
herein can use a synaptic sparsity loss term Ls represented by
the relationship:

(10)

where mk represents the number of synapses corresponding
to the k'h penalized weight wk· In a convolution, mk can
correspond to the number of pixels per channel, and in a
fully-connected layer mk can be 1. The Ls term can use an Ll
(lasso) penalty to push weights very near zero, and after fine
tuning of the ANN (e.g., using loss function L'ANN), weights
with magnitude less than some value E can be removed. In
some embodiments, E can be set to any suitable value, where
a higher value produces an SNN that is more sparse.
However, as the value increases, the accuracy of the SNN

�����������������	
 ��
���
������

US 2022/0358346 Al

may decrease. For example, E can be set to a value that is
much smaller than 0.01. In a more particular example,
results described below in connection with FIGS. 8, 9B, 10,
and 11 were generated using a value of E=l0-4 .

[0130] In some embodiments, mechanisms described
herein can use a penalized loss function L'ANN that incorpo­
rates La and/or Ls. In some embodiments, the penalized loss
L'ANN can be represented using the relationship:

(11)

where LANN can represent the loss used during initial train­
ing of an ANN, and "-a and "-s can be tradeoff hyperparam­
eters that indicate the relative importance of activation
sparsity and synaptic sparsity, respectively. In some embodi­
ments, tradeoff hyperparameters can be set manually. Note
that this is merely an example, and the ANN can be
fine-tuned using one of La and Ls while omitting the other
(e.g. , using L'Al\W=LAlvl0""-aLa or L'AJ\W=LAJvl0-A.sLJ. In
some embodiments, minimizing L'AJ\W can encourages an
SNN representation with fewer nonzero activations, which
can reduce the total number of spikes. Additionally or
alternatively, in some embodiments, minimizing L'ANN can
encourages an SNN representation with fewer weights,
which can reduce the number of synaptic events per spike.
However, adjusting the activations and weights can main­
taining approximately the same underlying network repre­
sentation of the ANN and SNN. Accordingly, by reducing
the number of spikes and/or synaptic events per spike,
refining the ANN to sparsify the SNN can significantly
reduce the power consumption of the SNN (e.g. , which can
be quantified using the P-briskness metric bP described
above in connection with EQ. (2)) while maintaining similar
overall accuracy. In some embodiments, ANN 504 can
refined (e.g. , using L'ANN) using any suitable optimizer, such
as stochastic gradient descent, Adam, RMS prop or any other
suitable optimizer. However, using stochastic gradient
descent may produce superior results when used with the Ll
penalty, as adaptive optimizers (e.g. , Adam or RMSprop)
can incorrectly weight the penalty term.
[0131] In some embodiments, after refinement has con­
verged, trained SNN 514 with final weights and initialization
values can be used to implement a refined trained SNN 522,
which can be used in a computer vision task (e.g. , by
computer vision system 104). In some embodiments, refine­
ment of trained SNN 514 can be omitted (e.g., represented
in FIG. 5 by the dotted block arrow between 512 and 522),
and trained SNN 514 can be used in lieu of refined trained
SNN 522. For example, trained SNN 514 can exhibit
improved power efficiency via refinement of the ANN using
loss function L'Al\W, and refinement using loss function LsNN
can be omitted. However, in general, refinement using loss
function Lsl\W can be expected to further improve efficiency
of the SNN (e.g., latency and power efficiency).
[0132] As shown in FIG. 5, unlabeled asynchronous data
524 can be provided as input to refined trained SNN 522,
which can generate one or more outputs 526 representing an
inference or set of inferences for the input data and/or each
pixel of input (e.g. , based on the type of task that the SNN
is being trained to perform).
[0133] FIG. 6 shows an example 600 of a process for
training, enhancing, and using SNNs with improved effi­
ciency to classify image data in accordance with some
embodiments of the disclosed subject matter. As shown in
FIG. 6, at 602, process 600 can train an ANN to perform a

13
Nov. 10, 2022

machine vision task or a task related to machine vision. In
some embodiments, process 600 can use any suitable tech­
nique or combination of techniques to train the ANN, such
as techniques described above in connection with 502-510
of FIG. 5.
[0134] Alternatively, in some embodiments, process 600
can receive, at 602, a representation of an ANN that has been
pre-trained to perform a machine vision task or a task related
to machine vision. 502-510 of FIG. 5.
[0135] At 604, process 600 can adjust parameters of the
trained ANN to sparsify the SNN to be generated by
conversion of the ANN, reducing latency and/or power
consumption of the SNN. In some embodiments, process
600 can adjust the ANN using any suitable technique or
combination of techniques that lead to the SNN being
sparsified (e.g. , reducing the number of activations and/or
synaptic events by the SNN compared to the number of
activations and/or synaptic events produced before adjust­
ment of the ANN. For example, in some embodiments,
process 600 can use techniques described above in connec­
tion with EQS. (9) to (11). In a more particular example,
process 600 can use a loss function L'AJ\W to fine tune an
ANN that was trained using a loss function LAJ\W· In such an
example, loss function L'AJ\W can include an activation loss
term La and/or a synaptic sparsity loss term Ls. In some
embodiments, process 600 can omit 604. For example, an
SNN can be refined without sparsifying the SNN (e.g. , using
a loss function L5~H, I), LsN~H) , or LSN~I)), which can
improve efficiency of the SNN regardless of whether the
SNN has been sparsified.
[0136] At 606, process 600 can convert the trained and
ANN to an SNN using any suitable technique or combina­
tion of techniques. For example process 600 can use tech­
niques described above in connection with 512 of FIG. 5. In
some embodiments, process 600 can omit 602-606. For
example, process 600 can receive a trained SNN which may
or may not have been converted from an ANN, and may or
may not have been sparsified using techniques described
herein. Alternatively, in some embodiments, process 600 can
train an SNN using any suitable SNN training techniques.
[0137] At 608, process 600 can adjust neuron weights of
the SNN to improve accuracy, to reduce latency, and/or to
reduce power consumption. In some embodiments, process
600 can use any suitable technique or combination of
techniques to adjust neuron weights of the SNN. For
example, as described above in connection with 514-520,
process 600 can use a loss function Lsl\W that is calculated
based on performance of the SNN after adjusting neuron
weights (e.g., as described above in connection with EQ.
(7)).
[0138] In some embodiments, process 600 can adjust one
or more values in a set of neuron scaling weights H (e.g., as
described above in connection with 514 of FIG. 5), and can
use L= to determine whether the changes to the set of
neuron scaling weights H improved performance of the
SNN. As described above in connection with EQ. 7, LsNN
can include an accuracy term (e.g., including M(H)), a
latency term (e.g. , including bL (H)), and/or a power con­
sumption term (e.g., including bp(H)).
(0139] In some embodiments, process 600 can select a
global neuron scaling weight (e.g. , YJgZo baI) using Lsl\W to
identify a value for YJgZoba I that minimizes Lsl\W when applied
to H0 • Additionally or alternatively, in some embodiments,
process 600 can find a set of layer-level neuron scaling

�����������������	
 ��
����������

US 2022/0358346 Al

weights (e.g. , 11;) that minimize L sNN· For example, if the
SNN includes five layer, process 600 can adjust each of five
layer-level neuron scaling weights 11; for 1:<=;i:<=;5.

[0140] In some embodiments, process 600 can find a set of
neuron-level neuron scaling weights (e.g., 11) that minimize
LsNN· As described above in connection with FIG. 4B,
process 600 can weight each neuron by a scaling weight llp
by multiplying a bias of each neuron by llp and multiplying
a weight applied to each outgoing synapse by llllj at the
neuron on the other end of the synapse.

[0141] For example, if neurons j in layer i and j+ 1 in layer
i+ 1 of an SNN network N, process 600 can find a global
scaling weight ll gtobat that minimizes L sNN by iteratively
adjusting and applying values of ll stobat such that the
weights associated with neuron j after fine-tuning the global
scaling weight can be expressed as ll s tobat *wj and ll stobat *bp
when i is the input layer, and the weights associated with
neuron j+ 1 after fine-tuning the global scaling weight can be
expressed as w + 1 and b+1 • As described below in connection
with neuron-l~vel sca{ing (and above in connection with
FIG. 4B), each neuron input can be weighted by global
scaling weight ll stobat and each outgoing weight from the
neuron can be weighted by ll11810baL· Accordingly, the end
result of global scaling can be that only the input layer is
scaled by ll sLobaL after global fine-tuning, while the other
layers are unaffected by global scaling. In such an example,
process 600 can find layer-level scaling weights 11; that
minimize L sNN by iteratively adjusting and applying values
of 11 ; to each layer. The weights associated with neuron j
after fine-tuning the layer-level scaling weights can be
expressed as

1 1
-r,; * 'lgtobal *WJ and -r,i * T/gtobat *bi
17t-1 17t-l

(note that as described above, ll sLobat can be omitted for
layers other than the input layer, and for the input layer,

can be omitted as there is no previous layer to which weight
11;-i was applied), while the weights associated with neuron
j+ 1 after fine-tuning the layer-level scaling weights can be
expressed as

1
- T/i+l * 1Jglobal *Wj+l - 1Ji+l * 1Jglobal *bj+l·
l] j l]j

Continuing the example, process 600 can find neuron-level
scaling weights that minimize LsNN by iteratively adjusting
and applying values of llj to each neuron. The weights
associated with neuron j after fine-tuning the neuron-level
scaling weights can be expressed as

1 1
---171* -TJt *lJgtobat*WJ and
17t,incoming T/ i- 1

14
Nov. 10, 2022

-continued
1 1

---1]1* -'l;* 'lgtobat*b1
T/i,incoming 1Ji-l

hp where llj.;ncoming is a product of the neuron level scaling
weights applied to each neuron in level i-1 to which neuron
j is connected. Similarly, weights associated with neuronj+l
after fine-tuning the neuron-level scaling weights can be
expressed as

1
----,,j+ l * -T/i *T/globat*Wj+ l and
T/J+ l ,incoming 'li

1
----l]J+ l * -T/i *T/gfobat *bj+l ,
1/J+l,in coming T/i- 1

hp where llj+J ,incoming is a product of the ne~ron level
scaling weights applied to each neuron m level 1 to which
neuron j is connected, including llp Note that neurons in the
final layer can remain unscaled (e.g. , during neuron level
scaling), due to the absence of outgoing weights to scale
(e.g., there are no incoming weights for neurons in a next
layer, because there is not a next layer).

[0142] At 610, process 600 can find a set of neuron
initialization values (e.g., V 0) that minimize L sNN· As
described above in connection with 514 of FIG. 5, process
600 can select an initialization value for each neuron starting
from initial values. For example, process 600 can start from
an initial global value, such as V 0=0 or V 0=O.5, or initial
values that vary between neurons (e.g., randomly, using
predetermined values, etc.).

[0143] In some embodiments, process 600 can adjust one
or more values in initial state I (e.g. , as described above in
connection with 514 of FIG. 5), and can use L sNN to
determine whether the changes to the set of initialization
values improved performance of the SNN. As described
above in connection with EQ. 7, L sNN can include an
accuracy term (e.g. , including M(I)), a latency term (e.g. ,
including bL (I)), and/or a power consumption term (e.g. ,
including bp(I)).

[0144] In some embodiments, process 600 can use an
initial global neuron initialization value (e.g., VO "'") using
L sNN to identify a val~e for_ V 0,,o1,a, that m!nimfzes L sNN·
Additionally or alternatively, m some embodiments, process
600 can find a set of layer-level and/or neuron level initial­
ization values (e.g., V0) that minimize L sNN·

[0145] In some emb~diments, after fine-tuning of initial­
ization values, a mean initialization values can be about 0.5
(e.g., within about 10% of 0.5), and the standard deviation
of the initialization values of each neuron can be greater than
10% of the mean. For example, the standard deviation can
be at least about 10% of the mean initialization value (e.g.,
at least 0.05 for a mean initialization value of about 0.5). As
another example, the standard deviation can be at least about
15% of the mean initialization value (e.g., at least 0.075 for
a mean initialization value of about 0.5). As yet another
example, the standard deviation can be at least about 20% of
the mean initialization value (e.g., at least 0.1 for a mean
initialization value of about 0.5). As still another example,
the standard deviation can be at least about 25% of the mean
initialization value (e.g., at least 0.125 for a mean initial­
ization value of about 0.5).

�����������������	
 ��
����������

US 2022/0358346 Al

[0146] In some embodiments, 608 and 610 can be per­
formed simultaneously. For example, process 600 can use a
loss function that refines the SNN based on both neuron
scaling weights Hand neuron initialization values Va (e.g.,
as described above in connection with EQ. (7)). Alterna­
tively, in some embodiments, process 600 can omit 608
and/or 610. For example, process 600 can fine tune the SNN
using neuron scaling weights H alone, initialization state I
alone, using neuron scaling weights Hand initialization state
I serially (e.g., as shown in FIG. 6), using neuron scaling
weights Hand initialization state I concurrently (e.g. , using
a single loss function LsNN), or using neither neuron scaling
weights H and initialization state I (e.g., process 600 can
sparsify the SNN at 604, and can omit 608 and 610).
[0147] At 612, process 600 can provide any suitable data
as input to the SNN. For example, process 600 can provide
image data formatted similarly to the image data used to
train the ANN from which the SNN was converted (and/or
used to train and/or refine the SNN). In a more particular
example, process 600 can provide image data formatted in
any suitable format described above in connection with 502
of FIG. 5. Note that although process 600 is described in
connection with image data, this is merely an example, and
process 600 can be used with any suitable sequential data.
[0148] At 614, process 600 can begin receiving output
(e.g. , for time step t) from the SNN. For example, if process
600 is configured to perform a computer vision task that uses
a classification of image data, process 600 can receive an
output indicative of a classification of the input image data.
[0149] At 616, process 600 can perform a computer vision
task based on a current output of the SNN. For example,
process 600 can make an inference about a physical envi­
ronment captured in the image data, such as the presence or
absence of particular types of obstacles, which can be used
to plan a route for autonomous navigation. In some embodi­
ments, process 600 can determine a current time step asso­
ciated with the input data, and can infer a confidence in the
output based on the current time step (e.g., based on where
the time step falls on a latency-accuracy trade-off curve).
Note that this is merely an example, and process 600 can
perform any suitable computer vision task(s), and/or tasks
related to other applications associated with other types of
data.
[0150] Process 600 can return to 612 to receive additional
data (e.g., for time step t+I) , or alternatively can return to
612 to receive new data (e.g., starting at t=O).
[0151] FIG. 7 shows an example of efficiency improve­
ments that can be realized using mechanisms described
herein for enhancing SNN efficiency in accordance with
some embodiments of the disclosed subject matter. As
described above in connection with FIGS. 3B and 3C, before
converging to a steady state, an SNN spends time in a
transient state. As described above, choices of an initial state
I has a strong effect on the duration of the transient state. As
shown in FIG. 7, a poor choice of initial state I (represented
as baseline in FIG. 7) can cause layers to converge relatively
slowly to their steady-state firing rates. This can have a
cascading effect in later layers, resulting in a long transient
state and high latency. Refining the SNN using techniques
described herein can reduce latency by reducing the tran­
sient time associated with each layer (e.g., based on neuron
initialization values).
[0152] FIG. 8 shows another example of efficiency
improvements that can be realized using mechanisms

15
Nov. 10, 2022

described herein for enhancing SNN efficiency in accor­
dance with some embodiments of the disclosed subject
matter. The results described in connection with FIGS. 8,
9B, 10, and 11 were generated using simulations of SNNs
trained and refined using techniques described herein. For
example, four ANNs were trained: dense MNIST, convolu­
tional MNIST, and convolutional CIFAR-10/100. Additional
description of the model architectures and experiment
parameters are described in Appendix A. After initial train­
ing sparsity fine-tuning was performed (e.g., as described
above in connection with 604). The ANNs were then con­
verted to SNNs, and a derivative-free optimization over
L5N,v(H, I) was performed. Optimization was performed in
three phases (global, layer, and neuron) for 100, 1000, and
10000 iterations, respectively (i.e., the optimization was
performed for both H and I simultaneously at each of the
global, layer, and neuron levels, with one element of I for
each element of H).
[0153] The results described in connection with FIGS. 8,
9B, 10, and 11 are based on a comparison of the final models
to versions of the models generated without using tech­
niques described herein (e.g. , omitting 604, 608, and 610
from process 600; using loss function L ANN at 508 of FIG.
5, omitting 514-520, and using V0=0).
[0154] As shown in FIG. 8, there is a clear relationship
between the global Va and latency. For most models, Va=0.5
(e.g., a "warm start") gives the lowest latency.
[0155] FIG. 9A shows an example illustrating an effect of
bath normalization on ANN activation sparsity that can be
used in connection with mechanisms described herein for
enhancing SNN efficiency in accordance with some embodi­
ments of the disclosed subject matter, and FIG. 9B shows an
example illustrating activation maps for the two batch
normalization values of FIG. 9A. As described above, spar­
sity in SNN weights and activations can improve efficiency.
As shown in FIG. 9A, batch normalization can be used to
control ANN activation sparsity. Shifting the batch normal­
ization to the left can reduce the number of nonzero acti­
vations (illustrated with shading in FIG. 9A). As shown in
the left panel of FIG. 9B, the ANN with B=l activates on
many regions of the input that are not relevant (note that
activation is shown by shading, and non-activation is shown
in white). In the right panel of FIG. 9B, an ANN refined to
sparsify activations (e.g., by shifting B to left) learned not to
activate in uninteresting parts of the image, dramatically
reducing the number of activations for a particular input.
[0156] FIG. 10 shows examples of efficiency improve­
ments realized using mechanisms described herein to
enhance SNNs derived from various ANN model architec­
tures. In FIG. 10 improvements in L-briskness and P-brisk­
ness are shown (e.g., an improvement of 101 in L-briskness
can correspond to a reduction in L-briskness by an order of
magnitude, whereas an improvement factor of 1 oa indicates
no improvement). Although the SNNs were explicitly opti­
mized for bL and bp, improvements in threshold-based
metrics (e.g., time or synaptic events before an accuracy
threshold is crossed) were also observed, which are
described further in Appendix A.
[0157] FIG. 11 shows example of efficiency improvements
in multiple measures of efficiency realized using various
mechanisms described herein to enhance SNNs derived
from a convolutional MNIST model. As shown in FIG. 11,
applying different techniques described herein can each
improve one or more performance metrics. For example,

�����������������	
 ��
����������

US 2022/0358346 Al

using techniques described above in connection with 608
(referred to in FIG. 11 as steady-state refinement) for refin­
ing neuron weights improves both latency (e.g., measured
using L-briskness as described above in connection with
EQ. (1)) and power consumption (e.g., measured using
P-briskness as described above in connection with EQ. (2)).
As another example, using techniques described above in
connection with 610 (referred to in FIG. 11 as transient
refinement) for refining initialization state further improves
latency and power consumption. As yet another example,
using techniques described above in connection with 604
(referred to in FIG. 11 as sparsity refinement) for sparsifying
the SNN activations and synaptic events can further
improves power consumption, but did not have a substantial
impact on latency. Note that the bar for transient refinement
shows improvement when applying both steady-state refine­
ment techniques and transient refinement techniques, and
the bar for sparsity refinement shows improvement when
applying steady-state refinement techniques, transient
refinement techniques, and sparsity refinement techniques.
[0158] In addition to simulations described above in con­
nection with FIGS. 8 to 11, mechanisms described herein
were also applied to a simulated ImageNet model, which
shows scalability of techniques described herein. The
MobileNet architecture was used based on its high efficiency
and compatibility with conversion constraints described
above in connection with 512 of FIG. 5. To reduce the time
for training and optimization, all images were downsized to
160x160. Because the goal of the simulation is not to
achieve state-of-the-art ANN accuracy, the simulation was
configured to provide relatively simple, reproducible train­
ing over maximum accuracy. The ANN achieved 49.09%
validation accuracy for correctly classifying an unlabeled
input image (e.g., the most active output neuron at the steady
state of the SNN corresponds to the correct classification),
and 74.92% validation accuracy for including the correct
classification in the top 5 classifications of an unlabeled
input image (e.g., the output neuron corresponding to the
correct classification was in the top 5 most active output
neurons of the SNN).

[0159] Note that simulations of SNNs took considerably
longer times for an ImageNet model than for the simpler
MNIST and CIFAR models. To reduce optimization times,
the neuron-level phase was eliminated and the length of the
layer-level phase was reduced by half (from 1000 to 500
iterations). Additionally, instead of simulating the entire
training dataset at each iteration of refinement, a small
fraction (e.g., 1000 items rather than approximately 1.28
million items in the full training set) of the dataset was
simulated. Although reducing dataset size can cause over­
fitting for neuron-level optimization, overfitting did not
seem to occur for global or layer-level optimization, even
with relatively small datasets. With the above changes, the
SNN optimization process took less time (e.g. , four days
total to optimize the SNN) than the training process for the
original ANN (which was longer than four days).

[0160] Results of the simulations are shown in TABLE 1,
which are for a duration of 1000 time steps. The "before"
model is an SNN converted from the ANN prior to applying
sparsity refinement techniques, and without application of
steady-state or transient refinement techniques. Note the
substantial accuracy difference between the "before" and
"after" models. Because accuracy curves tend to flatten with
time, the "before" model can take thousands of extra steps

16
Nov. 10, 2022

to reach the same accuracy (e.g., after 1000 steps, the
"before" model had still not reached the steady-state accu­
racy of the ANN). After just 1000 steps, the "after" model is
relatively close to the ANN accuracy of 49.09%.

TABLE 1

Metric Before After

max{a,} 30.06% 46.29%
bL 762 342
bp 4.99e9 l.14e9

[0161] In addition to reductions in bL and bp, note the
dramatic improvement in peak accuracy after 1000 steps.
[0162] Additionally, techniques described herein were
applied to a simulated version of SpiNNaker, a neuromor­
ph.ic system that is part of the Human Brain Project, which
can demonstrate improvements that can be realized by
applying mechanisms described herein on a full-stack SNN­
based perception system.
[0163] PyNN API was used to simulate SpiNNaker mod­
els (functionality built into SaRNN). The SpiNNaker neuron
model has three differences from NL-IAF: (1) Neurons reset
to zero after spiking instead ofby subtraction; (2) spikes take
one time step to traverse a synapse (e.g. , rather than zero);
and (3) neurons have a refractory period of one time step.
These behaviors were implemented in the simulation, which
can demonstrate that techniques described herein are gen­
eralizable to neuromorphic hardware, such as SpiNNaker.
[0164] TABLE 2 shows results for the dense MNIST
model described above in connection with FIG. 8. Because
of delays added for synaptic transmission and refractory
periods, it takes some minimum amount of time (e.g., about
6 time steps) for a signal to propagate from the input to the
output, which may have contributed to the smaller observed
decrease in bL compared to the results described in connec­
tion with FIGS. 10 and 11.

TABLE 2

Metric Before After

max{a,} 84.00% 97.80%
bL 31.7 9.54
bp 4.17e3 1.0le3

TABLE 2 includes results based on a simulation in which
three refinement techniques described herein were applied to
the dense MNIST model , and evaluated on SpiNNaker. Note
that the PyNN simulation code used to perform the simu­
lations did not support measuring synaptic events, so bL is
expressed in terms of spiking events.
[0165] In some embodiments, any suitable computer read­
able media can be used for storing instructions for perform­
ing the functions and/or processes described herein. For
example, in some embodiments, computer readable media
can be transitory or non-transitory. For example, non-tran­
sitory computer readable media can include media such as
magnetic media (such as hard disks, floppy disks, etc.),
optical media (such as compact discs, digital video discs,
Blu-ray discs, etc.), semiconductor media (such as RAM,
Flash memory, electrically programmable read only memory
(EPROM), electrically erasable programmable read only
memory (EEPROM), etc.), any suitable media that is not
fleeting or devoid of any semblance of permanence during

�����������������	
 ��
����������

US 2022/0358346 Al

transmission, and/or any suitable tangible media. As another
example, transitory computer readable media can include
signals on networks, in wires, conductors, optical fibers,
circuits, or any suitable media that is fleeting and devoid of
any semblance of pemianence during transmission, and/or
any suitable intangible media.

[0166] It should be noted that, as used herein, the tenn
mechanism can encompass hardware, software, firmware, or
any suitable combination thereof.

[0167] It should be understood that the above-described
steps of the processes of FIGS. 5 and 6 can be executed or
performed in any order or sequence not limited to the order
and sequence shown and described in the figures. Also, some
of the above steps of the processes of FIGS. 5 and 6 can be
executed or performed substantially simultaneously where
appropriate or in parallel to reduce latency and processing
times.

[0168] Although the invention has been described and
illustrated in the foregoing illustrative embodiments, it is
understood that the present disclosure has been made only
by way of example, and that numerous changes in the details
of implementation of the invention can be made without
departing from the spirit and scope of the invention, which
is limited only by the claims that follow. Features of the
disclosed embodiments can be combined and rearranged in
various ways.

What is claimed is:

1. A method for using a spiking neural network with
improved efficiency, the method comprising:

receiving image data;

providing the image data to a trained spiking neural
network (SNN), the SNN comprising a plurality of
neurons, each of the plurality of neurons associated
with a respective initialization value VO of a plurality of
initialization values,

wherein a first layer of the trained SNN comprises a
first subset of the plurality of neurons, and a second
layer of the trained SNN comprises a second subset
of the plurality of neurons, and

wherein a mean of the plurality of initialization values
is about 0.5, and a standard deviation of the initial­
ization values is at least 0.05;

receiving output from the trained SNN at a time step -i:,

wherein the output is based on activations of neurons in
an output layer of the trained SNN, and

wherein "t is in a range of 1 to T; and

classifying the image data based on output of the trained
SNN at time step -i:.

2. A method for using a spiking neural network with
improved efficiency, the method comprising:

receiving data;

providing the data to a trained spiking neural network
(SNN), the SNN comprising a plurality of neurons,
each of the plurality of neurons associated with a
respective initialization value V0 of a plurality of ini­
tialization values,

wherein a first layer of the trained SNN comprises a
first subset of the plurality of neurons, and a second
layer of the trained SNN comprises a second subset
of the plurality of neurons, and

17
Nov. 10, 2022

wherein a mean of the plurality of initialization values
is about 0.5, and a standard deviation of the initial­
ization values is at least 0.05;

receiving output from the trained SNN at a time step -i:,

wherein the output is based on activations of neurons in
an output layer of the trained SNN, and

wherein "t is in a range of 1 to T; and
performing a task associated with the data based on output

of the trained SNN at time step -i:.

3. The method of claim 2,
wherein the output is indicative of a neuron in the output

layer that had the most activations up to time "t.

4. The method of claim 3,
wherein the data comprises image data,
wherein the task comprises a computer vision task that

includes classification of the image data, and
wherein the neuron in the output layer that had the most

activations up to time step -i: corresponds to a first class
of a plurality of classes.

5. The method of claim 2, further comprising:
receiving output from the trained SNN at a time step -i:'

subsequent to time step -i:; and
performing the task based on output of the trained SNN at

step time -i:'.

6. The method of claim 2, wherein data comprises image
data comprising an array of pixels each associated with a
value, and

providing the data to the trained SNN comprises:
generating, for each pixel, a spike train based on the

value associated with the pixel, wherein spikes are
generated at a rate that is proportional to the value
associated with the pixel; and

providing, to each neuron of a plurality of neurons in an
input layer of the trained SNN, a spike train associ­
ated with a respective pixel of the plurality of pixels.

7. The method of claim 2, wherein the data comprises
image data comprising a plurality of spike streams generated
by an imaging device.

8. The method of claim 7, wherein the imaging device
comprises a light detection and ranging (LiDAR) device.

9. The method of claim 2, wherein the trained SNN was
generated based on a trained analog neural network (ANN).

10. The method of claim 9, wherein the ANN was trained
using a loss function LANN and the ANN was refined using
a penalized loss function L'ANN that included L ANN and one
or more penalized terms.

11. The method of claim 10, wherein the penalized loss
function L'ANN is represented by the relationship:

L'ANN~LAm,+/...J.,. +/...,L,,

where La is an activation loss term based on B values
associated with batch normalization layers of the trained
ANN, Ls is a synaptic sparsity loss term based on weights of
the trained ANN, and Aa and As are penalty values.

12. The method of claim 2, further comprising:
refining the trained SNN using a loss function LsNN·
13. The method of claim 12, wherein the loss function

LsNN includes an accuracy term, a latency term, and a power
consumption term.

14. The method of claim 13, wherein the loss function
LsNN is represented by the relationship:

Lsmr/...MM+ /...LbL+/...pbp,

where M is a minimum error 1-a,, a, represents an accuracy
of the trained SNN at a particular time step, b L represents a

�����������������	
 ��
����������

US 2022/0358346 Al

latency of the trained SNN, bP represents power consump­
tion of the trained SNN, and AM, Av and Ap are penalty
values.

15. The method of claim 12, wherein refining the SNN
further comprises:

applying, to each of the plurality of neurons, a scaling
factor T]j, wherein H is a set of scaling factors for the
plurality of neurons;

providing first labeled training data to the trained SNN;
receiving first output from the trained SNN for the first

labeled training data;
calculating a first loss based on the first labeled training

data and the first output from the trained SNN using the
loss function LsNN;

adjusting values of the scaling factors in H based on the
loss;

applying the adjusted scaling factors to the plurality of
neurons of the trained SNN;

providing second labeled training data to the trained SNN;
receiving second output from the trained SNN for the

second labeled training data; and
calculating a second loss based on the second labeled

training data and the second output from the trained
SNN using the loss function L sNN-

16. The method of claim 12, wherein refining the SNN
further comprises:

setting an initialization value VO for each of the plurality
of neurons, wherein I includes a set of initialization
values;

providing first labeled training data to the trained SNN;
receiving first output from the trained SNN for the first

labeled training data;
calculating a first loss based on the first labeled training

data and the first output from the trained SNN using the
loss function LsNN;

adjusting values of the initialization values in I based on
the loss;

applying the adjusted initialization values to the plurality
of neurons of the trained SNN;

providing second labeled training data to the trained SNN;
receiving second output from the trained SNN for the

second labeled training data; and
calculating a second loss based on the second labeled

training data and the second output from the trained
SNN using the loss function LsNN-

17. The method of claim 2, wherein the ANN is a
convolutional neural network (CNN).

18. The method of claim 2,
wherein an output ej., of a neuron j of the plurality of

neurons is represented by the relationship:

{ I if v1,, ;a: I
8 1·' = 0 else

18
Nov. 10, 2022

where j represents a neuron index, t represents a current time
step, and Vj., represents a neuron membrane potential at time
step t, Vj.o is the initialization value of neuron j,

wherein the neuron membrane potential Vj., of neuron j is
represented by the relationship:

where Ij., represents an incoming current at time t, and
the incoming current Ij,, is represented by the relationship:

where sj,, represents a binary-valued vector of incoming
spikes at time step t, including one entry for each incoming
synapse to neuron j , wj represents a vector of synaptic
weights associated with incoming synapses, and bj repre­
sents a neuron bias of neuron j.

19. The method of claim 2, wherein the data comprises
time-series data.

20. A system for using a spiking neural network with
improved efficiency, the system comprising:

at least one processor that is configured to:

receive data;

provide the data to a trained spiking neural network
(SNN), the SNN comprising a plurality of neurons,
each of the plurality of neurons associated with a
respective initialization value VO of a plurality of
initialization values,

wherein a first layer of the trained SNN comprises a
first subset of the plurality of neurons, and a
second layer of the trained SNN comprises a
second subset of the plurality of neurons, and

wherein a mean of the plurality of initialization
values is about 0.5, and a standard deviation of the
initialization values is at least 0.05;

receive output from the trained SNN at a time step t,

wherein the output is based on activations of neurons
in an output layer of the trained SNN, and

wherein t is in a range of 1 to T; and

perform a task associated with the data based on output
of the trained SNN at time step t.

21. The system of claim 20, wherein the at least one
processor comprises a neuromorphic processor.

22. The system of claim 21, wherein the data comprises
image data, the system further comprising:

an image data source in communication with the at least
one processor, the image data source comprising an
array of single-photon avalanche photodiodes
(SPADs); and

wherein the at least one processor that is further config­
ured to:

receive the image data from the image data source.

* * * * *

