
11/11/2022 09:49:14 Page 1 of 9

1111111111111111 IIIIII IIIII 111111111111111 111111111111111 IIIII IIIII IIIII IIIIII IIII 11111111
US 20220357933Al

(19) United States
02) Patent Application Publication

Alhanahnah et al.
(10) Pub. No.: US 2022/0357933 Al
(43) Pub. Date: Nov. 10, 2022

(54) COMPUTER IMPLEMENTED PROGRAM
SPECIALIZATION

(71) Applicant: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(72) Inventors: Mohannad Alhanahnah, Madison, WI
(US); Vaibhav Rastogi, Santa Clara,
CA (US); Somesh Jha, Madison, WI
(US); Thomas Reps, Madison, WI (US)

(21) Appl. No.: 17/738,158

(22) Filed: May 6, 2022

Related U.S. Application Data

(60) Provisional application No. 63/185,147, filed on May
6, 2021.

(51)

(52)

(57)

Publication Classification

Int. Cl.
G06F 8141
G06F 91445
G06F 9/455
U.S. Cl.

(2006.01)
(2006.01)
(2006.01)

CPC G06F 8/4443 (2013.01); G06F 8/452
(2013.01); G06F 8/443 (2013.01); G06F

9/445 (2013.01); G06F 9/45504 (2013.01)

ABSTRACT

A computerized teclmique for program simplification and
specialization combines a partial interpretation of the pro
gram based on a subset of program functions to obtain
variable states with concrete values at a program "neck."
These concrete values are then propagated as part of an
optimization transformation that simplifies the program
based on these constant values, for example, by eliminating
branches that are never taken based on the constant values.

18~
RECEIVE PROGRAM AND

PARTIAL ASSIGNMENT
r-,..__

50

' '

IDENTIFY NECK r--- 52
' '

PARTIAL INTERPRETATION
TO NECK r----- 56

' '

CONSTANT CONVERSION r----- 57

70 CONSTANT PROPAGATION r-,..__ 60
w

MULTISTAGE SIMPLIFICATION__
72

' w

OUTPUT SIMPLIFIED PROGRAM 92

11/11/2022 09:49:14
Page 2 of 9

10~

18~

FUNCTION
LIST

\._48

PROGRAM

\._20

24, 16
.,,,,,,,.,,.- --

26 30

~ ·- •~·------- ----L-----
20

28-11 I I 11 I I I '
._ _______ __, ·,

38

.,/"42 ·, .---~ ,--- .. --- , .,--------1 .-. /

32 --- -- '· ✓-
~ .---·)<, .- . '

1-- ~ I J§ L-/ / . '· t-----tt---------1

20 22

40

32

FIG. 1

I
I
I
I
I 56, PARTIAL EXECUTION ENGINE I
I
I PARTIAL CONSTANT CONSTANT MULTI STAGE SIMPLIFIED -f+
I INTERPRETATION CONVERSION PROPAGATION SIMPLIFICATION PROGRAM
I
I 57_) 60_) 72_) +

-,.. NECK
LOCATOR i...---------

52
FIG. 2

""C
~
('D

=

t
"O --· !")
~ -· 0 =
""C = O" --· !")
~ -· 0 =
z
0
~
~o
N
0
N
N

1J"1
=('D
('D
0
tH

c
1J"1
N
0
N
N

---0
tH
Ul
-...l
1,0
tH
tH

>

11/11/2022 09:49:14 Page 3 of 9

Patent Application Publication Nov. 10, 2022 Sheet 2 of 3

18~

70

RECEIVE PROGRAM AND
PARTIAL ASSIGNMENT

IDENTIFY NECK

PARTIAL INTERPRETATION
TO NECK

CONSTANT CONVERSION

CONSTANT PROPAGATION

MULTISTAGE SIMPLIFICATION

OUTPUT SIMPLIFIED PROGRAM

FIG. 3

42--.....
___ L ----

US 2022/0357933 Al

50

52

56

57

60

72

92

FIG. 4

11/11/2022 09:49:14 Page 4 of 9

Patent Application Publication Nov. 10, 2022 Sheet 3 of 3

Input: Pee visitedFunc
Output!: P'

1 P' .- Pee
2 /* Remove unused functions
3 CG .- constructCallGraph(P')
4 for func E CG do l if func (visitedFunc A func is not an operand of

other instructions then
L remove func from P' and CG

5

6

7 for func E CG do
8
9
10

if func is not an operand of other instructions then l remove func from P' and CG
remove func's descendent nodes from P' and CG if

they are not reachable from main

11 /* Remove unused Global Variables
12 for var E getGloballist(Pcc) do
13 l if var is not an operand of other instructions then
14 L remove var from P'

15 /* Remove unsed Stack Variables
16 for func E CG do
17 for inst E func do
18 in inst is Alloclnst then
19 if inst is not an operand of other instructions

then
20 L remove inst from P'

US 2022/0357933 Al

*/

*I

*/

21 else if inst is a destination operand of only one

22
23

store Inst then
remove store Inst from P'
remove inst from P'

FIG. 5

11/11/2022 09:49:14 Page 5 of 9

US 2022/0357933 Al

COMPUTER IMPLEMENTED PROGRAM
SPECIALIZATION

CROSS REFERENCE TO RELATED
APPLICATION

[0001] This application claims the benefit of U.S. provi
sional application 63/185,147 filed May 6, 2021 and hereby
incorporated by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

[0002] This invention was made with government support
under N00014-17-1-2889 awarded by the NAVY/ONR. The
government has certain rights in the invention.

BACKGROUND OF THE INVENTION

[0003] The present invention relates to a computerized
system for simplifying and/or specializing existing com
puter programs to reduce the number of instructions in those
programs when only a subset of the program functions are
required.
[0004] Computer programs are becoming increasingly
"bloated," including a large number of instructions that are
unused or rarely used. Program bloat can negatively affect
not only performance but also security to the extent that
increased complexity and size offers more attack targets.
One driver of software bloat is so-called "feature creep," a
tendency of software programs to include additional func
tions over time.
[0005] Manual inspection of software by a human pro
grammer to rewrite a program on a case-by-case basis to
reduce bloat is generally impractical or cost ineffective.
Some computerized bloat-reduction systems exist but
require substantial manual analysis, which can lead to pro
grams that execute incorrectly.

SUMMARY OF THE INVENTION

[0006] The present invention provides a computerized
process for reducing program bloat while ensuring the
soundness of the resulting program. The process provides
for partial interpretation of the program up to a program
"neck" that separates a program's configuration logic from
its main logic. The partial interpretation provides a set of
variable states at the neck that can be reduced to constant
values based on a predefined set of desired program func
tions and propagated through the program. The constant
value propagation reveals program that can be eliminated
through optimizing transformations. The result is a shorter
and substantially simpler program.
[0007] More specifically, the invention provides an appa
ratus for producing compact program versions having at
least one computer processor and a memory coupled to the
at least one processor holding a stored program executable
by the computer processor to: (a) receive a program imple
menting multiple functions and a description of a desired
subset of functions less than the set of the multiple functions;
(b) identify a neck of the program dividing configuration
instructions from main logic instructions ; (c) partially inter
pret the program to the neck to establish concrete values of
variables at the neck; (d) propagate the concrete values
through the main logic instructions; and (e) simplify the

1
Nov. 10, 2022

program by removing instructions of the main logic instruc
tions that will never execute based on the propagated
concrete values.
[0008] It is thus a feature of at least one embodiment of the
invention to make use of a known limited set of desired
functions to identify additional variables in the program that
are "effectively" constant, allowing new opportunities for
program simplification.
[0009] The partial interpretation can be achieved by sym
bolic execution up to the neck to establish concrete repre
sentations of the variable states, and (d) using the concrete
representations and the desired subset of functions to per
form the constant conversion.
[0010] It is thus a feature of at least one embodiment of the
invention to exploit the power of symbolic execution to
identify effective constant values in the program while
managing the problems ordinarily associated with symbolic
execution by constraining the symbolic execution to the
configuration section of the program above the neck.
[0011] The simplification may perfonn optimizing trans
formations using the concrete values.
[0012] It is thus a feature of at least one embodiment of the
invention to combine techniques for partial interpretation
and for performing optimizing transformations to exploit the
strengths of each approach. The partial interpretation allows
robust identification of new variables that are effectively
constant, increasing the opportunities for program simplifi
cation through optimizing transformations.
[0013] The optimization phase may employ at least one
applications of loop unrolling and function in-lining. In
some cases, the optimizing transformations may exclude
instructions of branches conditioned on expressions for
which constant propagation has established that the instruc
tion branch would never be executed.
[0014] It is thus a feature of at least one embodiment of the
invention to leverage known techniques of program optimi
zation used during compilation for program simplification.
[0015] The program may provide command-line switch
inputs, and the desired subset of functions may be a list of
switch inputs associated with functions in the desired subset
of functions.
[0016] It is thus a feature of at least one embodiment of the
invention to provide a list of desired functions by exploiting
the command-line switch structure of the program.
[0017] The neck may be identified as a portion of the
program that (i) will execute once and only once for any
combination of functions of the subset; and (ii) is an
articulation point in the control flow graph of the program
that dominates all subsequent instructions.
[0018] It is thus a feature of at least one embodiment of the
invention to provide a system that can be performed auto
matically by a computer using techniques of control-flow
graph construction and the like.
[0019] The neck may further be identified as a portion of
the program that is the closest instruction to the beginning of
the program for instructions that satisfy (i) and (ii) and at a
location that minimizes the number of instructions in a
simplified version of the program.
[0020] It is thus a feature of at least one embodiment of the
invention to permit optimization in the event that there are
multiple possible neck instructions.
[0021] These particular objects and advantages may apply
to only some embodiments falling within the claims and thus
do not define the scope of the invention.

11/11/2022 09:49:14 Page 6 of 9

US 2022/0357933 Al

BRIEF DESCRIPTION OF THE DRAWINGS

(0022] FIG. 1 is a simplified block diagram of an elec
tronic computer suitable for practice of the present inven
tion;
(0023] FIG. 2 is a process flow chart showing the steps of
the present invention in producing a simplified program;
(0024] FIG. 3 is a flowchart depicting detailed steps of the
various blocks of FIG. 2;
(0025] FIG. 4 is a simplified control flow graph illustrating
the steps of identifying the neck; and;
(0026] FIG. 5 is a pseudocode representation of an
optional program simplification technique.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

(0027] Referring now to FIG. 1, a computer system 10
suitable for use with the present invention may provide an
electronic computer 12 including one or more processors 14
communicating with a computer memory 16 variously
including combinations of random-access memory, read
only memory, hard disk storage, etc.
(0028] The computer memory 16 may hold a program 18
implementing the simplification process of the present
invention, as well as a program 20 to be simplified and
various data files 22 to be discussed below and interim
versions of the program 20 including a final simplified
version. Generally the electronic computer 12 may commu
nicate with user-interface hardware 24 such as a display
screen 26 and keyboard 28 for receiving user commands and
outputting information to the user as may be required by the
invention and may provide for network connections 30, for
example, communicating with remote storage, printers, or
other computers, for example, for the receiving of the
program 20 to be simplified and for outputting or transmit
ting a final simplified program.
(0029] Generally, the program 20 will comprise multiple
instructions 32. As is understood in the art, the instructions
32 may describe arithmetic or logical steps to be executed by
the processor 14 in an operator portion 34 and provide data
values serving as the arguments for those operations in a
data portion 36. As is generally understood in the art, the
data portion 36 may hold a static constant value or may be
a variable value, for example, contained in a register address
or other memory location referenced by the data portion 36.
(0030] The program 20 may be usefully divided into a
configuration section 38 and a main logic section 40 sepa
rated by a neck 42 as will be discussed in greater detail
below. In many cases the program 20 will be invoked, either
by a user or another program, with a command line or other
input providing a set of switches describing a configuration
of the program 20 with respect to functions to be performed
by the program 20 and an identification of source data on
which the program 20 may operate. The configuration
section 38 parses this input, and the main logic section 40
implements the desired functions.
(0031] Referring now to FIGS. 2 and 3, the program 18
executing on the computer system 10, per process block 50,
may first receive the program 20 for simplification, together
with a partial assigrunent or function list 48 indicating a
limited set of functions to be performed by a desired
simplified version of the program 20. The function list 48, in
one example, may be values of the command-line inputs

2
Nov. 10, 2022

associated with switches (typically Boolean values) describ
ing the function of the program 20 to be switched on or off.
(0032] A simple example program 20 is provided in Table
I below having a set of instructions 32 associated with line
numbers for convenient reference. This program is a sim
plified version of the UNIX word-count program providing
either of two functions of a word count or line count of a text
file. In this case, the text file is obtained from the UNIX
standard input in chunks of up to 1023 characters, using the
file-reading command "fgets(buffer, 1024 stdin)". A com
mand line providing inputs to the program 20 will generally
be of the form: we (-1) (-c), where "we" invokes the
program, and -1 and -c are optional configuration switches
(indicated by the parentheses and also called "supplied
inputs") that instruct the program 20 to count either lines or
characters respectively. (The text file on which the counting
is performed- i.e., stdin- is called a "delayed input.)

TABLE 1

I struct Flags {
2 char count_chars;
3 int count_lines; };
4 int total_lines = O;
5 lint total_chars = O;
6 int main(int argc, char .. argv){
7 struct Flags *flag;
8 flag = malloc(sizeof(struct Flags));
9 flag->count_chars = O;

IO flag- >count_lines = O;
11 if (argc >= 2) {
12 for (inti= I; i < argc; i++) {
13 if (!strcmp(argv[i], "-c")) flag->count_chars = I;
14 if (!strcmp(argv[i] , "-I")) flag->count_lines = I ; } }
15 char buffer[l024] ;
I 6 while (fgets(buffer, 1024,stdin)) {
17 (flag- >cow1t_chars) total_chars += decodeChar(buffer);
18 if (flag->count_lines) total_lines++;}
19 if (flag->count_chars) printf("#Chars = %d", total_chars);
20 if (flag->count_lines) printf("#Lines = %d", total_lines); }

(0033] In this example, the function list 48 may be defined
by the switch values of the complete set of switch values
associated with the program 20 as would be provided in the
command line, for example, indicating a desire only that the
program be able to do line counting only (e.g. , "we -1").
(0034] Referring still to FIGS. 1-3 , at process block 52,
after receiving the program 20 and a function list 48, the
neck 42 of the program 20 is identified. The step of identi
fying the neck 42 the program 20 defines the instructions 32
of the configuration section 38 and a main logic section 40,
discussed above, where the configuration section 38 parses
the program inputs (e.g., the switches) and the main logic
section implements the functions that are desired. By iden
tifying the configuration section 38, opportunities for finding
effective constant values in the data portions 36 of instruc
tions 32 resulting from the switch settings are maximized
while additional steps of the program 18 to be described
below, including optimizing transfomiations, are made more
tractable.
(0035] Referring now also to FIG. 4, in general, the neck
42 is identifiable by searching for an instruction 32 satisfy
ing the conditions of: (i) the instruction 32 executing once
and only once for any combination of functions of the
function list 48; and (ii) the instruction 32 being an articu
lation point 58 in the control flow graph 54 of the program
20 that dominates all subsequent instructions 32. An articu
lation point will be an instruction which, if removed, dis-

11/11/2022 09:49:14 Page 7 of 9

US 2022/0357933 Al

connects other instructions and dominates if the program
must pass through that instruction in any possible path to
later instructions. Generally, condition (i) means that the
identified instruction 32 is not in a loop and is reachable
from the entry node (i.e., instruction 32 is connected by the
control flow graph to the entry node).
[0036] In the event that multiple instructions 32a and 32b
satisfy (i) and (ii) , one of those instructions is selected as the
neck 42 by minimizing an objective function combining
distance between that instruction 32 and the start of the
program 20 (for example, along the control flow graph) and
the number of instructions in the ultimately simplified
program as will be discussed below. This process can be
performed iteratively with the set of candidate instructions
32. The generation of the control flow graph and analysis of
the control flow graph may be conducted by the computer,
or the neck 42 may be identified by the computer through
user input. A control flow graph can be generated by the
LLVM compiler infrastructure as discussed below
[0037] In the example program 20 of Table I above, the
neck 42 occurs at instruction 15, separating the configura
tion section 38 from the main logic section 40, the latter
including instruction 15.
[0038] Referring again to FIGS. 2 and 3, at succeeding
process block 56, the program 18 uses the identified neck 42
from process block 52 to perform a partial interpretation of
the program 20 up to the neck 42. As used herein, the term
"partial interpretation" refers to the execution of a program
starting with an initial state that has both known and
unknown values, and performs as much execution as pos
sible (propagating through the program a state-or in some
cases states- with known and unknown values). The known
values are the supplied inputs and the values of other
variables of the program that can be evaluated during the
program's execution knowing only the supplied inputs ; the
unknown values are the delayed inputs and the values of
other variables of the program that cannot be evaluated
because they depend (directly or transitively) on tl1e values
of one or more delayed inputs.
[0039] In one example, the partial interpretation may
make use of symbolic execution. Symbolic execution is an
execution that recognizes that the values of many variables
used by the instructions 32 will not be known until run-time,
and accordingly resolves those instructions by creating a
symbolic expression that has a placeholder for each
unknown variable 's value. In one embodiment, this sym
bolic evaluation may make use of the open-source Klee
Symbolic Execution Engine built on top of the LLVM
compiler infrastructure. When used in a fully general man
ner, symbolic execution can become unwieldy for large
programs, and thus using the neck 42 to constrain this
execution greatly improves the tractability of this process. It
will be understood that alternative types of partial interpre
tation can be performed, for example, by instrumenting the
program or the like.
[0040] At the conclusion of process block 56, a set of
symbolic expressions of the variable states of the data
portion 36 of the instructions 32 at the neck 42 are known
and used to map the supplied inputs of the configuration
switches (representing the limited desired functionality) to a
set of concrete values at the neck 42 per process block 57.
The delayed inputs are not used as part of this process but
will be used later in executing the final , resulting simplified
program.

3
Nov. 10, 2022

[0041] These concrete values are not static constants in the
program 20 but may be considered constant based on the
function list 48. The concrete values will be propagated both
upstream and downstrean1 from the neck 42 (per process
block 60) to identify additional instances of these effective
constant values as a first step of applying optimizing trans
formations 70 to the program 20. In the example of Table I,
these effective constant values are as indicated in the fol
lowing Table II.

TABLE II

Variable Type Scope Value

total_lines int Global 0
total_chars 0
flag->count_lines int char Local 1
flag->count_chars 0

[0042] Generally, the constant-propagation process of pro
cess block 60 maps the variables of the data portions 36 of
tl1e instructions 32 to their effective constant values includ
ing global and stack variables (base-type, struct, and pointer
variables) iterating over the instructions to identify the
locations where the variables are accessed, which is indi
cated by load instructions. Then, it replaces the loaded value
with the corresponding constant value.

[0043] For pointers to base variables, it is necessary to
identify locations where the pointer is modifying a base
variable (by looking for store instructions whose destina
tion-operand type is a pointer to a base type). The source
operands of the store operations are then replaced with the
constant value corresponding to the actual base variable
pointed to by the pointer.

[0044] For stack variables that are Structs and pointers to
Structs, tl1e memory address that is pointed to by these
variables is identified using GEPlnstr (of LLVM discussed
above), which facilitates tracing back to finding the corre
sponding Struct and pointer-to-Struct variables. Iteration is
then performed over the occurrences of GEPlnstr by lever
aging the method "users ()" in the LLVM compiler infra
structure to identify store operations that modify the vari
ables. Finally, the source operand of the store operation is
converted to the appropriate constant. The element index
recorded during the partial interpretation is used to identify
which Struct element should be converted.

[0045] For string variables, an array of characters is cre
ated, based on the captured constant string value during the
partial interpretation. This array is assigned to tl1e corre
sponding string variable.

[0046] In the example program ofTable I, no replacements
are performed for global variables "total_lines" and "total_
chars" before the neck 42 because there are no such occur
rences. Replacements are performed for referents of the
pointer-to-Struct flag: the occurrences of "flag-count_
chars" and "flag-countlines" at lines 13 and 14 are replaced
with the corresponding values listed in Table II.

[0047] Referring still to FIGS. 2 and 3, at process block 72
multiple stages of simplification are implemented using
standard compiler-optimization techniques and including
function in-lining, loop unrolling, constant fo lding, removal
of branch instructions that are always true or always false in
the associated branch, removal of unreachable instructions,
removal of uncalled functions, and the like.

11/11/2022 09:49:14 Page 8 of 9

US 2022/0357933 Al

[0048] In one embodiment, a cleanup step may follow the
pseudocode provided in FIG. 5. Initially, the cleanup
removes two categories of functions: (i) those that are called
only from call-sites before the neck 42, but not called during
the partial interpretation (Lines 4-6), and (ii) those that are
never called from the set of functions transitively reachable
from main (the neck 42), including indirect call-sites (Lines
7-10). Function removal is performed after constructing the
call graph at Line 3. To handle indirect call sites, the process
of FIG. 5 also checks the number of uses of a function at
Lines 5 and 8 before removing the node. This check prevents
the removal of a function invoked via a function pointer.
[0049] Next, the program 18 of FIG. 5 shifts to simplify
ing the remaining functions of program 20. For removing
global variables (Lines 12-14), it iterates over the list of
global variables obtained through the LLVM API function
getGloba!List, and removes unused variables. Finally, stack
variables are removed (Lines 16-23), including initialized
but unused variables by iterating over the remaining func
tions and erasing unused allocation instructions. (In general,
standard LLVM simplifications do not remove a stack vari
able that is initialized but is not otherwise used because the
function contains a store operation that refers to the variable.
The clean-up pass removes an initialized-but-unused vari
able by deleting the store instruction, and then the allocation
instruction.)
[0050] A final simplified program 90 is an output per
process block 92 as follows:

TABLE III

1 struct Flags {
2 char count_chars ;
3 int count_ lines; };
4 int total_lines - O;
5 int main(int argc, char** argv){
6 struct Flags • flag;
7 flag - malloc(sizeof(struct Flags));
8 char buffer[l024];
9 while (fgets(buffer, 1024,stdin)) {

JO total_lines++; }
11 printf("#Lines - %d", total_lines); }

[0051] The simplification steps remove the tests at Lines
18 and 20 (of Table I) because the values of the conditions
are always true. Because the values of the conditions in the
tests at Lines 17 and 19 (of Table I) are always false,
control-flow simplification removes both the tests and the
basic blocks in the true-branches. Furthermore, the removal
of these basic blocks all uses of the global variable total_
chars, and thus the cleanup step removes it as an unused
variable.
[0052] The resulting program 90 may then be used in lieu
of the original program 20 to provide faster execution,
reduce storage requirements, and possibly reduced attack
vectors for malware. This resulting program 90 may be
subsequently used with both supplied and delayed inputs.
[0053] Certain tenninology is used herein for purposes of
reference only, and tlms is not intended to be limiting. For
exainple, tenns such as "upper", "lower", "above", and
"below" refer to directions in the drawings to which refer
ence is made. Terms such as "front", "back", "rear", "bot
tom" and "side", describe the orientation of portions of the
component within a consistent but arbitrary frame of refer
ence which is made clear by reference to the text and the
associated drawings describing the component under dis-

4
Nov. 10, 2022

cussion. Such terminology may include the words specifi
cally mentioned above, derivatives thereof, and words of
similar import. Similarly, the terms "first", "second" and
other such numerical terms referring to structures do not
imply a sequence or order unless clearly indicated by the
context.
[0054] When introducing elements or features of the pres
ent disclosure and the exemplary embodiments, the articles
"a", "an", "the" and "said" are intended to mean that there
are one or more of such elements or features. The terms
"comprising", " including" and "having" are intended to be
inclusive and mean that there may be additional elements or
features other than those specifically noted. It is further to be
understood that the method steps, processes, and operations
described herein are not to be construed as necessarily
requiring their performance in the particular order discussed
or illustrated, unless specifically identified as an order of
perforniance. It is also to be understood that additional or
alternative steps may be employed.
[0055] References to "a microprocessor" and "a proces
sor" or "the microprocessor" and "the processor," can be
understood to include one or more microprocessors that can
communicate in a stand-alone and/or a distributed environ
ment(s), and can thus be configured to communicate via
wired or wireless communications with other processors,
where such one or more processors can be configured to
operate on one or more processor-controlled devices that cai1
be similar or different devices. Furthennore, references to
memory, unless otherwise specified, can include one or more
processor-readable and accessible memory elements and/or
components that can be internal to the processor-controlled
device, external to the processor-controlled device, and can
be accessed via a wired or wireless network.
[0056] It is specifically intended that the present invention
not be limited to the embodiments and illustrations con
tained herein and the claims should be understood to include
modified forms of those embodiments including portions of
the embodiments and combinations of elements of different
embodiments as come witliin the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications, are hereby incorporated
herein by reference in their entireties
[0057] To aid the Patent Office and any readers of any
patent issued on this application in interpreting the claims
appended hereto, applicants wish to note that they do not
intend any of the appended claims or claim elements to
invoke 35 U.S.C. 112(f) unless the words "meai1s for" or
"step for" are explicitly used in the particular claim.

What we claim is:
1. An apparatus for producing compact program versions

comprising:
at least one computer processor; and
a memory coupled to the at least one processor holding a

stored program executable by the at least one computer
processor to:

(a) receive a program implementing multiple functions
and a description of a desired subset of functions less
than tl1e set of the multiple functions ;

(b) identify a neck of the program dividing configuration
instructions from main logic instructions;

(c) partially interpret the program to the neck to establish
concrete values of variables at the neck;

(d) propagate the concrete values through the main logic
instructions; and

11/11/2022 09:49:14 Page 9 of 9

US 2022/0357933 Al

(e) simplify the program by removing instructions of the
main logic instructions that will never execute based on
the propagated concrete values.

2. The apparatus of claim 1 wherein (c) uses symbolic
execution up to the neck to establish concrete representa
tions of the variable states, and (d) uses the concrete
representations and the desired subset of functions to per
form the constant conversion.

3. The apparatus of claim 1 wherein (e) perfom1s opti
mizing transformations using the concrete values.

4. The apparatus of claim 3 wherein the optimizing
transformations employ at least one of loop unrolling and
function in-lining.

5. The apparatus of claim 1 wherein the removed instruc
tions include instruction branches conditioned on expres
sions which will never be executed based on the propagated
concrete values.

6. The apparatus of claim 1 wherein the program is
parameterized by command-line switch inputs, and the
desired subset of functions is specified by a list of switch
inputs associated with the desired subset of functions.

7. The apparatus of claim 6 wherein (c) uses partial
interpretation to convert the switch inputs to the concrete
values

8. The apparatus of claim 1 further including: (f) output
ting a simplified version of the program.

9. The apparatus of claim 1 wherein the neck is identified
as a portion of the received program:

(i) that will execute once and only once for any combi
nation of functions of the subset; and

(ii) is an articulation point in a. control flow graph of the
program that dominates all subsequent instructions.

10. The apparatus of claim 9 wherein the neck further is
identified as a portion of the program:

(iii) that is a closest instruction to a. beginning of the
program for instructions that satisfy (i) and (ii) and
minimizes a number of instructions in the simplified
program

11. A method for producing compact program versions
using an electronic computer comprising using the elec
tronic computer to:

(a) receive a program implementing multiple functions
and a description of a desired subset of functions less
than the set of the multiple functions;

5
Nov. 10, 2022

(b) identify a neck of the program dividing configuration
instructions from main logic instructions;

(c) partially interpret the program to the neck to establish
concrete values of variables at the neck;

(d) propagate the concrete values through the main logic
instructions; and

(e) simplify the program by removing instructions of the
main logic instructions that will never execute based on
the propagated concrete values.

12. The method of claim 11 wherein (c) uses symbolic
execution up to the neck to establish concrete representa
tions of the variable states, and (d) uses the concrete
representations and the desired subset of functions to per
form the constant conversion.

13. The method of claim 11 wherein (e) performs opti
mizing transformations using the concrete values.

14. The method of claim 13 wherein the optimizing
transformations employ at east one of loop unrolling and
function in-lining.

15. The method of claim 11 wherein the removed instruc
tions include instruction branches conditioned on expres
sions which will never be executed based on the propagated
concrete values.

16. The method of claim 11 wherein the program is
parameterized by command-line switch inputs, and the
desired subset of functions is specified by a list of switch
inputs associated with the desired subset of functions.

17. The method of claim 16 wherein (c) uses partial
interpretation to convert the switch inputs to the concrete
values.

18. The method of claim 11 further including outputting
a simplified version of the program.

19. The method of claim 11 wherein the neck is identified
as a portion of the program:

(i) that will execute once and only once for any combi
nation of functions of the subset; and

(ii) is an articulation point in a control flow graph of the
program that dominates all subsequent instructions.

20. The method of claim 11 wherein the neck further is
identified as a portion of the progran1 that:

(iii) is a closest, instruction to the begiru1ing of the
program for instructions that satisfy (i) and (ii) and
minimizes a number of instructions in the simplified
program

* * * * *

