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ABSTRACT 

Disclosed are methods and systems for accurate modeling of 
the soil-water retention curve (SWRC) for any soil texture 
class and with varying amounts of soil organic matter. The 
disclosed method leverages near-visible infrared spectros­
copy (vis-NIRS) to obtain rapid measurements at low soil­
water potential that are used to model soil-water retention 
functions. 
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RAPID ESTIMATION OF A SOIL-WATER 
RETENTION CURVE USING VISIBLE-NEAR 

INFRARED SPECTROSCOPY 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

[0001] This application claims the benefit of priority under 
35 U.S.C. § 119(e) of U.S. Provisional Application No. 
63/196,830, filed Jun. 4, 2021, the contents of which are 
incorporated herein by reference in its entirety. 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

[0002] Not applicable. 

FIELD OF INVENTION 

[0003] The field of the invention relates to the use of near 
visible-infrared (vis-NIRS) spectroscopy to model the soil­
water retention curve (SWRC). 

BACKGROUND 

[0004] Soil-water retention (SWR) describes the relation­
ship between soil moisture content and soil-water potential 
(i.e ., the amount of water retained by the soil at a specific 
soil-water potential). Typically, an SWR curve (or function) 
is used to predict the soil water availability, the field capacity 
(water supply to plants), and soil aggregate stability. As a 
result, SWR curves are a key input for hydrogeological 
models used in a variety of disciplines and applications. 
[0005] Unfortunately, the lack of high-quality soil data 
and the spatial variability of soil properties within a field 
lead to large uncertainties in the hydrogeological models. 
Further, measuring the soil-water retention curve (SWRC) in 
a laboratory, for a particular soil source (e.g., particular 
field), requires specialized equipment, standardized proce­
dures, environmental controls, and technical staff. In addi­
tion, laboratory analysis requires field collection and tem­
perature-controlled storage of the samples. These factors 
cause traditional laboratory analysis of SWRCs to be costly 
and time-consuming. As a result, a limited number of soil 
samples are typically analyzed, reducing the potential accu­
racy of the SWRCs. 
[0006] After analysis of the raw samples, a function is fit 
to the empirically derived soil-water retention (SWR) data. 
Several semi-physical and empirical models have been 
proposed for fitting the SWR data (e.g. Brooks & Corey, 
1964; Campbell , 1974; van Genuchten, 1980). For example, 
the Campbell (1974) soil-water retention function requires 
only information of a curve shape parameter (the pore-size 
distribution parameter, Campbell b) and the maximum 
amount of water that can be retained from the soil (saturated 
water content----0 J. 

SUMMARY OF THE INVENTION 

[0007] Disclosed herein are several non-limiting illustra­
tive embodiments of the present technology, which gener­
ally relates to methods and systems for characterizing soil , 
using spectrographic data. 
[0008] In a first aspect of the disclosure, methods of 
characterizing soil are provided. In some embodiments, the 
methods comprise: receiving, with one or more computing 
devices, spectroscopy data for a soil sample; determining a 
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first model parameter for a soil-water retention function; and 
characterizing the soil sample based on the soil-water reten­
tion function wherein the first model parameter provides an 
anchor value for the soil-water retention curve; and wherein 
the anchor value corresponds to a water potential of pF at 
least between 3.8 and 4.2, inclusive. In some embodiments, 
the soil-water retention function is a Campbell soil-water 
retention function. In some embodiments, the methods fur­
ther comprise: determining, a second model parameter for 
the soil-water retention function, based on the spectroscopy 
data, wherein the second model parameter is an exponential 
shape factor. In some embodiments, the anchor value cor­
responds to a water potential of pF at least 4.2. In some 
embodiments, the methods further comprise: receiving a soil 
sample; and conducting a spectroscopy analysis of the soil 
sample to obtain the spectroscopy data. In some embodi­
ments, the spectroscopy analysis includes vis-NIR spectros­
copy analysis. In some embodiments, the soil sample is an 
air-dried, sieved soil sample. In some embodiments, the soil 
sample is a core sample. In some embodiments, the first 
model parameter is determined with the one or more com­
puting devices based on the spectroscopy data. In some 
embodiments, the first model parameter is empirically deter­
mined. 

[0009] In another aspect of the current disclosure, systems 
for characterizing soil are provided. In some embodiments, 
the systems comprise: a spectrophotometer configured to 
receive a soil sample and provide spectroscopy data for the 
soil sample; and one or more computing devices configured 
to: receive the spectroscopy data for the soil sample from the 
spectrophotometer; determine a first model parameter for a 
soil-water retention function, the first model parameter pro­
viding an anchor value for the soil-water retention curve that 
corresponds to a water potential of pF at least 3.8; and 
characterize the soil sample based on the soil-water retention 
function. In some embodiments, the soil-water retention 
function is a Campbell soil-water retention function. In 
some embodiments, the anchor value corresponds to a water 
potential of pF at least 4.0. In some embodiments, the 
spectrophotometer is configured for vis-NIR spectroscopy 
analysis and the spectroscopy data is vis-NIR data. In some 
embodiments, the first model parameter is determined based 
on the spectroscopy data. In some embodiments, the first 
model parameter is empirically determined. 

[001 OJ In another aspect of the current disclosure, further 
methods for characterizing soil at a sample site are provided. 
In some embodiments, the methods comprise: receiving into 
a spectrophotometer device, at the sample site, a soil sample 
from the sample site; analyzing the soil sample, with a 
spectrophotometer of the spectrophotometer device to pro­
vide spectroscopy data for the soil sample, and with one or 
more computing devices of the spectrophotometer device, 
based on the spectroscopy data and a soil model accessed by 
the spectrophotometer device, determining a first model 
parameter for a soil-water retention function anchored at pF 
at least 3.8 or at pF at least 4.2, thereby characterizing the 
soil sample based on the soil-water retention function, the 
soil model being determined based on spectroscopy data 
acquired from a plurality of other soil samples. In some 
embodiments, the model is the Campbell soil-water reten­
tion function. In some embodiments, the soil sample is not 
sieved, not ground, and not oven dried. In some embodi­
ments, the soil sample is classified as one or more of loamy 
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sand, sandy loam, loam, silt loam, silt, sandy clay loam, clay 
loam, silty clay loam, sandy clay, silty clay, or clay. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0011] FIG. 1 shows a distribution of the soil samples in 
the USDA soil texture triangle for the calibration and 
validation datasets. The darker circles indicate samples for 
which the bulk density (pa) was measured, and this dataset 
was used for the comparison of visible-near infrared spec­
troscopy with a known computer program for estimating 
SWRCs (ROSETTA-I). The lighter circles indicate soil 
samples for which the pa was not measured. 
[0012] FIG. lA shows a distribution of the soil samples in 
the USDA soil texture triangle for the calibration-large 
dataset used for developing a vis-NIR model of gravimetric 
water content at -1500 kPa. 
[0013] FIG. 2 shows a flowchart of two methods-visible­
near infrared spectroscopy according to some embodiments, 
and ROSETTA-I-for estimating water contents (W: gra­
vimetric water content, and 8: volumetric water content) at 
each soil-water matric potential (lji). The Campbell bis the 
pore-size distribution and the W 1 500 is the gravimetric water 
content at -1500 kPa. 8r, 8s, a , and n is the residual and 
saturated water contents, and the van Genuchten parameters, 
respectively. 
[0014] FIG. 3 shows spectral measurements for four soil 
samples: with low and high values of Campbell b (black 
lines), and with low and high values of gravimetric water 
content at -1500 kPa (grey lines). Solid and dashed/dotted 
lines indicate the high and low values, respectively, for each 
Campbell b. Also illustrated are the specific absorption 
bands of soil at different wavelengths. The vertical grey 
dashed lines denote the range in nm of the combination of 
first, second, and third overtone (OT) vibrations as well as 
the visible range. 
[0015] FIG. 3A shows normalized regression coefficients 
for Partial Least Squares calibration models of: a) gravimet­
ric water content at -1500 kPa (W1500 ) using the small 
library and b) the large library, based on first derivative, first 
order 6 factors , and c) pore-size distribution index (Camp­
bell b) based on orthogonal signal correction and 2 factors. 
[0016] FIG. 4 shows box-and-whisker plots ofR-squared, 
Root mean square error-RMSE, and Bias for each of mul­
tiple textural classes using a smaller (black) and a larger 
(light grey) library for predicting the gravimetric water 
content at -1500 (W 1500), and the measured ( dark grey) 
W1 500 . The statistics are based on vis-NIRS predicted soil­
water retention and the measured points for the validation 
dataset. The predicted Campbell b is derived from the same 
dataset and thus, the box-and-whisker plots of R2 are the 
same. 
[0017] FIG. 5 shows box-and-whisker plots ofR-squared, 
Root mean square error-RMSE, and Bias for each of mul­
tiple textural class for five scenarios ( ordered from left to 
right for each class): visible-near infrared spectroscopy 
(vis-NIRS) based on a small dataset and a larger library, 
vis-NIRS, and measured gravimetric water content at -1500, 
ROSETTA-lsc2 , and ROSETTA-lsc4 predicted soil-water 
retention curve. The statistics are based on the predicted and 
the measured points for the validation dataset for each 
scenario. 
[0018] FIG. 6 shows: a) Root mean square error (RMSE) 
and b) prediction bias for seven soil-water matric potentials 
for 56 soil samples estimated with visible-near infrared 
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spectroscopy (vis-NIRS) built on a small (vis-NIRS 1 ) and a 
larger (vis-NIRS2) library, vis-NIRS and a measured gravi­
metric water content at -1500 kPa (vis-NIRS+measured 
W1500), ROSETTA-I scenario 2 (ROSETTA-lsc2 ) and sce­
nario 4 (ROSETTA-lsc4) . 
[0019] FIG. 7 shows, for multiple textural classes, respec­
tive plots a)-i) of predictive performance of soil-water 
retention curve using the visible-near-infrared (vis-NIRS) 
spectroscopy built on a small (vis-NIRS 1) and a larger 
(vis-NIRSJ library, vis-NIRS and measured gravimetric 
water content at -1500 kPa (vis-NIRS+measured W1500), 

ROSETTA-I scenario 2 (ROSETTA-lsc2 ) , and ROSETTA-I 
scenario 4 (ROSETTA-lsc4 ) for 12 soil samples from dif­
ferent textural classes. Circles indicate the soil-water reten­
tion measurements at seven matric potentials. 

DETAILED DESCRIPTION 

[0020] As used herein, soil matric potential (ti) is the 
potential that is derived from the surface tension of water 
menisci between soil particles. The magnitude of matric 
potential depends on the soil water content, the size of the 
soil pores, the surface properties of the soil particles, and the 
surface tension of the soil water. In some cases, as is well 
known in the art, matric potential can be expressed by taking 
a common log of the matric potential, referred to as pF. 
[0021] As used herein, soil-water retention curve (SWRC) 
is the relationship between soil/water matric potential and 
volumetric soil-water content at equilibrium above the ref­
erence (zero) level represented by the free water table at 
atmospheric pressure. 
[0022] Reliable estimation of SWRC at a high spatial 
resolution is a prerequisite for accurate modeling and fore­
casting in different disciplines (e.g. hydrogeology, environ­
mental geosciences), making vis-NIRS highly attractive 
alternatives to cost-, time- and labor-intensive direct mea­
surements. Under some embodiments of the technology, 
vis-NIR methods and related systems can be used to rapidly 
and accurately estimate Campbell soil-water retention func­
tion. In some embodiments, a method disclosed herein can 
predict the Campbell soil-water retention function for all 
currently existing soil texture classes and with varying soil 
organic matter, including from topsoils to subsoils. In some 
embodiments, a method disclosed herein can only require 
brief scanning of the soil samples with a portable ( or other) 
vis-NIR spectrometer to generate the estimated Campbell 
soil-water retention function. Consequently, in some cases, 
end-users may not need to have any expertise in soil and 
hydrological sciences to derive vital SWR information from 
raw soil samples. More broadly, embodiments of the dis­
closed method are generally more accurate, more cost­
effective, and faster compared to conventional lab-based 
methods, which can take weeks to analyze the samples. 
[0023] Some embodiments can employ a particular anchor 
point for determining a SWRC for a soil sample (e.g. , pF of 
3.8 or more) to provide particularly and unexpectedly accu­
rate results. For example, the original Campbell function has 
a reference point at saturated water content 8s which is 
strongly related to soil structure and total porosity and less 
strongly related to texture. Thus, this reference point is 
poorly predicted from the vis-NIR spectroscopy. In contrast, 
in some embodiments disclosed herein, the Campbell func­
tion is instead anchored at a drier water content, pF 3.8-4.2 
(e.g. ljJ=-1042

, with log 1-1042 l=pF 4.2), instead of 8s. 
Spectral models can then be used to accurately predict the 
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parameters of the anchored Campbell SWR function (Camp­
bell b and water content at pF 3.8-4.2) for topsoils as well 
for subsoils covering all currently existing soil texture 
classes and with varying soil organic matter. 
[0024] Further in this regard, some embodiments of a 
method for estimating the soil-water retention curve for a 
soil sample can include measuring the vis-NIRS data from 
a soil sample. A model parameter for a soil-water retention 
function (e.g., the Campbell function) can then be deter­
mined, based on the spectroscopy data, and the soil sample 
can then be characterized based on the soil-water retention 
function . In particular, as also discussed above, a first model 
parameter can provide an anchor value for the soil-water 
retention curve, which in particular can be between a water 
potential of pF 3.84.2, inclusive (e.g. 3.80, 3.85, 3.90, 3.95, 
4.00, 4.05, 4.10, 4.15, 4.20). An exponential shape param­
eter (b) can also then be determined based on the spectros­
copy data, and these two model parameters can be used in 
conjunction with the aforementioned soil-water retention 
function to develop a soil-water retention curve for a soil 
sample. In some embodiments, the soil-water retention 
function used in the method is, for example, 

( 
W )-b 

q, = -1500 -- , 
Wisoo 

wherein W 1500 is the gravimetric water content [kg kg- 1
] at 

-1500 kPa, or pF 4.2. (In this regard, it is recognized that 
gravimetric water content (W) can be converted to volumet­
ric water content (0) by multiplying W by soil bulk density 
(p4 ), including as shown in FIG. 2 and further discussed 
relative to examples below.) 
[0025] Some methods described herein include analysis 
with a spectrometer. In some embodiments the spectrometer 
analyses absorbance in the visible to near infrared range. In 
some embodiments the spectral range analysed by the spec­
trometer is 350-2500 nm. 
[0026] Some methods described herein include steps to 
prepare soil samples for analysis with a spectrometer. In 
some embodiments, a soil sample is air-dried and sieved, as 
can support measurements that are more representative of 
microporosity than other approaches (e.g., untreated core 
samples). In some embodiments the sieve used has a pore 
diameter of <2 mm. In some embodiments, soil samples are 
derived from core samples. 
[0027] Embodiments of the present invention are 
described herein using several definitions, as set forth above 
and throughout the disclosure. The disclosed subject matter 
may be further described using definitions and terminology 
as follows. The definitions and terminology used herein are 
for the purpose of describing particular embodiments only 
and are not intended to be limiting. 
[0028] As used in this specification and the claims, the 
singular forms "a," "an," and "the" include plural forms 
unless the context clearly dictates otherwise. For example, 
the term "a substituent" should be interpreted to mean "one 
or more substituents," unless the context clearly dictates 
otherwise. 
[0029] As used herein, "about", "approximately," "sub­
stantially," and "significantly" will be understood by persons 
of ordinary skill in the art and will vary to some extent on 
the context in which they are used. If there are uses of the 
term which are not clear to persons of ordinary skill in the 
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art given the context in which it is used, "about" and 
"approximately" will mean up to plus or minus 10% of the 
particular term and "substantially" and "significantly" will 
mean more than plus or minus 10% of the particular term. 
[0030] As used herein, the terms "include" and "includ­
ing" have the same meaning as the terms "comprise" and 
"comprising." The terms "comprise" and "comprising" 
should be interpreted as being "open" transitional terms that 
permit the inclusion of additional components further to 
those components recited in the claims. The terms "consist" 
and "consisting of' should be interpreted as being "closed" 
transitional terms that do not permit the inclusion of addi­
tional components other than the components recited in the 
claims. The term "consisting essentially of' should be 
interpreted to be partially closed and allowing the inclusion 
only of additional components that do not fundamentally 
alter the nature of the claimed subject matter. 
[0031] The phrase "such as" should be interpreted as "for 
example, including." Moreover, the use of any and all 
exemplary language, including but not limited to "such as", 
is intended merely to better illuminate the invention and 
does not pose a limitation on the scope of the invention 
unless otherwise claimed. 
[0032] Furthermore, in those instances where a convention 
analogous to "at least one of A, B and C, etc." is used, in 
general such a construction is intended in the sense of one 
having ordinary skill in the art would understand the con­
vention (e.g., "a system having at least one of A, B and C" 
would include but not be limited to systems that have A 
alone, B alone, C alone, A and B together, A and C together, 
B and C together, and/or A, B, and C together). It will be 
further understood by those within the art that virtually any 
disjunctive word and/or phrase presenting two or more 
alternative terms, whether in the description or figures , 
should be understood to contemplate the possibilities of 
including one of the terms, either of the terms, or both terms. 
For example, the phrase "A or B" will be understood to 
include the possibilities of "A" or 'B or "A and B." 
[0033] All language such as "up to," "at least," "greater 
than," "less than," and the like, include the number recited 
and refer to ranges which can subsequently be broken down 
into ranges and subranges. A range includes each individual 
member. Thus, for example, a group having 1-3 members 
refers to groups having 1, 2, or 3 members. Similarly, a 
group having 6 members refers to groups having 1, 2, 3, 4 , 
or 6 members, and so forth. 

[0034] The modal verb "may" refers to the preferred use 
or selection of one or more options or choices among the 
several described embodiments or features contained within 
the same. Where no options or choices are disclosed regard­
ing a particular embodiment or feature contained in the 
same, the modal verb "may" refers to an affirmative act 
regarding how to make or use and aspect of a described 
embodiment or feature contained in the same, or a definitive 
decision to use a specific skill regarding a described embodi­
ment or feature contained in the same. In this latter context, 
the modal verb "may" has the same meaning and connota­
tion as the auxiliary verb "can." 

EXAMPLES 

[0035] The following Examples are illustrative and should 
not be interpreted to limit the scope of the claimed subject 
matter. 
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Example I-Rapid Estimation of a Soil-Water 
Retention Curve Using Visible-Near Infrared 

Spectroscopy 

[0036] Estimation of a soil-water retention curve (SWRC) 
is essential for modeling the water flow and solute transport. 
A simple method to fit the measured soil-water retention 
data is the Campbell SWR function. In this example, the 
Campbell function with an anchored gravimetric water 
content at -1500 kPa (W 1500) was used, which included two 
unknown parameters, Campbell b (negative slope on a log 
scale of SWRC) and W 1500 . An inexpensive methodology 
was proposed for predicting these Campbell parameters 
using visible-near infrared spectroscopy (vis-NIRS). Three 
calibration Partial Least Squares Regression models were 
developed. The first calibration model built on 230 soil 
samples predicted Campbell band W 1500 (vis-NIRS 1). The 
second model used the same dataset for predicting Campbell 
b but included 1570 soil samples for predicting W1500 

(vis-NIRS2). The third model combined predicted Campbell 
b from the 230 soil samples with measured W 1500 (vis­
NIRS+measured W 1500) , similar to approaches used in 
ROSETTA-I software. The fourth model used the entire 
datasets without splitting them into calibration and valida­
tion (vis-NIRS3 ). The R2 of the Campbell b and W 150 0 

ranged from 0 to 0.89 and 0.02-0.91 , respectively. Results 
showed that predicted SWRCs were comparable with esti­
mates from the ROSETTA-I for two scenarios: using soil 
texture and bulk density as inputs (ROSETTA-lsc2) and 
using soil texture, bulk density, volumetric water content at 
-33 and -1500 kPa (ROSETTA-lsc4 ). It was concluded that 
the vis-NIRS based models captured the shapes of the 
SWRC and vis-NIRS2 and vis-NIRS+measured W1500 could 
be used as an alternative to ROSETTA-lsc2 • Future research 
is needed to improve the performance of the vis-NIRS 
models by including more calibration soil samples, particu­
larly for sandy soils. 
[0037] By way of further introduction, and with further 
reference to the summary discussion above, modeling of soil 
variable saturated flow and contaminant transport requires 
knowledge of the soil hydraulic properties, such as the 
soil-water retention curve and hydraulic conductivity, soil 
water diffusivity, and climatic conditions and agricultural 
practices. The non-linear relation between soil water content 
and matric potential is considered a crucial hydraulic prop­
erty in the vadose zone describing the amount of water 
retained in a porous medium at a given matric potential , and 
the relationship depends on soil-texture, pore geometry, and 
discontinuity (Sharma and Uehara, 1968; Williams et al., 
1983). Furthermore, soil moisture characteristics are essen­
tial for describing the availability of soil water to plants and 
simultaneously, are fundamental input in water flow and 
solute transport modeling (Varvaris et al. , 2020; Varvaris et 
al. , 2019). Several models (mechanistic and empirical) have 
been proposed for accurately fitting the measured soil-water 
retention at the wet end or in drier conditions (Campbell and 
Shiozawa, 1992; Campbell, 1974; Or and Tuller, 1999; 
Oswin, 1946; Rossi and Nimmo, 1994; van den Berg and 
Bruin, 1981; van Genuchten, 1980). 
[0038] Determination of SWRC through direct measure­
ments under conventional approaches can be a laborious and 
time-consuming process. Furthermore, the spatial variability 
of the soil properties within a field may require a large 
number of soil samples to reduce uncertainties in relation to 
hydrogeological modeling, because SWRCs are essential for 
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the modeling of water transport and biochemical processes 
in the unsaturated zone (Mader, 1963; Nielsen et al. , 1973; 
Peck et al. , 1977; Pham and Fredlund, 2008; Varvaris et al., 
2018; Varvaris et al., 2019; Wood et al. , 1988). 

[0039] In some cases, to improve speed, expense and 
accuracy, a method that is well established and has success­
fully been used as an alternative for determining SWRC is 
the pedotransfer function (PTF) (Iversen et al., 2011; Kotlar 
et al., 2019; Pittaki-Chrysodonta et al. , 2019; Silva et al., 
2017; Varvaris et al., 2021 b ). A PTF can be developed when 
knowledge of typically available soil properties such as clay 
content, organic matter, bulk density is available. Several 
researchers have developed PTFs for predicting the SWRC 
using typically known soil properties such as soil texture and 
bulk density (Clapp and Hornberger, 1978; Gupta and Lar­
son, 1979; Pittaki-Chrysodonta et al. , 2018; Rudiyanto et al., 
2021; Schaap et al. , 1998). Schaap et al. (2001) developed 
a computer program, ROSETTA-I , for estimating SWRCs 
by implementing hierarchical PTFs. More recently, Rudi­
yanto et al. (2021) improved the PTFs using the neuro-m 
neural networks approach with different sets as inputs such 
as soil textural class or sand, silt, and clay contents, and bulk 
density. 

[0040] Rosetta 

[0041] In some cases, as generally discussed above, soil 
properties can be predicted using visible-near-infrared spec­
troscopy (vis-NIRS), which may be relatively simple, rapid 
( a measurement takes only a few seconds), reproducible, and 
non-destructiveness and generally avoids the use of hazard­
ous chemicals (Pittaki-Chrysodonta et al., 2019; Stenberg et 
al., 2010). Moreover, vis-NIRS methods can require very 
little sample preparation ( e.g., air-drying and sieving) before 
analysis, which can make this method more advantageous 
compared to other conventional laboratory methods. 

[0042] However, despite the beneficial qualities of vis­
NIRS, work ranging over decades has failed to reliably 
predict SWRCs across a wide range of soil classes and other 
conditions. Thus, there is a longstanding need to appropri­
ately apply vis-NIRS for predicting the SWRC in a more 
practical, reliable, and comprehensive way. 

[0043] In this regard, the objectives of the study presented 
in this example were to 1) develop vis-NIRS models for 
predicting the two parameters of the anchored Campbell soil 
water retention function for 11 soil textural classes, 2) 
evaluate the models' performance a) based on an indepen­
dent validation dataset, b) within different textural classes, c) 
for horizon specific models (by predicting the vis-NIRS 
SWRC for subsoils using a calibration model derived from 
topsoil spectral data and vice versa), d) to improve the 
vis-NIRS models by adding one measurement -1500 kPa or 
predicted from a large vis-NIRS dataset and e) by comparing 
the vis-NIRS predicted SWRC with the predictions obtained 
from the ROSETTA PTFs across different soil textural 
classes and at different soil-water matric potentials. 

[0044] A total of 306 (small library) and 1,658 (larger 
library) soil samples were included in this study which were 
obtained from the National Soil Survey Center (NSSC) 
Kellogg Soil Survey Laboratory (KSSL) database. The 
database contains soil pedons, with measured chemical and 
physical properties representing geographically diverse soils 
from across the conterminous United States, Hawaii, and 
Alaska (Seybold et al. , 2019). The soil samples were col­
lected from topsoil and subsoil. 
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[0045] In order to determine the soil textnre distribution, 
the clay, silt, and sand contents were measured based on the 
pipette method (Kilmer and Alexander, 1949). The soil­
water retention data were measured for seven matric poten­
tials at: -6, -10, -33, -100, -200, -500, and-1500kPa. The 
soil samples were air-dried, ground, and <2-mm sieved. The 
pressure-plate (3Cla-ela) and pressure-membrane (3C2ala­
b) extraction methods were used to determine the water 
retention at from -6 up to -500 and at -1500 kPa, respec­
tively. Briefly, an air-dried, sieved soil sample is placed in a 
retainer ring sitting on a porous ceramic plate in a pressure­
plate extractor (for water contents at from --6 up to -500 
kPa) or on a cellulose membrane in a pressure-membrane 
extractor (for water content at -1500 kPa). The plate and the 
membrane are covered with water to wet the samples by 
capillarity and the soil sample is equilibrated at the specified 
matric potentials. The pressure is kept constant until equi­
librium is obtained according to known methods (Klute, 
1986) and then the gravimetric water content is determined . 
Detailed information about the methods for the determina­
tion of the soil-water contents are according to Soil Survey 
Staff (2014). 
[0046] As noted above, the Campbell soil-water retention 
function requires knowledge of a curve shape parameter, 
namely Campbell b, and the gravimetric satnrated water 
content (W g s) at the air-entry soil-water potential (\JI,). The 
Campbell (1974) soil-water retention function is given by: 

[I] 

where q, e is the air-entry matric potential [kPa] and is the 
matric potential at which the air starts to enter to the largest 
pores in the soil. Campbell b is determined as the negative 
slope of the soil-water retention measurements on a log 1-IJI I 
vs log (W) system and can be considered as a pore-size 
distribution index (Moldrup et al., 2001). Moreover, it was 
found that the Campbell b, is strongly dependent on soil 
texture (Clapp and Hornberger, 1978; Pittaki-Chrysodonta et 
al., 2018). 
[0047] For this example, Eq. [1] was modified relative to 
prior approaches to be anchored at -1500 kPa instead of 
W gs' because the latter is mostly soil structnre-dependent 
and less related to soil texture, whereas, for the former, 
vis-NIR data may more accurately represent actual soil 
texture. 
[0048] Additionally, the estimation of q, e can vary sub­
stantially even within the same class and hence is not 
particularly textnre-dependent. And at lower soil-water 
potentials, the soil-water contents are strongly related to the 
soil texture. Accordingly, with a modified anchor value, the 
updated Campbell soil-water retention function becomes: 

( 
W )-b 'F = -1500 --

W1 soo 

[2] 

where W 1500 is the gravimetric water content [kg kg-1
] at 

-1500 kPa. Thereafter, calibration models for the two 
parameters of Campbell band W 1500 need to be developed. 
For this study, only the soil samples that yielded an R2 >0.9 
between the log 1-IJII vs log (W) were included. 
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[0049] The spectrometer used was the ASD LabSpec 2500 
(Analytical Spectral Devices, Inc. , Boulder, Colo.) with a 
spectral range of 350-2500 nm with a spectral resolution of 
3 nm and 10 nm at 700 nm and 1400 nm, respectively. The 
spectral interval is 1 nm. The air-dried soil samples were 
initially ground, and sieved to <2-mm, then loaded into a 
sample holder (pucks) and pressed to 46 psi, to assure that 
there is no void space. The sample holder is placed onto a 
Muglight lamp and scanned iteratively three times. In order 
to calibrate the spectrometer, a white reference panel was 
used prior to scans and after every ca. 30 min (McDowell et 
al., 2012). Spectral measurements were transformed from 
reflectance into apparent absorbance by log(reflectance-1

). 

[0050] To improve the quality of the spectral data, differ­
ent pre-processing techniques were applied. These tech­
niques reduce undesired scatter effects such as baseline 
shifts and non-linearities (Rinnan et al ., 2009; Wetterlind et 
al., 2013). The tested pre-processing techniques for this 
stndy were the Savitzky-Golay and Gap-Segment deriva­
tives (Norris, 2001; Savitzky and Golay, 1964), standard 
normal variate (SNV) transformation and detrending 
(Barnes et al. , 1989) and the orthogonal signal correction 
(OSC) (Sjoblom et al ., 1998) . With the derivatives, additive 
and multiplicative effects could be removed by taking the 
derivative of the spectral responses with respect to wave­
lengths. In order to estimate the first derivative, the differ­
ence between two successive spectral measurement points is 
calculated. For the second derivative, the difference between 
two successive points of the first-order derivative spectra is 
calculated. The SNV is a weighted normalization and cal­
culates the standard deviation (cr) of the entire spectrum for 
the given sample and thereafter, the entire sample is nor­
malized by this value (Barnes et al., 1989). Detrending fits 
a polynomial of a given order to the spectral data and 
subtracts this polynomial. The OSC removes the variance 
which is orthogonal to the reference value (Sjoblom et al. , 
1998). Finally, the spectral data were mean-centered, i.e., the 
mean offset from each variable was removed. 
[0051] For the independent validation, the dataset of the 
306 soil samples were divided into calibration (70%) and 
validation (30%) datasets . Cross-validation for all developed 
vis-NIRS models was performed using the leave-one-out 
cross-validation method. The cross-validation was per­
formed using: (i) the calibration dataset and (ii) the entire 
dataset. The split was based on two criteria: 1) for each 
dataset, at least one sample derived from a textural class was 
included, and 2) The samples from each pedon were kept in 
the same dataset (calibration or validation). For validating 
horizon specific models, in the calibration dataset the top­
soils or subsoils from the small library were included and 
respectively in the validation the subsoils or topsoils. For 
developing a second calibration model of the W 1500, a 
representative number of soils from a larger library were 
included samples (215 from the small library and 1352 from 
a larger database=1567). 
[0052] In order to develop the calibration models, the 
partial least squares (PLS) regression analysis with the 
straight forward implementation of a statistically inspired 
modification of the PLS (SIMPLS) algorithm (de Jong, 
1993) was used. In brief, this algorithm directly calculates 
the factors of the PLS as linear combinations of the original 
variables by maximizing a covariance criterion. 
[0053] The carefully selection of the number of factors is 
important since the amount of variation in the spectral data 
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should be maximized. However, higher or lower number of 
PLS factors would lead to an overestimation or underesti­
mation, respectively. This number is defined as the local 
minimum value of the root mean square errors of calibration 
(RMSEcai) and cross-validation (RMSEcv) that represented 
the most significant change in slope (Gowen et al., 2011). 
[0054] The development of the PLS models was per­
formed using the PLS Toolbox 8.8 software (Eigenvector 
Research) which is an advanced chemometric multivariate 
analysis tool within the MATLAB computational environ­
ment. 
[0055] The ROSETTA-1 is a computer program based on 
neural network analyses with the bootstrap method which 
implements a number of pedotransfer functions (PTFs) for 
estimating van Genuchten water retention parameters and 
the saturated hydraulic conductivity (Schaap et al. , 2001). 
The van Genuchten soil-water retention curve is given by: 

0 = 0, + 0, -0, 
[l + la'Pl"]l-1/, 

[3] 

where 8r and 8s [cm3 cm-3
] denote the residual and saturated 

volumetric water contents, respectively, a [cm-1
] is related 

to the inverse of the air entry pressure, and n is a measure 
of the pore-size distribution index (van Genuchten, 1980). 
[0056] For estimating the parameters of the van Genu­
chten, ROSETTA-1 includes five hierarchical models 
depending on the input data: 
[0057] Hl) The first hierarchical model is a class PTF that 
provides parameter averages for each USDA textural class . 
[0058] H2) It uses as inputs the sand, silt, and clay 
contents (SSC) . 
[0059] H3) In addition, it includes bulk density (SSCBD). 
[0060] H4) In addition, it uses a volumetric water content 
at -33 kPa (SSCBD83 3 ). 

[0061] H5) In addition, it includes a volumetric water 
content at -1500 kPa (SSCBD8338 1500). 

[0062] In this study, the vis-NIRS predicted SWRC of the 
independent validation were compared with H3 and H5. The 
H3 and H5 were namely scenario 2 (ROSETTA-l sc2 ) and 
scenario 4 (ROSETTA-lsc4 ) . 

[0063] The developed PLS models of the two parameters 
(W1500, Campbell b) were evaluated using the square of the 
Pearson correlation coefficient R (R2

) , bias, and RMSE. 
[0064] R2

, bias, and RMSE are defined as: 

Bias= }f -Y 

[4] 

[5] 

[6] 

where N is the number of samples, Y; is the measurements, 
:%:, the predicted values, y the mean value of the measure-

ments, an Y,; is the average of the predicted values. In order 
to examine whether the vis-NIRS models were over-fitted, in 
addition to the cross-validation and validation, a permuta­
tion test (n=50) was further conducted. In brief, permutation 
tests repeatedly and randomly reorder the soil property (Y) 
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by rebuilding the calibration model with its current settings 
after each reordering. Specifically, the evaluation was based 
on the pairwise Wilcoxon signed-rank, pairwise signed­
rank, randomization t-tests, and plots of sum squared (SSQ) 
Y versus Y-block correlation. The permutation tests were 
performed for the models that were developed using the 
entire dataset (306 and 1658 soil samples included in 
Campbell band W 1500, respectively). 

[0065] To assess the performance of the vis-NIRS built on 
small (vis-NIRS 1) or larger library (vis-NIRS0, vis-NIRS 
and a measured W 1500 (vis-NIRS+W1500) , and ROSETTA-1 
predicted SWRC, the R2

, and RMSE of validation dataset, 
and the prediction bias were used. Specifically, the vis-NIRS 
predicted parameters (W 1500, Campbell b) for the three 
scenarios (vis-NIRS 1, vis-NIRS2 , vis-NIRS+W1500) were 
inserted into the anchored Campbell function and the SWRC 
was obtained for each soil sample. For the ROSETTA-1 , for 
each of two scenarios (ROSETTA-lscz, ROSETTA-lsc4 ) the 
SWRC was obtained based on the van Genuchten equation 
using the predicted parameters from ROSETTA-1. The 
assessment was based on the water contents of the seven 
matric potentials (-6, -10, -33, -100, -200, -500, and 
-1500 kPa) for each soil sample. From the validation 
dataset, only the soil samples with measured bulk density 
(N=56) were included since the ROSETTA-1 predicted 
water contents are not gravimetric but volumetric. There­
fore, the predicted volumetric water contents were converted 
into gravimetric. A flowchart of the two applied methods for 
obtaining an SWRC is illustrated in FIG. 2. 
[0066] The soil samples used for the development as well 
as for the validation of the PLS models covered 11 out of 12 
USDA soil texture classes as shown in FIG. 1. The soil 
samples included in the larger library covered all the soil 
texture classes (FIG. lA). In Table 1 (below), the mean, 
median, Ql, Q3, standard deviation (a), the skewness 
(skew), and the range (minimum-maximum) of W 1500 and 
Campbell b for each textural class for each dataset are 
presented. 

[0067] The W1500 ranged from 0.013 to 0 .362, 0.001 to 
0 .598, and 0.018 to 0.229 [kg kg-1

] for the calibration of the 
small, larger, and validation datasets, respectively. The low­
est mean values ofW 1500 are presented in the textural classes 
with high percentage of sand such as sand (0.023, 0.025 , and 
0 .026 kg kg-1 for calibration of small and large, and vali­
dation datasets, respectively) and loamy sand (0.031, 0.050, 
and 0.032 kg kg-1 for calibration of a small and large library, 
and validation, respectively), while the highest mean values 
are observed in the silty clay (0.260, 0.210, and 0 .155 kg 
kg-1 for calibration of a small and large library and valida­
tion, respectively) and clay (0.284, 0.228, and 0.183 kg kg-1

, 

for calibration of a small and large library and validation, 
respectively) classes. The median values are similar to the 
mean values for most of the classes for the calibration 
dataset of the smaller library, except of the loam (mean value 
equals to 0 .096 and median 0.087 kg kg-1

) and silt loam 
(mean value equals to 0.124 and median 0.097 kg kg-1

). For 
the larger library, the median values were always lower than 
the average except for the silt class (mean value 0.047 and 
median 0.54 kg kg-1

). For the validation dataset, the median 
values are differentiated from the mean values for the loam 
(0.115 and 0.103 kg kg-1 the mean and median, respectively) 
and clay (0.183 and 0.161 kg kg- 1 the mean and median, 
respectively) classes. However, the number of soil samples 
included in the clay textural class of the validation dataset is 
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small (N=3). The highest a values are observed in silty loam 
(0.065 kg kg- 1

) and silty clay (0.144 kg kg- 1
) for the 

calibration dataset of the smaller library and in silty clay 
(0.076 kg kg- 1

) and clay (0.068 kg kg- 1
) for the calibration 

of the larger library. Silt loam (0.044 kg kg- 1
), clay loam 

(0.043), and clay (0.040) have the highest values of the a 
compared to other textural classes for the validation dataset. 
Regarding the skewness, for the calibration of the small 
library, only the silty clay loam (-0.298) and clay (-0.167) 
classes are left skewed while negative skewness for the 
validation dataset are presented in loamy sand (-0.467), 
sandy loam (-0.617), sandy clay loam (-0.407), and silty 
clay loam (-1.152). The dataset of the larger library pre­
sented only positive skewness. For the validation dataset for 
the sand, sandy clay and silty clay only the mean and median 
are estimated since the soil samples for each of these classes 
are less than three. 
[0068] The values of the Campbell b were derived from 
the small library and the validation dataset and are varied 
from 2.41 to 8.41 and 2.08 to 7.19 for the calibration and 
validation dataset, respectively. The lowest value of Camp­
bell b is observed in the loamy sand and sandy loam classes 
for the calibration and validation dataset, respectively. The 
highest value is presented in a sandy loam and in a silty clay 
soil for the calibration and validation dataset, respectively. 
The higher mean values of each class are observed in the 
classes with high percentage of sand or clay, while the 
loamier classes present lower values. The highest a is 
observed in sand (1.71) and loam (1.27) for the calibration 
and validation dataset, respectively. The lowest negative 
value of skew is observed in sandy clay loam (-1.31) and 
silty clay loam (-1. 71) for calibration and validation dataset, 
respectively. 
[0069] In the FIG. 3, four absorption spectra of two soil 
samples with the lowest and highest values of Campbell b 
(2.08 and 8.4, respectively), and two with the lowest and 
highest values of W1500 (0.013 and 0.36 kg kg-1, respec­
tively) are illustrated. It is observed that the samples with 
high values of Campbell b and W1500 have stronger peaks 
compared to soils with low values near of 1400 and 1900 
nm, while the sample with the highest value of Campbell b 
presents as well near of 2220 nm. 
[0070] The pre-processing techniques that yield the best 
PLS models were the Savitzky-Golay first derivative and 
OSC for the W1500 and Campbell b calibration model of the 
small library, respectively, and OSC for the W 1500 of the 
larger library. The optimum number of factors were set to 
five and two for the W1500 (for both models) and Campbell 
b. FIG. 3A illustrates the normalized regression coefficients 
as a function of wavelength for the three calibration models. 
The results of the three calibration models are presented in 
Table 2 (below). Specifically, the statistical characteristics of 
the cross-validation and validation dataset for each textural 
class are given. For the classes with less than five soil 
samples, the statistics were not calculated individually but 
were included to estimate the statistics for all soil samples. 
[0071] Regarding the cross-validation dataset (Table 2A), 
the R2

, bias, and RMSE were 0.64, 0, 0.039, respectively for 
the W 1500 model of the small library and 0.52, 0, and 0.058 
for the larger library, while for the Campbell b model, the 
respective figures were 0.56, 0, and 0.769. Based on the R2 

of the W 1500 model of the small library for each class, it is 
observed that the loamy sand, sandy loam, and sandy clay 
loam present values of R2 close to 0. The sandy clay loam 
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presented the highest RMSE value (0.073 kg kg- 1
). The 

values of the R2 and RMSE for the W1500 of the larger 
library varied respectively from 0.15 (silty clay) to 0.64 (silt) 
and 0.039 (sandy clay loam) to 0.086 (silty clay) kg kg- 1

. It 
is observed a higher RMSE of 0.086 kg kg- 1 in soil samples 
that their textural classes were not defined since the textural 
data were not available. The highest value of bias (0.046) 
was observed in the sand class. Low values of R 2 

( ca. 0) of 
Campbell b model were presented in silt loam, clay loam, 
and clay classes but a high RMSE value (1.43) was observed 
in sandy clay loam. 

[0072] For the validation dataset (Table 3), the statistics 
were worst compared to the cross-validation dataset for the 
small library. Specifically, for the predictions of the W 1500 

the value of R2
, bias, and RMSE, were 0.34, 0.027, and 

0.049 respectively, while for the predictions of the Campbell 
b the figures were 0.19, 0.306, and 1.009, respectively. The 
silt loam class presented the lowest RMSE (0.031 kg kg- 1

), 

of the W1500 compared to the other classes, while the highest 
R 2 was observed in the loamy sand. The silt loam was 
presented the highest value of the R2 (0.73) and the second­
lowest value of RMSE (0.566) for the prediction of the 
Campbell b. The lowest RMSE was presented in the sandy 
clay loam class (0.501). Regarding the statistics obtained 
from the W 1500 of the large library, the loamy sand, sandy 
loam, and sandy clay loam presented lower RMSE com­
pared to the statistics derived from the smaller library. The 
silt loam presented a slightly higher value of RMSE (0.036 
instead of0.031 kg kg- 1

) and the loam has the same RMSE 
value (0.039 kg kg- 1

) compared to the W 1500 of the smaller 
library. The absolute values of bias were lower for the W 1500 

of the larger library among the five textural classes except 
for the silt loam. The R2

, bias, and RMSE for all samples 
included in the validation dataset were improved (0.49, 
0.008 kg kg- 1

, and 0.035 kg kg- 1
, respectively instead of 

0.34, 0.027 kg kg- 1
, and 0.049 kg kg- 1

, respectively) for the 
predicted from the larger library of the W 1500 . The statistics 
of the sandy clay, clay loam, silty clay loam, silty clay, and 
clay were not available since the included soil samples into 
these classes were less than five soil samples. 

[0073] The statistics obtained from the cross-validation 
using the entire datasets (small-for Campbell band large-for 
W 1500) are presented in Table 2.C. It is observed that the 
values ofR2

, Bias, andRMSE were similar to those obtained 
from the cross-validation of the calibration dataset (Table 
2.A). Regarding the statistics obtained from the cross­
validation of the Campbell b were slightly worst compared 
to these of Table 2.A. The permutation results yielded values 
ofless than 0.05 for cross-validation for all tests (Wilcoxon, 
Sign test, and Randt-test) for both models (Campbell b, and 
W 1500) and thus, the models were significant at the 95% 
confidence level. Additionally, based on Fig. S3 , it is 
observed that the values of standardized sum squared ofY 
values from calibration and cross-validation were relatively 
close to each other and significantly lower than the un­
permuted soil property (far right side of the plot) for both 
models (Campbell b, and W 1500 ). Therefore, the calibration 
models were significant and not over-fit. 

[0074] Table 3 (below) presents the statistical character­
istic of the predicted W1500 and Campbell b derived from the 
topsoils (Table 3A) and subsoils (Table 3B) for each soil 
textural class when the calibration models were included 
only subsoils and topsoils, respectively for the smaller 
library. For the topsoil predicted W 1500 the R2

, bias, and 
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RMSE were 0.49, 0.016 kg kg-1, and 0.042 kg kg-1, 
respectively, while for the Campbell b these figures were 
0.55 , 0.390, and 0.791 , respectively. For the subsoils pre­
dicted W 1500 and Campbell b, R2

, bias, and RMSE, were 
respectively 0.05, -0.007 kg kg-1, and 0.073 kg kg- 1 and 
0.37, -0.226, and 1.075. 

[0075] Except for the statistics of the three calibration 
models (vis-NIRS 1 , vis-NIRS2, vis-NIRS+measured W 1500) 

for the validation dataset, the R2, RMSE, and bias, for each 
SWRC based on the vis-NIRS predicted soil-water retention 
and the measured points for the validation dataset were 
calculated. The results of these are shown in the box-and­
whisker plots for each textural class in FIG. 4. All textural 
classes presented a high value ofR2 (ca. R2>0.85) between 
the measured and predicted gravimetric water contents at the 
seven matric potentials of each sample. Moreover, it is 
observed that the R2 is the same for the three vis-NIRS 
scenarios since the values of the Campbell b were predicted 
using the same calibration model obtained from the small 
library. Regarding the predictions obtained from the small 
library (vis-NIRS 1) , the values of the RMSE varied from 
0.014 to 0.239, and a mean value of0.097 kg kg- 1 with the 
lowest and highest values to be observed in silt loam and 
loamy sand class, respectively. The values of bias were from 
-0.10 to 0.22, with the silty clay loam and loam classes to 
be least and most biased, respectively. Lower values of the 
RMSE were observed in the predictions obtained from the 
larger library (vis-NIRS2). Specifically, the RMSE ranged 
from 0.009 (clay) to 0.207 (silt loam) with an average of 
0.065 kg kg- 1

. The bias for the predictions obtained from the 
larger library varied from -0.15 to 0.12 with an average of 
0.03 kg kg-1

. When a measured point at -1500 kPa was 
included, the RMSE values were improved (0.008-clay to 
0.164-loam, with an average of 0.049) and the bias ranged 
from -0.073 to 0.138 with a mean value of0.018 kg kg- 1

. 

Based on FIG. 4, it was observed that the RMSE values 
when the predictions were derived from the calibration 
model of the larger library were significantly improved for 
all textural classes. 

[0076] In FIG. 5 the box-and-whisker plots of the three 
statistics (R2

, RMSE, and Bias) for each textural class for the 
five scenarios (three for vis-NIRS and two for ROSETTA-I) 
are illustrated. The scenarios were the vis-NIRSi, vis­
NIRS2, vis-NIRS+measured W1500, ROSETTA-lsc2, and 
ROSETTA-14 predicted soil-water retention curve. It was 
observed that except for the loamy sand class, the vis-NIRS 
predicted SWRC yielded higher values of R2 compared to 
ROSETTA-1 sc2 • The values of the R 2 for the ROSETTA-1 sc4 
were lower compared to ROSETTA-lsc2 for all textural 
classes except for sand. The silty clay loam (0.65-0.9) and 
clay (0.53-0.64) classes presented the lowest values of R2

• 

The values of the RMSE for the vis-NIRS 1 predicted SWRC 
for all classes were higher compared to the other four 
scenarios except for the silt loam, in which the higher values 
of RMSE were presented in ROSETTA-lsc2 • The lowest 
values of RMSE were observed in the vis-NIRS+measured 
W1500 and vis-NIRS2 scenarios except for the sand class, in 
which the ROSETTA-l sc4 presented the lowest values of 
RMSE. By observing the values of the bias, the predictions 
obtained from the ROSETTA-l sc4 were least biased com­
pared to ROSETTA-lsc2, while the most biased predictions 
were obtained from vis-NIRS 1 . 

[0077] FIG. 5 represents the values of the RMSE and bias 
obtained from the five scenarios at seven soil-water matric 
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potentials (-6, -10, -33 , -100, -200, -500, and -1500 kPa). 
It is observed that the vis-NIRS 1 presented the highest 
values of RMSE and bias. The wettest point (-6 kPa) was 
better predicted (RMSE=0.096 kg kg- 1

) from the vis-NIRS2, 
while close values of the RMSE were observed in vis­
NIRS+measured W1500 (0.102 kg kg- 1

) and ROSETTA-lsc4 
(0.103 kg kg- 1

) . For the RMSE of the soil-water matric 
potentials at -10, -33, -100, and -200 the ROSETTA-lsc4 
presented the lowest values (0.059, 0.016, 0.023, and 0.023 
kg kg- 1

) compared to the other four scenarios. For the driest 
soil-water matric potentials (-500, and -1500 kPa), the 
vis-NIRS+measured W 1500 presented lower RMSE values, 
while the vis-NIRS2, ROSETTA-l sc2, and ROSETTA-lsc4 
illustrated similar values. The least biased predictions were 
observed in vis-NIRS+measured W1500 and vis-NIRS2. 
[0078] The obtained predicted parameters of each sce­
nario, i.e., W1500 and Campbell b for the vis-NIRS, 8r, 8s, a, 
and n for ROSETTA-lsc2 and ROSETTA-lsc4, were then 
inserted into the anchored Campbell soil-water retention 
function (vis-NIRS scenarios) and van Genuchten (RO­
SETTA-I) and the SWRCs from near saturation (-2 kPa) up 
to -1600 kPa were obtained. The predictive performance of 
SWRC for 12 soil samples (at least one soil sample from 
each textural class) using the five scenarios, is illustrated in 
FIG. 6. It is observed that all scenarios of the vis-NIRS 
predicted SWRC had a similar shape with the soil-water 
retention measurements. However, for the sand (FIG. 7a), 
loamy sand (FIG. 7b), and sandy clay loam (FIG. 7g) the 
vis-NIRS1 predicted SWRCs have presented higher gravi­
metric water contents at the given matric potentials, while 
the vis-NIRS1 and vis-NIRS 1 predicted gravimetric water 
contents for the silty clay soil (FIG. 7 k) were lower than the 
measured contents. The vis-NIRS1 predicted SWRC for the 
remaining soils were compared closely with the measure­
ments. The SWRC obtained from the vis-NIRS2 were com­
pared closely with the measured data except for the sand, 
loamy sand, and silty clay (FIGS. 7a, b, k). 
[0079] Comparing the two scenarios of the ROSETTA-I, 
it is observed that the SWRCs derived from scenario-4 were 
better predicted in horizontal shift compared to scenario-2 
but not in shape. Specifically, for the sandy clay loam (FIG. 
Sg), silty clay loam (FIG. 7j), silty clay (FIG. 7k), and clay 
(FIG. 7[), the predicted SWRCs derived from the scenario-4 
could not predict the wetter end. The predicted SWRC 
obtained from the R vis-NIRS+measured W1 5 00 were better 
predicted compared to the other four scenarios for all the soil 
samples except for the sandy loam (FIG. 7d), loam (FIG. 
7e), and clay loam (FIG. 7h). 
[0080] The Campbell SWRC was selected in particular for 
this example, because it can accurately fit the measured 
soil-water retention data, although other examples can use 
other known SWRCs. Moreover, the parameter of the Camp­
bell b was found to be directly related to the clay contents 
and organic matter, which can be predicted from vis-NIRS 
with high accuracy. Furthermore, the saturated water content 
is poorly related to the vis-NIRS, and water contents at drier 
points can be predicted from basic soil properties such as for 
clay. Therefore, under the disclosed method, the parameters 
of the modified anchored Campbell SWRC can be very well 
predicted from vis-NIRS. 
[0081] As noted above, a variety of SWRCs can be used 
in other examples. However, the Campbell SWRC may be 
particularly suitable for some applications. For example, a 
widely used function is the van Genuchten SWRC, which 
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has four parameters that need to be estimated (8s, Br, a, and 
n). However, a is directly related to the inverse of air-entry 
pressure which is substantially varied even within a soil 
textural class and it would probably be poorly predicted 
from the vis-NIRS. 
[0082] The measurements of the soil-water retention curve 
were based on sieved soil samples. Measurements on undis­
turbed colunms would allow to include in the calibration 
models the structure of the soil as well since undisturbed 
samples retain the in-situ properties of the soil. 
[0083] Spectral measurement peaks near 1400 and 1900 
nm indicate the presence of water molecules, and if molecu­
lar water is present, these two features always appear (Hunt, 
1977). At 2200 nm the peak is because of the combination 
of the OH stretch with the fundamental Al-OH bending 
mode (Hunt, 1977). In the visible range the peaks could be 
assigned to organic matter (Galvao and Vitorello, 1998; 
Viscarra Rossel et al., 2006) and iron oxide minerals (Hunt, 
1977). Additionally, peaks around 1400 nm can be attributed 
to the 1st overtone of the structural O-H stretching mode 
and a combination of vibrations of water bound in the 
interlayer lattices as hydrated cations and adsorbed water on 
particle surfaces (Bishop et al., 1994). In the region of2200 
to 2500 nm, there can be a combination of vibrations 
including 0--H stretching and metal-OH bends (Stenberg et 
al. , 2010). The minerals and organic components of soil are 
indirectly related to the W1500 and Campbell b since these 
are linked with the clay and carbon contents and thus, the 
peaks in the visible and near-infrared range could be used for 
the development of calibration models for predicting the two 
parameters (W1500, Campbell b). 
[0084] The predictions for the W 1500 in the validation 
dataset were improved when the calibration model was 
based on a larger library, indicating that more soil samples 
in the calibration dataset led the calibration models to better 
capture the important peaks. Moreover, it was found that the 
highest values of the RMSE were in the sandier classes for 
both parameters regardless of the applied library. Notably, 
Blaschek et al. (2019) have found that the sand contents 
were poorly predicted from the vis-NIRS. 
[0085] The statistics of the predicted SWRC of each soil 
textural class were improved when more soil samples were 
included in the calibration model of W 1500 . However, the 
statistics obtained from the cross-validation for W 1500 of the 
larger database were slightly worst compared to those 
obtained from the small library. This is probably because 
more textural classes were included and simultaneously 
evaluated (e.g. sand, sandy clay, silty clay, and silt). More­
over, the range and the number of soil samples of the W 1500 

for each class were larger. 
[0086] The horizon-specific models have shown that a soil 
sample from topsoil could be predicted from a calibration 
model built on subsoils. However, the predictions of the 
subsoils based on a model built from topsoil did not yield 
sufficient predictive ability. A reason for that is because the 
topsoils were predicted from a larger database since the 
number of the subsoils was almost three times higher than 
the topsoils. Moreover, a subsoil consists of greater minerals 
and materials of iron and aluminum compounds than topsoil. 
These compounds are reflected in the vis-NIRS range and 
thus a model including only topsoils would not be expected 
to sufficiently predict parameters for subsoils. 
[0087] Currently, there are few studies in the literature for 
predicting the SWRC. However, these studies have gener-
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ally been based on a small number of classes of soils from 
limited geographic areas, did not recognize the value of the 
ranges of pF used herein for anchoring of SWRCs (and 
particularly relative to the Campbell function), and were not 
subject to rigorous validation. Further, at least one earlier 
study (Babaeian et al., 2015) has questioned the feasibility 
of some aspects of the methods disclosed herein, relative to 
a wide range of soil classes. In this regard, for example 
Babaeian et al. (2015) and Santra et al. (2009) developed 
spectral models for predicting the van Genuchten param­
eters. Specifically, Babaeian et al. (2015) developed point 
and parametric spectral transfer functions to predict soil 
water contents at nine specific soil matric potentials (from 
saturation up to -1500 kPa), and the parameters of van 
Genuchten and Brooks-Corey soil-water retention functions. 
The soil samples included in the calibration models were 
derived from an area from Iran, were topsoils, and varied 
within a specific soil texture range (e.g. , clay: 15-45, sand: 
13-63, silt contents: 21-52%). They have reported similar to 
this study R2 (0.63) for the water content at -1500 kPa and 
the R2 of van Genuchten and Brooks-Corey parameters 
varied from 0.14 to 0.44. 

[0088] The vis-NIRS for all scenarios captured the shape 
of the SWRC, while the ROSETTA-lsc4 failed for few soil 
samples since the predicted curve sharply reached the satu­
ration degree at drier W. Moreover, the vis-NIRS2 yielded to 
better prediction for the wettest water contents. On the other 
hand, the vis-NIRS 1 and vis-NIRS2 failed to predict the 
SWRC of the sandier soils compared to the ROSETTA-I 
scenarios, and as it was discussed this is because of the poor 
predictability of the spectroscopy for the sandier soils. 
However, when a measured W1500 was included, the pre­
dictions derived from the vis-NIS were equally good as with 
ROSETTA-I and compared closely to the measured soil­
water retention data. An advantage of the vis-NIRS is that 
only the knowledge of the spectral data is required to obtain 
the prediction of an SWRC without having the soil texture 
analysis and bulk density. Additionally, ROSETTA-lsc4 
required the knowledge of two volumetric water content at 
specific matric potential (-33 , and -1500 kPa), while for the 
vis-NIRS+measured W1500, a point approximately closed to 
that potential would be sufficient. However, the anchored 
Campbell SWR function should be anchored at the mea­
sured soil-water matric potential. Silva et al. (2021) have 
developed software namely Splintex 2.0 which is a PTF 
model developed with a user-friendly computer interface for 
estimating hydraulic functions' parameters. They have also 
compared their model development with the predictions 
obtained from ROSETTA and have found comparable 
results with ROSETTA with lower RMSE values of the 
volumetric water content in ROSETTA. Furthermore, Was­
ten et al. (2001) and Pachepsky et al. (2001) found that 
differences from 0.06 up to 0.11 in the volumetric water 
contents are acceptable. 

[0089] Thus, the method demonstrated by this study could 
be applied for obtaining a rapid estimation of the SWRC. 
Specifically, a small amount of air-dried, and sieved soil 
sample needed to be scanned in a spectrometer and within 
few seconds the parameters of the anchored Campbell 
soil-water retention function could be obtained. Because of 
the rapidity and low cost of the proposed method, the 
estimation of the SWRCs could be at a high spatial resolu­
tion and thus could assist in modeling and forecasting in 
different disciplines such as hydrogeology, environmental 
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geosciences. In this regard, some embodiments of the dis­
closed technology can generally include devices ( e.g., hand­
held or other portable devices) that can receive soil samples, 
obtain relevant spectroscopic data, and then determine rel­
evant SWRCs for the soil samples according to the general 
principles discussed above. For example, hand-held spec­
trometers, or spectrometers mounted on probes (e.g. , push 
probes) or on mobile platforms (e.g. , ground vehicles, 
drones, satellites, manned aircraft, etc.) can be used to 
acquire spectroscopic data in some embodiments. Further, in 
these and other examples, soil samples may not necessarily 
be processed as described above ( or at all). Correspondingly, 
some embodiments may be particularly efficient for large­
area, in-field analysis. 
[0090] In summary, this example thus demonstrates that 
vis-NIRS can be used as a tool to predict an SWRC from the 
near saturation (-2 kPa) up to -1500 kPa for different soil 
textural classes. More specifically, this example demon­
strates in particular the unexpected result that the Campbell 
soil-water retention function, anchored at -1500 kPa or 
lower can be characterized with substantial accuracy for a 
particular soil sample based on the use of vis-NIRS to 
determine the Campbell b and W1500. In particular, it is 
concluded that: Vis-NIRS can be used for predicting the 
SWRC and for capturing the shape of the SWRC. Further, 
by adding a measured W 1500, the predictive performance of 
the SWRC was increased even for sandy soils. 
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[0147] Tables 

TABLE 1 

General statistics of the gravimetric water content at -1 500 kPa (W 1500) and 
Campbell b for the calibration and validation datasets of each textural class. 

Calibration 

Dataset Small Large Validation 

Textural class Statistics W 1soo Campbell b W1 soo W1soo Campbell b 

Sand (N eall • Mean 0.023 6.1 6 0.022 0.026 3.31 
N ea/2 , N vai' 4, Median 0.023 6.41 0.01 7 0.026 3.31 
124, 1)1 Ql 0.020 5.07 0.009 

Q3 0.026 7.50 0.027 NIA NIA 
a 0.006 1.7 1 0.021 
skew 0.233 -0.44 2.358 
Min 0.0 16 4.11 0.001 0.026 3.31 
Max 0.030 7.7 1 0.133 0.026 3.31 
Min-Max 0.01 6-0.03 4.11- 7.71 0.00 1-0.133 0. 026-0. 02 6 3.31-3.31 

Loamy sand Mean 0.031 3.00 0.050 0.032 3.15 
(Neall , N ca/2 , Median 0.030 2.97 0.039 0.032 3.08 
Nvai' 11, 105 , Ql 0.021 2.62 0.027 0.029 3.04 
5) Q3 0.041 3.12 0.048 0.037 3.15 

a 0.0 13 0.5 1 0.056 0.007 0.24 
skew 0.142 1.5 1 5.458 - 0 .467 1.67 
Min 0.0 13 2.41 0.009 0.022 2.94 
Max 0.054 4. 25 0.488 0.040 3.56 
Min-Max 0.013-0.054 2.41-4.25 0.009-0.488 0. 022-0. 04 2.94-3.5 6 

Sandy loam Mean 0.0 62 3.46 0.074 0.051 3.16 

(Neall • N ca/2 • Median 0.0 60 3.25 0.059 0.055 3.17 
Nvai' 78, 311, Ql 0.052 3.06 0.047 0.045 2.90 
35) Q3 0.0 69 3.63 0.080 0.063 3.45 

a 0.015 0.79 0.060 0.01 6 0.48 
skew 0.655 3.63 4.754 - 0 .61 7 - 0.31 
Min 0.028 2.7 1 0.002 0.018 2.08 
Max 0.108 8.41 0.598 0.080 4.21 
Min-Max 0.028-0.1 08 2.71-8.41 0.002-0.598 0. 018-0. 08 2.08-4.21 

Loam Mean 0.096 3.99 0.105 0.11 5 4.23 

(Neall , N ca/2 , Median 0.087 3.80 0.095 0.103 3.76 
Nvai' 32, 208, Ql 0.075 3.59 0.076 0.092 3.39 
15) Q3 0.095 4.04 0 .117 0.125 4.34 

a 0.037 0.9 1 0.053 0.039 1.27 
skew 2.180 3.67 3.152 0.951 1.42 
Min 0.051 3.08 0.025 0.056 3.03 
Max 0.208 8.30 0.515 0.190 7.03 
Min-Max 0.051-0.208 3.08-8.3 0.025-0.515 0. 056-0.1 9 3.03-7.03 

Silt loam Mean 0.124 3.53 0.111 0.124 3.47 
(Neall , N ca/2 , Median 0.097 3.51 0.100 0.124 3.40 
Nvai' 15, 175, Ql 0.080 3.23 0.073 0.096 3.00 
10) Q3 0.146 3.75 0.132 0.138 3.87 

a 0.0 65 0.70 0.066 0.044 0.59 
skew 1.351 0.70 2.652 0.323 0.42 
Min 0.057 2.47 0.013 0.056 2.66 
Max 0.285 5.04 0.51 0 0.204 4.51 
Min-Max 0.057-0.285 2.47-5.04 0.013-0.51 0. 056-0. 204 2.66-4.51 

Sandy clay loam Mean 0.099 3.98 0.107 0.101 4.13 

(Neall , N ca/2 , Median 0.096 3.95 0.102 0.107 4.13 
Nvai' 37, 103, Ql 0.086 3.61 0.091 0.091 3.94 
13) Q3 0.108 4. 29 0 .117 0.114 4.33 

a 0.020 0.48 0.026 0.017 0.37 
skew 2.056 0.44 1.086 - 0.407 - 0.32 
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TABLE I -continued 

General statistics of the gravimetric water content at -1500 kPa (W 15CXJ) and 
Campbell b for the calibration and validation data.sets of each textural class. 

Calibration 

Dataset Small Large Validation 

Textural class Statistics W1soo Campbell b W1soo W1 soo Campbell b 

Min 0 .068 3. 18 0.035 0.070 3.42 
Max 0 .185 5.30 0.208 0.131 4.68 
Min-Max 0.068-0.185 3.1 8-5.3 0.035-0.208 0.07-0.1 31 3.42-4.68 

Sandy clay Mean 0 .140 6.41 0.1 61 0.132 5.22 

(N= 1i, N=12, Median 0 .139 6.66 0.1 48 0.132 5.22 
Nvai 3, 14, I ) QI 0 .13 6 6.10 0.135 

Q3 0 .144 6. 84 0.1 70 NIA NIA 
(J 0 .008 0.76 0.040 
skew 0 .722 -1.31 1.471 
Min 0 .133 5.55 0.118 0.132 5.22 
Max 0 .149 7.02 0. 259 0.132 5.22 
Min-Max 0.1 33-0.149 5.55-7.02 0.118-0 .259 0.132-0. 132 5.22-5.22 

Clay loam Mean 0 .1 69 5.58 0.1 55 0.131 5.76 

(N=ll•N= l2• Median 0 .1 67 5.50 0.1 48 0.1 28 5.74 
Nvai 12, 104, 4) QI 0 .142 4.74 0.1 28 0 .114 4.70 

Q3 0 .190 6.53 0.1 78 0.145 6.81 
(J 0 .03 6 1.01 0.055 0.043 1.25 
skew 0 .401 - 0.08 0.400 0.379 0.01 
Min 0 .120 4.19 0.004 0.081 4 .65 
Max 0 .226 6. 85 0.346 0.1 86 6.92 
Min-Max 0.12-0. 226 4.1 9-6.85 0.004-0.346 0.081-0.1 86 4. 65-6.92 

Silty clay loam Mean 0 .157 5.06 0.1 54 0.137 4.50 

(N=l1'N= l2 • Median 0 .1 60 4.79 0.1 53 0.139 4 .73 
Nvai 10, 130, QI 0 .145 4.62 0.134 0.134 4 .36 
3) Q3 0 .1 66 5.38 0.1 73 0.141 4 .76 

(J 0 .014 0. 82 0.048 0.007 0.44 
skew - 0 .298 0.78 1.656 -1.152 -1.71 
Min 0 .132 3.98 0.006 0.1 29 3.99 
Max 0 .177 6.43 0.456 0.143 4 .78 
Min-Max 0.1 32-0.177 3.98-6.43 0.006-0.456 0.129-0. 143 3.99-4.78 
Mean 0 .260 5.71 0.2 10 0.155 7.19 

Silty clay Median 0 .260 5.71 0.1 98 0.155 7.19 

(N=ll • N=l2• QI 0 .209 5.55 0.1 73 
Nvai 2, 89, I ) Q3 0.311 5.87 0. 230 NIA NIA 

(J 0 .144 0.45 0.076 
skew NIA NIA 1.633 
Min 0 .15 8 5.39 0.042 0.155 7.19 
Max 0 .362 6.03 0.557 0.155 7.19 
Min-Max 0.1 58-0.362 5.39-6.03 0.042-0.557 0.155-0.1 55 7.19-7.1 9 
Mean 0 .284 6.06 0. 228 0.1 83 5.55 

Clay Median 0 .282 5.94 0. 219 0.1 61 5.35 

(N=ll•N= l2 • QI 0 .259 5.79 0.1 80 0.1 60 5.27 

Nvai 11 , 132, Q3 0 .3 17 6.49 0.267 0.195 5.73 
3) (J 0 .045 0. 64 0.068 0.040 0.49 

skew - 0.1 67 - 0.64 0.384 1.721 1.51 
Min 0 .21 0 4.74 0.052 0.158 5.19 
Max 0 .35 6 6.97 0.422 0.229 6.11 
Min-Max 0. 21-0.356 4.74-6.97 0.052-0.422 0.158-0.229 5.19-6.11 

Silt Mean 0.047 

(N=ll•N= l2• Median NIA 0.054 NIA 

Nvai - , 7, - ) QI 0.023 
Q3 0.060 
(J 0.025 
skew 0.295 

Min 0.021 
Max 0.085 
Min-Max 0.021-0.085 

Mean 0.1 65 
Not defined Median NIA 0.118 NIA 

(N=l1'N= l2 • QI 0.061 

Nvai - 65 , - ) Q3 0. 236 
(J 0.132 
skew 1.023 

Dec. 15, 2022 
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TABLE I -continued 

General statistics of the gravimetric water content at -1500 kPa (W 15CXJ) and 

Campbell b for the calibration and validation data.sets of each textural class. 

Calibration 

Dataset Small Large Validation 

Textural class 

Total 

(N= l1' N=l2' 

Nvai 21 5, 

1567, 91 ) 

Statistics W1soo Campbell b W1soo W1 soo 

Min 0.005 

Max 0.590 

Min-Max 0.005-0.59 

Mean 0 .100 4.05 0.116 0.088 

Median 0 .083 3.73 0.098 0.080 

Q I 0 .060 3.22 0.056 0.054 

Q3 0.115 4.44 0.158 0.11 7 

(J 0 .065 1.16 0.084 0.047 

skew 1.829 1.40 1.494 0.72 3 

Min 0 .013 2.41 0.001 0.01 8 

Max 0 .362 8.41 0.598 0.229 

Min-Max 0.0 13-0.362 2.41-8.41 0.001-0.598 0.0 18-0.229 

TABLE 2 

Statistical characteristics of the predicted gravimetric water content 
at -1500 kPa (W 1500) and Campbell b derived from the cross-validation 

(A) and validation (B) data.sets for each soil textural class. 

A: Calibration dataset 

Campbell b 

3.82 

3.55 

3.14 

4.19 

1.07 

1.43 

2.08 

7.19 

2.08-7 .19 

W 1500-Small library W 1500- Large library Campbell b 
Soil parameter 

Textural class 

Sand 
Loamy sand 
Sandy loam 
Loam 
Silt loam 
Sandy clay loam 
Sandy clay 
Clay loam 
Silty clay loam 
Silty clay 
Clay 
Silt 
Not defined 
All soil samples 

Soil parameter 

Textural class 

Sand 
Loamy sand 
Sandy loam 
Loam 
Silt loam 
Sandy clay loam 
Sandy clay 
Clay loam 
Silty clay loam 
Silty clay 
Clay 
All soil samples 

Statistic 

R2 Bias RMSE R2 Bias RMSE R2 Bias 

NIA 0.45 0.046 0.061 NIA 
0.02 0.0 10 0.03 1 0.42 0.032 0.057 0.62 0.271 
0.02 0.0 19 0.03 3 0.29 0.019 0.054 0.44 0.196 
0.65 - 0.012 0.02 6 0.28 - 0.001 0.046 0.47 - 0.180 
0.40 - 0.023 0.055 0.40 - 0.009 0.053 0.00 0.349 
0.07 - 0.003 0.073 0.23 0.019 0.039 0.29 0.069 

NIA 0.21 0.023 0.043 NIA 
0.55 - 0.035 0.049 0.49 - 0.010 0.043 0.03 - 0.932 
0.51 - 0.014 0.044 0.3 2 - 0.029 0.050 0.09 - 0.384 

NIA 0.1 5 - 0.040 0.086 NIA 
0.32 - 0.043 0.05 7 0.23 - 0.036 0.073 0.02 - 0.256 

NIA 0.64 0.040 0.071 NIA 
0.5 9 - 0.023 0.088 

0.64 0.000 0.03 9 0.5 2 0.000 0.058 0.5 6 0.000 

B: Validation dataset 

W 150 0-Small dataset W 1500-Large data.set Campbell b 
Statistic 

R2 Bias RMSE R2 Bias RMSE R2 Bias 

NIA NIA 
0.91 0.058 0 .065 0.63 0. 038 0 .041 0.49 1.063 
0.1 0 0.041 0 .051 0.37 0. 028 0 .034 0.0 1 0. 725 
0.49 0.026 0 .039 0.14 -0.018 0 .039 0.24 -0.057 
0.53 0.009 0 .031 0.69 -0.022 0 .036 0.73 0.487 
0.02 0.020 0 .05 6 0.04 0. 016 0 .026 0.22 0. 083 

NIA NIA 

0.34 0.027 0 .049 0.49 0. 008 0 .035 0. 19 0.306 

RMSE 

0.565 
0.625 
0. 678 
0.933 
1.427 

1.446 
0.834 

0.820 

0.769 

RMSE 

1.11 5 
1.048 
1.078 
0.5 66 
0.50 1 

1.009 

Dec. 15, 2022 
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TABLE 3 

Statistical characteristics of the predicted gravimetric water content 
at -1500 kPa (W 15CXJ) and Campbell b derived from tbe topsoils and 

subsoils for each soil textural class based on a small dataset. 

A: Topsoils 

W1 500 Campbell b 
Soil parameter Statistic 

Textural class R2 Bias RMSE R2 Bias RMSE 

Sand(-) NIA NIA 
Loamy sand (N - 3) 
Sandy loam (N - 53) 0.02 0.025 0.035 0 .27 0.525 0. 639 
Loam (N - 19) 0.09 0. 014 0.046 0 .27 0.289 1.043 
Silt loam (N - 8) 0.52 -0.013 0.05 1 0 .01 0.544 0.759 
Sandy clay loam (N - 8) 0.09 0. 030 0.049 0 .70 0.518 0. 675 
Sandy clay (-) NIA NIA 
Clay loam (N - 3) 
Silty clay loam (- ) 
Silty clay (- ) 
Clay (N - 4) 
All (N- 97) 0.49 0. 016 0.042 0 .55 0.390 0.791 

B: Subsoils 

W1soo Campbell b 
Soil parameter Statistic 

Textural class R2 Bias RMSE R2 Bias RMSE 

Sand (N - 5) NIA NIA 
Loamy sand (N - 13) 0. 21 0.042 0.070 0 .45 - 0.070 0.895 
Sandy loam (N - 60) 0.02 0. 03 1 0.060 0 .1 9 0.065 1.017 
Loam (N - 28) 0.06 0. 030 0.050 0 .5 8 - 0.755 0.952 
Silt loam (N - 1 7) 0.50 0. 013 0.037 0 .1 6 - 0.096 0. 741 
Sandy clay loam (N - 42) 0.0 1 -0.052 0.067 0 .1 2 0.11 6 1.067 
Sandy clay (N - 4) NIA NIA 
Clay loam (N - 13) 0.02 -0.036 0.088 0 .17 -1.208 1.532 
Silty clay loam (N - 13) 0.1 5 -0.040 0.049 0 .45 - 0.577 0.818 
Silty clay (N - 3) NIA NIA 
Clay (N - 11 ) 0.08 -0. 139 0.1 60 0 .5 2 - 0.543 0.906 
All (N- 209) 0.05 -0.007 0.073 0 .37 - 0.226 1.075 

A: Topsoils 

W1 soo Campbell b 
Soil parameter Statistic 

Textural class R2 Bias RMSE R2 Bias RMSE 

Sand(-) NIA NIA 
Loamy sand (N - 3) 
Sandy loam (N - 53) 0.02 0.025 0.035 0 .27 0.525 0. 639 
Loam (N - 19) 0.09 0. 014 0.046 0 .27 0. 289 1.043 
Silt loam (N - 8) 0.52 -0.013 0.05 1 0 .01 0.544 0.759 
Sandy clay loam (N - 8) 0.09 0. 030 0.049 0 .70 0.518 0. 675 
Sandy clay (-) NIA NIA 
Clay loam (N - 3) 
Silty clay loam (- ) 
Silty clay (- ) 
Clay (N - 4) 
All (N- 97) 0.49 0. 016 0.042 0 .55 0.390 0.791 

B: Subsoils 

W1soo Campbell b 
Soil parameter Statistic 

Textural class R2 Bias RMSE R2 Bias RMSE 

Sand (N - 5) NIA NIA 
Loamy sand (N - 13) 0. 21 0.042 0.070 0 .45 - 0.070 0.895 
Sandy loam (N - 60) 0.02 0. 03 1 0.060 0 .1 9 0.065 1.017 
Loam (N - 28) 0.06 0. 030 0.050 0 .5 8 - 0.755 0.952 
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TABLE 3-continued 

Statistical characteristics of the predicted gravimetric water content 
at -1500 kPa (W 15CXJ) and Campbell b derived from tbe topsoils and 

subsoils for each soil textural class based on a small dataset. 

Silt loam (N - 1 7) 0.50 0. 013 0.037 0 .1 6 - 0.096 
Sandy clay loam (N - 42) 0.0 1 -0.052 0.067 0 .1 2 0.11 6 
Sandy clay (N - 4) NIA NIA 
Clay loam (N - 13) 0.02 -0.036 0.088 0 .1 7 -1.208 
Silty clay loam (N - 13) 0.1 5 -0.040 0.049 0 .45 - 0.577 
Silty clay (N - 3) NIA NIA 
Clay (N - 11 ) 0.08 -0. 139 0.1 60 0 .5 2 - 0.543 
All (N - 209) 0.05 -0.007 0.073 0 .37 - 0.226 

[0148] In the foregoing description, it will be readily 
apparent to one skilled in the art that varying substitutions 
and modifications may be made to the invention disclosed 
herein without departing from the scope and spirit of the 
invention. The invention illustratively described herein suit­
ably may be practiced in the absence of any element or 
elements, limitation or limitations which is not specifically 
disclosed herein. The terms and expressions which have 
been employed are used as terms of description and not of 
limitation, and there is no intention that in the use of such 
terms and expressions of excluding any equivalents of the 
features shown and described or portions thereof, but it is 
recognized that various modifications are possible within the 
scope of the invention. Thus, it should be understood that 
although the present invention has been illustrated by spe­
cific embodiments and optional features , modification and/ 
or variation of the concepts herein disclosed may be resorted 
to by those skilled in the art, and that such modifications and 
variations are considered to be within the scope of this 
invention. 

[0149] Citations to a number of patent and non-patent 
references may be made herein. The cited references are 
incorporated by reference herein in their entireties. In the 
event that there is an inconsistency between a definition of 
a term in the specification as compared to a definition of the 
term in a cited reference, the term should be interpreted 
based on the definition in the specification. 

1. A method of characterizing soil comprising: 

receiving, with one or more computing devices, spectros­
copy data for a soil sample; 

determining a first model parameter for a soil-water 
retention function; and 

characterizing the soil sample based on the soil-water 
retention function 

wherein the first model parameter provides an anchor 
value for the soil-water retention curve; and 

wherein the anchor value corresponds to a water potential 
of pF at least between 3.8 and 4.2, inclusive. 

2. The method of claim 1, wherein the soil-water retention 
function is a Campbell soil-water retention function. 

3. The method of claim 2, further comprising: 

determining, a second model parameter for the soil-water 
retention function, based on the spectroscopy data, 
wherein the second model parameter is an exponential 
shape factor. 

4. The method of claim 1, wherein the anchor value 
corresponds to a water potential of pF at least 4.2. 
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5. The method of claim 1, further comprising: 
receiving a soil sample; and 
conducting a spectroscopy analysis of the soil sample to 

obtain the spectroscopy data. 
6. The method of claim 5, wherein the spectroscopy 

analysis includes vis-NIR spectroscopy analysis. 
7. The method of claim 5, wherein soil sample is an 

air-dried, sieved soil sample. 
8. The method of claim 5, wherein soil sample is a core 

sample. 
9. The method of claim 1, wherein the first model param­

eter is determined with the one or more computing devices 
based on the spectroscopy data. 

10. The method of claim 1, wherein the first model 
parameter is empirically determined. 

11. A system for characterizing soil, the system compris­
ing: 

a spectrophotometer configured to receive a soil sample 
and provide spectroscopy data for the soil sample; and 

one or more computing devices configured to: 
receive the spectroscopy data for the soil sample from 

the spectrophotometer; 
determine a first model parameter for a soil-water 

retention function, the first model parameter provid­
ing an anchor value for the soil-water retention curve 
that corresponds to a water potential of pF at least 
3.8; and 

characterize the soil sample based on the soil-water 
retention function. 

12. The system of claim 11, wherein the soil-water 
retention function is a Campbell soil-water retention func­
tion. 

13. The system of claim 12, wherein the anchor value 
corresponds to a water potential of pF at least 4.0. 

14. The system of claim 11, wherein the spectrophotom­
eter is configured for vis-NIR spectroscopy analysis and the 
spectroscopy data is vis-NIR data. 

15. The system of claim 11, wherein the first model 
parameter is determined based on the spectroscopy data. 

16. The system of claim 11, wherein the first model 
parameter is empirically determined. 

17. A method for characterizing soil at a sample site, the 
method comprising: 

receiving into a spectrophotometer device, at the sample 
site, a soil sample from the sample site; 

analyzing the soil sample, with a spectrophotometer of the 
spectrophotometer device to provide spectroscopy data 
for the soil sample, and 

with one or more computing devices of the spectropho­
tometer device, based on the spectroscopy data and a 
soil model accessed by the spectrophotometer device, 
determining a first model parameter for a soil-water 
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retention function anchored at pF at least 3.8 or at pF 
at least 4.2, thereby characterizing the soil sample 
based on the soil-water retention function, the soil 
model being determined based on spectroscopy data 
acquired from a plurality of other soil samples. 

18. The method of claim 17, wherein the model is the 
Campbell soil-water retention function. 

19. The method of claim 17, wherein the soil sample is not 
sieved, not ground, and not oven dried. 

20. The method of claim 17, wherein the soil sample is 
classified as one or more of loamy sand, sandy loam, loam, 
silt loam, silt, sandy clay loam, clay loam, silty clay loam, 
sandy clay, silty clay, or clay. 

* * * * * 
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