

US 20240026466A1

(19) United States (12) Patent Application Publication (10) Pub. No.: US 2024/0026466 A1 Venturelli et al.

Jan. 25, 2024 (43) Pub. Date:

(54) CELL-BASED DNA SENSORS AND METHODS OF USING SAME

- (71) Applicant: Wisconsin Alumni Research Foundation, Madison, WI (US)
- (72) Inventors: Ophelia Venturelli, Madison, WI (US); Yu-Yu Cheng, Madison, WI (US); Zhengvi Chen, Madison, WI (US)
- Assignee: Wisconsin Alumni Research (73)Foundation, Madison, WI (US)
- (21)Appl. No.: 18/067,194
- Filed: Dec. 16, 2022 (22)

Related U.S. Application Data

Provisional application No. 63/290,442, filed on Dec. (60) 16, 2021.

Publication Classification

(51)	Int. Cl.	
	C12Q 1/689	(2006.01
	C12Q 1/6897	(2006.01
	C12N 15/90	(2006.01

(52)U.S. Cl. C12Q 1/689 (2013.01); C12Q 1/6897 CPC (2013.01); C12N 15/902 (2013.01)

(57)ABSTRACT

Cell-based DNA sensors, compositions comprising the cellbased DNA sensors, and methods of detecting DNA and cells. The cell-based DNA sensors include competent cells that include genetic circuits. Each genetic circuit includes homology arms separated by an interstitial region that comprises at least one element of a reporter switch and/or a kill switch. The compositions include one or more cell-based DNA sensors. The cell-based DNA sensors can be used to detect DNA and cells by the genetic circuits undergoing homologous recombination with target regions of target DNA to activate or deactivate the reporter switch and/or kill switch.

Specification includes a Sequence Listing.

FIG. 1A

FIG. 1B

FIG. 1C

FIG. 2C

FIG. 2D

FIG. 2E

FIG. 2F

FIG. 2H

FIG. 2J

FIG. 2L

FIG. 3A

FIG. 3B

FIG. 3C

FIG. 3D

FIG. 3F

FIG. 4A

FIG. 4B

FIG. 4C

FIG. 4D

FIG. 5B

Fluorescent colonies Recombination: 12

Fluorescent colonies txpA deletion: 6 Non-fluorescent colonies lacl mutation: 6

-gDNA

FIG. 6B

FIG. 6F

FIG. 7A

FIG. 9A

FIG. 9B

FIG. 9C

FIG. 9D

FIG. 10A

FIG. 10B

FIG. 10C

FIG. 10D

FIG. 10E

FIG. 10F

FIG. 10H

FIG. 11A

FIG. 11B

FIG. 13A

FIG. 13B

FIG. 14B

Counter-selectable marker-based DNA detection

Patent Application Publication Jan. 25, 2024 Sheet 33 of 37 US 2024/0026466 A1

Selectable marker-based DNA detection

CELL-BASED DNA SENSORS AND METHODS OF USING SAME

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

[0001] This invention was made with government support under HR-0011-18-2-0002 awarded by the DOD/DARPA. The government has certain rights in the invention.

SEQUENCE LISTING

[0002] The instant application contains a Sequence Listing which has been electronically submitted in XML format and is hereby incorporated by reference in its entirety. The ASCII copy was created on Dec. 2, 2022, is named Seq_List-P210411US02.xml and is 54,692 bytes in size.

FIELD OF THE INVENTION

[0003] The invention is directed to cell-based DNA sensors and methods of using same for detecting DNA and cells.

BACKGROUND

[0004] Chemical and electrical signaling in microbial communities play key roles in biofilm development, activation of virulence pathways, and symbioses with multicellular organisms⁵³. These signals can be exploited to control the collective growth or gene expression of the population or mediate interactions between constituent community members^{5,55}. For example, circuits have been designed in engineered organisms to sense specific signals produced by pathogens for selective inhibition of growth^{7,8}. However, there are limited well-characterized and orthogonal chemical signals systems for building communication networks between strains due to signal crosstalk^{9,10}. In addition, there are challenges to engineering these chemical signals for inter-species communication^{55,56}. Therefore, new versatile mechanisms are needed for sensing diverse species in microbial communities.

[0005] Towards this goal, sensing of bacterial pathogens is a critical and unsolved challenge, as new pathogens can emerge⁵⁷. Current methods for pathogen detection include quantitative PCR (qPCR), immunology-based testing, selective culturing, and Next-Generation Sequencing (NGS)^{58,59}. Further, diagnostic tools based on CRISPR-Cas nucleases have also been developed^{60,61}. While qPCR is sensitive to the concentration of the target sequence, this method requires specialized equipment and trained personnel which may limit its broad deployment. Immunological detection methods have lower sensitivity and specificity than PCR-based techniques, but have a faster turnaround time. Due to these limitations, new cost-effective, sensitive, generalizable and easy to implement pathogen detection methods are needed.

SUMMARY OF THE INVENTION

[0006] The invention provides cell-based DNA sensors. One version of a cell-based DNA sensor comprises a competent cell that comprises a genetic circuit. The genetic circuit preferably comprises a pair of homology arms and at least one of a reporter switch and a kill switch. The pair of homology arms are preferably comprised in a DNA strand. The homology arms preferably comprise a first homology arm and a second homology arm. The first homology arm is preferably homologous to a first portion of a target DNA. The second homology arm is preferably homologous to a second portion of the target DNA. The first portion and the second portion in some versions are contiguous in the target DNA. The first homology arm and the second homology arm are preferably separated within the DNA strand by an interstitial region of the DNA strand. The reporter switch preferably comprises a reporter gene and a negative regulator of the reporter gene. The reporter gene preferably comprises a promoter and a coding sequence that are not comprised within the interstitial region of the DNA strand. The negative regulator of the reporter gene is preferably comprised within the interstitial region of the DNA strand. The kill switch preferably comprises one or more genetic elements effective to inhibit growth of the competent cell. At least one of the one or more genetic elements is preferably comprised within the interstitial region of the DNA strand. [0007] The invention also provides compositions comprising one or more cell-based DNA sensors of the invention. One version of a composition of the invention comprises two or more cell-based DNA sensors. The pairs of homology arms in the two or more cell-based sensors are preferably each homologous to different target DNA sequences. Each of the two or more cell-based DNA sensors preferably comprises the reporter switch. The reporter genes in the two or more cell-based DNA sensors preferably express report-

ers that are each detectably different from each other. [0008] The invention also provides methods of detecting target DNA with a cell-based DNA sensor of the invention. One version of such methods comprises culturing the DNA sensor in a culture medium comprising the target DNA for a time effective to transform the DNA sensor with the target DNA and detecting the transformed DNA sensor.

[0009] The invention also provides methods of detecting a target cell comprising target DNA with a cell-based DNA sensor of the invention. One version of such methods comprises culturing the DNA sensor in a culture medium with the target cell for a time effective to transform the DNA sensor with the target DNA and detecting the transformed DNA sensor.

[0010] The objects and advantages of the invention will appear more fully from the following detailed description of the preferred embodiment of the invention made in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.

[0012] FIGS. **1A-1C**. Construction and characterization of a living cell-based DNA sensor. (FIG. **1**A) Schematic of a synthetic genetic circuit constructed in *B. subtilis* that allows the recognition of specific extracellular DNA. The xylose-inducible master regulator of competence comK can induce *B. subtilis* to take up eDNA and undergo homologous recombination. The toxin-antitoxin system txpA-ratA and a distal fluorescent reporter gfp are regulated by the repressor lacI. The target sequences are split into two and introduced to the flanking region of toxin and repressor as landing pad. In the presence of target DNA, homologous recombination of transformed cells can express GFP. To select the trans-

formed cells, IPTG can induce the toxin to kill the nontransformed cells, so the fluorescence can be enhanced by the growth of transformed cells. (FIG. 1B) Line plot of transformation efficiency versus transformation time for the E. coli DNA sensor in the presence (solid lines) or absence (dashed lines) of 100 ng/mL purified E. coli gDNA as input. The colonies on agar plate can be fluorescent (green) or not (blue), coming from background escape mutation or transformation. Transformation efficiency as output is optimal at 10 hr. Data points represent three biological replicates and lines are the average of the replicates. (FIG. 1C) Line plot of transformation efficiency versus homology length of E. coli xdhABC operon on each side of flanking region in the circuit in the presence (solid lines) or absence (dashed lines) of 100 ng/mL purified E. coli gDNA as input. The colonies on agar plate can be fluorescent (green) or not (blue). The transformation efficiency as output is above the background escape mutation when the homology length is equal or greater than 1 kbp and increases as the homology increases. Data points represent three biological replicates and lines are the average of replicates.

[0013] FIGS. 2A-2L. Cell-based sensors can detect DNA from diverse bacteria with high sensitivity and specificity. (FIG. 2A) Transformation efficiency of DNA sensors that can detect E. coli (EC sensor), S. typhimurium (ST sensor), S. aureus (SA sensor), or C. difficile (CD sensor) in the presence of 100 ng/mL extracted gDNA (triangles) or no gDNA (circles) at 10 hr. Bar represents the average of three biological replicates. (FIG. 2B) Schematic of experimental procedure for quantifying GFP expression after transformation. (FIG. 2C) Time-series measurements of GFP expression of EC sensor in liquid medium after the transformation of varying E. coli gDNA concentrations (ng/mL). A threshold of GFP 400 was used to determine the detection time for each gDNA concentration. Line is the average of four technical replicates and the shaded region represents one standard deviation from the average. Detection time versus gDNA concentration for (FIG. 2D) EC sensor, (FIG. 2E) ST sensor, (FIG. 2F) SA sensor, and (FIG. 2G) CD sensor. Horizontal line (pale color) is the background GFP fluorescence in the absence of gDNA. Unpaired t-test was performed to determine if the detection time with specific DNA concentration is different from the background fluorescence, and *, **, and *** denote p-values <0.05, 0.01 and 0.001, respectively. A straight line was fitted to the transformation efficiencies versus logarithmic gDNA concentrations with statistical differences. The slope of the fitted line was determined by the cell growth of B. subtilis, while the intercept was determined by the background escape mutation. The coefficient of determination R² shows the goodness of the fit. (FIG. 2H) Detection time of each DNA sensor after the transformation of 100 ng/mL gDNA of a given donor species or no gDNA representing the negative control (NC). Each sensor expressed GFP 3~4 hours earlier in the presence of gDNA from its target strain than gDNA from other strains. Data are the average of four technical replicates. (FIG. 2I) Nucleotide BLAST search of 5000 bp S. aureus hemEH in the NCBI database. Each circle represents a homolog found in species other than S. aureus and its coverage and identity similarity. A closely related human commensal strain S. epidermidis with high coverage and similarity was selected for specificity test using SA sensor. The region within dashed lines indicates Staphylococcus species that could be recognized by the SA sensor based on their high similarity of homologous sequences. (FIG. 2J) Comparison of colony numbers of SA sensor (with GFP expression) on selective agar plate after the transformation of 100 ng/mL S. aureus gDNA, 100 ng/mL S. epidermidis gDNA or no gDNA. Bar represents the average of three technical replicates. SA sensor can distinguish between S. aureus and closely related S. epidermidis. (FIG. 2K) Nucleotide BLAST search of 5000 bp C. difficile pheST in the NCBI database. Each circle represents a homolog found in species other than C. difficile and its coverage and identity similarity. A closely related human commensal strain C. hiranonis with high coverage and similarity was selected for specificity test using CD sensor. The region within dashed lines indicates Clostridium species that could be recognized by the CD sensor based on their high similarity of homologous sequences. (FIG. 2L) Comparison of colony numbers of CD sensor (with GFP expression) on selective agar plate after the transformation of 100 ng/mL C. difficile gDNA, 100 ng/mL C. hiranonis gDNA or no gDNA. Bar represents the average of three technical replicates. CD sensor can distinguish between C. difficile and closely related C. hiranonis.

[0014] FIGS. 3A-3F. DNA sensors can perform multiplexed detection in complex DNA samples. (FIG. 3A) Schematic of experimental procedure using the living cellbased DNA sensors for multiplexed detection. E. coli, S. typhimurium, and S. aureus DNA sensors were labeled GFP (EC-G), RFP (ST-R) and BFP (SA-B) for detection, respectively. Three sensors and gDNA extracted from different strains were mixed into liquid medium for transformation. Transformed cells were selected on agar and colonies expressing GFP, RFP and BFP can indicate the presence of target DNA. (FIG. 3B) Numbers of GFP, RFP, or BFPexpressing colonies on agar plate after the transformation of different combinations of gDNA extracted from E. coli, S. typhimurium, or S. aureus. Sensors can report the presence of target DNA for all 8 different combinations. Bar represents the average of three technical replicates. (FIG. 3C) Relative abundance of six species in a synthetic gut microbial community composed of S. aureus (SA), S. typhimurium (ST), Bifidobacterium longum (BL), Bacteroides thetaiotaomicron (BT), Anaerostipes caccae (AC), and Clostridium asparagiforme (CG) over two days of growth. The six bacteria were co-cultured in liquid medium anaerobically for 24 hours and cell culture was diluted in fresh medium once for species to continue their competition. 16S rRNA gene of each strain was PCR amplified and sequenced using NGS to determine the relative abundance over time. Bar represents the average of three technical replicates of 16S rRNA sequencing. S. typhimurium abundance remained similar while S. aureus abundance decreased over time. (FIG. 3D) Representative fluorescence images of transformed SA-G and ST-R sensors on selective agar plate after the transformation of gDNA extracted from the bacterial community in a mixture of SA-G and ST-R sensors. The numbers of green and red colonies indicate the abundance of S. aureus and S. typhimurium in gut microbial community, respectively. (FIG. 3E) Numbers of GFP or RFP-expressing colonies on agar plate after the transformation of gDNA extracted from the community at different time. Green colonies (SA-G) decreased over time while red colonies (ST-R) remained similar numbers. Bar represents the average of three technical replicates. (FIG. 3F) Fold change of S. aureus and S. typhimurium abundance compared to day 1 characterized by NGS (dashed line) or cell-based detection

method (solid line). Measurements of *S. aureus* (orange) by the two methods were similar, while characterization of *S. typhimurium* (green) by the cell-based detection method had larger variability than NGS and the data at Day 1 were statistically different determined by Unpaired t-test (p-values=0.0015).

[0015] FIGS. 4A-4D. DNA sensors can directly detect target species without DNA extraction. (FIG. 4A) Schematic of experimental design for the detection in the co-culture. Sensor and target strain were co-cultured in liquid medium with or without selective antibiotics (ABX) to determine the effect of antibiotic for detection. Heat-killed target strain was also tested without the use of antibiotics in the coculture. The cell culture was plated on IPTG and ABX (1 µg/mL erythromycin and 25 µg/mL lincomycin) agar plates to select for transformed B. subtilis. (FIG. 4B) Colony numbers of transformed EC, ST, SA, and CD sensors co-cultured with (1) target cell, (2) target cell and 100 $\mu\text{g}/\text{mL}$ spectinomycin (spec), (3) target cell, spec, and 1 unit/mL DNase I, and (4) spec only. Spectinomycin can enhance the detection of E. coli, S. typhimurium, and S. aureus, but it is not required for C. difficile detection. Addition of DNase I in the co-culture reduced the numbers of transformed sensors significantly. (FIG. 4C) Colony number of transformed EC sensor co-cultured with E. coli using spectinomycin or co-cultured with heat-treated E. coli. Heat treatment of E. coli can significantly increase the number of transformed EC sensor. (FIG. 4D) Colony number of transformed EC-G and ST-R sensors co-cultured with heat-treated mice cecal samples spiked in with different amounts of E. coli and S. typhimurium. Both sensors can detect the presence of target strains in cecal samples. Unpaired t-test was performed to determine if the colony number is different from no cell condition, and *, **, and *** denote p-values <0.05, 0.01, and 0.001, respectively. Bar represents the average of three technical replicates.

[0016] FIGS. 5A-5C. Plasmid maps for the construction of DNA-sensing B. subtilis. (FIG. 5A) Plasmid constructed for the DNA detection via homologous recombination. The toxin-antitoxin system txpA-ratA is regulated by the repressor lad, both of which are flanked by 2.5 kbp target DNA sequence on each side. The plasmid was integrated into the amyE locus on the B. subtilis PY79 genome by spectinomycin selection. (FIG. 5B) Plasmid constructed for the fluorescent reporter after DNA detection. The green fluorescent protein gfp(Sp) is regulated by the distal repressor lad. The plasmid was integrated into the ycgO locus on B. subtilis PY79 genome by chloramphenicol selection. The green fluorescent protein gfp(Sp) was codon-optimized for Streptococcus pneumoniae and displayed high fluorescence signal in *B. subtilis*⁵¹. (FIG. **5**C) Modularity of the synthetic genetic circuit allows customized target DNA sequence as input and gene expression as output.

[0017] FIGS. **6**A-**6**F. Sequencing of transformed *E. coli* sensor and escape mutants. Representative fluorescence images of colonies of *E. coli* DNA sensor on selective agar plate after the transformation of (FIG. **6**A) 100 ng/mL purified *E. coli* gDNA or (FIG. **6**B) no DNA. DNA of the circuit in *B. subtilis* genome was PCR amplified from different colonies and sequenced to confirm the homologous recombination for the transformed sensor (N=12) or mutations for the escape mutants (N=12). (FIGS. **6**C and **6**D) Sanger sequencing of transformed *E. coli* sensor confirmed the homologous recombination at the predicted region that

removed the whole cassette of txpA-ratA and lad. (FIG. **6**E) Sanger sequencing of a GFP-expressing escape mutant shows deletion in the toxin txpA. The mutant can grow and express GFP in the presence of IPTG due to the nonfunctional toxin. (FIG. **6**F) Sanger sequencing of a nonfluorescent escape mutant shows deletion of R195 and L196 in the repressor lad, which has been shown to affect IPTG binding⁵². The mutant can grow but cannot express GFP in the presence of IPTG due to the non-functional LacI.

[0018] FIGS. 7A and 7B. Nucleotide BLAST search of homology sequences in EC sensor and ST sensor. (FIG. 7A) Nucleotide BLAST search of 5000 bp *S. typhimurium* sipBCDA in the NCBI database. Each circle represents a homolog found in species other than *S. typhimurium* and its coverage and identity similarity. Homologs were found mostly in the *Salmonella enterica* (*S. enterica*) species but were rarely found in other species. (FIG. 7B) Nucleotide BLAST search of 5000 bp *E. coli* MG1655 xdhABC in the NCBI database. Each circle represents a homolog found in species other than *E. coli* and its coverage and identity similarity. Homologs were found in species other than *E. coli* and its coverage and identity similarity. Homologs were found in closely related *Shigella* and *Escherichia* species. Highly similar homologs were found in the closely related *Shigella* species.

[0019] FIGS. **8**A-**8**C. Time-series measurements of GFP expression of ST, SA, CD sensors in liquid medium after transformation. Time-series measurements of GFP expression of (FIG. **8**A) ST sensor, (FIG. **8**B) SA sensor, and (FIG. **8**C) CD sensor in liquid medium after the transformation of varying target gDNA concentrations (ng/mL). A threshold of GFP 400 was used to determine the detection time for each gDNA concentration. Line is the average of four technical replicates and the shaded region represents one standard deviation from the average.

[0020] FIGS. **9**A-**9**D. Time-series OD measurements of DNA sensors in liquid medium after transformation. Timeseries measurements of OD600 absorbance of (FIG. **9**A) EC sensor, (FIG. **9**B) ST sensor, (FIG. **9**C) SA sensor, and (FIG. **9**D) CD sensor in liquid medium after the transformation of varying target gDNA concentrations (ng/mL). Line is the average of four technical replicates and the shaded region represents one standard deviation from the average. Cell growth correlated with DNA concentration during transformation.

[0021] FIGS. 10A-10H. Orthogonality test of the four constructed DNA sensors. Time-series measurements of GFP expression of (FIG. 10A) EC sensor, (FIG. 10C) ST sensor, (FIG. 10E) SA sensor, and (FIG. 10G) CD sensor in liquid medium after the transformation of gDNA extracted from different strains or no gDNA. Line is the average of four technical replicates and the shaded region represents one standard deviation from the average. A threshold of GFP 400 was used to determine the detection time for the target gDNA and non-target gDNA or no gDNA for (FIG. 10B) EC sensor, (FIG. 10D) ST sensor, (FIG. 10F) SA sensor, and (FIG. 10H) CD sensor. Unpaired t-test was performed to determine if the detection time for the target gDNA is different from non-target gDNA or no gDNA. Based on the calculated p-values, sensors expressed GFP hours earlier only in the presence of target gDNA.

[0022] FIGS. **11**A and **11**B. Detection efficiency based on number of transformed cells. (FIG. **11**A) Colony number per 5 μ L for transformed *B. subtilis* with or without 100 ng/mL target gDNA. (FIG. **11**B) Colony number per 10⁻⁴ μ L for total *B. subtilis* with or without 100 ng/mL target gDNA. Bar

represents the average of three biological replicates. The transformation efficiency in FIG. **2**A was calculated by the ratio of the density of transformed *B. subtilis* to the density of total *B. subtilis* shown here.

[0023] FIG. **12**. Representative fluorescence images of transformed EC-G, ST-R, and SA-B sensors for multiplexed detection. Colonies with different fluorescence on agar plate after the transformation of combinations of extracted gDNA in a mixture of EC-G, ST-R, and SA-G sensors. Sensors were transformed with (A) *E. coli*, *S. aureus* and *S. typhimurium* gDNA, (B) *E. coli* and *S. typhimurium* gDNA, (C) *E. coli* and *S. aureus* gDNA, (D) *S. typhimurium* gDNA, (G) *S. aureus* gDNA, (C) *E. coli* gDNA, (C) *S. typhimurium* gDNA, (C) *S. aureus* gDNA, (C) *S. aur*

[0024] FIGS. 13A and 13B. Negative control for the multiplexed detection in complex DNA samples. (FIG. 13A) Relative abundance of six species in a synthetic gut microbial community composed of Bifidobacterium longum (BL), Bacteroides thetaiotaomicron (BT), Anaerostipes caccae (AC), and Clostridium asparagiforme (CG). The four bacteria were co-cultured in liquid medium anaerobically for 24 hours and cell culture was diluted in fresh medium once for species to continue their competition. 16S rRNA gene of each strain was PCR amplified and sequenced using NGS to determine the relative abundance over time. (FIG. 13B) Numbers of GFP or RFP-expressing colonies on agar plate after the transformation of gDNA extracted from the community at different time in a mixture of SA-G and ST-R sensors. Bar represents the average of three technical replicates of 16S rRNA sequencing. Only a few colonies appeared on agar plates, indicating that sensors did not detect the gDNA of S. aureus or S. typhimurium. Bar represents the average of three technical replicates.

[0025] FIGS. **14**A and **14**B. Detection of *E. coli* or *S. typhimurium* in cecal samples using mixed EC-G and ST-R sensors. Colony number of transformed EC-G and ST-R sensors co-cultured with heat-treated cecal samples spiked in with different amounts of (FIG. **14**A) *E. coli* or (FIG. **14**B) *S. typhimurium*. High density (10^8 CFU/mL) of *E. coli* and *S. typhimurium* can lead to false positive results for ST-R and EC-G, respectively. Unpaired t-test was performed to determine if the colony number is different from no cell condition, and *, **, and *** denote p-values <0.05, 0.01, and 0.001, respectively. Bar represents the average of three technical replicates.

[0026] FIGS. 15A-15I. Additional exemplary synthetic genetic circuits coupling GFP expression and growth regulation to DNA detection. (FIG. 15A) Synthetic genetic circuit for repressor-based toxin expression. (CRISPRi is listed as a repressor in FIG. 15A for convenience but is properly categorized as a "negative regulator" using the terminology employed herein.) (FIG. 15B) Synthetic genetic circuit for activator-based toxin expression. (FIG. 15C) Synthetic genetic circuit for counter-selectable markerbased DNA detection. (FIG. Synthetic genetic circuit for selectable marker-based DNA detection. (FIG. 15E) Synthetic genetic circuit for autonomous DNA detection (toxin expresses as cell density increases). (FIGS. 15F and 15G) Synthetic genetic circuits with a negative regulator (inducible regulator) comprised within the interstitial region (FIG. 15F) and outside the interstitial region (FIG. 15G) (Y is a growth inhibitor gene, and X is a positive regulator of the growth inhibitor gene). (FIGS. 15H and 15I) Synthetic genetic circuits with a negative regulator (inducible regulator) comprised within the interstitial region (FIG. **15**H) and outside the interstitial region (FIG. **15**I).

DETAILED DESCRIPTION OF THE INVENTION

[0027] An aspect of the invention is directed to cell-based DNA sensors (also referred to herein as "DNA sensors"). The DNA sensors comprise competent cells. "Competent cell" refers to a cell capable of taking up extracellular DNA from its surrounding environment. The competent cells can be naturally competent cells or artificially competent cells. [0028] Naturally competent cells are cells that, in their unmodified state, are capable of taking up external DNA. Naturally competent cells are not necessarily in a constant state of competence. Natural regulation of competence is common among naturally competent cells. Streptococcus pneumoniae, for example, is a naturally competent bacterium, but its competence at a given point in time is prompted by quorum sensing (detecting and responding to cell population density through gene expression). More than more than 80 species of bacteria are known to be naturally competent, including both Gram-positive and Gram-negative bacteria (Johnston, C., Martin, B., Fichant, G., Polard, P., and Claverys, J. P. (2014). Bacterial transformation: distribution, shared mechanisms and divergent control. Nat. Rev. Microbiol. 12, 181-196). Exemplary naturally competent cells include members of the Bacillus genus, such as Bacillus subtilis; members of the Streptococcus genus, such as Streptococcus pneumoniae; members of the Neisseria genus, including Neisseria gonorrhoeae and Neisseria meningitidis; members of the Haemophilus genus, such as Haemophilus influenzae; members of the Helicobacter genus, such as Helicobacter pylori; members of the Acinetobacter genus, such as Acinetobacter baylyi; members of the Vibrio genus, such as Vibrio cholerae; members of the Thermus genus, such as Thermus thermophilus; and Synechocaccus sp., among others.

[0029] Naturally competent cells can be modified to increase competency. Such cells are still considered to be naturally competent in light of their competency in their natural, unmodified state. Naturally competent cells, for example can be modified to express genes that increase competence. An example of such a gene is comK²⁵. Other genes or modifications that increase competency are known in the art.

[0030] Artificially competent cells are cells that are not capable of taking up external DNA in their unmodified state but are modified to do so. Artificially competent cells include chemically competent cells and electrocompetent cells. Chemically competent cells are cells that are made competent with a chemical treatment. Comment treatments include a salt treatment followed by a heat-shock step. This process permeabilizes the cell membrane, allowing entry of DNA. Protocols using CaCl2 or MgCl2 are the most common method for making chemically competent cells, but other salts and chemicals can be used. These include dimethyl sulfoxide (DMSO), polyethylene glycol (PEG), and rubidium chloride (RbCl). Electrocompetent cells are made competent using an electrical pulse from an electroporator to create temporary pores (poration) in the cell membrane. An exemplary artificially competent cell is Saccharomyces cerevisiae, which can be artificially induced into competence and have stronger homologous recombination and may detect short DNA sequences.

[0031] The competent cells of the invention can be prokaryotic cells or eukaryotic cells. In exemplary versions of the invention, the competent cells are prokaryotic cells, such as naturally competent prokaryotic cells, such as *Bacillus subtilis*.

[0032] The competent cells of the invention can comprise a genetic circuit. A genetic circuit is a combination of genetic elements that enable a cell to perform a logical function. As used herein, "genetic element" refers to any sequence of DNA that confers a genetic function. Exemplary genetic elements, include genes, promoters, exons, introns, enhancers, silencers, 5' untranslated regions, 3' untranslated regions, open reading frames, coding regions, codons, terminators, etc. In the context of the present invention, an exemplary logical function is the detection of DNA.

[0033] The genetic circuits of the invention can comprise a pair of homology arms on a DNA strand. Each homology arm is a portion of DNA in the genetic circuit that has a sequence homologous to target DNA. The homology arms in each pair are configured to excise a portion of DNA from the DNA strand through homologous recombination with a target DNA. To perform this function, the homology arms are spaced apart on the DNA strand to form an interstitial region therebetween and together have homology to one or more homologous sequences in the target DNA. Homologous recombination of the homology arms with the target DNA thereby excises the interstitial region from the DNA strand. "Strand" in this context refers to a contiguous, connected sting of nucleic acid bases. The DNA strand can be a portion of the competent cell's chromosome or a portion of an extra-chromosomal DNA, such as a plasmid. In some versions, the homology arms are homologous to a single, continuous sequence in the target DNA (contiguous portions of the target DNA). In some versions, the homology arms are homologous to two separated sequences in the target DNA. The number of bases separating the homologous sequences in the target DNA can vary depending on the length of the homology arms, with longer homology arms permitting further separation (separation being defined as the number of bases between the homologous sequences). In various versions, the homologous sequences are contiguous or separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100, 250, 500, 1000, 2,500, 5,000, 7,500, 10,000 or more bases, or any range therebetween any two of the foregoing values.

[0034] The terms "homologous" and "homology," used herein with reference to sequences or portions of DNA, refer to having a sufficient length and sequence identity to be exchanged by homologous recombination in a competent cell of the invention.

[0035] Each homology arm in the genetic circuits of the invention preferably comprises a length of at least 0.025 kbp (kilobase pairs), such as at least 0.050 kbp, at least 0.070 kbp, at least 0.075 kbp, at least 0.1 kbp, at least 0.5 kbp, at least 1 kbp, at least 1.5 kbp, at least 2 kbp, or at least 2.5 kbp. Each homology arm in the genetic circuits of the invention can comprises a length up to 3 kbp, up to 5 kbp, up to 10 kbp, up to 25 kbp, up to 50 kbp, up to 75 kbp, up to 100 kbp, up to 250 kbp, up to 500 kbp, up to 750 kbp, up to 1,000 kbp, up to 1,250 kbp, up to 2,500 kbp, up to 2,500 kbp, up to 2,750 kbp, up to 3,000 kbp, or more.

[0036] Each homology arm in the genetic circuits of the invention preferably comprises at least 75% sequence identity, at least 77% sequence identity, at least 80% sequence

identity, at least 85% sequence identity, at least 90% sequence identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, at least 99% identity, or 100% identity, to a portion of a target DNA. Such sequence identity is preferably assessed over the entire length of the homology arm, such as a length as defined in the preceding paragraph.

[0037] The term "sequence identity" (or "identity"), in the context of percent sequence identity, refers to the percentage of bases (or residues) in two sequences that are the same when aligned for maximum correspondence, as measured using a sequence comparison or analysis algorithm such as those described herein. For example, if when properly aligned, the corresponding segments of two sequences have identical bases (or residues) at 5 positions out of 10, the two sequences have a 50% identity. Most bioinformatic programs report percent identity over aligned sequence regions, which are typically not the entire molecules. If an alignment is long enough and contains enough identical residues, an expectation value can be calculated, which indicates that the level of identity in the alignment is unlikely to occur by random chance. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by visual inspection (see Current Protocols in Molecular Biology, F. M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (supplemented through 2008)). One example of an algorithm that is suitable for determining percent sequence identity and sequence similarity for purposes of defining homologs is the BLAST algorithm, which is described in Altschul et al., J. Mol. Biol. 215:403-410 (1990). Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always>0) and N (penalty score for mismatching residues; always<0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negativescoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, a cutoff of 100, M=5, N=-4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915).

[0038] The homology arm pairs in the genetic circuits are preferably spaced on the DNA strand such that the interstitial region has a length of at least 0.001 kbp, at least 0.01 kbp, at least 0.05 kbp, at least 0.1 kbp, at least 0.5 kbp, at least 1 kbp, at least 1.25 kbp, at least 1.5 kbp, at least 1.75 kbp, at least 2 kbp, at least 2.5 kbp, at least 3 kbp, at least 3.5 kbp, at least 4 kbp, at least 4.5 kbp, or at least 5 kbp. In various versions of the invention, the interstitial region has a length up to 5 kbp, up to 10 kbp, up to 15 kbp, up to 20 kbp, up to 25 kbp, up to 30 kbp, up to 35 kbp, up to 40 kbp, up to 45 kbp, up to 50 kbp, up to 55 kbp, up to 60 kbp, up to 65 kbp, up to 70 kbp, up to 75 kbp, up to 80 kbp, up to 85 kbp, up to 90 kbp, up to 95 kbp, up to 100 kbp, or more. [0039] The genetic circuits of the invention can comprise genes. "Gene" as used herein refers to the combination of genetic elements effective for the expression of a gene product such as RNA (e.g., mRNA, microRNA, etc.) and/or a protein. Genes typically minimally include a promoter and a coding sequence. Genes can also include other genetic elements, including enhancers, silencers, etc.

[0040] The genetic circuits of the invention can comprise a reporter gene. A reporter gene is a gene that expresses a reporter. The reporter can be any detectable gene product, such as any protein or RNA (e.g., mRNA, microRNA, etc.). Depending on the reporter, the reporter can be detected by visual inspection, Western blotting, Northern blotting, and mRNA sequencing and quantitation, among other methods. Reporters and reporter genes are well known in the art. Examples of common reporters include fluorescent proteins (e.g., green fluorescent protein (GFP), yellow fluorescent protein (YFP), blue fluorescent protein (BFP), red fluorescent protein (RFP), etc.), enzymes or colorimetric reporter proteins (e.g., β-galactosidase, β-D-galactopyranoside (lacZ)), luminescent proteins (e.g., luciferase), and fluorescent RNA aptamers (Bai, J., Luo, Y., Wang, X. et al. A protein-independent fluorescent RNA aptamer reporter system for plant genetic engineering. Nat Commun 11, 3847 (2020)), among others.

[0041] The genetic circuits of the invention can comprise a growth inhibitor gene. A growth inhibitor gene is a gene that expresses a gene product that kills or otherwise inhibits the growth and proliferation of a cell in which it is expressed. Examples of growth inhibitor genes include toxin genes and counter-selectable marker genes. Toxin genes are genes that express a gene product that kills a cell in which it is expressed in a non-regulatable manner. Toxin genes are well-known in the art. Examples of common toxin genes include txpA49, mazF50, and hewl51, among others. Counterselectable marker genes are genes that express a gene product that kills a cell in which it is expressed in the presence or absence of a particular condition. In some cases, the condition is the presence or absence of a particular compound or chemical. Counter-selectable marker genes are well known in the art (see, e.g., Reyrat, J M et al. "Counterselectable markers: untapped tools for bacterial genetics and pathogenesis." Infection and immunity vol. 66,9 (1998): 4011-7). Exemplary counter-selectable marker gene/chemical combinations include upp/5-fluorouracil⁵², pheS*/pchloro-phenylaanine⁵³, and ysbC/fluoro-orotate⁵⁴. Counterselectable marker genes are sometimes referred to as negative selectable marker genes.

[0042] The genetic circuits of the invention can comprise selectable marker genes. "Selectable marker gene" as used herein refers to a gene that confers a trait suitable for positive selection. Selectable marker genes are well known in the art. Selectable marker genes are often antibiotic resistance genes, which typically produce a protein that provides cells expressing the protein with resistance to an antibiotic. Normally, the genes confer resistance to antibiotics such as ampicillin, chloramphenicol, tetracycline, neomycin, or kanamycin, among others. Other common selectable marker genes are genes that are necessary for an organism to synthesize a particular compound required for survival or growth, e.g., for use in auxotrophic selection. Exemplary selectable marker/function combinations include neo/neomycin resistance⁵⁵ and lysA/lysine production⁵⁶, among others.

[0043] The genetic circuits of the invention can comprise negative regulators of genes. The term "negative regulator" used in reference to regulating a gene refers to any genetic element or combination of elements capable of negatively regulating a gene. "Negatively regulating" (and grammatical variants thereof) as used herein refers to inhibiting, reducing, or repressing expression of a gene or reducing the abundance of a gene product of a gene. The negative regulation of a gene can operate at any step of the expression of the gene, including the transcription of the gene to mRNA and/or the translation of the mRNA to a protein. The negative regulation can also or alternatively operate on the gene products themselves, including reducing the abundance of expressed mRNA or protein (e.g., by specific degradation). Exemplary systems or methods of negatively regulating a gene include siRNA, RNAi, and CRISPRi⁵⁹. Exemplary proteins capable of negatively regulating a gene include repressors (otherwise known as repressor proteins). Repressors are proteins that repress the expression of a gene, typically by binding to an element of the gene, such as its promoter. Some repressors are inducible repressors. Inducible repressors are repressors that repress the expression of a gene in an inducible manner depending on the absence or presence of an inducer, whereby the inducer either activates repression or inhibits repression. A number of inducible repressor/promoter/inducer combinations are known in the art. These include $lacI/P_{hyperspank}/IPTG^{57}$, $xylR/P_{xylA}/xy-lose^{58}$, and cI/P_R promoter/temperature increase⁵⁵, among others. A gene that expresses a repressor is referred to herein as a "repressor gene."

[0044] The genetic circuits of the invention can comprise positive regulators of genes. The term "positive regulator" used in reference to regulating a gene refers to any genetic element or combination of elements capable of positively regulating a gene. "Positively regulating" (and grammatical variants thereof) as used herein refers to stimulating expression of a gene or protecting the abundance of any gene product. The positive regulation of a gene can operate at any step of the expression of the gene, including the transcription of the gene to mRNA and/or the translation of the mRNA to a protein. The positive regulation can also or alternatively operate on the gene products themselves, including protecting or maintaining the abundance of expressed mRNA or protein (e.g., from specific degradation). Exemplary systems or methods of positively regulating a gene include CRISPRa (Liu, Y., Wan, X. & Wang, B. Engineered CRISPRa enables programmable eukaryote-like gene activation in bacteria. Nat Commun 10, 3693 (2019)). Exemplary proteins capable of negatively regulating a gene include activators (otherwise known activator proteins). Activators are proteins that activate the expression of a gene, typically by binding to an element of the gene, such as its promoter. Some activators are inducible activators. Inducible activators are activators that activate the expression of a gene in an inducible manner depending on the absence or presence of an inducer, whereby the inducer either stimulates activation or represses activation. A number of inducible activator/promoter/inducer combinations are known in the art. These include exemplary activator/promoter/inducer combinations include spaR/P_{spaS}/subtilin⁶⁰, liaR/P_{lial}/bacitracin⁶¹, and ccaR/ P_{cncG2} /green light⁶², among others. A gene that expresses an activator is referred to herein as an "activator gene."

[0045] Quorum-sensing genes can also be employed as positive regulators of genes. Quorum sensing is a specific type of regulation of gene expression in bacteria that is dependent on population density. Quorum-sensing systems include two components: a regulator (autoinducer) and a regulatory receptor protein that interacts with the regulator. The regulator is typically of low-molecular-weight and readily diffuses through the cytoplasmic membrane. As the bacterial population reaches a critical density level, autoinducers accumulate to a threshold value, the regulatory receptor becomes activated, and activation (induction) of genes comprising response elements to the regulatory receptor protein occurs. A gene intending to be positively regulated according to the present invention can comprise or be modified to comprise a promoter sensitive to a regulatory receptor protein of a quorum-sensing system. Autoinducers produced in response to cell density thereby stimulate the regulatory receptor protein to activate expression of such a gene. See e.g., FIG. 15E. A gene that expresses a regulatory receptor protein of a quorum-sensing system is referred to herein as a "quorum-sensing gene."

[0046] The genetic circuits of the invention can comprise a reporter switch. A reporter switch is a combination of genetic elements configured to express a reporter from a reporter gene in response to a certain condition. The condition in the reporter switches of the present invention is preferably the presence of a target DNA.

[0047] In preferred versions of the invention, the reporter switch comprises a reporter gene in combination with a negative regulator of the reporter gene. The reporter gene preferably comprises a promoter and coding sequence that is not comprised within the interstitial region of the DNA strand. In some versions, no part of the reporter gene is comprised within the interstitial region of the DNA strand. "Not comprised within the interstitial region" as used herein with reference to a particular element means that no portion of that particular element is included within the interstitial region. The negative regulator of the reporter gene is preferably comprised within the interstitial region of the DNA strand. "Comprised within the interstitial region" as used herein with reference to a particular element means that at least some portion of the element is included within the interstitial region. In reporter switches comprising a reporter gene with a promoter and coding sequence not comprised within the interstitial region of the DNA strand and a negative regulator of the reporter gene comprised within the interstitial region of the DNA strand, the negative regulator of the reporter gene remains intact in the genetic circuit in the absence of target DNA and thereby inhibits expression of the reporter under such conditions. In the presence of target DNA, however, the negative regulator of the reporter gene is excised from the DNA strand, thereby permitting expression of the reporter gene for detection.

[0048] The genetic circuits of the invention can comprise a kill switch. The kill switch comprises one or more genetic elements configured to inhibit growth of the competent cell in response to a certain condition. "Inhibit growth of the competent cell" in this context refers to killing the cell or otherwise inhibiting its proliferation. The condition in the reporter switches of the present invention preferably comprises the absence of a target DNA. The condition may comprise other aspects, such as the presence or absence of an inducer. In preferred versions, at least one of the one or more genetic elements is comprised within the interstitial region of the DNA strand. In such a configuration, the kill switch remains intact in the absence of target DNA, thereby maintaining the ability to inhibit growth of the competent cell with the kill switch. In the presence of target DNA, however, the interstitial region and at least a portion of the kill switch is excised from the DNA strand, thereby removing the ability to inhibit growth of the cell with the kill switch and thereby permitting growth of the cell.

[0049] In some versions, the interstitial region comprises at least one of a growth inhibitor gene, a positive regulator of a growth inhibitor gene, and a negative regulator of a selectable marker gene. In such configurations, the interstitial region the growth inhibitor gene, the positive regulator of the growth inhibitor gene, and/or the negative regulator of the selectable marker gene remain(s) intact in the kill switch in the absence of target DNA, thereby maintaining the ability to inhibit growth of the competent cell with these elements. In the presence of target DNA, however, the growth inhibitor gene, the positive regulator of the growth inhibitor gene, and/or the negative regulator of the selectable marker gene comprised within the interstitial region is excised from the DNA strand, thereby removing the ability to inhibit growth of the cell and thereby permitting growth of the cell with these elements. In some versions, the growth inhibitor gene included in the interstitial region comprises at least one of a toxin gene and a counter-selectable marker gene. In some versions, the positive regulator of the growth inhibitor gene included in the interstitial region comprises at least one of a quorum-sensing gene and an activator gene. In some versions, the negative regulator of the selectable marker gene included in the interstitial region comprises a repressor gene.

[0050] In some versions, the kill switch comprises a toxin gene comprised within the interstitial region and a repressor gene that expresses a repressor of the toxin gene. The repressor of the toxin gene preferably expresses an inducible repressor. An exemplary genetic circuit comprising such a kill switch is shown in FIGS. 1A and 14A. The repressor gene can be comprised within the interstitial region or elsewhere within the competent cell. In such configurations, the toxin gene and, optionally, the repressor of the toxin gene remain intact in the kill switch in the absence of target DNA, thereby maintaining the ability of the toxin gene to inhibit growth of the competent cell. In the presence of target DNA, however, the toxin gene and, optionally, the repressor of the

toxin gene is/are excised from the DNA strand, thereby removing the ability of the toxin gene to inhibit growth of the cell and thereby permitting growth of the cell.

[0051] In some versions, the kill switch comprises a toxin gene and a positive regulator of the toxin gene, wherein one or both of the toxin gene and the positive regulator of the toxin gene is comprised within the interstitial region. An exemplary genetic circuit comprising such a kill switch is shown in FIGS. 15B and 15E. In such a configuration, the toxin gene and the positive regulator of the toxin gene remain intact in the kill switch in the absence of target DNA, thereby maintaining the ability of the toxin gene and the positive regulator of the toxin gene to inhibit growth of the competent cell. In the presence of target DNA, however, the toxin gene and/or the positive regulator of the toxin gene are/is excised from the DNA strand, thereby removing the ability of the toxin gene and the positive regulator of the toxin gene to inhibit growth of the cell and thereby permitting growth of the cell. In some versions, the positive regulator of the toxin gene comprises at least one of an activator gene that expresses an inducible activator of the toxin gene and a quorum-sensing gene that expresses regulatory receptor protein capable of activating the toxin gene. [0052] In some versions, the kill switch comprises a counter-selectable marker gene comprised within the interstitial region. An exemplary genetic circuit comprising such a kill switch is shown in FIG. 15C. In such a configuration, the counter-selectable marker gene remains intact in the kill switch in the absence of target DNA, thereby maintaining the ability of the counter-selectable marker gene to inhibit growth of the competent cell. In the presence of target DNA, however, the counter-selectable marker gene is excised from the DNA strand, thereby removing the ability of the selectable marker gene to inhibit growth of the cell and thereby permitting growth of the cell.

[0053] In some versions, the kill switch comprises a selectable marker gene not comprised within the interstitial region of the DNA strand and a negative regulator of the selectable marker gene comprised within the interstitial region of the DNA strand. An exemplary genetic circuit with such a kill switch is shown in FIG. 15D. In such a configuration, the negative regulator of the selectable marker gene remains intact in the kill switch in the absence of target DNA, thereby maintaining the ability of the counter-selectable marker to inhibit growth of the competent cell. In the presence of target DNA, however, the negative regulator of the selectable marker gene is excised from the DNA strand, thereby removing the ability of the negative regulator of the selectable marker gene to inhibit growth of the cell and thereby permitting growth of the cell. In some versions, as shown in FIG. 15D, the negative regulator of the selectable marker gene is also the negative regulator of the reporter gene.

[0054] In some versions, the genetic circuit comprises a negative regulator that functions in both the reporter switch and the kill switch (FIGS. **15**F-**15**II). The negative regulator is preferably inducible (shown is lacI, but others can be used). The reporter switch comprises a reporter gene (shown is gfp, but others can be used) with a promoter and a coding sequence that are not comprised within the interstitial region of the DNA strand, as well as the negative regulator, which negatively regulates the reporter gene.

[0055] In FIGS. **15**F and **15**G, the kill switch comprises a growth inhibitor gene within the interstitial region, a posi-

tive regulator of the growth inhibitor gene (which can be inside or outside the interstitial region), and the negative regulator, which, in addition to negatively regulating the reporter gene, also negatively regulates the positive regulator of the growth inhibitor gene. In some versions, the negative regulator is comprised within the interstitial region (FIG. 15F). In other versions, the negative regulator is not comprised within the interstitial region (FIG. 15G). In the versions of FIGS. 15F and 15G, cells can be grown in the absence of inducer (such as IPTG) so that the positive regulator of the growth inhibitor gene is inhibited. After exposing to target DNA (or target cells), inducer can be added to stimulate expression of the positive regulator of the growth inhibitor gene and the reporter gene. If the growth inhibitor gene is present, the cells will die. If the growth inhibitor gene is not present, the cells will grow and the reporter will be expressed. In FIGS. 15H and 15I, the kill switch in comprises a growth inhibitor gene (toxin as shown, but others can be used) within the interstitial region and the negative regulator, which, in addition to negatively regulating the reporter gene, also negatively regulates the growth inhibitor gene. In some versions, the first negative regulator is comprised within the interstitial region (FIG. 15H). In other versions, the first negative regulator is not comprised within the interstitial region (FIG. 15I). In the versions of FIGS. 15H and 15I, cells can be grown in the absence of inducer (such as IPTG) so that the growth inhibitor gene is inhibited. After exposing to target DNA (or target cells), inducer can be added to stimulate expression of the growth inhibitor gene and the reporter gene. If the growth inhibitor gene is present, the cells will die. If the growth inhibitor gene is not present, the cells will grow and the reporter will be expressed.

[0056] The target DNA detected with the DNA sensors of the invention can comprise any sequence. In some versions, the target DNA is native DNA. "Native DNA" as used herein is DNA that consists of native sequence, wherein "native sequence" refers to a natural DNA sequence (a sequence found in nature). In some versions, the target DNA is recombinant DNA. "Recombinant DNA" as used herein is DNA that comprises a recombinant sequence, wherein "recombinant sequence" refers to non-natural sequence (a sequence not found in nature.) In some versions, the portion (s) of the target DNA homologous to the pair of homology arms (referred to herein as the first and second portions of the target DNA) consists of native sequence. In some versions, the portion(s) of the target DNA homologous to the pair of homology arms (referred to herein as the first and second portions of the target DNA) comprises recombinant sequence. In some versions, the target DNA is cellular DNA. "Cellular DNA" refers to DNA presently or formerly comprised within a cell. Cellular DNA can comprise genomic DNA, chromosomal DNA, plasmid DNA, etc. In some versions, the target DNA is non-isolated cellular DNA. "Non-isolated cellular DNA" refers to cellular DNA that is not isolated, purified, released, or removed (e.g., by cell lysis) from the cell using chemical or physical treatment. Free cellular DNA present in a culture medium that has not been isolated, purified, released, or removed (e.g., by cell lysis) from the cell using chemical or physical treatment, for example, constitutes non-isolated cellular DNA. In some versions, the non-isolated cellular DNA is from eukaryotic cells. In some versions, the non-isolated DNA is from mammalian cells (e.g., cancer cells). In some versions, the

non-isolated cellular DNA is from prokaryotic cells. In some versions, the non-isolated cellular DNA is from bacterial cells (referred to herein as non-isolated bacterial DNA).

[0057] The target DNA can be DNA from any target organism or target cell. Exemplary organisms comprise bacteria, viruses, fungi, and animals such as humans. For the purposes herein, viruses are considered to be organisms. "Target organism" and "target cell" refer to an organism or cell, respectively, in which target DNA is comprised or from which target DNA is derived.

[0058] Exemplary target bacteria include members of the genus Bacillus, such as Bacillus anthracis and Bacillus cereus; members of the genus Bordetella, such as Bordetella pertussis; members of the genus Borrelia, such as Borrelia burgdorferi; members of the genus Brucella, such as Brucella abortus, Brucella canis, Brucella melitensis, and Brucella suis; members of the genus Campylobacter, such as Campylobacter jejuni; members of the genus Chlamydia, such as Chlamydia pneumoniae, Chlamydia trachomatis, and Chlamydophila psittaci; members of the genus Clostridium, such as Clostridium botulinum, Clostridium difficile, Clostridium perfringens, and Clostridium tetani; members of the genus Corvnebacterium, such as Corvnebacterium diphtheriae; members of the genus Clostridioides, such as Clostridioides difficile and Clostridioides mangenotii; members of the genus Enterococcus, such as Enterococcus faecalis and Enterococcus faecium; members of the genus Escherichia, such as Escherichia coli; members of the genus Francisella, such as Francisella tularensis; members of the genus Haemophilus, such as Haemophilus influenzae; members of the genus Helicobacter, such as Helicobacter pylori; members of the genus Legionella, such as Legionella pneumophila; members of the genus Leptospira, such as Leptospira interrogans; members of the genus Listeria, such as Listeria monocytogenes; members of the genus Mycobacterium, such as Mycobacterium leprae, Mycobacterium tuberculosis, and Mycobacterium ulcerans; members of the genus Mycoplasma, such as Mycoplasma pneumoniae; members of the genus Neisseria, such as Neisseria gonorrhoeae and Neisseria meningitidis; members of the genus Pseudomonas, such as Pseudomonas aeruginosa; members of the genus Rickettsia, such as Rickettsia rickettsii; members of the genus Salmonella, such as Salmonella typhi and Salmonella typhimurium; members of the genus Shigella, such as Shigella sonnei; members of the genus Staphylococcus, such as Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus saprophyticus; members of the genus Streptococcus, such as Streptococcus agalactiae, Streptococcus pneumoniae, and Streptococcus pyogenes; members of the genus Treponema, such as Treponema pallidum; members of the genus Vibrio, such as Vibrio cholerae; members of the genus Yersinia, such as Yersinia pestis, Yersinia enterocolitica, and Yersinia pseudotuberculosis, among others.

[0059] Exemplary target viruses include viruses in the family adenoviridae, such as adenovirus; viruses in the family herpesviridae such as herpes simplex, type 1, herpes simplex, type 2, varicella-zoster virus, epstein-barr virus, human cytomegalovirus, human herpesvirus, and type 8; viruses in the family papillomaviridae such as human papillomavirus; viruses in the family polyomaviridae such as BK virus and JC virus; viruses in the family poxviridae such as hepatitis B virus; viruses in the family parvoviridae such as hepatitis B virus; viruses in the family parvoviridae such as

human bocavirus and parvovirus B19; viruses in the family astroviridae such as human astrovirus: viruses in the family caliciviridae such as norwalk virus; viruses in the family picornaviridae such as coxsackievirus, hepatitis A virus, poliovirus, and rhinovirus; viruses in the family coronaviridae such as severe acute respiratory syndrome (SARS) viruses, including SARS-CoV-2; viruses in the family flaviviridae such as hepatitis C virus, yellow fever virus, dengue virus, and West Nile virus, viruses in the family togaviridae such as rubella virus; viruses in the family hepeviridae such as hepatitis E virus; viruses in the family retroviridae such as human immunodeficiency virus (HIV); viruses in the family orthomyxoviridae such as influenza virus; viruses in the family arenaviridae such as guanarito virus, junin virus, lassa virus, machupo virus, and sabia virus: viruses in the family bunyaviridae such as Crimean-Congo hemorrhagic fever virus; viruses in the family filoviridae such as ebola virus and marburg virus; viruses in the family paramyxoviridae such as measles virus, mumps virus, parainfluenza virus, respiratory syncytial virus, human metapneumovirus, hendra virus, and nipah virus; viruses in the family rhabdoviridae such as rabies virus; unassigned viruses such as hepatitis D virus; and viruses in the family reoviridae such as rotavirus, orbivirus, coltivirus, and banna virus, among others.

[0060] Exemplary target fungi include fungi of the genus Aspergillus, such as Aspergillus fumigatus, which cause aspergillosis; fungi of the genus Blastomyces, such as Blastomyces dermatitidis, which cause blastomycosis; fungi of the genus Candida, such as Candida albicans, which cause candidiasis; fungi of the genus Coccidioides, which cause coccidioidomycosis (valley fever); fungi of the genus Cryptococcus, such as Cryptococcus neoformans and Cryptococcus gattii, which cause cryptococcosis; dermatophytes fungi, which cause ringworm; fungi that cause fungal keratitis, such as Fusarium species, Aspergillus species, and Candida species; fungi of the genus Histoplasma, such as Histoplasma capsulatum, which cause histoplasmosis; fungi of the order Mucorales, which cause mucormycosis; fungi of the genus Saccharomyces, such as Saccharomyces cerevisiae; fungi of the genus Pneumocystis, such as Pneumocystis jirovecii, which cause pneumocystis pneumonia; and fungi of the genus Sporothrix, such as Sporothrix schenckii, which cause sporotrichosis.

[0061] In some versions, the target DNA sequence is an antibiotic resistance gene or a regulator gene, wherein homologous recombination corrects the point mutation in the kill switch or the reporter to thereby activate the kill switch or reporter.

[0062] The DNA sensors of the invention can be comprised in compositions. In some versions, the compositions comprise one or more DNA sensors in a culture medium. The culture medium is preferably capable of supporting growth of the DNA sensor under certain conditions. Such conditions preferably include the presence of target DNA. In some versions, the compositions comprise one or more DNA sensors in combination with a target DNA. In some versions, the compositions comprise two or more DNA sensors, such as three or more, four or more, five or more, or six or more DNA sensors. The two or more DNA sensors can be configured to detect different target DNA sequences, such as from different target organisms or target cells, and express different reporters. In one exemplary configuration, the pairs of homology arms in the two or more cell-based

sensors are each homologous to different target DNA sequences, and the reporter genes in the two or more cell-based DNA sensors express reporters that are each detectably different from each other. In some versions, the detectably different reporters comprise fluorescent reporters that emit fluorescence at different wavelengths. The compositions comprising the two or more DNA sensors can be used in multiplex detection methods.

[0063] The DNA sensors of the invention can be used in methods of detecting target DNA. The methods can comprise culturing the DNA sensor in a culture medium comprising the target DNA for a time effective to transform the DNA sensor with the target DNA and then detecting the transformed DNA sensor. "Transformation" (and grammatical variants) as used herein refers to the uptake of DNA into a cell. The genetic circuits of the transformed DNA sensors can then undergo homologous recombination with the transformed DNA, thereby excising the interstitial region from the DNA strand and altering the reporter switch (if present), the kill switch (if present), or both (if present). In some versions, the DNA sensor comprises a reporter switch, and detection of the target DNA occurs by detecting growth of the DNA sensor. In some versions, the DNA sensor comprises a kill switch, and detection of the target DNA occurs by detecting a reporter expressed from the reporter gene. In some versions, the DNA sensor comprises a reporter switch and a kill switch, and detection of the target DNA occurs by detecting a reporter expressed from the reporter gene and/or growth of the DNA sensor. It has been found that including both a reporter switch and a kill switch in a DNA sensor of the invention can enhance detection by amplifying the signal to noise (background) ratio of the reporter with respect to including a reporter switch alone.

[0064] It has been surprisingly found that target cells such as bacteria release sufficient DNA during culture to transform the DNA sensors of the invention and undergo homologous recombination for detection thereof without isolating, purifying, releasing, or removing (e.g., by cell lysis) target DNA from the target cell using chemical or physical treatment. Accordingly, some methods of the invention are directed to detecting a target cell comprising target DNA. Such methods can comprise culturing the DNA sensor in a culture medium with the target cell for a time effective to transform the DNA sensor with the target DNA and then detecting the transformed DNA sensor. In some methods, the culturing is performed without lysing the target cell. In some methods, the method is performed without isolating, purifying, releasing, or removing (e.g., by cell lysis) the target DNA from the target cell using chemical or physical treatment. In some methods, the target DNA is non-isolated cellular DNA. In some methods the target cell comprises a bacterium. In some methods, the target DNA is non-isolated bacterial DNA. In some methods, the cell-based DNA sensor comprises two or more cell-based DNA sensors, wherein: the pairs of homology arms the two or more cell-based sensors are each homologous to different target DNA sequences from different target cells; each of the two or more cell-based DNA sensors comprises the reporter switch; and the reporter genes in the two or more cell-based DNA sensors express reporters that are each detectably different from each other. In some methods, the two or more cellbased sensors comprise three or more cell-based sensors.

[0065] Aspects pertaining to homologous recombination such as homology length and sequence identity are known in the art. 66,67,68,69

[0066] Unless the context indicates otherwise, any gene described herein as "expressing" or being one that "expresses" a particular gene product can constitutively express the gene product (e.g., via a constitutive promoter) or inducibly express the gene product (e.g., via an inducible promoter or a promoter sensitive to a regulatory protein, such as a repressor or an activator). The unmodified term "expresses" therefore encompasses but does not necessarily require constitutive express" are used interchangeably herein.

[0067] Terms used herein pertaining to genetic manipulation are defined as follows.

[0068] Endogenous: As used herein with reference to a polynucleotide molecule and a particular cell, "endogenous" refers to a polynucleotide sequence or polypeptide that is in the cell and was not introduced into the cell using recombinant engineering techniques. For example, an endogenous gene is a gene that was present in a cell when the cell was originally isolated from nature.

[0069] Exogenous: As used herein with reference to a polynucleotide molecule or polypeptide in a particular cell, "exogenous" refers to any polynucleotide molecule or polypeptide that does not originate from that particular cell as found in nature. Thus, a non-naturally-occurring polynucleotide molecule or protein is considered to be exogenous to a cell once introduced into the cell. A polynucleotide molecule or protein that is naturally occurring also can be exogenous to a particular cell. For example, an entire coding sequence isolated from cell X is an exogenous polynucleotide with respect to cell Y once that coding sequence is introduced into cell Y. The term "heterologous" is used herein interchangeably with "exogenous."

[0070] Expression: The process by which a gene's coded information is converted into the structures and functions of a cell, such as a protein, transfer RNA, or ribosomal RNA. Expressed genes include those that are transcribed into mRNA and then translated into protein and those that are transcribed into RNA but not translated into protein (for example, transfer and ribosomal RNAs).

[0071] Isolated: Except as otherwise defined herein, an "isolated" biological component (such as a polynucleotide molecule, polypeptide, or cell) has been substantially separated or purified away from other biological components in which the component naturally occurs, such as other chromosomal and extrachromosomal DNA and RNA and proteins. Polynucleotide molecules and polypeptides that have been "isolated" include polynucleotide molecules and polypeptides purified by standard purification methods. The term also includes polynucleotide molecules and polypeptides prepared by recombinant expression in a cell as well as chemically synthesized polynucleotide molecules and polypeptides.

[0072] Polynucleotide: Encompasses both RNA and DNA molecules including, without limitation, cDNA, genomic DNA, and mRNA. Polynucleotides also include synthetic polynucleotide molecules, such as those that are chemically synthesized or recombinantly produced. The polynucleotide can be double-stranded or single-stranded. Where single-stranded, the polynucleotide molecule can be the sense strand, the antisense strand, or both. In addition, the polynucleotide can be circular or linear.

[0073] Operably linked: A first polynucleotide sequence is operably linked with a second polynucleotide sequence when the first polynucleotide sequence is placed in a functional relationship with the second polynucleotide sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. An origin of replication is operably linked to a coding sequence if the origin of replication controls the replication or copy number of the polynucleotide in the cell. Operably linked polynucleotides may or may not be contiguous.

[0074] Operon: Configurations of separate genes that are transcribed in tandem as a single messenger RNA are denoted as operons. Thus, a set of in-frame genes in close proximity under the transcriptional regulation of a single promoter constitutes an operon. Operons may be synthetically generated.

[0075] Overexpress: When a gene is caused to be transcribed at an elevated rate compared to the endogenous or basal transcription rate for that gene. In some examples, overexpression additionally includes an elevated rate of translation of the gene compared to the endogenous translation rate for that gene. Methods of testing for overexpression are well known in the art, for example transcribed RNA levels can be assessed using rtPCR and protein levels can be assessed using SDS page gel analysis.

[0076] Recombinant cell: A cell that comprises a recombinant polynucleotide.

[0077] Unless explained otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described below.

[0078] A coding sequence can be operably linked to an appropriate expression control sequence (promoters, enhancers, and the like) to direct synthesis of the encoded gene product. Such promoters can be derived from microbial or viral sources, including CMV and SV40. Depending on the cell/vector system utilized, any of a number of suitable transcription and translation control elements, including constitutive and inducible promoters, transcription enhancer elements, transcription terminators, etc. can be used in the expression vector (see e.g., Bitter et al. (1987) *Methods in Enzymology*, 153:516-544).

[0079] Suitable promoters for use in prokaryotic cells include but are not limited to: promoters capable of recognizing the T4, T3, Sp6, and T7 polymerases; the P R and P L promoters of bacteriophage lambda; the trp, recA, heat shock, and lacZ promoters of *E. coli*; the alpha-amylase and the sigma-specific promoters of *B. subtilis*; the promoters of the bacteriophages of *Bacillus; Streptomyces* promoters; the int promoter of bacteriophage lambda; the bla promoter of the beta-lactamase gene of pBR322; and the CAT promoter of the chloramphenicol acetyl transferase gene. Prokaryotic promoters are reviewed by Glick, *J. Ind. Microbiol.* 1:277 (1987); Watson et al, Molecular Biology of the Gene, 4th Ed., Benjamin Cummins (1987); and Sambrook et al., In: *Molecular Cloning: A Laboratory Manual,* 3rd ed., Cold Spring Harbor Laboratory Press (2001).

[0080] Non-limiting examples of suitable promoters for use within a eukaryotic cell are typically viral in origin and include the promoter of the mouse metallothionein I gene (Hamer et al. (1982) *J. Mol. Appl. Genet.* 1:273); the TK promoter of Herpes virus (McKnight (1982) *Cell* 31:355); the SV40 early promoter (Benoist et al. (1981) *Nature* (London) 290:304); the Rous sarcoma virus promoter; the cytomegalovirus promoter (Foecking et al. (1980) *Gene* 45:101); the yeast gal4 gene promoter (Johnston et al. (1982) *PNAS* (USA) 79:6971; Silver et al. (1984) *PNAS* (USA) 81:5951); and the IgG promoter (Orlandi et al. (1989) *PNAS* (USA) 86:3833).

[0081] Coding sequences can be operably linked to an inducible promoter. Inducible promoters are those wherein addition of an effector affects expression. Suitable effectors include proteins, metabolites, chemicals, or culture conditions capable of affecting expression. Suitable inducible promoters include but are not limited to the lac promoter (regulated by IPTG or analogs thereof), the lacUV5 promoter (regulated by IPTG or analogs thereof), the tac promoter (regulated by IPTG or analogs thereof), the trc promoter (regulated by IPTG or analogs thereof), the ara-BAD promoter (regulated by L-arabinose), the phoA promoter (regulated by phosphate starvation), the recA promoter (regulated by nalidixic acid), the proU promoter (regulated by osmolarity changes), the cst-1 promoter (regulated by glucose starvation), the tetA promoter (regulated by tetracycline), the cadA promoter (regulated by pH), the nar promoter (regulated by anaerobic conditions), the p_T promoter (regulated by thermal shift), the cspA promoter (regulated by thermal shift), the T7 promoter (regulated by thermal shift), the T7-lac promoter (regulated by IPTG), the T3-lac promoter (regulated by IPTG), the T5-lac promoter (regulated by IPTG), the T4 gene 32 promoter (regulated by T4 infection), the nprM-lac promoter (regulated by IPTG), the VHb promoter (regulated by oxygen), the metallothionein promoter (regulated by heavy metals), the MMTV promoter (regulated by steroids such as dexamethasone) and variants thereof.

[0082] In some versions, the promoter is a constitutive promoter. Suitable constitutive promoters are known in the art and include constitutive adenovirus major late promoter, a constitutive MPSV promoter, and a constitutive CMV promoter.

[0083] The elements of the genetic circuits of the invention can be integrated in the competent cell's chromosome or an extra-chromosomal DNA, such as a plasmid, or a combination thereof.

[0084] Polynucleotides encoding enzymes desired to be expressed in a cell may be codon-optimized for that particular type of cell. Codon optimization can be performed for any polynucleotide by "OPTEVIUMGENE"-brand gene design system by GenScript (Piscataway, NJ).

[0085] The elements and method steps described herein can be used in any combination whether explicitly described or not.

[0086] All combinations of method steps as used herein can be performed in any order, unless otherwise specified or clearly implied to the contrary by the context in which the referenced combination is made.

[0087] As used herein, the singular forms "a," "an," and "the" include plural referents unless the content clearly dictates otherwise.

[0088] Numerical ranges as used herein are intended to include every number and subset of numbers contained within that range, whether specifically disclosed or not. Further, these numerical ranges should be construed as

providing support for a claim directed to any number or subset of numbers in that range. For example, a disclosure of from 1 to 10 should be construed as supporting a range of from 2 to 8, from 3 to 7, from 5 to 6, from 1 to 9, from 3.6 to 4.6, from 3.5 to 9.9, and so forth.

[0089] All patents, patent publications, and peer-reviewed publications (i.e., "references") cited herein are expressly incorporated by reference to the same extent as if each individual reference were specifically and individually indicated as being incorporated by reference. In case of conflict between the present disclosure and the incorporated references, the present disclosure controls.

[0090] It is understood that the invention is not confined to the particular construction and arrangement of parts herein illustrated and described, but embraces such modified forms thereof as come within the scope of the claims.

EXAMPLES

[0091] Programming Bacteria for Multiplexed DNA Detection Summary

[0092] DNA is a universal and programmable signal of living organisms. Here we developed cell-based DNA sensors by engineering the naturally competent bacterium *Bacillus subtilis* (*B. subtilis*) to detect specific DNA sequences in the environment. The DNA sensor strains can identify diverse bacterial species including major human pathogens with high specificity and sensitivity. Multiplexed detection of genomic DNA from different species in complex samples can be achieved by coupling the sensing mechanism to orthogonal fluorescent reporters. We also demonstrate that the DNA sensors can detect the presence of species in the complex samples without requiring DNA sensing mechanism and simple detection procedure enables programmable DNA sensing for broad applications.

INTRODUCTION

[0093] Next-generation engineered bacteria hold tremendous promise for a wide range of applications in human health, environment and agriculture by sensing key environmental signals, performing computation on these signals to regulate a response that modulates specific environmental parameters¹. Developing specific and selective sensors of key environmental signals is a critical feature of nextgeneration engineered bacteria. For example, bacteria have been engineered to detect physical and chemical signals such as light, ultrasound, and quorum-sensing molecules²⁻⁴. These signals can be exploited to control the collective growth or gene expression of the bacterial population or mediate interactions between constituent community members⁴⁻⁶. In addition, we can exploit their sensing ability to achieve real-time monitoring of natural environments. For example, synthetic genetic circuits have been designed in Escherichia coli (E. coli) to sense signals produced by pathogens and use this information to regulate the production of antimicrobials that inhibit the target pathogen^{7,8}. However, there are limited well-characterized and orthogonal signals that can be exploited to sense different bacterial species in a microbial community^{9,10}.

[0094] DNA provides the blueprint for living organisms and is prevalent in natural environments¹¹. Therefore, extracellular DNA (eDNA) could be exploited as a biomarker for identifying different species. Naturally competent bacteria

have the ability to take up DNA from the environment and integrate imported sequences onto the genome based on sequence homology requirements. Horizontal gene transfer (HGT) via natural transformation has been shown to have a variety of benefits such as nutrient utilization, DNA repair, or acquisition of genes¹². Since homologous recombination of imported DNA requires sequences of sufficient length and homology¹³, natural transformation could be exploited to build a selective cell-based DNA sensor.

[0095] We constructed a living cell-based DNA sensor by engineering the naturally competent bacterium *B. subtilis*. This circuit controls *B. subtilis* growth and fluorescence reporter genes in response to specific input DNA sequences. We demonstrate that the cell-based DNA sensor is sensitive and highly specific to species harboring the target DNA sequence. In addition, we demonstrate that our cell-based DNA sensor can perform multiplexed DNA detection in complex samples. The cell-based DNA sensors can detect DNA released from pre-treated donor cells (i.e. crude samples). Our detailed characterization of the cell-based DNA sensors in vitro provides a foundation for future in vitro DNA detection and in situ sense-and-respond DNA applications.

Results

Construction of a Living DNA Sensor Strain

[0096] To build the living cell-based DNA sensor, we exploited the natural competence ability of the well-characterized soil bacterium *B. subtilis*¹⁴. The natural competence ability of *B. subtilis* enables uptake of environmental DNA and integration of specific sequences with sufficient homology into genome via homologous recombination¹⁵. The efficiency of homologous recombination depends stringently on the sequence percent identity and length^{13,16}, which can be exploited to build a highly specific DNA sensor.

[0097] To detect eDNA sequences in a programmable fashion, we constructed a synthetic genetic circuit in *B. subtilis* that implements a growth selection function based on the presence of target DNA sequence in the environment. The circuit consists of a xylose-inducible master regulator of competence comK¹⁷ and IPTG-inducible toxin-antitoxin system txpA-ratA¹⁸ and GFP regulated by the repressor Lad (FIGS. **1**A and **5**A-**5**C). The target sequences were introduced to the flanking regions (upstream and downstream) of txpA-ratA and lad and referred to as landing pads for homologous recombination.

[0098] In the presence of xylose, ComK activates competence genes for DNA uptake and homologous recombination (FIG. 1A). Bistability and stochastic processes in the regulation of natural competence can yield a sub-population that can be transformed with extracellular DNA¹⁹. This naturally competent sub-population forms competence pili which bind to double stranded DNA outside the cell. The DNA is cleaved into single-stranded DNA (ssDNA) outside the cell membrane, and transported into the cell¹². Inside the cell, RecA binds the ssDNA sequences and searches the B. subtilis genome for a region with sufficient homology. If the target DNA sequence is present, homologous recombination removes the toxin-antitoxin txpA-ratA and repressor lad. In the presence of the chemical inducer Isopropyl β-D-1thiogalactopyranoside (IPTG), cell growth and GFP expression is enabled in the transformed sub-population. Growth of the non-transformed subpopulation is inhibited by the activity of TxpA, which blocks cell wall synthesis¹⁸ (FIG. 1A).

[0099] We constructed a sensor for *E. coli* (EC sensor) by introducing the xdhABC operon onto the *B. subtilis* genome (landing pad region), which encodes genes for purine catabolism²⁰. The xdhABC operon is a representative sequence that can detect a wide range of *E. coli* strains. This sequence is highly conserved such that 99% of 5000 *E. coli* genomes in the NCBI database contain this sequence with >95% coverage (the degree of alignment of the query sequence with a reference sequence) and >95% identity similarity (the percentage of bases that are identical to the target sequence within the aligned region).

[0100] To characterize the homology length needed for robust DNA sensing, we varied the homology length of the xdhABC operon in each landing pad (0.5 to 2.5 kb). We performed time-series measurements of transformation efficiency (number of colonies for transformed B. subtilis cells divided by the number total B. subtilis colonies) with 100 ng/mL E. coli genomic DNA (gDNA). The transformation efficiency is defined as the ratio of the number of transformed B. subtilis to the total number of B. subtilis based on colony forming units (CFU). Transformation efficiency plateaued at approximately 10 hr and the colonies expressed GFP (FIG. 1B). In addition, transformation efficiency increased with homology length at 10 hr (FIG. 1C). A homology length of 1 kb or greater was required to robustly sense the target sequence over the background frequency of escape mutants (10⁻⁷-10⁻⁶ frequency) that displayed heterogenous GFP expression (FIGS. 6A and 6B). To achieve high performance of the DNA sensor (>10² increase in transformation efficiency above background), we used a landing pad homology length of 2.5 kb (transformation efficiency of 10^{-5} - 10^{-4}). In the transformed sub-population, homologous recombination was confirmed by sequencing to occur at the expected location with the elimination of txpA-ratA and lad (FIGS. 6C and 6D). The moderate number of escape mutants that displayed growth in the absence of gDNA had mutations in txpA or lacI, which reduced the growth inhibitory activity of TxpA (FIGS. 6E and 6F). In sum, the synthetic genetic circuit enabled B. subtilis to sense specific DNA sequences present in the environment.

Building Living DNA Sensors to Sense Human Pathogens

[0101] Exploiting the modularity of the DNA sensing circuit, we replaced the landing pad region with specific sequences targeting different bacterial strains (FIG. **5**C). To this end, we constructed DNA sensors to detect sequences harbored in human intestinal pathogens *Salmonella typhimurium*²¹ (*S. typhimurium*), *Clostridium difficile*²² (*C. difficile*), or the skin pathogen *Staphylococcus aureus*²³ (*S. aureus*). We selected two 2.5 kb sequences in the pathogenicity island sipBCDA of *S. typhimurium* (ST sensor), the heme biosynthesis pathway hemEH in *S. aureus* (SA sensor), and the phenylalanyl-tRNA synthetase pheST in *C. difficile* (CD sensor)²⁴⁻²⁶.

[0102] The selected set of target DNA sequences are highly conserved within a given species (ST sensor: 94%, SA sensor: 96%, and CD sensor: 96% all with >95% coverage and >95% identity similarity). In addition, some of the sequences are linked to virulence activities of the pathogen or encode enzymes that are critical for fitness²⁴⁻²⁶. To further explore the conservation of the target sequences

across different strains, we performed nucleotide BLAST using the NCBI Database to quantify the homology coverage and sequence similarity across species. The pathogenicity island sipBCDA in S. typhimurium was found only in Salmonella enterica species and infrequently observed in other species (FIG. 7A). Homologs in other species have low coverage and identity similarity, suggesting that the pathogenicity island could be a good target sequence for this species (FIG. 7A). The heme biosynthesis pathway hemEH in S. aureus and phenylalanyl-tRNA synthetase pheST in C. difficile are conserved in some closely related strains with varying degrees of similarity and coverage (FIGS. 2I and 2K). The E. coli MG1655 xdhABC purine catabolism operon is found in other closely related bacteria such as Shigella with high coverage and identity similarity (FIG. 7B). Although the target sequences for building the different DNA sensor strains varied in the degree of specificity based on bioinformatic analyses, a detailed characterization of circuit performance could guide the design of optimized cell-based DNA sensors for future applications.

[0103] The four sensors robustly detected the presence of 100 ng/mL target gDNA over background (0 ng/mL gDNA) based on transformation efficiency (FIG. 2A). We evaluated the sensitivity of each DNA sensor strain by performing time-series GFP measurements in liquid culture after being transformed with a wide range of gDNA concentrations (0-1500 ng/mL gDNA) from single species (FIGS. 2B, 2C, and 8A-8C). We evaluated the time required for each culture to display a fluorescence level higher than a threshold (i.e. detection time) (FIGS. 2C and 8A-8C). The sensitivity of the circuit was evaluated as the lowest gDNA concentration that yielded a statistically significant difference in the detection time in the presence versus absence of gDNA (FIGS. 2D-2G).

[0104] The relationship between the log transformed gDNA concentration and detection time is linear due to the exponential growth of the fluorescent B. subtilis sub-population successfully transformed with the input target sequence (FIG. 9A-9D). Therefore, to assess the range of gDNA concentrations that can be accurately sensed, we inferred the parameters of a linear function fit to the log transformed gDNA concentration versus detection time (FIGS. 2D-2G). The inferred slope of the linear function is determined by the cell doubling time (~0.5 hour) and intercept is determined by the background mutation frequency (FIGS. 2D-2G). The EC, SA, and CD DNA sensor strains displayed high sensitivity of 1-16 ng/mL (105-106 chromosome copy number/mL), whereas the ST sensor displayed a lower sensitivity (62.5 ng/mL, 10^7 chromosome copy number/mL). While the DNA sensor strains displayed lower sensitivities than quantitative real-time polymerase chain reaction (qPCR) reported for E. coli $(3.5 \times 10^3 \text{ CFU/mL})$ in pure culture²⁷), the observed sensitivities are within the range of the sensitivities reported for the lateral flow immunoassay $(1.8 \times 10^5 \text{ CFU/mL} \text{ for a pure culture of } E. \ coli^{28})$.

[0105] To characterize the specificity of each DNA sensor strain to the target sequence, we performed time-series fluorescence measurements in liquid culture in response to all individual species gDNA. The fluorescence signal was observed at a substantially earlier time (6.1-7.1 hr) in the presence of the corresponding species' gDNA than in the presence of a non-target species' gDNA or in the absence of

DNA (9.1-10.7 hr) (FIGS. **2**H and **10**A-**10**H). This demonstrates that the cell-based DNA sensors were highly specific to the target sequence.

In the context of microbial communities, the cell-[0106] based DNA sensors may need to distinguish between closely related species. Therefore, we evaluated the ability of the DNA sensors to distinguish between closely related species with similar target sequences. To this end, we measured the transformation frequency of the SA sensor in the presence of gDNA (100 ng/mL) derived from S. epidermidis. S. epidermidis is a closely related human skin commensal bacterium that harbors a similar hemEH sequence to the SA sensor landing pad region (89% coverage and 77% identity similarity) (FIG. 2I). Since the number of total B. subtilis colonies was similar in the presence and absence of gDNA, we quantified the number of transformed colonies as opposed to transformation efficiency (FIGS. 2A, 11A, and 11B). The number of colonies in the presence of S. epidermidis gDNA (SE) was substantially lower than in the presence of S. aureus gDNA (SA) and similar to the absence of DNA (FIG. 2J). Similarly, we characterized the ability of the CD sensor to detect gDNA derived from a human gut commensal bacterium C. hiranonis, a close relative of C. difficile that contains a similar pheST sequence in its genome to the landing pad region in CD sensor (87% coverage and 75% identity similarity). The number of colonies in the presence of 100 ng/mL C. hiranonis gDNA (CH) was substantially lower than in the presence of C. difficile gDNA (CD) and also similar to the absence of DNA (FIGS. 2K and 2L). These data demonstrate that the cell-based DNA sensors are highly specific to species that harbor an exact match to the target sequence. Therefore, the sensors do not display false positives in the presence of closely related species that harbor similar target sequences. The high specificity of the sensors is due to the stringent requirements for homologous recombination in *B. subtilis*^{13,29}.

Multiplexed Detection of Pathogen DNA in Complex Samples

[0107] Since certain future applications may require sensing of more than one organism, we tested the ability of the DNA sensors to detect more than one species within mixed DNA samples. To this end, we constructed individual sensors with orthogonal fluorescent reporters to achieve multiplexed DNA detection. Exploiting the modularity of the circuit, we constructed an RFP-labeled ST sensor (ST-R) and a BFP-labeled SA sensor (SA-B), in addition to the GFP-labeled EC sensor (EC-G) (FIG. 5C). We introduced gDNA (200 ng/mL) extracted from each of the three target strains into a culture containing EC-G, ST-R, and SA-B sensors and determined the number of fluorescent colonies for each reporter (FIG. 3A). The sensors accurately reported the presence/absence of all combinations of species' gDNA reliably (FIGS. 3B and 12). Therefore, a mixture of DNA sensor strains each individually labeled with a unique fluorescent reporter enabled multiplexed detection of gDNA derived from different species. To investigate if multiplexed detection can be achieved for samples derived from a complex microbial community, we constructed a four-member human gut community composed of diverse commensal bacteria from three major phyla in human gut-Anaerostipes caccae (AC, Firmicutes), Bacteroides thetaiotaomicron (BT, Bacteroidetes), Bifidobacterium longum (BL, Actinobacteria), and Clostridium asparagiforme (CG, Firmicutes). This community also contained the target pathogens S. typhimurium (ST) and S. aureus (SA). We tested whether the DNA sensors could accurately report the relative abundance of the two pathogens during community assembly. The 6-member community was inoculated in equal initial species proportions based on absorbance at 600 nm (OD600, Day 0) and cultured anaerobically for 24 hr (Day 1). An aliquot of the community was transferred to fresh media and community composition was characterized following an additional 24 hr (Day 2). Based on 16S rRNA gene sequencing, the abundance of *S. typhimurium* was similar as a function of time whereas the abundance of *S. aureus* decreased over time (FIG. **3**C).

[0108] We characterized the ability of the DNA sensors to accurately track the temporal trends in species abundance by introducing purified community gDNA collected at different times into a mixed culture of the ST-R and SA-G sensors (FIG. 3D). Due to the low abundance of target species in the sample, a higher amount of DNA (1 µg/mL) was used for transformation. Consistent with the trends based on 16S rRNA gene sequencing, the number of GFP fluorescent colonies of the SA-G sensor decreased at sequential time points, whereas the number of RFP fluorescent colonies of ST-R sensor were similar at sequential time points (FIGS. 3D-3F). The SA sensor displayed better performance in mirroring the trend from 16S rRNA gene sequencing than the ST sensor, consistent with its higher sensitivity than other sensors (FIGS. 2A, 3E, and 3F). For the community lacking S. typhimurium and S. aureus, a much smaller number of background colonies was detected than in the 6-member community. This implies that the ST and SA sensors were specific to the target species gDNA and did not generate false positives in the presence of the other constituent community member gDNA (FIGS. 13A and 13B). In sum, our results show that accurate multiplexed DNA detection can be achieved in samples derived from multi-species microbial communities.

Detection of Target Species without DNA Extraction

[0109] Specific bacterial species have been shown to release eDNA in response to environmental stimuli¹¹, suggesting that the DNA sensor could detect species without requiring prior gDNA purification. To test this possibility, we co-cultured individual DNA sensor strains with the corresponding donor species with an initial OD600 0.1 of the target strain $(1.22 \times 10^8 \text{ CFU/mL}, 1.07 \times 10^8 \text{ CFU/mL},$ 3.2×10^8 CFU/mL, and 1.1×10^7 CFU/mL for E. coli, S. typhimurium, S. aureus, and C. difficile, respectively) (FIG. 4A). Since the other species could compete with B. subtilis, we introduced specific antibiotics (ABX) to inhibit the growth of the donor cells and enhance donor eDNA release. The DNA sensor strains are resistant to the antibiotics since they harbor the appropriate antibiotic resistance genes. In the presence of 100 µg/mL spectinomycin, the DNA sensors displayed robust detection of E. coli, S. typhimurium, and S. aureus (FIG. 4B). The addition of spectinomycin was not required for C. difficile detection since the growth of C. difficile is negatively impacted by the presence of oxygen³⁰ To confirm the transformation was mediated by the eDNA released from the target strain, DNase I (1 unit/mL) was added into the co-culture. The number of transformed cells was substantially lower in the presence of DNase I, indicating that DNA detection occurred via natural transformation in the co-cultures (FIG. 4B). Antibiotic resistance is prevalent in microbiomes and may not be used universally as a treatment for the donor cells. Therefore, we tested if heat treatment could be used to efficiently release donor cell DNA. Incubation of E. coli at 90° C. for 10 minutes substantially enhanced the EC sensor detection limit (5×10^6)

CFU/mL) compared to the addition of spectinomycin (FIG. 4C). In sum, detection of target DNA sequences directly from crude samples in the absence of DNA purification could enable the deployment of the DNA sensors for different future applications.

[0110] To evaluate the robustness of the DNA sensing function, we characterized the performance of the DNA sensors for multiplexed detection of spike-in bacteria in the presence of cecal contents derived from germ-free mice that were orally gavaged with a defined bacterial consortium (Methods). Mouse ceca contain other bacterial species, host cells and other chemical compounds (e.g. dietary factors), and thus can be used to evaluate the robustness of the DNA sensor. To this end, we introduced varying amounts of E. coli and S. typhimurium into 10 mg of mouse ceca, incubated these samples at 90° C. for 10 minutes, and then transferred the samples into a mixed culture containing the EC-G and ST-R sensors (FIG. 4D). Our results demonstrated that both sensors can detect E. coli and S. typhimurium cells in ceca without DNA extraction. In particular, the EC and ST sensors displayed a detection limit of 10⁷ CFU/mL (FIG. 4D). In samples containing a single donor species, high density of E. coli or S. typhimurium (108 CFU/mL) yielded infrequent false positives for the multiplexed DNA detection. This suggests that further optimization of the DNA sensors may be needed in complex samples containing high donor cell densities that are heat treated (FIGS. 14A and 14B). In sum, we show that the cell-based DNA sensors can robustly perform DNA detection of heat-treated samples that contain the target sequence.

DISCUSSION

[0111] Here we engineered the naturally competent bacterium *B. subtilis* to sense and respond to specific DNA sequences. DNA sensing can be achieved for purified DNA or eDNA released from pre-treated samples containing donor cells harboring the target sequence. We demonstrate that DNA sensing can be sensitive and specific, and multiplexed sensing can be achieved by engineering sensors with orthogonal reporter genes. Detection of species using a living cell-based DNA sensor strain opens avenues for future research for versatile sensing of species and does not rely on chemical or physical signals^{31,32}. Since our circuit design is modular, customized sensors could be constructed in the future for the detection of sequences derived from diverse organisms including viruses, fungi and mammalian cells.

[0112] The DNA detection limit is impacted by the frequency of background mutations and could be improved by reducing the background genetic mutation rate. For example, counter-selectable markers³³ that can achieve lower background mutation rate could be used to optimize the strength of negative growth selection. The mutation rate can also be reduced by deleting endogenous genes in *B. subtilis* that promote mutagenesis such as the transcription conflict factor mfd³⁴. The reduction of mutation rates is also critical for long-term implementation of living DNA sensors in the environments³⁵.

[0113] The time required for DNA detection using the cell-based DNA sensors is relatively slow compared to other diagnostic methods³⁶. In particular, the total time required for DNA detection including transformation and selection is approximately one day, which is not suitable for certain applications that require a rapid response. To reduce the detection time, directed evolution or rational design of the

natural competence pathway could be used for enhancing the transformation efficiency of *B. subtilis*³⁷. This in turn would reduce the time required for transformation and detection of GFP in liquid media. In addition, some naturally competent bacteria such as *Streptococcus pneumoniae* can achieve 50% transformation efficiency³⁸. This transformation efficiency is substantially higher than our constructed DNA sensors $(10^{-5}-10^{-4})$. With a suitable chassis with a high transformation ability, GFP expression could be observed more rapidly following transformation, which requires a few hours.

[0114] The living DNA sensors have potential for in vitro DNA detection applications. One unique feature of the cell-based DNA sensor is the long homology within the landing pad region of the circuit, distinct from PCR-based methods that use short recognition sequences. Therefore, the target DNA sequence can be specified at the level of genes or pathways (i.e. biosynthetic gene clusters), and the DNA sensor could be used to mine such sequences from metagenomic DNA³⁹. In addition, the access to NGS sequencing or multiplexed qPCR may not be widely available^{36,40}. By contrast, the cell-based DNA detection is relatively simple and cost-effective. The DNA sensors may be suitable for large-scale screening with limited experimental resources. Further, *B. subtilis* sensors could be stored as spores for easy and long-term storage⁴¹. The metrics used in this study (sequence identity similarity and coverage) should be systematically examined using existing sequencing data and experimental characterization to elucidate sequence design rules for homologous recombination. In addition, tools from machine learning could be used to predict the impact of landing pad sequences on the fitness of B. subtilis to minimize any negative effects on growth rate⁴²

[0115] One of the most unique aspects of this system is the potential for in situ DNA detection. B. subtilis has been shown to colonize or reside temporarily in diverse environments including soil and the mammalian gastrointestinal tract43,44, enabling in situ DNA monitoring. For example, living DNA sensors could be introduced into gastrointestinal tract or plant-associated environment to monitor microbiome dynamics by sensing and recording in real-time⁴⁵. The sensing mechanisms could be coupled to the release of antimicrobials to target specific pathogens⁴⁶. A recent study demonstrated that the naturally competent bacterium Acinetobacter baylyi (A. baylyi) can be engineered to detect tumor DNA in the mouse colon⁴⁷, demonstrating a potential application of in situ DNA detection. In their study, the native CRISPR system in A. bavlvi was exploited to detect a single mutation in the KRAS gene in cancer cells. Similar CRISPR systems could be incorporated into our current circuit design in the future to discriminate between single-nucleotide differences. In sum, we believe that engineering DNA-sensing bacteria could open new avenues for both in vitro and in situ applications in the future.

Materials and Methods

Plasmid and Strain Construction

[0116] All DNA sensor strains were derived from *B. subtilis* PY79. Plasmids constructed in this work are listed in Table 1. The pAX01-comK plasmid was purchased from *Bacillus* Genetic Stock Center (BGSC ID: ECE222) to introduce $P_{xyl,4}$ -comK at the lacA locus in *B. subtilis* PY79 by the selection of MLS (1 µg/mL erythromycin from Sigma-Aldrich and 25 µg/mL lincomycin from Thermo

Fisher Scientific) to enhance the transformation efficiency in LB^{17,48}. Genes of fluorescent protein GFP(Sp), mCherry, and mTagBFP were cloned from plasmid pDR111_GFP(Sp)¹⁰ (BGSC ID: ECE278), plasmid mCherry_Bsu^{T1} (BGSC ID: ECE756), and plasmid mTagBFP_Bsu^{T1} (BGSC ID: ECE745) to construct fluorescent reporter plasmids pOSV00170, pOSV00455 and pOSV00456, respectively. The fluorescent reporter was introduced at the ycgO locus by

the selection of 5 μ g/mL chloramphenicol (MilliporeSigma). The null DNA detection plasmid pOSV00157 was composed of Repressor lacI and IPTG-inducible toxin-antitoxin system P_{hyperspank}-txpA-ratA and can be introduced at the amyE locus by the selection of 100 μ g/mL spectinomycin (Dot Scientific). The toxin-antitoxin system txpA-ratA was PCR amplified from *B. subtilis* 168 gDNA.

TABLE 1	
---------	--

List of plasmids.		
Plasmid	Description	Genotype
pAX01- comK ¹⁷	Xylose-inducible comK	$lacA(up),erm,P_{xyl4}\text{-}comK,xylR,lacA(down)$
pOSV00170	GFP reporter	ycgO(up), cat, Phyperspank-gfp, ycgO(down)
pOSV00455	RFP reporter	ycgO(up), cat, P _{hyperspank} -rfp, ycgO(down)
pOSV00456	BFP reporter	ycgO(up), cat, P _{hyperspank} -bfp, ycgO(down)
pOSV00157	Detection plasmid without target sequence	amyE(up), lacI, P _{hyperspank} -txpA-ratA, spec, amyE(down)
pOSV00169	Detection plasmid with 500 bp EC homology	amyE(up), 0.5 kbp EC(up), lacI, P _{hyperspank} - txpA-ratA, 0.5 kbp EC(down), spec, amyE(down)
pOSV00205	Detection plasmid with 1000 bp EC homology	amyE(up), 1 kbp EC(up), lacI, P _{hyperspank} -txpA- ratA, 1 kbp EC(down), spec, amyE(down)
pOSV00206	Detection plasmid with 1500 bp EC homology	amyE(up), 1.5 kbp EC(up), lacI, P _{hyperspank} - txpA-ratA, 1.5 kbp EC(down), spec, amyE(down)
pOSV00207	Detection plasmid with 2000 bp EC homology	amyE(up), 2 kbp EC(up), lacI, P _{hyperspank} -txpA- ratA, 2 kbp EC(down), spec, amyE(down)
pOSV00208	Detection plasmid with 2500 bp EC homology	amyE(up), 2.5 kbp EC(up), lacI, P _{hyperspank} - txpA-ratA, 2.5 kbp EC(down), spec, amyE(down)
pOSV00292	Detection plasmid with 2500 bp ST homology	amyE(up), 2.5 kbp ST(up), lacI, P _{hyperspank} - txpA-ratA, 2.5 kbp ST(down), spec, amyE(down)
pOSV00459	Detection plasmid with 2500 bp SA homology	amyE(up), 2.5 kbp SA(up), lacI, P _{hyperspank} - txpA-ratA, 2.5 kbp SA(down), spec, amyE(down)
pOSV00475	Detection plasmid with 2500 bp CD homology	amyE(up), 2.5 kbp CD(up), lacI, P _{hyperspank} - txpA-ratA, 2.5 kbp CD(down), spec, amyE(down)

[0117] B. subtilis, E. coli, S. typhimurium, S. aureus and S. epidermidis were all cultured at 37° C. in Lennox LB medium (MilliporeSigma). C. difficile and gut bacterial strains A. caccae, B. thetaiotaomicron, C. asparagiforme, C. hiranonis, and B. longum were cultured at 37° C. in YBHI medium in an anaerobic chamber (Coy Laboratory). YBHI medium is Brain-Heart Infusion Medium (Acumedia Lab) supplemented with 0.5% Bacto Yeast Extract (Thermo Fisher Scientific), 1 mg/mL D-Cellobiose (MilliporeSigma), 1 mg/mLD-maltose (MilliporeSigma), and 0.5 mg/mL L-cysteine (MilliporeSigma). The gDNA of each species was extracted using DNeasy Blood & Tissue Kit (Qiagen). For S. aureus gDNA extraction, 0.1 mg/mL Lysostaphin (MilliporeSigma) was added in the pre-treatment step in combination with enzymatic lysis buffer (Qiagen). Bacterial strains are listed in Table 2.

TABLE :	2
---------	---

	List o	f bacterial strains.
Strain	Description	Genotype
msOSV00487	EC-sensor with 500 bp homology	<i>B. subtilis</i> PY79 amyE::0.5 kbp EC(up), lacI, P _{hyperspank} -txpA-ratA, 0.5 kbp EC(down), spec; ycgO::cat, P _{hyperspank} -gfp; lacA::erm, P _{xylA} - comK, xylR

TABLE 2-continued

List of bacterial strains.		
Strain	Description	Genotype
mOSV00580	EC-sensor with 1000 bp homology	<i>B. subtilis</i> PY79 amyE::1 kbp EC(up), lacI, P _{hyperspank} -txpA-ratA, 1 kbp EC(down), spec; ycgO::cat, P _{hyperspank} -gfp; lacA::erm, P _{xylA} -
mOSV00581	EC-sensor with 1500 bp homology	Comk, xylk <i>B. subtilis</i> PY79 amyE::1.5 kbp EC(up), lacI, <i>P_{hyperspank}</i> -txpA-ratA, 1.5 kbp EC(down), spec; ycgO::cat, <i>P_{hyperspank}</i> -gfp; lacA::erm, PxylA- comk xylk
mOSV00582	EC-sensor with 2000 bp homology	<i>B. subtilis</i> PY79 amyE::2 kbp EC(up), lacI, <i>P_{hyperspank}</i> -txpA-ratA, 2 kbp EC(down), spec; ycgO::cat, <i>P_{hyperspank}</i> -gfp; lacA::erm, <i>P_{xylA}</i> ⁻ comK xvlR
msOSV00495	EC-sensor (EC-G sensor) with 2500 bp homology	<i>B. subtilis</i> PY79 amyE::2.5 kbp EC(up), lacI, P _{hyperspank} -txpA-ratA, 2.5 kbp EC(down), spec; ycgO::cat, P _{hyperspank} -gfp; lacA::erm, P _{xylA} - comK. xvlR
msOSV00605	ST sensor	s. subitilis PY79 amyE::2.5 kbp ST(up), lacI, P _{hyperspank} -txpA-ratA, 2.5 kbp ST(down), spec; ycgO::cat, P _{hyperspank} -gfp; lacA::erm, P _{xylA} - comK, xylR
msOSV00906	SA sensor	<i>B. subtilis</i> PY79 amyE::2.5 kbp SA(up), lacI, P _{hyperspank} -txpA-ratA, 2.5 kbp SA(down), spec; ycgO::cat, P _{hyperspank} -gfp; lacA::erm, P _{xylA} - comK, xylR
msOSV01005	CD sensor	B. subtilis PY79 amyE::2.5 kbp CD(up), lacI, P _{hyperspank} -txpA-ratA, 2.5 kbp CD(down), spec; ycgO::cat, P _{hyperspank} -gfp; lacA::erm, P _{xylA} - comK. xylR
msOSV01009	ST-R sensor	<i>B. subtilis</i> PY79 amyE::2.5 kbp ST(up), lacI, <i>P_{hyperspank}</i> txpA-ratA, 2.5 kbp ST(down), spec; ycgO::cat, <i>P_{hyperspank}</i> -rfp; lacA::erm, <i>P_{xylA}</i> -comK, xvlR
msOSV01008	SA-B sensor	<i>B. subtilis</i> PY79 amyE::2.5 kbp SA(up), lacI, <i>P_{hyperspank}</i> -txpA-ratA, 2.5 kbp SA(down), spec; ycgO::cat, <i>P_{hyperspank}</i> -bfp; lacA::erm, <i>P_{xyl4}</i> - comK. xylR
usOSV00264	<i>Escherichia coli</i> MG1655	
usOSV00197	Salmonella enterica serovar Typhimurium LT2 ATCC 700720	
usOSV00113	Staphylococcus aureus DSM 2569	
usOSV00095	<i>Clostridium difficile</i> DSM 27147	
usOSV00165	<i>Staphylococcus epidermidis</i> ATCC 14990	
usOSV00046	Clostridium hiranonis DSM 13275	
usOSV00157	Anaerostipes caccae DSMZ 14662	
usOSV00011	Bacteroides thetaiotaomicron ATCC 29148	
usOSV00041	Clostridium asparagiforme DSM 15981	
usOSV00067	<i>Bifidobacterium longum</i> subs. <i>infantis</i> DSM 20088	

[0118] The target sequences xdhABC were PCR amplified from *E. coli* MG1655 gDNA (NCBI Reference Sequence: NC_000913.3; Location: 3001505-3004004 and 3004005-3006504), sipBCDA from *Salmonella enterica* serovar *Typhimurium* LT2 ATCC 700720 (NCBI Reference Sequence: NC_003197.2; Location: 3025979-3028478 and 3028479-3030978), hemEH from *S. aureus* DSM 2569 (GenBank: LHUS02000002.1; Location: 553-2770 and 2864-5638), and pheST from *C. difficile* DSM 27147 (Gen-

Bank: FN545816.1; Location: 770923-773144 and 773157-775686) to construct a set of plasmids (pOSV00169, pOSV00205, pOSV00206, pOSV00207, pOS00208, pOSV00292, pOSV00459 and pOSV00475) using restriction enzymes BamHI-HF (New England Biolabs) and EcoRI-HF (New England Biolabs) or Golden Gate Assembly Mix (New England Biolabs). DNA sequences of genetic parts are listed in Table 3.

TABLE	3
	_

Sequences of genetic parts.		
Part	Sequence	
P _{hyperspank} -txpA- ratA	ctcgagggtaaatgtgagcactcacaattcattttgcaaaagttgttgactttatctacaaggtgtggcataatgt gtgtaattgtgagcggataacaattaagcttacataaggaggaactactATGTCGACCTATGAA тстстаатсктсатсатскосотттсосраттаатасяссясятт	
	ATGACATGGGTAATATCTCTTTTAACATTATTATTCATGCTTAGAA	
	AAAAAGACACTCATCCTATTACATTACTGTAAAGGAAAAGTGTC TACAGCGACGACCTCCTCATTAAAGGTACATTCTTTATTAAAAGCT	
	AGAGTGCTGCCACACTCTGGCTTTTATATTTTAGCATTTCTCATGA	
	AAGTAACACACATTAACAAGTGGTAATGTGGTAATGTGGTACCAA	
	CTATAAGCTTACGCCAGTAGTTGCAATACTTTTGCTTGGCACCATT	
	TGTTACTTTTTTTATCTATGAGTTCAAAATGACCTGATCATAGAAG	
	CCTTAACCCTTTTTCTTTTATTAAAAACCCTCGGATTATGAAAGTG	
	TTATGGTACAATATGGTTTAGTATAAATGAATATTGGCTTTCAAC	
	CACGTGTCAACATTTCAAGCATTAATGCTTATGCTTGCTT	
	CATTTATAATTGCCCTGTTGACTTATATAAAGAAGAAATAGACCC	
	ACCCCTTGAGCTCGGCAAAGTAAAAGGGTAA (SEQ ID NO: 5)	
gfp(Sp)	ATGGTTTCTAAAGGTGAAGAATTGTTTACAGGTGTTGTTCCAATTT	
	TGGTGAAGGTGAAGGTGATGCTACATACGTCATACATTGACATTGAC	
	ATTTATTTGTACAACTGGTAAATTGCCAGTTCCTTGGCCAACATTG	
	GTTACAACATTTGCTTATGGTTTGCAATGTTTTGCTCGTTATCCAG	
	ATCACATGAAACAACATGATTTCTTTTAAATCTGCTATGCCAGAAG GTTATGTTCAAGAACGATGATTCTTTTTTCAAGGATGATGGTAATT	
	ATAAGACACGTGCTGAGGTTAAGTTTGAAGGTGATACATTGGTTA	
	ATCGTATCGAATTGAAGGGTATCGATTTTAAAGAAGATGGTAATA	
	TCTTGGGTCATAAATTGGAATATAATTATAATTCTCATAATGTTTA TATCATGGCTGATAAACAAAGAACGACGTATTAAAGTTAATTTTTAA	
	AATTCGTCATAATATTGAAGATGGTTCTGTTCAATTGGCTGATCAT	
	TATCAACAAAATACACCAATTGGTGATGGTCCAGTTTTGTTGCCA	
	GATAATCATTATTTGTCTACACAATCTAAATTGTCTAAAGATCCA aargaaaaacgarcacargartartgtragtagaattragtagaattragtaa	
	GCTGGTATTACACATGGTATGGATGAATTGTATAAATAA (SEQ ID NO: 6)	
rmCherry	ATGGTTAGCAAAGGCGAAGAGGATAATATGGCGATCATCAAAGA	
	ATTTATGCGCTTTAAAGTTCATATGGAAGGCAGCGTTAATGGCCA	
	CGAATTTGAAATTGAAGGCGAAGGTGAAGGCAGACCGTATGAAG GCACACAAACGCCAAAACTGAAAGTTACAAAAGGCGGACCGCTG	
	CCGTTTGCATGGGATATTCTGTCACCGCAATTTATGTATG	
	AAAGCATATGTTAAACATCCGGCAGATATCCCGGATTATCTGAAA	
	CTGTCATTTCCGGAAGGCTTTAAATGGGAACGCGTCATGAATTTT GAAGATGGCGGAGTTGTTAGAGGGACAGGAGATTGATGACTGCAA	
	GATGGCGAATTTATCTATAAAGTCAAAACTGCGTGGCACGAACTTT	
	CCGTCAGATGGCCCTGTTATGCAGAAAAAAAAAAAAGAATGGGCTGGGA	
	AGCATCAAGCGAAAGAATGTATCCGGAAGATGGTGCACTGAAAG	
	GEGAAATTAAACAACGEETGAAACTTAAAGAEGTGGAEATTAT GATGEGGAAGTEAAAACAACGAEGTATAAAGEGGAGAAAAACETGTTEA	
	ACTGCCTGGCGCATATAACGTTAACATTAAACTGGATATCACGAG	
	CCATAACGAAGATTATACAATCGTCGAACAGTATGAAAGAGCAG	
	AAGGACGCCATTCAACAGGCGGAATGGATGAACTGTATAAATAC TAG (SEQ ID NO: 7)	
mTagBFP	ATGAGCGAACTGATCAAAGAAAACATGCATATGAAACTGTACAT	
-	GGAAGGCACAGTCGATAACCATCACTTTAAATGCACATCAGAAG	
	GCGAAGGCAAACCGTATGAAGGCACACAAACAATGAGAATCAAA	
	GTTGTTGAAGGCGGACCGCTGCCGTTGCATTTGATATTCTGGCA	
	ΔΡΔΨΡΑΨΨΡΟΨΟΨΟΨΑΨΟΔΟΔΔΔΔΔΡΟΨΨΡΔΨΡΔΨΡΔΨΡΔΦΡΔΡΔΟΔΔΔ	
	ACATCATTTCTGTATGGCAGCAAAACGTTTATCAATCATACACAA GGCATCCCGGATTTTTTTAAACAATCATTCCGGAAGGCTTTACAT	

Sequences of genetic parts.		
Part	Sequence	
	ACACAAGATACATCATTGCAAGATGGCTGCCTGATCTATAATGTC AAAATTAGAGGCGTCAACTTTACAAGCAATGGCCCTGTTATGCAG AAAAAAACACTGGGCTGGG	
EC(up) 0.5 kbp	Caattaccatcgaatgcaccattaacgggatgccttttcagcttcacgccgcaccaggcacgccgctctcgg aattactccgcgaacaaggactgctaagtgtcaaacaagggtgctgcgggggggaatgtgggggggccggcc	
EC(down) 0.5 kbp	Ttatgtgtttaacaactcatatttettaatettgegatagagegtageaatgeegatgeeeagteateageaaett gettettgetgttatgaegtgaaagegeetegeggateatttgetttteeateteeteeagegeegtgeegeeeg cateategagtgaeaggtgegeeteaetgaeetetgttaeateaetttgeteegttgtgeeattatteageagattt ggeggeaatagegtgetgtegataaetteaeetgaaggaaceaegttaaeeagatatteeateaaattgettaa etegegeaggttteegggeeaaegatgettaegeaatattegaegaeatgggageaatgeeaggataaae egateeeagaegggtatgeagatgtaaaaagtaatgeaeeaatagtteaatatetteetgaegtteaegea geggtggeagagttategggataaeattaagteaggaagga	
EC(up) 1 kbp	Atgacgcgaaactggagatccactccccggcgggtgttcgttc	
EC(down) 1 kbp	Aggttatgtgtttaacaactcatatttottaatottgcgatagagcgtagcaatgccgatgcccagttcatcagca acttgottottgotgttatgacgtgaaagcgotocgcggatcatttgottttocatotococaggocogtgocgc ccgcatcategagtgacaggtgcgctcactgacctotgttacatcactttgotocgttgtgccattattcagca gattggcggcaatagcgtgcgtcgtcgataacttcacctgaaggaaccacgttaaccagatattccatcaaattg ottaactcggcgaggtttocgggccaacgatgcttacgcaatattocgacgacatcgggagcaatgccaggt aaaccgatoccagacgacggtgtgtgatgatgtaaaagtaatgcaccaatagttcaatattoctgacggcaatgccaggt cgagcggtggcagagttatcgggataacattaagtcggtagaaggagtottocgggaatttacctcggcgaa tgaactgggccaaattotgattagtgcgaatgtaggagaatgtaggcgaatgtcgactggatttacctcggcaa tgaactgggccaaattotgattagtgcgaatgtggaatgtcgaactggaaggacaccaatcg gcagaatttcacgtgcotcaatagcgcgcagtaattaggctgcaacattaatgggatatcacctatttoatcga gaaacagcgtgcccgattcgccgcctgaatcaccctgttttaccgggcaaggcgcagtaatgcacc tttaaccaacgacagttcgctcccagaaggcgccggacgacttottacccgtggcacaatagggt ttattccgtcttccgctcaacttaggatgcaaggcgacgacttottacccgtgcaccaaccacca taacgctggatgggcggggggagaatgtaggcggtttaatggcgcacaccaccaccaccacca taacgctggatgggctgggtgcaatacggcgcaatgggcgacgacttottacccggcaccaccaccaccaccaccaccaccaccaccacc	
EC(up) 1.5 kbp	cgtaacgcggtgaagatggctaccggtgttgcaatcaatacactgccgctgacgccaaaacggttatatgaa gagttccatctggcaggattgatttgaggataacatcattgttgattttgcttcttaccatcgcgcagcaaccctt gccgatgccatcaacctgctggtgacaacccgcaggccaaactgctcgccggtggcactgacgtactgattc agctccaccatcacaatgacgttatcgccatattgttgatattcataatctggcggagctgcggggaattacgc tggcggaagatggctgctacgtatcggcctgcacgacatttacccagctaatagaagatcctataactcaa cgtcatctcccggcgttatgtgctgcggcacgtccattgctggcacgcaacgtcattatgacgcaactga gtggaaatattgcaacggtgccaccagcgcagatctgccacgccaattatagacggaactgga gatccactcccggcggtgttcgttcgtccgcacgccaatgcaattatgcggcagggcaacgga agccactcccggcgggtgttcgttcgttcgtccgcacagccgaagaacacggggcagcggcgcatttaa atatgccatggcgaagcaatggatattcacagattggctgcgcgcacattgccgaacaggcgaat ttcagcgaattacgcctggaagtatttggtgtgcgcgcaacgcgaatcgtgcaacagccgaatt ttcagcgaattacgccgaagatttggtgtggaagcatcagcgaactggcagagggcgcgcg gttcttcatggcgggccagtaaaggttcgttcgtcctgcaacagcgaacgatggcgcaacagaacg gtcgtcgccgcggggggaaaattgcaatgaatacagcggaacattaccacggaggaagagggaa gccgtcgccgcggggggaaaattgcaatgaatcacagcgaacattaccacggaggaacaagga gcgtgcccggggggggaaaattgcaatgaatcacagcgaacattaccacggaggaacaaggacgaa gcgtgcgccggggggggaaaattgcaatgaatcacagcgaacattaccacggaacaaaaagggatggcaataac gggatgccttttcagtttcagccacaggcagccgctccggaattacccggaacaaggacgaacaataac gggatgccttttcagctcacgccgcaccaggcacgcgctccggaattacccgcgaacaaggacgaacaataac	

	Sequences of genetic parts.
Part	Sequence
	agtgtcaaacaagggtgctgcgtgggtgaatgtggtgcctgtacggtgttggtcgacggcacagcaatagac agttgcttataccttgccgcctgggctgaaggaaaagagatccgcacgctggaaggtgaagcgaaaggcgg aaaactttctcatgttcagcaggcttatgcgaaatccggcggtgcagtgcggggttttgtacgcctggcctga ttatggctaccacggcaatgctggcggaaaccacgcgagaagccattaaccattacggaaattcgtcgcggac tggcgggaaatctttgtcgctgcacggggtatcagatgatgtaaatacagttctggatgcgagaaacgaa gtaaaaggatatccggcctgaattcaggccggattcactg (SEQ ID NO: 13)
EC(down) 1.5 kbp	aggttatgtgtttaacaactcatatttcttaatcttgcgatagagcgtagcaatgccgatgcccagttcatcagca acttgcttcttgctgttatgacgtgaaagcgctcgcggatcatttgctttccatctcctccagcgccgtgccgc ccgcatcatcgagtgacaggtgcgctcactgacctcggtacacttgctcatcaccagtattccatcaattg cttaactcggcggatatagcgtgcggctacaggatgcttacgcaatttccgacgacagtattccatcagatg aaaccgatcccagacgggtatgcggatgcggatgctgacgatgctaacggaggatgcagggatgcagggt cgagaggtggcagagttatcgggataacattaagtcggtagaaggatcttcgcggaatttcctggcgaa tgaactgggccaaattcggatgcggcgacgatgttaacgcgatgtcgacttgattgggcaatgccaggg gcagaattcacgtgcctgatagcggaggatgcgacgacgacggatgcgacgacattacgg gaaacgggtgccggatgcggcgaggatgctaacggggaggacgacttatggccaatggccaataggg ttatccgtgcccgaatcgggcgaggcgggggggggaggacgacttcttaccgggaggacgactacaggg ttatccgggtgggggggggg
EC(up) 2 kbp	ccctgataaaaggccatatcgtgctggttgaacgaccgaagagccgttaatgtcgttaaagatttggcgat ggacgctttctaccacctgaacgcggcggcagctctctgctgaaagcccatcaaaccaccactaaccc accggcgtttggctgtaccttgttgatctgacggtcgatattgcgaaagtcacggcggggaatgggaatg ggcattggctgggcgctatttgaaggatgatcatcgatggcaaaggcgggtggtccgtaaccccaatctgc tggattacaaatgccgaccatgcggatcggcaccaataggcgggtggtcgtaaccacggcggg aatccgcatacgggcatattgatggtggcgcaccaataattcctgttgccgctgctattcgtaacgcggtg aagatggctaccggtgttgcaatcatggtggagcaccaataattcctggtgcgaaacccttggcgaggcg caggattgattgaggataacatcatgtttgatttgctttaccatcggcgagaacccttggcgaagat ggctgtggtgacaccaacggccaatgcggggcgaatggggaat acctgctggtgacaccaatggtggggcacgaaccgtgggggaatggggaat ggctggtggcgcacgtcattggtggaccacgatcggaggagtcggggaattcactccc ggcgttatgggcgcacgtcattgatggacgaagtcgtggggaattacgtggggaat ggctgctacggtgtgcacggccatgtcggcgcaaacggcgggaattcactacgggggaat ggctgctacggtgtgcacggccatgtcggcgcaacgccgaaacccttgacgaagaa ggctggtatgggcgcacggccatgggccaacgtcggcgggaattaggtgggaaatattt gcaacggtgccacaggcgagtcgcacggccgaatccggagcggggaattcagcggaa atcctcgtcgccttcatttccgccacgcgaaacggggcgggc
EC(down) 2 kbp	aggttatgtgtttaacaactcatatttcttaatcttgcgatagagcgtagcaatgccgatgcccagttcatcagca acttgcttcttgctgttatgacgtgaagcgcctcgcggatcatttgctttccatctcctccagcgccgtgccgc ccgcatcatcgagtgacaggtgcgcctcactgacctctgttacatcactttgctccgttgtgccattattcagca gatttggcggcaatagcgtgtgtgtgtgataacttcacctgaaggaaccacggtaaccagatattccatcaaattg cttaactcggcgcaggtttccgggccaacgatgcttacgcaatattccgacgacatcgggagcaatgccaggt aaaccgatcccagacgacggtatgcagatgtaaaagtaatgcaccaatagttcaatattcctcgacgtca cgcagcggtggcagagttatcgggataacattaagtcggtagaaggagatcttcgcggaatttacctccggcaa tgaactgggccaaattctgattagtgcgaaagtgtagaaggagatctgcgcagatttacctcggcaa gaaacagcggtgccgatttcgcgccagatgatattagccgaatgtaacattaatggcacaatcg ttaactaaccgaacagttcgctcaatagcgcgcagtaattagccggaatgtagaggagagtttcaccatttcatcga gaaacagcgtgccggattcgcctcaagagcgcagtaattagcctggaacgtggacaggtgaatgtcaacat ttaactaaccgaacagttcgctcccagaagctgctccggaatgcgcagtggcagatagcaatagggt ttattccgtcttccgctcaacttaggatgcaatgagcgcagtaattagccgcaca taacgctggatgggctgggtgcaatacggctaatgggcgacacttttacccggcccttcaccaacca

sequences of genetic parts.		
Part	Sequence	
	gcatatgtccatgggtaaaattactctcaaatgttaatggtctgaaacggataggtttcccaataatattatttg acaacaccaagtgtttttaaggcagtctgattaacaaactgaaccgattttcatcatctacaactaatacgccctg atccatattatcgatcatggtcgcaaatatttactgatgttatctcctggcccctgatcctccagaagtttcgaa caaaatggtggatatatggcgaacataatcagaaaattcgcgtaaattacactgatagtcttgttgctcgtg ggtaacggcaatcaaacttatcacccaacaacgatcctgtaaaatgacaggcgtacccagaaatgctttt cgcggcaatttctttactatcgaccacaacggatcgaaggaggaggaggagagaga	
C(up) 2.5 bp	aggagatgetaateogeteacgggeaaacgtatttacageegaggttgeeggagtgtettgaaaaaggeeg gaaaatetttgaatgggaaaacgeeggegaatggeeggeegaatggeeggeeettetgat gagteaggatggacateacggtgeaaggeeggeggaateggteaggagageeggeeettetgat gaataaggatggacateacggtgaaacggeeggegaateggteaggeeggeeettetgat cgcaaatggtggeagaacegtgggggtteeggteagegagateggteageetgeeggeeg	
:C(down) 2.5 :bp	aggttatgtgtttaacaactcatatttcttaatcttgcgatagacgtagcaatgccgatgcccagttcatcagca acttgcttcttgctgttatgacgtgaaagcgcctcgcggatcatttgctttccatctcctccagcgccgtgccgc ccgcatcatcgagtgacaggtgcgcctcactgacctctgttacatcactttgctccgttgtgccattattcagca gatttggcggcaatagcgtgctgtcgtaaacttcacctgaaggaaccacgttaaccagatattccatcaaattg cttaactcggccaggtttccgggccaacgatgcttacgcaatagttcaactagtgagacatgccaggat aaaccgatcccagacgacgggtatgcagatgtaaaagtagcaccaatagttcaatattcctcgacgttca cgcagcggtggcagagttatcgggataacattaagtcggatgagaggatttacctgggaat tgaactgggccaaatctgattagtgcagatgtagaaggagatgtggaaggatttacctgggcaa gaaattcacgtgcccgaatgcggagatgatacactag gcagaatttcacgtgcctcatagcgcggaatgtagcagaatgtggaagggccagtaatggccagt gcagaattcacgtgcccgaatggcggagatgtacaccattatggcactaggacgacgacagtaaatgcg gcagaattcacgtgcccgaatgtagcggcagacgttaccgggcacagtggacagacg ttaaccaaccgaacagttcgctcccagaagcggcgacgactttaccgggccagtaaatgcg ttatccggtgccgaataggggggcagggcggcggcagacgactgtgaacagcgcagtaaatggg caattgtccaataggggtggggt	

Sequences of genetic parts.		
Part	Sequence	
	cagacttacttaaaagtcgatcattgaagacgttgatggttcacagatcatgatgatattaactcaggcgaaatt ggctttgataaaaacataagatttttatcattttctaatgaaattatggaagagatatcacatttctatatcaatat gagaattacggcggtgagtttatcaaactgaagagagaga	
ST(up) 2.5 kbp	<pre>acgtagcagcaggggtatcaacgtttgcatttcaaggtgccgggcttcccgtctacgctggtaccctgctt gcgttaattttggtggcacatacaaggcaccacgcctcgccgcgcttgfcacacaggtgcgtaga ttgctgcgggttaacggatctacgtcaagccaagttagtt</pre>	
ST(down) 2.5 kbp	cgcgccttttcattctgcagcccttatttcacgtttggcgccacgccagtgatccccaactgaagcgcg tctgggaaatactaccggacaacgcattcatccttcgcgcatcatggagcttgccgtgtttagctgcatcaa aactgactaatgacaacttaccagacagttgctatcagcdggtcaaggcattgcggtttggctgg gtaactgggtttgacaacctattcgcttagtcgtgacattattgccaggagattcaactcggttcagcg gtaattgggattgacaacccattcgcttagtcgtgacattattgccagggattaacctggtcagg gtattggatactgggtttgacaacccaggtcactgattcatgcgggggtttggttaatacccatgggggggg	

Sequences of genetic parts.			
Part	Sequence		
	agagecgtetggaattetttegataeetgaateeeeatetettttgtgaeteaateategeetgeeataeegeea gaegagaeteeagttgagaeagegaaaeategeeeagtagggteattaaettgeeaageagtaatgteaattg eeettegetggagagttttteeeggegegeegteegtaggeggettagaeeeaeegtattaatagegetettege eggaetttgtteeggetttaaggtegeeegetttegttgeeaeeaaaetetttaaaagetttateegeegetttaaa aagteegtgttettaegaeegeetteaaaageegeeteagegggggggg		
SA(up) 2.5 kbp	ctatcgtgtcatgtaatcttgcatcgatcttgcaacgctgtaaatgtttcgaagccatctttttaagaagtgcc ctccatcttccacgattcgcaagttccccttaatgcattcatt		
SA(down) 2.5 kbp	gacttgatttcatcaacattgcaccgataaatatggatgtgattcggcatttttggacgataatattcgcacc aatatcatcgcaaacaactttacattotatatctgtotataagcacctctaaatgctcactacaaaacctactg gcgtatataaaagttttatatcgtgttttcatataaatcacgtgttaaatcttgacatctggcctaaccaagg atgtcctgtttacttcagatggccattatgcgcatgttcaattatgatgttcttattaagacgcagt atgttctagttttgtggatatggacattattcttttcgattaagttgtcattattagtgtgtttaattaa		

	Sequences of genetic parts.
Part	Sequence
	gatatctatacccaataaaagaatag (SEQ ID NO: 22)
CD(up) 2.5 kbp	atgaagcaatatatagtcattgggtgggggatttggaagttcagttgcgtctactatgcatcttttaggacatc aagtaatggcaatagcaaaatgaagatccagttcaattggacagtagtggacaccattcacttaagtgg atgttactgatgagcaagcgttaaggtcattaggttagg
CD(down) 2.5 kbp	tagacagggattgaggggtttttttaacaaaaaacgaaagggtgatatgtgtgaaagaaa

[0119] All plasmids were constructed using E. coli DH5 α and transformed into B. subtilis using MC medium⁴⁹. MC medium is composed of 10.7 g/L potassium phosphate dibasic (Chem-Impex International), 5.2 g/L potassium phosphate monobasic (MilliporeSigma), 20 g/L glucose (MilliporeSigma), 0.88 g/L sodium citrate dihydrate (MilliporeSigma), 0.022 g/L ferric ammonium citrate (MilliporeSigma), 1 g/L Oxoid casein hydrolysate (Thermo Fisher Scientific), 2.2 g/L potassium L-glutamate (MilliporeSigma), and 20 mM magnesium sulfate (MilliporeSigma). Plasmids were extracted from E. coli DH5a using Plasmid Miniprep Kit (Qiagen) for transformation of B. subtilis. B. subtilis was inoculated into MC medium and incubated at 37° C. for 2 hours. Extracted plasmids were added into B. subtilis cell culture and incubated 37° C. for another 4 hours. Transformed B. subtilis were selected on the LB agar plate with selective antibiotics. Double crossover was verified for colonies by the replacement of a different antibiotic resistance gene at the integration locus.

DNA Detection Using Cell-Based Sensors

[0120] DNA sensor strain was inoculated from the -80° C. glycerol stock into LB medium with 100 µg/mL spectinomycin and incubated at 37° C. with shaking (250 rpm) for 14 hours. On the next day, the OD600 of overnight culture was measured by NanoDrop One (Thermo Fisher Scientific) and diluted to OD0.1 in 1 mL LB in 14 mL FalconTM Round-Bottom Tube (Thermo Fisher Scientific) supplemented with 50 mM xylose (Thermo Fisher Scientific) and 100 µg/mL spectinomycin (Dot Scientific). Xylose was added to induce the competence. Spectinomycin was added to avoid contamination from other bacteria but it was not required. The sample gDNA was quantified by the Quant-iT dsDNA Assay Kit (Thermo Fisher Scientific) and supplemented in sensor culture with known concentration. The DNA sensor culture was incubated at 37° C. with shaking (250 rpm) for 10 hours for transformation. Culture of transformed sensors (5 µL) was plated onto a 12-well plate (Thermo Fisher Scientific) for selection. In these plates, each well contained 1 mL LB agar supplemented with 2 mM IPTG (Bioline), 5 µg/mL chloramphenicol (MilliporeSigma), and MLS (1 µg/mL erythromycin from Sigma-Aldrich and 25 µg/mL lincomycin from Thermo Fisher Scientific). Antibiotics were used in agar to avoid contamination. GFP-expressing colonies were imaged using Azure Imaging System 300 (Azure Biosystems) using Epi Blue LED Light Imaging with 50 millisecond exposure time. CFU was counted manually. Transformation efficiency is defined as the ratio of CFU on selective plates (transformed B. subtilis with GFP expression) to the CFU on non-selective plate (total B. subtilis). To count CFU of total B. subtilis, cell culture was serially diluted in phosphatebuffered saline (PBS) (Dot Scientific) and plated onto LB agar plate supplemented with 5 µg/mL chloramphenicol and MLS. Since the total B. subtilis CFU was similar for most conditions, CFU of transformed cells was used to indicate detection efficiency.

[0121] To quantify the sensitivity or specificity of sensors, cell culture was transferred to liquid LB medium with a 1:20 dilution after transformation with serially diluted DNA from 1500 ng/mL to 1 ng/mL. To test the specificity towards gDNA from different strains, 100 ng/mL purified DNA was used for transformation. LB medium was supplemented with 2 mM IPTG (Bioline), 5 μ g/mL chloramphenicol (Mil-

liporeSigma), and MLS. Diluted cell culture was transferred to a 96-well black and clear-bottom CELLSTAR® microplate with 100 uL volume in each well (Greiner Bio-One). Plate was sealed with Breathe-Easy Adhesive Microplate Seals (Thermo Fisher Scientific) and incubated in the SPARK Multimode Microplate Reader (TECAN) at 37° C. with shaking for time-series OD600 and GFP measurements. A threshold of GFP fluorescence 400 was used to determine the detection time for different DNA or different concentrations. The threshold was placed in the region of exponential amplification of GFP across all of the conditions where the difference in the detection time between different conditions was not affected much by the choice of threshold. Unpaired t-test was performed to determine if the detection time of specific DNA concentration is different than the background without DNA (N=4). The detection limit is the lowest DNA concentration with a statistical difference. A straight line was fitted to the mean detection time of the four technical replicates with statistical difference versus the logarithmic DNA concentration. DNA mass per mL in detection limit (1 ng, 62.5 ng, 4 ng, and 16 ng) and genome size (4639675 bp, 4857450 bp, 2827820 bp, and 4153430 bp) were converted to chromosome copy number by NEBioCalculator for E. coli (2.10×10^5) , S. typhimurium (1.25×10^7) , S. aureus (1.38×10^6) , and C. difficile (3.75×10^6) , respectively.

Bioinformatic Analysis of the Specificity of Target DNA

[0122] To analyze if the target sequence is conserved for the target species, we searched the 5000 bp of E. coli xdhABC, S. typhimurium sipBCDA, S. aureus hemEH, and C. difficile pheST DNA sequence within the same species in NCBI Nucleotide Collection Database. Nucleotide BLAST was optimized for somewhat similar sequences (blastn). The search was specified to taxid 561 for E. coli, taxid 28901 for S. enterica, taxid 1280 for S. aureus, and taxid 1496 for C. difficile. Accession date of data is 2022-08-19. For the same strains with target sequence with more than 95% identity similarity and 95% coverage, the percentage is 99% (N=3462), 94.3% (N=2078), 95.6% (N=1488), and 96.4% (N=139) for E. coli, S. typhimurium, S. aureus, and C. difficile, respectively. To analyze if the target sequence is conserved in other species, the same search was performed excluding the same species. Homologs with varying identity similarity and coverage were found in different species for the target sequences E. coli xdhABC (N=5000), S. typhimurium sipBCDA (N=117), S. aureus hemEH (N=2993), and C. difficile pheST (N=5000). Dot plot of homology coverage and identity similarity of each hit were shown for each target sequence.

Multiplexed DNA Detection Using Cell-Based Sensors

[0123] Overnight cultures of DNA sensor strains EC-G, ST-R and SA-B were diluted to OD0.1, OD0.1, and OD0.01, respectively, in one single culture containing 1 mL LB supplemented with 50 mM xylose (Thermo Fisher Scientific) and 100 μ g/mL spectinomycin (Dot Scientific). Different combinations of gDNA of *E. coli*, *S. typhimurium*, and *S. aureus* (200 ng/mL each) were added into the mixed culture containing three DNA sensor strains in separate 14 mL Falcon tubes (Thermo Fisher Scientific). The DNA sensor strains were incubated at 37° C. with shaking (250 rpm) for 10 hours and 5 μ L of cell culture was plated onto 12-well plates (Thermo Fisher Scientific). In these plates,

each well contained 1 mL LB agar supplemented with 2 mM IPTG, 5 μ g/mL chloramphenicol, and MLS. Plates were incubated at 37° C. overnight for bacterial growth.

[0124] On the next day, each well was imaged using Nikon Eclipse Ti-E Microscope. Brightfield images were collected at 4× magnification using the built-in transilluminator of the microscope. Fluorescence images were collected with the epifluorescence light source X-Cite 120 (Excelitas) and standard band filter cubes including BFP (Excitation: 395/25 nm, Emission: 460/50 nm, Chroma), GFP (Excitation: 470/ 40 nm, Emission: 525/50 nm, Nikon) and Texas Red (Excitation: 560/40 nm, Emission: 630/70 nm, Nikon) to image BFP, GFP, and RFP, respectively. Pixels were processed with 8×8 binning when taking images. The exposure times for BFP, GFP, RFP were 1.5 ms, 1.5 ms, and 7 ms, respectively. Complete images of each LB agar well were generated from multipoint images after scanning a 24×24 mm area. Once the full images were assembled, each of the four channels were mapped to unity by the minimum and maximum pixel values of all images for that channel using ImageJ. Colonies of different colors were counted manually.

Multiplexed Detection in Complex DNA Samples Using NGS or Cell-Based DNA Sensors

[0125] Bacterial species A. caccae, B. thetaiotaomicron, B. longum, C. asparagiforme, S. typhimurium, and S. aureus were inoculated from the -80° C. glycerol stock into YBHI medium and incubated at 37° C. anaerobically overnight. On the next day, cell culture of each strain was diluted to OD0.01 in YBHI (Passage 0) and incubated for 24 hours (Passage 1). Cell culture was diluted to OD0.1 into a fresh YBHI and incubated for another 24 hours (Passage 2). At each passage, cell pellet was collected for DNA extraction using DNeasy Blood & Tissue Kit (Qiagen). To extract S. aureus gDNA, 0.1 mg/mL Lysostaphin (MilliporeSigma) was added in the pre-treatment step in combination with enzymatic lysis buffer (Qiagen). Purified DNA was stored at -20° C. before further processing for NGS or cell-based detection.

[0126] To use NGS for characterizing microbial community composition, the V3-V4 region of the 16S rRNA gene was PCR amplified from extracted DNA using custom dual-indexed primers on a 96-well PCR plate (detailed method described in Clark et al. Nat. Comm., 2021⁵⁰).

[0127] PCR products from each well were pooled and purified using DNA Clean & Concentrator kit (Zymo). The resulting library was sequenced on an Illumina MiSeq using a MiSeq Reagent Kit v2 (500-cycle) to generate 2×250 paired-end reads. Sequencing data were demultiplexed using Basespace Sequencing Hub's FastQ Generation program. Custom python scripts were used for further data processing and sequences were mapped to the 16S rRNA reference database created using consensus sequences from Sanger sequencing data of monospecies cultures. Relative abundance was calculated as the read count mapped to each species divided by the total number of reads of all species. [0128] To use cell-based DNA sensors to detect S. typhimurium and S. aureus gDNA in the community DNA, 1000 ng/mL extracted community DNA was added to the mixture of SA-G (OD0.1) and ST-R sensors (OD0.1) for the multiplexed detection of S. typhimurium and S. aureus. The DNA sensor strains were incubated at 37° C. with shaking (250 rpm) for 10 hours and 5 µL of cell culture was plated onto 12-well plates (Thermo Fisher Scientific) containing 1 mL LB agar supplemented with 2 mM IPTG, 5 μ g/mL chloramphenicol, and MLS. Plates were incubated at 37° C. overnight for bacterial growth. On the next day, each well was imaged using Nikon Eclipse Ti-E Microscope. Brightfield and fluorescence images of GFP and RFP were collected at 4× magnification using the same procedure described in the previous section for the multiplexed DNA detection. Colony numbers were counted manually. The fold change of mean colony numbers compared to Day 1 was compared with the fold change of relative abundance by NGS results.

Direct Detection of Target Species in the Co-Culture Using Cell-Based Sensors

[0129] E. coli, S. typhimurium, and S. aureus and the corresponding DNA sensor strains were inoculated from the -80° C. glycerol stock into LB medium and incubated at 37° C. with shaking (250 rpm) for 14 hours. C. difficile was separately inoculated in YBHI medium and incubated in an anaerobic chamber (Coy Laboratory). On the next day, cell culture of sensor and target strain were diluted to an OD0.1 each in a single culture containing 1 mL LB supplemented with 50 mM xylose with or without 100 µg/mL spectinomycin in 14 mL Falcon tubes (Thermo Fisher Scientific). Overnight culture of target strains (14 hr) was diluted in PBS (Dot Scientific) and plated onto LB agar plates or YBHI agar plates to determine the initial CFU of target bacteria in the co-culture (OD0.1), which was 1.22×10^8 CFU/mL, $1.07 \times$ 10^8 CFU/mL, 3.2×10^8 CFU/mL, and 1.1×10^7 CFU/mL for E. coli, S. typhimurium, S. aureus, and C. difficile, respectively. Sensor and target strains were co-cultured at 37° C. with shaking (250 rpm) for 10 hours, and 5 µL of cell culture was plated onto 12-well plates (Thermo Fisher Scientific). Each well contained 1 mL LB agar supplemented with 2 mM IPTG, 5 µg/mL chloramphenicol, and MLS for the selection of transformed B. subtilis. The 12-well plates were incubated overnight at 37° C. On the next day, fluorescent colonies were imaged by Azure Imaging System 300 (Azure Biosystems) using the Epi Blue LED Light Imaging with 50 millisecond exposure time. Colonies with GFP expression were counted manually. To determine if the detection of target bacteria was via transformation, 1 µL (1 unit) DNase I (Thermo Fisher Scientific) was added to the 1 mL coculture. One unit of DNase I can completely degrade 1 µg of plasmid DNA in 10 min at 37° C. according to the manufacturer's specification.

[0130] To improve the detection efficiency, overnight culture of E. coli was incubated at 90° C. in digital dry baths/block heaters (Thermo Fisher Scientific) for 10 min and placed on ice for 3 min before being transferred to the sensor culture containing 1 mL LB, 50 mM xylose, and OD0.1 of sensor strain for detection. Spectinomycin was not used in the sensor culture for heat-treated samples. To test the multiplexed detection of E. coli and S. typhimurium in mice cecal samples, 10 mg cecal samples were first resuspended with 100 µL LB and 50 mM xylose in 1.7 mL Eppendorf tubes (Dot Scientific). Different amounts of overnight culture of E. coli and S. typhimurium were spiked into cecal samples. The cecal samples were then incubated at 90° C. for 10 min and sat on ice for 3 min before being transferred to the mixed culture of EC-G and ST-R sensors (1 mL LB, 50 mM xylose, OD0.1 of EC-G, and OD0.1 of ST-R) for multiplexed detection. Cecal samples were collected from germ-free mouse experiments following protocols approved by the University of Wisconsin-Madison Animal Care and Use Committee. Briefly, 8-week-old C57BL/6 gnotobiotic male mice (wild-type) were inoculated with 8 human gut bacteria—Dorea formicigenerans, *Coprococcus comes*, Anaerostipes caccae, *Bifidobacterium longum, Bifidobacterium adolescentis, Bacteroides vulgatus, Bacteroides caccae*, and *Bacteroides* thetaiotaomicron via oral gavage. After four weeks of colonization, mice were euthanized for cecal sample collection. Cecal samples were stored at -80° C. and thawed for the use in multiplexed detection of spike-in *E. coli* and *S. typhimurium*.

REFERENCES

- [0131] ADDIN Mendeley Bibliography CSL_BIBLIOG-RAPHY 1. Brophy, J. A. N. & Voigt, C. A. Principles of genetic circuit design. *Nature Methods* 11, (2014).
- [0132] 2. Levskaya, A. et al. Engineering *Escherichia coli* to see light. *Nature* 438, 441-442 (2005).
- [0133] 3. Bourdeau, R. W. et al. Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts. *Nature* 553, (2018).
- [0134] 4. You, L., Cox, R. S., Weiss, R. & Arnold, F. H. Programmed population control by cell-cell communication and regulated killing. *Nature* 428, (2004).
- [0135] 5. Danino, T., Mondragon-Palomino, O., Tsimring, L. & Hasty, J. A synchronized quorum of genetic clocks. *Nature* 463, (2010).
- [0136] 6. Liao, M. J., Din, M. O., Tsimring, L. & Hasty, J. Rock-paper-scissors: Engineered population dynamics increase genetic stability. *Science* (80-.). 365, (2019).
- [0137] 7. Saeidi, N. et al. Engineering microbes to sense and eradicate *Pseudomonas aeruginosa*, a human pathogen. *Mol. Syst. Biol.* 7, (2011).
- [0138] 8. Borrero, J., Chen, Y., Dunny, G. M. & Kaznessis, Y. N. Modified lactic acid bacteria detect and inhibit multiresistant enterococci. ACS Synth. Biol. 4, (2015).
- [0139] 9. Scott, S. R. & Hasty, J. Quorum Sensing Communication Modules for Microbial Consortia. *ACS Synth. Biol.* 5, (2016).
- [0140] 10. Sexton, J. T. & Tabor, J. J. Multiplexing cellcell communication. *Mol. Syst. Biol.* 16, (2020).
- [0141] 11. Ibáñez de Aldecoa, A. L., Zafra, O. & Gonzalez-Pastor, J. E. Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities. *Front. Microbiol.* 8, 1390 (2017).
- [0142] 12. Johnston, C., Martin, B., Fichant, G., Polard, P. & Claverys, J.-P. Bacterial transformation: distribution, shared mechanisms and divergent control. *Nat. Rev. Microbiol.* 12, 181-196 (2014).
- [0143] 13. Carrasco, B., Serrano, E., Martin-Gonzalez, A., Moreno-Herrero, F. & Alonso, J. C. *Bacillus subtilis* MutS modulates RecA-mediated DNA strand exchange between divergent DNA sequences. Front. *Microbiol.* (2019). doi:10.3389/fmicb.2019.00237
- [0144] 14. Popp, P. F., Dotzler, M., Radeck, J., Bartels, J. & Mascher, T. The Bacillus BioBrick Box 2.0: Expanding the genetic toolbox for the standardized work with *Bacillus subtilis. Sci. Rep.* 7, (2017).
- [0145] 15. Dubnau, D. Genetic competence in *Bacillus* subtilis. *Microbiological Reviews* (1991).
- [0146] 16. Ji, M. et al. Engineering *Bacillus subtilis* ATCC 6051a for the production of recombinant catalases. *J. Ind. Microbiol. Biotechnol.* 48, (2021).

- [0147] 17. Zhang, X.-Z. & Zhang, Y.-H. P. Simple, fast and high-efficiency transformation system for directed evolution of cellulase in *Bacillus subtilis*. *Microb. Biotechnol.* 4, 98-105 (2011).
- [0148] 18. Silvaggi, J. M., Perkins, J. B. & Losick, R. Small untranslated RNA antitoxin in *Bacillus subtilis. J. Bacteriol.* 187, (2005).
- [0149] 19. Maamar, H. & Dubnau, D. Bistability in the *Bacillus subtilis* K-state (competence) system requires a positive feedback loop. *Mol. Microbiol.* (2005). doi:10. 1111/j.1365-2958.2005.04592.x
- [0150] 20. Xi, H., Schneider, B. L. & Reitzer, L. Purine catabolism in *Escherichia coli* and function of xanthine dehydrogenase in purine salvage. *J. Bacteriol.* 182, (2000).
- [0151] 21. McClelland, M. et al. Complete genome sequence of *Salmonella enterica* serovar Typhimurium LT2. *Nature* 413, (2001).
- **[0152]** 22. Stabler, R. A. et al. Comparative genome and phenotypic analysis of *Clostridium difficile* 027 strains provides insight into the evolution of a hypervirulent bacterium. *Genome Biol.* 10, (2009).
- [0153] 23. Soni, I., Chakrapani, H. & Chopra, S. Draft genome sequence of methicillin-sensitive *Staphylococcus aureus* ATCC 29213. *Genome Announc.* 3, (2015).
- [0154] 24. Tucker, S. C. & Galan, J. E. Complex function for SicA, a *Salmonella enterica* serovar *typhimurium* type III secretion-associated chaperone. *J. Bacteriol.* 182, (2000).
- [0155] 25. Lobo, S. A. L. et al. *Staphylococcus aureus* haem biosynthesis: Characterisation of the enzymes involved in final steps of the pathway. *Mol. Microbiol.* 97, (2015).
- [0156] 26. Beyer, D. et al. New Class of Bacterial Phenylalanyl-tRNA Synthetase Inhibitors with High Potency and Broad-Spectrum Activity. *Antimicrob. Agents Chemother.* 48, (2004).
- [0157] 27. Ibekwe, A. M. & Grieve, C. M. Detection and quantification of *Escherichia coli* O157:H7 in environmental samples by real-time PCR. *J. Appl. Microbiol.* 94, (2003).
- [0158] 28. Jung, B. Y., Suk, C. J. & Chang, H. K. Development of a rapid immunochromatographic strip for detection of *Escherichia coli* O157. *J. Food Prot.* 68, (2005).
- [0159] 29. Serrano, E., Ramos, C., Alonso, J. C. & Ayora, S. Recombination proteins differently control the acquisition of homeologous DNA during *Bacillus subtilis* natural chromosomal transformation. Environ. Microbiol. 23, (2021).
- **[0160]** 30. Giordano, N. et al. Cysteine desulfurase IscS2 plays a role in oxygen resistance in *Clostridium difficile*. *Infect. Immun.* 86, (2018).
- [0161] 31. Papagiannopoulou, C., Parchen, R., Rubbens, P. & Waegeman, W. Fast Pathogen Identification Using Single-Cell Matrix-Assisted Laser Desorption/Ionization-Aerosol Time-of-Flight Mass Spectrometry Data and Deep Learning Methods. *Anal. Chem.* 92, (2020).
- [0162] 32. Nißler, R. et al. Remote near infrared identification of pathogens with multiplexed nanosensors. *Nat. Commun.* 11, (2020).
- [0163] 33. Dong, H. & Zhang, D. Current development in genetic engineering strategies of *Bacillus* species. *Microb. Cell Fact.* 13, (2014).

- [0164] 34. Ragheb, M. N., Merrikh, C., Browning, K. & Merrikh, H. Mfd regulates RNA polymerase association with hard-to-transcribe regions in vivo, especially those with structured RNAs. *Proc. Natl. Acad. Sci. U.S.A* 118, (2020).
- [0165] 35. Renda, B. A., Hammerling, M. J. & Barrick, J. E. Engineering reduced evolutionary potential for synthetic biology. *Molecular BioSystems* 10, (2014).
- [0166] 36. Law, J. W. F., Mutalib, N. S. A., Chan, K. G. & Lee, L. H. Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. *Front. Microbiol.* 5, (2014).
- [0167] 37. Rahmer, R., Heravi, K. M. & Altenbuchner, J. Construction of a super-competent *Bacillus subtilis* 168 using the Pmt1A-comKS inducible cassette. *Front. Microbiol.* 6, 1431 (2015).
- **[0168]** 38. Kurushima, J. et al. Unbiased homeologous recombination during pneumococcal transformation allows for multiple chromosomal integration events. *Elife* 9, (2020).
- [0169] 39. Burian, J. et al. High-throughput retrieval of target sequences from complex clone libraries using CRISPRi. *Nat. Biotechnol.* 2022 1-5 (2022). doi:10.1038/ s41587-022-01531-8
- [0170] 40. Gu, W., Miller, S. & Chiu, C. Y. Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection. *Annu. Rev. Pathol. Mech. Dis.* 14, (2019).
- [0171] 41. Liu, F., Li, J., Zhang, T., Chen, J. & Ho, C. L. Engineered Spore-Forming *Bacillus* as a Microbial Vessel for Long-Term DNA Data Storage. *ACS Synth. Biol.* (2022). doi:10.1021/ACSSYNBIO.2C00291/SUPPL_ FILE/SB2C00291_SI_001.PDF
- [0172] 42. Gomes, A. L. C. et al. Genome and sequence determinants governing the expression of horizontally acquired DNA in bacteria. *ISME J.* 14, (2020).
- [0173] 43. Beauregard, P. B., Chai, Y., Vlamakis, H., Losick, R. & Kolter, R. *Bacillus subtilis* biofilm induction by plant polysaccharides. *Proc. Natl. Acad. Sci. U.S.A* 110, (2013).
- [0174] 44. Tam, N. K. M. et al. The intestinal life cycle of *Bacillus subtilis* and close relatives. *J. Bacteriol.* (2006). doi: 10.1128/JB 0.188.7.2692-2700.2006
- [0175] 45. Sheth, R. U. & Wang, H. H. DNA-based memory devices for recording cellular events. *Nature Reviews Genetics* (2018). doi:10.1038/s41576-018-0052-8
- [0176] 46. Gonzalez, L. M., Mukhitov, N. & Voigt, C. A. Resilient living materials built by printing bacterial spores. *Nat. Chem. Biol.* 16, (2020).
- [0177] 47. Cooper, R. M. et al. Engineered bacteria detect tumor DNA in vivo. *bioRxiv* 2021.09.10.459858 (2021). doi:10.1101/2021.09.10.459858

- [0178] 48. Cheng, Y.-Y., Papadopoulos, J. M., Falbel, T., Burton, B. M. & Venturelli, O. S. Efficient plasmid transfer via natural competence in a synthetic microbial community. *bioRxiv* 2020.10.19.342733v2 (2020). doi:10.1101/ 2020.10.19.342733
- **[0179]** 49. Konkol, M. A., Blair, K. M. & Kearns, D. B. Plasmid-encoded comi inhibits competence in the ancestral 3610 strain of *Bacillus subtilis*. J. Bacteriol. 195, (2013).
- [0180] 50. Clark, R. L. et al. Design of synthetic human gut microbiome assembly and butyrate production. *Nat. Commun.* 12, (2021).
- [0181] 51. Overkamp, W. et al. Benchmarking various green fluorescent protein variants in *Bacillus subtilis*, *Streptococcus pneumoniae*, and *Lactococcus lactis* for live cell imaging. *Appl. Environ. Microbiol.* 79, 6481-6490 (2013).
- **[0182]** 52. Tack, D. S. et al. The genotype-phenotype landscape of an allosteric protein. *Mol. Syst. Biol.* 17, (2021).
- **[0183]** 53. Prindle, A. et al. Ion channels enable electrical communication in bacterial communities. *Nature* 527, (2015).
- [0184] 54. Miller, M. B. & Bassler, B. L. Quorum sensing in bacteria. *Annual Review of Microbiology* 55, (2001).
- [0185] 55. Du, P. et al. De novo design of an intercellular signaling toolbox for multi-channel cell-cell communication and biological computation. *Nat. Commun.* 11, (2020).
- [0186] 56. Marchand, N. & Collins, C. H. Peptide-based communication system enables *Escherichia coli* to *Bacillus megaterium* interspecies signaling. *Biotechnol. Bioeng.* 110, (2013).
- **[0187]** 57. Morens, D. M. & Fauci, A. S. Emerging Pandemic Diseases: How We Got to COVID-19. *Cell* 182, (2020).
- [0188] 58. Iqbal, S. S. et al. A review of molecular recognition technologies for detection of biological threat agents. *Biosens. Bioelectron.* 15, (2000).
- [0189] 59. Chiu, C. Y. & Miller, S. A. Clinical metagenomics. *Nature Reviews Genetics* 20, (2019).
- **[0190]** 60. East-Seletsky, A. et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. *Nature* 538, (2016).
- [0191] 61. Gootenberg J S, Abudayyeh O O, Lee J W, Essletzbichler P, Dy A J, Joung J, Verdine V, Donghia N, Daringer N M, Freije C A, Myhrvold C, Bhattacharyya R P, Livny J, Regev A, Koonin E V, Hung D T, Sabeti P C, Collins J J, Zhang F. Nucleic acid detection with CRISPR-Cas13a/C2c2. *Science*. 2017 Apr. 28; 356(6336):438-442.

SEQUENCE LISTING

Sequence total quantit	y: 24		
SEQ ID NO: 1	moltype = DNA length	n = 107	
FEATURE	Location/Qualifiers		
source	1107		
	mol_type = other DNA		
	organism = synthetic	construct	
SEQUENCE: 1			
tgtaaataca gttctggatt	gcgagaaaac gaagtaaaag	gatatccggc ctgaattcag	60
gccggattca ctggtagcga	ccggcgctca ggatcctaac	tcacatt	107

```
-continued
```

SEQ ID NO: FEATURE source	2	<pre>moltype = DNA Location/Qual: 1107 mol_type = oth organism = syn</pre>	length ifiers her DNA	n = 107		
SEQUENCE · 2	,					
tgcctcaagc tatttcttaa	tagagagtcg tcttgcgata	aatteetgea geeo gagegtagea atgo	tggcag cgatgc	gttatgtgtt ccagttc	taacaactca	60 107
SEQ ID NO: FEATURE source	3	<pre>moltype = DNA Location/Qual: 1107</pre>	length ifiers	n = 107		
SECHENCE . 2		mol_type = oth organism = syr	ner DNA nthetic	construct		
SEQUENCE: 3	, 					~ ~
ggatgagtgt	ctttttttct	aagcatgaat aata	atgtta	aaagaga	aalylaaala	80 107
SEQ ID NO: FEATURE source	4	<pre>moltype = DNA Location/Qual: 1108</pre>	length lfiers	n = 108		
SEOUENCE : 4	ł	mol_type = off organism = syr	ier DNA ithetic	construct		
ctgaatttga agaacttaat	ttgcgagtga gggcccgcta	gatatttatg ccag acagcgcgat ttgo	jccagcc tggtga	agacgcagac cccaatgc	gcgccgagac	60 108
SEQ ID NO: FEATURE	5	<pre>moltype = DNA Location/Qual: 1 809</pre>	length ifiers	n = 809		
bourde		<pre>mol_type = oth organism = syr</pre>	ner DNA nthetic	construct		
SEQUENCE: 5	5					
ctcgagggta	aatgtgagca	ctcacaattc attt	tgcaaa	agttgttgac	tttatctaca	60
aggtgtggca	taatgtgtgt	aattgtgagc ggat	aacaat	taagcttaca	taaggaggaa	120
ctactatgtc	gacctatgaa	tctctaatgg tcat	gatcgg	ctttgccaat	ttaataggcg	180
ggattatgac	atgggtaata	tctcttttaa catt	attatt	catgcttaga	aaaaaagaca	240
ctcatcctat	ttacattact	gtaaaggaaa agto	jtctaca	cgaggaccct	cctattaaag	300
ggtagtttct	tttttaaaag	ctagagtgct gcca	acactct	ggcttttata	ttttagcatt	360
tctcatgaaa	gtaacacaca	ttaacaagtg gtaa	atgtggt	aatgtggtac	caactataag	420
cttacgccag	tagttgcaat	acttttgctt ggca	accatta	taacatgaat	atatattgat	480
tatataatta	tttgtatctt	ttatttgtta cttt	ttttat	ctatgagttc	aaaatgacct	540
gatcatagaa	geettaacee	ttttttttt atta	laaaacc	ctcggattat	gaaagtgtta	600
atapataaat	astassaga	aataataaaa atat	Jettea	ttaaaaatt	astaattata	720
cttactttca	acgaaaggg	aattacceta tta	acttata	taaanaanaa	atagacccac	780
cccttgagct	cggcaaagta	aaagggtaa	lettata	caaagaagaa	acagaeeeae	809
SEQ ID NO: FEATURE	6	moltype = DNA Location/Qual:	length ifiers	n = 720		
source		<pre>mol_type = oth organism = svr</pre>	ner DNA nthetic	construct		
SEQUENCE: 6	5	· ·				
atggtttcta	aaggtgaaga	attgtttaca ggtg	yttgttc	caattttggt	tgaattggat	60
ggtgatgtta	atggtcataa	attttctgtt tctg	ygtgaag	gtgaaggtga	tgctacatac	120
ggtaaattga	cattgaaatt	tatttgtaca acto	ygtaaat	tgccagttcc	ttggccaaca	180
ttggttacaa	catttgctta	tggtttgcaa tgtt	ttgctc	gttatccaga	tcacatgaaa	240
caacatgatt	tctttaaatc	tgctatgcca gaag	jgttatg	ttcaagaacg	tacaatcttt	300
ttcaaggatg	atggtaatta	taagacacgt gete	Jaggtta	agtttgaagg	tgatacattg	360
yulaaccgta	otoottoto	yyyuaugat ttta	iaayaag	aryyraatat	adaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	420
aaaluggaat	ataattataa	antegrate at at	atatea	ataattatat	acaaaagaad	-10U
ggualladag	aadaaaataa	addiated adta	atcase	ttttattaaa	agataatgot	510
tattatata	aacaaaacaC	attatatasa ast	Jyrccay	aaaaacataa	tcacatoott	660
ttgttggaat	ttgttacage	tgctggtatt acad	atggta	tggatgaatt	gtataaataa	720
SEQ ID NO: FEATURE	7	moltype = DNA Location/Qual:	length lfiers	n = 714		
SOULCE		mol_type = oth organism = syr	ner DNA nthetic	construct		
SEQUENCE: 7	7	- •				
atggttagca gttcatatgg	aaggcgaaga aaggcagcgt	ggataatatg gcga taatggccac gaat	atcatca ttgaaa	aagaatttat ttgaaggcga	gcgctttaaa aggtgaaggc	60 120

```
agaccgtatg aaggcacaca aacagcaaaa ctgaaagtta caaaaggcgg accgctgccg
                                                                   180
tttgcatggg atattctgtc accgcaattt atgtatggca gcaaagcata tgttaaacat
                                                                   240
coggoagata tocoggatta totgaaactg toatttoogg aaggotttaa atgggaacgo
                                                                   300
gtcatgaatt ttgaagatgg cggagttgtt acagtcacac aagattcatc actgcaagat
                                                                   360
ggcgaattta totataaagt caaactgogt ggcacgaact ttoogtcaga tggcootgtt
                                                                   420
atgcagaaaa aaacaatggg ctgggaagca tcaagcgaaa gaatgtatcc ggaagatggt
                                                                   480
gcactgaaag gcgaaattaa acaacgcctg aaacttaaag acggtggaca ttatgatgcg
                                                                   540
gaagtcaaaa caacgtataa agcgaaaaaa cctgttcaac tgcctggcgc atataacgtt
                                                                   600
aacattaaac tggatatcac gagccataac gaagattata caatcgtcga acagtatgaa
                                                                   660
agagcagaag gacgccattc aacaggcgga atggatgaac tgtataaata ctag
                                                                   714
                       moltype = DNA length = 705
SEQ ID NO: 8
FEATURE
                       Location/Qualifiers
                       1..705
source
                       mol type = other DNA
                       organism = synthetic construct
SEQUENCE: 8
atqaqcqaac tqatcaaaqa aaacatqcat atqaaactqt acatqqaaqq cacaqtcqat
                                                                   60
aaccatcact ttaaatgcac atcagaaggc gaaggcaaac cgtatgaagg cacacaaaca
                                                                   120
atqaqaatca aaqttqttqa aqqcqqaccq ctqccqtttq catttqatat tctqqcaaca
                                                                   180
tcatttctgt atggcagcaa aacgtttatc aatcatacac aaggcatccc ggattttttt
                                                                   240
aaacaatcat ttccqqaaqq ctttacatqq qaacqcqtta caacatatqa aqatqqcqqa
                                                                   300
qttctqacaq caacacaaqa tacatcattq caaqatqqct qcctqatcta taatqtcaaa
                                                                   360
attagaggcg tcaactttac aagcaatggc cctgttatgc agaaaaaaac actgggctgg
                                                                   420
gaagcattta cagaaacact gtatccggct gatggcggac tggaaggcag aaacgatatg
                                                                   480
gcactgaaac tggttggcgg atcacatctg attgcaaaca tcaaaacaac gtaccgctca
                                                                   540
aaaaaaccgg caaaaaatct gaaaatgcct ggcgtctatt atgtcgatta tagactggaa
                                                                   600
cqcatcaaaq aaqcqaacaa cqaaacatat qtcqaacaac atqaaqttqc aqttqcqaqa
                                                                   660
                                                                   705
tattgcgatc tgccgtcaaa actgggccat aaactgaatt actag
SEO TD NO: 9
                       moltype = DNA length = 464
                      Location/Qualifiers
FEATURE
source
                       1..464
                       mol_type = other DNA
                       organism = synthetic construct
SEQUENCE 9
caattaccat cgaatgcacc attaacggga tgccttttca gcttcacgcc gcaccaggca
                                                                   60
cgccgctctc ggaattactc cgcgaacaag gactgctaag tgtcaaacaa gggtgctgcg
                                                                   120
tgggtgaatg tggtgcctgt acggtgttgg tcgacggcac agcaatagac agttgcttat
                                                                   180
accttgccgc ctgggctgaa ggaaaagaga tccgcacgct ggaaggtgaa gcgaaaggcg
                                                                   240
gaaaactttc tcatgttcag caggcttatg cgaaatccgg cgcagtgcag tgcgggtttt
                                                                   300
gtacgcctgg cctgattatg gctaccacgg caatgctggc gaaaccacgc gagaagccat
                                                                   360
taaccattac ggaaattcgt cgcggactgg cgggaaatct ttgtcgctgc acggggtatc
                                                                   420
agatgattgt aaatacagtt ctggattgcg agaaaacgaa gtaa
                                                                   464
SEQ ID NO: 10
                       moltype = DNA length = 497
FEATURE
                       Location/Qualifiers
source
                       1..497
                       mol type = other DNA
                       organism = synthetic construct
SEQUENCE: 10
ttatgtgttt aacaactcat atttcttaat cttgcgatag agcgtagcaa tgccgatgcc
                                                                   60
cagttcatca gcaacttgct tcttgctgtt atgacgtgaa agcgcctcgc ggatcatttg
                                                                   120
cttttccatc tcctccagcg ccgtgccgcc cgcatcatcg agtgacaggt gcgcctcact
                                                                   180
gacetetgtt acateacttt geteegttgt gecattatte ageagatttg geggeaatag
                                                                   240
cgtgctgtcg ataacttcac ctgaaggaac cacgttaacc agatattcca tcaaattgct
                                                                   300
taactegege aggttteegg gecaaegatg ettaegeaat atttegaega categggage
                                                                   360
aatgccagga taaaccgatc ccagacgacg ggtatgcaga tgtaaaaagt aatgcaccaa
                                                                   420
tagttcaata tcttcctgac gttcacgcag cggtggcaga gttatcggga taacattaag
                                                                   480
toggtagaag agatott
                                                                   497
SEQ ID NO: 11
                      moltype = DNA length = 1000
FEATURE
                      Location/Qualifiers
                      1..1000
source
                       mol type = other DNA
                       organism = synthetic construct
SEQUENCE: 11
atgacgcgaa actggagatc cactccccgc gcggtgttcg tttcgtcccg attaatggct 60
ttcacaccgg gccgggcaaa gtgtctcttg agcatgacga aatcctcgtc gcctttcatt 120
ttccgccaca gccgaaagaa cacgcgggca gcgcgcattt taaatatgcc atgcgcgacg
                                                                   180
caatggatat ttcaacgatt ggctgcgccg cacattgccg actggataac ggcaatttca
                                                                   240
gcgaattacg cctggcattt ggtgttgccg cgccaacgcc gattcgctgc caacatgccg
                                                                   300
aacagactgc acaaaatgcg ccattaaacc tgcaaacgct ggaagctatc agcgaatctg
                                                                   360
teetgeaaga tgtegeeeeg egttetteat ggegggeeag taaagagttt egtetgeate
                                                                   420
tcatccagac gatgaccaaa aaagtgatta gcgaagccgt cgccgcggcg gggggaaaat
                                                                   480
tgcaatgaat cacagcgaaa caattaccat cgaatgcacc attaacggga tgccttttca
                                                                   540
```

gcttcacgcc tgtcaaacaa agcaatagac ggaaggtgaa cgcagtgcag gaaaccacgc ttgtcgctgc gtaaaaggat	gcaccaggca gggtgctgcg agttgcttat gcgaaaggcg tgcgggtttt gagaagccat acggggtatc atccggcctg	cgccgctctc tgggtgaatg accttgccgc gaaaactttc gtacgcctgg taaccattac agatgattgt aattcaggcc	ggaattactc tggtgcctgt ctgggctgaa tcatgttcag ggaaattcgt aaatacagtt ggattcactg	cgcgaacaag acggtgttgg ggaaaagaga caggcttatg gctaccacgg cgcggactgg ctggattgcg	gactgctaag tcgacggcac tccgcacgct cgaaatccgg caatgctggc cgggaaatct agaaaacgaa	600 660 720 780 840 900 960 1000
SEQ ID NO: FEATURE source	12	<pre>moltype = Location/g 11000 mol_type = argonian</pre>	DNA length Qualifiers = other DNA	n = 1000		
SEQUENCE	12	organism	= synchecic	construct		
aggttatgtg	tttaacaact	catatttctt	aatcttgcga	tagagcgtag	caatgccgat	60
gcccagttca	tcaqcaactt	gcttcttgct	qttatqacqt	qaaaqcqcct	cqcqqatcat	120
ttgettttce	atctcctcca	gcgccgtgcc	gcccgcatca	tcgagtgaca	ggtgcgcctc	180
actgacctct	gttacatcac	tttgctccgt	tgtgccatta	ttcagcagat	ttggcggcaa	240
tagcgtgctg	tcgataactt	cacctgaagg	aaccacgtta	accagatatt	ccatcaaatt	300
gcttaactcg	cgcaggtttc	cgggccaacg	atgettaege	aatatttcga	cgacatcggg	360
agcaatgcca	ggataaaccg	atcccagacg	acgggtatgc	agatgtaaaa	agtaatgcac	420
caatagttca	atatetteet	gacgttcacg	cageggtgge	agagttatcg	ggataacatt	480
attacttcca	gaaatgatga	gaatgtcgac	ttatattaa	ctactorcac	caatcoocag	540 600
aatttcacgt	gcctcaatag	cacacaataa	tttagcctgc	aacattaatq	gcatatcacc	660
tatttcatcq	agaaacagcg	tgcccgtatt	cgccgcctga	atcaaccctg	ttttaccgtt	720
ggcagaagcg	ccagtaaatg	cacctttaac	ataaccgaac	agttcgctct	ccagaagctg	780
ctccggaatc	gcggcacagt	tgatagcaat	aaagggttta	ttccgtcttc	cgctcaactt	840
atggattgca	cgggcgacga	cttctttacc	cgtgccgctt	tcaccaacca	ccataacgct	900
ggatgggctg	ggtgcaatac	ggctaatgag	tcgttttaat	tgccgcataa	cacggcactc	960
gccaaccaat	tgttcaatat	geggtteate	aggtgcattt			1000
SEQ ID NO: FEATURE	13	moltype = Location/G	DNA length Qualifiers	n = 1500		
source		11500				
		mol_type =	= other DNA	aonatwiat		
SEQUENCE : 7	13	organism -	- synchecic	construct		
cqtaacqcqq	tqaaqatqqc	taccqqtqtt	qcaatcaata	cactqccqct	qacqccaaaa	60
cggttatatg	aagagttcca	tctggcagga	ttgatttgag	gataacatca	tgtttgattt	120
tgcttcttac	catcgcgcag	caacccttgc	cgatgccatc	aacctgctgg	ctgacaaccc	180
gcaggccaaa	ctgctcgccg	gtggcactga	cgtactgatt	cagetecace	atcacaatga	240
ccgttatcgc	catattgttg	atattcataa	tctggcggag	ctgcggggaa	ttacgctggc	300
ggaagatgge	catcatata	caacattata	tactacaacc	acceagetaa	ctggaggalee	360
gatccgtaac	atcactacct	acqqtqqaaa	tatttgcaac	ggtgccacca	gcgcagattc	480
tqccacqcca	acqctaattt	atqacqcqaa	actqqaqatc	cactccccqc	acaatattca	540
tttcgtcccg	attaatggct	ttcacaccgg	gccgggcaaa	gtgtctcttg	agcatgacga	600
aatcctcgtc	gcctttcatt	ttccgccaca	gccgaaagaa	cacgcgggca	gcgcgcattt	660
taaatatgcc	atgcgcgacg	caatggatat	ttcaacgatt	ggctgcgccg	cacattgccg	720
actggataac	ggcaatttca	gcgaattacg	cctggcattt	ggtgttgccg	cgccaacgcc	780
gattcgctgc	caacatgeeg	aacagactgc	acaaaatgcg	ccattaaacc	tgcaaacgct	840
taaagagttt	agegaatetg	tcatccacac	gatgaccaaa	aaagtgatta	ggegggeeag	960
caccacaaca	qqqqqaaaat	tgcaatgaat	cacagegaaaa	caattaccat	cgaatgcacc	1020
attaacqqqa	tqccttttca	qcttcacqcc	qcaccaqqca	cqccqctctc	qqaattactc	1080
cgcgaacaag	gactgctaag	tgtcaaacaa	gggtgctgcg	tgggtgaatg	tggtgcctgt	1140
acggtgttgg	tcgacggcac	agcaatagac	agttgcttat	accttgccgc	ctgggctgaa	1200
ggaaaagaga	teegeaeget	ggaaggtgaa	gcgaaaggcg	gaaaactttc	tcatgttcag	1260
caggettatg	cgaaatccgg	cgcagtgcag	tgcgggtttt	gtacgcctgg	cctgattatg	1320
getaceaegg	caatgetgge	gaaaccacgc	gagaageeat	taaccattac	ggaaattegt	1440
ctogattoco	agaaaacgaa	ataaaaaaat	atgggggtate	agatgattgt	adatacagti	1500
eeggaeegeg	agaaaaogaa	geaaaaggae	accoggoodg	aaccoaggoo	ggaccoaccy	1000
SEQ ID NO: FEATURE	14	moltype = Location/(DNA lengtł Qualifiers	n = 1500		
source		11500 mol_type =	= other DNA	aon att		
SEQUENCE	14	ordauraw :	- synchetic	Construct		
aggttatoto	 tttaacaact	catatttett	aatettacaa	tagagegtag	caatgeegat	60
qcccaqttca	tcaqcaactt	qcttcttqct	qttatgacgt	qaaaqcqcct	cqcqqatcat	120
ttgettttcc	atctcctcca	gcgccgtgcc	gcccgcatca	tcgagtgaca	ggtgcgcctc	180
actgacctct	gttacatcac	tttgctccgt	tgtgccatta	ttcagcagat	ttggcggcaa	240
tagcgtgctg	tcgataactt	cacctgaagg	aaccacgtta	accagatatt	ccatcaaatt	300

gcttaactcg	cgcaggtttc	cgggccaacg	atgettaege	aatatttcga	cgacatcggg	360
agcaatgcca	ggataaaccg	atcccagacg	acgggtatgc	agatgtaaaa	agtaatgcac	420
caatagttca	atatcttcct	gacgttcacg	cagcggtggc	agagttatcg	ggataacatt	480
aagtcggtag	aagagatctt	cgcggaattt	accttcggca	atgaactggg	ccaaattctg	540
attagttgca	gaaatgatgc	gaatgtcgac	ttgtattggg	ctactggcac	caatcggcag	600
aatttcacgt	gcctcaatag	cgcgcagtaa	tttagcctgc	aacattaatg	gcatatcacc	660
tatttcatcg	agaaacagcg	tgcccgtatt	cgccgcctga	atcaaccctg	ttttaccgtt	720
ggcagaagcg	ccagtaaatg	cacctttaac	ataaccgaac	agttcgctct	ccagaagctg	780
ctccggaatc	gcggcacagt	tgatagcaat	aaagggttta	ttccgtcttc	cgctcaactt	840
atggattgca	cgggcgacga	cttctttacc	cgtgccgctt	tcaccaacca	ccataacgct	900
ggatgggctg	ggtgcaatac	ggctaatgag	tcgttttaat	tgccgcataa	cacggcactc	960
gccaaccaat	tgttcaatat	gcggttcatc	aggtgcattt	gctacagaaa	aactggtatg	1020
cgattggtga	aacgccatta	aaaataattg	tcggccctga	atgttatgca	attgaccaat	1080
gattaattca	cttttatcgt	cccatgaaac	aatatgctgc	atatgtccat	gggtaaaatt	1140
actctcaaat	gttaatggtc	tgaaacggat	aggtttccca	ataatattat	tttgcacaac	1200
accaagtgtt	tttaaggcag	tctgattaac	aaactgaacc	cgattttcat	catctacaac	1260
taatacgccc	tgatccatat	tatcgatcat	ggtcgcaaat	attttactga	tgttatctcc	1320
tggcccctga	tcctccagaa	gtttcgaaac	aaaaatggtg	gatatatggc	gaacataatc	1380
agaaaattcg	cgtaaattat	cactgatatg	ctcttgttgc	tcgtgggtaa	cggcaatcaa	1440
acttatcacc	ccaacacaac	gatcctgtaa	aatgacaggc	gtacccagaa	atgctttttc	1500
SEQ ID NO: FEATURE	15	moltype = Location/g	DNA lengtł Qualifiers	n = 2000		
source		12000				
		moi_type :	= otner DNA			
	-	organism	= synthetic	construct		
SEQUENCE: 1	15					
ccctgataaa	aggccatatc	gtgctggttg	aacgaccgga	agagccgtta	atgtcgttaa	60
aagatttggc	gatggacgct	ttctaccacc	ctgaacgcgg	cgggcagete	tctgctgaaa	120
getecateaa	aaccaccact	aacccaccgg	cgtttggctg	tacctttgtt	gatetgaegg	180
tcgatattgc	gctgtgcaaa	gtcaccatca	accgcatcct	caacgttcat	gattcagggc	240
atattcttaa	tccactgctg	gcagaaggtc	aggtacacgg	cggaatggga	atgggcattg	300
gctgggcgct	atttgaagag	atgatcatcg	atgctaaaag	cggcgtggtc	cgtaacccca	360
atctgctgga	ttacaaaatg	ccgaccatgc	cggatctgcc	acaactggaa	agcgcgttcg	420
tcgaaatcaa	tgagccgcaa	tccgcatacg	gacataagtc	actgggtgag	ccaccaataa	480
ttcctgttgc	cgctgctatt	cgtaacgcgg	tgaagatggc	taccggtgtt	gcaatcaata	540
cactgccgct	gacgccaaaa	cggttatatg	aagagttcca	tctggcagga	ttgatttgag	600
gataacatca	tgtttgattt	tgcttcttac	catcgcgcag	caacccttgc	cgatgccatc	660
aacctgctgg	ctgacaaccc	gcaggccaaa	ctgctcgccg	gtggcactga	cgtactgatt	720
cagetecace	atcacaatga	ccgttatcgc	catattgttg	atattcataa	tctggcggag	780
ctgcggggaa	ttacgctggc	ggaagatggc	tcgctacgta	tcggctctgc	aacgacattt	840
acccagctaa	tagaagatcc	tataactcaa	cgtcatctcc	cggcgttatg	tgctgcggcc	900
acgtccattg	ctggaccgca	gatccgtaac	gtcgctacct	acggtggaaa	tatttgcaac	960
ggtgccacca	gcgcagattc	tgccacgcca	acgctaattt	atgacgcgaa	actggagatc	1020
cactccccgc	gcggtgttcg	tttcgtcccg	attaatggct	ttcacaccgg	gccgggcaaa	1080
gtgtctcttg	agcatgacga	aatcctcgtc	gcctttcatt	ttccgccaca	gccgaaagaa	1140
cacgcgggca	gcgcgcattt	taaatatgcc	atgcgcgacg	caatggatat	ttcaacgatt	1200
ggctgcgccg	cacattgccg	actggataac	ggcaatttca	gcgaattacg	cctggcattt	1260
ggtgttgccg	cgccaacgcc	gattcgctgc	caacatgccg	aacagactgc	acaaaatgcg	1320
ccattaaacc	tgcaaacgct	ggaagctatc	agcgaatctg	tcctgcaaga	tgtcgccccg	1380
cgttcttcat	ggcgggccag	taaagagttt	cgtctgcatc	tcatccagac	gatgaccaaa	1440
aaagtgatta	gcgaagccgt	cgccgcggcg	gggggaaaat	tgcaatgaat	cacagcgaaa	1500
caattaccat	cgaatgcacc	attaacggga	tgccttttca	gcttcacgcc	gcaccaggca	1560
cgccgctctc	ggaattactc	cgcgaacaag	gactgctaag	tgtcaaacaa	gggtgctgcg	1620
tgggtgaatg	tggtgcctgt	acggtgttgg	tcgacggcac	agcaatagac	agttgcttat	1680
accttgccgc	ctgggctgaa	ggaaaagaga	tccgcacgct	ggaaggtgaa	gcgaaaggcg	1740
gaaaactttc	tcatgttcag	caggettatg	cgaaatccgg	cgcagtgcag	tgcgggtttt	1800
gtacgcctgg	cctgattatg	gctaccacgg	caatgctggc	gaaaccacgc	gagaagccat	1860
taaccattac	qqaaattcqt	cqcqqactqq	cqqqaaatct	ttqtcqctqc	acqqqqtatc	1920
agatgattgt	aaatacaqtt	ctqqattqcq	aqaaaacqaa	qtaaaaqqat	atccqqcctq	1980
aattcaggcc	ggattcactg					2000
SEQ ID NO:	16	moltype =	DNA length	n = 2000		
FEATURE		Location/0	Dualifiers			
source		12000	~			
504100		mol type ·	- other DNA			
		"IOT_cybe :	- ouner DNA	aonat must		
CEOTIENCE -	16	organitsu :	- synchecic	CONSCIUCE		
SEQUENCE:]	LO					<i>c</i> .c.
aggttatgtg	LELAACAACT	catatttett	aatcttgcga	tagagcgtag	caatgccgat	60
gcccagttca	tcagcaactt	gcttcttgct	gttatgacgt	gaaagcgcct	cgcggatcat	120
ttgcttttcc	atctcctcca	gcgccgtgcc	gcccgcatca	tcgagtgaca	ggtgcgcctc	180
actgacctct	gttacatcac	tttgctccgt	tgtgccatta	ttcagcagat	ttggcggcaa	240
tagcgtgctg	tcgataactt	cacctgaagg	aaccacgtta	accagatatt	ccatcaaatt	300
gcttaactcq	cgcaggtttc	cgggccaacq	atgettacge	aatatttcqa	cgacatcqqq	360
aqcaatqcca	qqataaaccq	atcccagacg	acqqqtatqc	aqatqtaaaa	aqtaatqcac	420
caataqttca	atatetteet	gacgttcacg	cagegatage	agagttateg	ggataacatt	480
		5 - 5		5-55		

				0011011	laoa	
aaqtcqqtaq	aaqaqatctt	cqcqqaattt	accttcqqca	atgaactggg	ccaaattctq	540
attagttgca	gaaatgatgc	gaatgtcgac	ttgtattggg	ctactggcac	caatcggcag	600
aatttcacgt	gcctcaatag	cgcgcagtaa	tttagcctgc	aacattaatg	gcatatcacc	660
tatttcatcg	agaaacagcg	tgcccgtatt	cgccgcctga	atcaaccctg	ttttaccgtt	720
ggcagaagcg	ccagtaaatg	cacctttaac	ataaccgaac	agttcgctct	ccagaagctg	780
ctccggaatc	gcggcacagt	tgatagcaat	aaagggttta	ttccgtcttc	cgctcaactt	840
atggattgca	cgggcgacga	cttctttacc	cgtgccgctt	tcaccaacca	ccataacgct	900
ggatgggctg	ggtgcaatac	ggctaatgag	tcgttttaat	tgccgcataa	cacggcactc	960
gccaaccaat	tgttcaatat	gcggttcatc	aggtgcattt	gctacagaaa	aactggtatg	1020
cgattggtga	aacgccatta	aaaataattg	tcggccctga	atgttatgca	attgaccaat	1080
gattaattca	cttttatcgt	cccatgaaac	aatatgctgc	atatgtccat	gggtaaaatt	1140
actctcaaat	gttaatggtc	tgaaacggat	aggtttccca	ataatattat	tttgcacaac	1200
accaagtgtt	tttaaggcag	tctgattaac	aaactgaacc	cgattttcat	catctacaac	1260
taatacgccc	tgatccatat	tatcgatcat	ggtcgcaaat	attttactga	tgttatctcc	1320
tggcccctga	teeteeagaa	gtttcgaaac	aaaaatggtg	gatatatggc	gaacataatc	1440
agaaaattcg	cgtaaattat	cactgatatg	etettgttge	tegtgggtaa	cggcaatcaa	1500
actuateace	tatttaatat	galeelglaa	aalgacagge	gracecagaa	algelille	1500
geggeaatt	atttactat	egeaacette	gcaaaggggga	agtagetag	actgrgreac	1620
aacttttttca	gittlegitt	aggaegeg	taggageagg	agagagagag	tttatata	1620
gegaccaaga	traarctora	aegegeeege	aagattete	gacacaagt	aeettataaa	1740
ttaatttaa	atcaatacto	adacyctyyc	ageatter	atagetttag	gaactgeegg	1900
tacttaaaad	tcatcatta	aadacattaa	taattcacaa	atcatgatga	tattaactca	1860
aacaaaatta	actitataa	aaacataaca	tttttatcat	tttctaatga	aattatqqaa	1920
gagatatcac	atttctatat	caatatgaga	attacggcgg	tgagtttatc	aaactgaaga	1980
gagatageet	gcccctttat	o aa o a o ga ga		• 949••••	aaaoogaaga	2000
555	5					
SEQ ID NO:	17	moltype =	DNA length	n = 2500		
FEATURE		Location/(Qualifiers			
source		12500	-			
		mol type :	= other DNA			
		organism =	synthetic	construct		
SEQUENCE: 3	17					
aggagatgct	aatccgctca	cgggcaaacg	tatttacagc	gcagggttgc	cggagtgtct	60
tgaaaaaggc	cggaaaatct	ttgaatggga	aaaacgccgt	gcagaatgcc	agaaccagca	120
aggcaatttg	cgccgcggcg	ttggcgtcgc	ctgttttagc	tacacctcta	acacctggcc	180
tgtcggcgta	gaaatagcag	gcgcgcgcct	tctgatgaat	caggatggaa	ccatcaacgt	240
gcaaagcggc	gcgacggaaa	tcggtcaggg	tgccgacacc	gtcttctcgc	aaatggtggc	300
agaaaccgtg	ggggttccgg	tcagcgacgt	tcgcgttatt	tcaactcaag	ataccgacgt	360
tacgccgttc	gateceggeg	catttgcctc	acgccagagc	tatgttgccg	cgcctgcgct	420
gcgcagtgcg	gcactattat	taaaagagaa	aatcatcgct	cacgccgcag	tcatgctaca	480
tcagtcagcg	atgaatctga	ccctgataaa	aggccatatc	gtgctggttg	aacgaccgga	540
agageegtta	atgregitaa	aagatttgge	gatggacget	LLCLACCACC	ctgaacgegg	600
egggeagere	retgergaaa	gelecaleaa	aaccaccact	aacccaccgg	egiliggeig	720
caecttigtt	gattaaggg	atattattaa	taasataata	greaceatea	accycatcet	720
cadestadas	ataggatta	actagagagt	attraagag	ataataataa	aggracacgg	940
caacataata	cataacccca	atctactaca	ttacaaaato	cccaccatoc	constataca	900
acaactogaa	aggaagattca	tcgaaatcaa	taaaccacaa	tccgcatacg	gacataagto	960
actootgaa	ccaccaataa	tteetattae	cactactatt	cataacacaa	tgaagatggc	1020
taccontott	gcaatcaata	cactococt	gacgccaaaa	contatato	aagagttcca	1080
tctqqcaqqa	ttgatttgag	gataacatca	tqtttqattt	tqcttcttac	catcgcgcag	1140
caaccettqe	cqatqccatc	aacctqctqq	ctgacaaccc	qcaqqccaaa	ctqctcqccq	1200
gtggcactga	cgtactgatt	cagetecace	atcacaatga	ccgttatcgc	catattgttg	1260
atattcataa	tctggcggag	ctgcggggaa	ttacgctggc	ggaagatggc	tcgctacgta	1320
tcggctctgc	aacgacattt	acccagctaa	tagaagatcc	tataactcaa	cgtcatctcc	1380
cggcgttatg	tgctgcggcc	acgtccattg	ctggaccgca	gatccgtaac	gtcgctacct	1440
acggtggaaa	tatttgcaac	ggtgccacca	gcgcagattc	tgccacgcca	acgctaattt	1500
atgacgcgaa	actggagatc	cactccccgc	gcggtgttcg	tttcgtcccg	attaatggct	1560
ttcacaccgg	gccgggcaaa	gtgtctcttg	agcatgacga	aatcctcgtc	gcctttcatt	1620
ttccgccaca	gccgaaagaa	cacgcgggca	gcgcgcattt	taaatatgcc	atgcgcgacg	1680
caatggatat	ttcaacgatt	ggctgcgccg	cacattgccg	actggataac	ggcaatttca	1740
gcgaattacg	cctggcattt	ggtgttgccg	cgccaacgcc	gattcgctgc	caacatgccg	1800
aacagactgc	acaaaatgcg	ccattaaacc	tgcaaacgct	ggaagctatc	agcgaatctg	1860
tcctgcaaga	tgtcgccccg	cgttcttcat	ggcgggccag	taaagagttt	cgtctgcatc	1920
tcatccagac	gatgaccaaa	aaagtgatta	gcgaagccgt	cgccgcggcg	gggggaaaat	1980
tgcaatgaat	cacagcgaaa	caattaccat	cgaatgcacc	attaacggga	tgccttttca	2040
gcttcacgcc	gcaccaggca	cgccgctctc	ggaattactc	cgcgaacaag	gactgctaag	2100
tgtcaaacaa	gggtgctgcg	tgggtgaatg	tggtgcctgt	acggtgttgg	tcgacggcac	2160
agcaatagac	agttgcttat	accttgccgc	ctgggctgaa	ggaaaagaga	tccgcacgct	2220
ggaaggtgaa	gcgaaaggcg	gaaaactttc	tcatgttcag	caggettatg	cgaaatccgg	2280
cgcagtgcag	tacaaatttt	atacacctaa	cctqattatq	gctaccacgg	caatgctggc	2340
asseasaaa		555				
gaaaccacge	gagaagccat	taaccattac	ggaaattcgt	cgcggactgg	cgggaaatct	2400
ttgtcgctgc	gagaagccat acgggggtatc	taaccattac agatgattgt	ggaaattcgt aaatacagtt	cgcggactgg ctggattgcg	cgggaaatct agaaaacgaa	2400 2460

34

SEQ ID NO:	18	moltype =	DNA lengt	n = 2500		
FEATURE		Location/0	Qualifiers			
source		12500	athen DNA			
		organism :	= SVNthetic	construct		
SEQUENCE : :	18	organitom	- 57110110010	0011001400		
aggttatgtg	tttaacaact	catatttctt	aatcttgcga	tagagcgtag	caatgccgat	60
gcccagttca	tcagcaactt	gcttcttgct	gttatgacgt	gaaagcgcct	cgcggatcat	120
ttgettttee	atctcctcca	gegeegtgee	gcccgcatca	tcgagtgaca	ggtgegeete	180
tagcgtgctg	tcgataactt	cacctgaagg	aaccacgtta	accagatatt	ccatcaaatt	300
gettaacteg	cgcaggtttc	cgggccaacg	atgettacge	aatatttcga	cgacatcggg	360
agcaatgcca	ggataaaccg	atcccagacg	acgggtatgc	agatgtaaaa	agtaatgcac	420
caatagttca	atatcttcct	gacgttcacg	cagcggtggc	agagttatcg	ggataacatt	480
aagtcggtag	aagagatett	cgcggaattt	accttcggca	atgaactggg	ccaaattctg	540
attagttgca	gaaatgatge	gaatgtegae	tttacctoc	etactggcac	caateggeag	600
tatttcatcq	agaaacagcg	tacccatatt	caccacctaa	atcaaccctg	ttttaccott	720
ggcagaagcg	ccagtaaatg	cacctttaac	ataaccgaac	agttcgctct	ccagaagctg	780
ctccggaatc	gcggcacagt	tgatagcaat	aaagggttta	ttccgtcttc	cgctcaactt	840
atggattgca	cgggcgacga	cttctttacc	cgtgccgctt	tcaccaacca	ccataacgct	900
ggatgggctg	ggtgcaatac	ggctaatgag	tcgttttaat	tgccgcataa	cacggcactc	960
cgattggtga	aacgccatta	aaaataatto	tcaaccctaa	atottatoca	attgaccaat	1080
gattaattca	cttttatcgt	cccatgaaac	aatatgctgc	atatgtccat	gggtaaaatt	1140
actctcaaat	gttaatggtc	tgaaacggat	aggtttccca	ataatattat	tttgcacaac	1200
accaagtgtt	tttaaggcag	tctgattaac	aaactgaacc	cgattttcat	catctacaac	1260
taatacgccc	tgatccatat	tatcgatcat	ggtcgcaaat	attttactga	tgttatctcc	1320
agaaaattcg	cotaaattat	gtttegaaae	aaaaatggtg	tcatacataa	gaacataatc	1440
acttatcacc	ccaacacaac	gatcctgtaa	aatgacagge	qtacccaqaa	atgettttte	1500
gcggcaattt	tctttactat	cgcaaccttc	gcaaagggga	tcgaagcgag	actgtgtcac	1560
aactttttca	gttttcgttt	ccaggacgtg	gcggagcagg	cgtgagttgc	cgctcaactg	1620
gcgaccaaga	aacttcccat	acgcgcccgt	tccggcaacg	cgacacaagt	tttcatcaac	1680
gateteaace	tcaagetgea	aaacgctggc	aagcattetg	gcaaaacgct	gaattgtcgg	1740
tacttaaaag	tcgatcattg	aagaggtagt	tagttcacag	atcatgatga	tattaactca	1860
qqcqaaattq	qctttqataa	aaacataaqa	tttttatcat	tttctaatqa	aattatqqaa	1920
gagatatcac	atttctatat	caatatgaga	attacggcgg	tgagtttatc	aaactgaaga	1980
gagatagcct	gcccctttat	cttatttctg	atacttagca	gcaaataaat	aacgcgataa	2040
aaaaagccaa	acgttttcgt	attttacaaa	caaccagaag	ctggcatcaa	tttgtgatca	2100
tattottaot	cccaddtata	aattagtett	caccaatcac	geggalaalt	cacactcaaa	2220
taaaccactt	tacctatcat	tccactaccq	qqactttatq	atgaaaactg	ttaatgaget	2280
gattaaggat	atcaattcgc	tgacctctca	ccttcacgag	aaagattttt	tgttaacgtg	2340
ggaacagacg	ccagatgaac	tgaaacaagt	actggacgtt	gccgcagcat	taaaagcact	2400
gcgtgctgaa	aacatctcaa	ccaaagtett	taatagtgga	ttaggtattt	ccgtattccg	2460
cgacaactcc	acccgtaccc	gettetetta	tgetteegeg			2500
SEO ID NO:	19	moltype =	DNA lengt	1 = 2500		
FEATURE		Location/	Qualifiers			
source		12500				
		mol_type :	= other DNA			
SPOUENCE .	19	organism :	= synthetic	construct		
acqtaqcaqc	aggggtatca	acqtttqcat	ttcaaggtgc	caaacttccc	atectacact	60
ggtaccctgc	tcttgcgtta	atttttggtg	gcacatatca	agcgcctcaa	cagcettege	120
cgccgctttg	tcaacaaggt	gcgtaagatt	gctgcgggtt	aacggatcta	acgtacagcc	180
aaagttatgt	tcaatgcagc	tggcaatata	gggcatcacc	tcctgcataa	caagattcgt	240
cgataattta	cttaattcac	cgccagtgtt	attttgata	atatctaaca	getgetttte	300
cttttcttc	aggectegett	ttatgatttg	cgcggtatac	tetgececa	ccttcatcag	420
tagcqtcttc	gcctcaggag	aatcactqqt	qqcqttqaqc	qctqaacqaa	aqaqcccqqc	480
aaactccatt	atcgctttct	taccggcgac	attatttgaa	ttggtaaaaa	cttcttttaa	540
cgcctcagcg	tctttcccgc	atttaaacaa	tgcatccaga	ctcgcctgtt	tgatcagcgc	600
gggaaaatct	tccagttgcg	ggcctttaat	ttcccctgac	agcgtcgctg	tggcactttc	660
tctgactgcg	gaaagattcg	ccgcaagatt	cgtggcctgc	gttttgatct	cggtctgcat	720
acctggcatt	atgacggggg	gctgagtcct	tacacttgta	accattatta	atatcctctt	780
ctgttatcct	tgcaggaagc	tttggcggt	ttccaggetg	ctacttatcg	tactgeteag	840
taatataatt	ttcatattt	acaalgaatt	tttaaaaccc	gactgccagg	cttgatatt	960
ggcgttatcc	atttcgagtt	ttgagtettt	tcccqacaca	cctaaaccat	caatatccto	1020
aaccattttt	tgtaatggcq	tcagatcaac	ggtgacgaca	taaccggatc	cataagattt	1080
caggcagcta	ttcggtaaat	tcaattcact	gagccactgt	ctcgcttccg	cttcagtggc	1140
tactttaacg	ccgctgcctg	actgcgctgg	aaataaaacg	gtattactgt	ttatttgatt	1200
atatttattg	actaaactgt	ttaaatcatt	tttgagtgag	gtaacatcta	gcttaacggt	1260
-continued

attaccgtcc	ttacctggta	ataaccagcc	teccattttg	gaaagaatat	cactgaaggc	1320
ctgataaaaa	tcggtataga	ctgcgacaac	gttttcataa	acgcccagat	agctgtcacc	1380
tatcgccgat	atattttggg	aaaccatatc	ccaaatctca	gcatcagaaa	tggttgttct	1440
cggctgcgcc	ataggcgaag	cgctaaataa	ggccgacgtc	ggcgcagaaa	acgcgctccg	1500
caggttctca	ttttgttctg	cggataatga	cacgccggac	ttcgccagcg	cattcaggct	1560
gctggtcaac	tgctggcgcg	ccagcgtgcg	ctcgtcatta	ttctcttcag	agatcggtgg	1620
cgttgactgc	agegtetget	gtgcctggtg	gatttagta	geegeetgeg	ataatgaaat	1740
gacacegua	atatagagag	attaggaaaa	atccccc	taagaagaaga	cggaataatt	1900
ttgaatatta	agcataatat	ccccattca	ccatcagga	cgcgattaaa	tcacacccat	1860
gatggcgtat	agatgacett	tcagattaag	cacaatatt	acctacaata	acaacaaata	1920
cqqatqcttt	cqactqqtta	atqctctcca	ttqttttcaq	catttcctqa	atcaqqctqq	1980
tcgatttacg	tgaactttca	cgggcttcgt	ccgatgcggt	gctggcaacc	cggttattca	2040
cctggctaat	ttgctgctcg	gaacgttcct	gagtagcggc	gtactgcccg	gacgcccctg	2100
caataccacc	gaccgtgacc	gagttettea	taatcagatc	gcccgtcatc	tgcatcttgc	2160
gcgcatcgat	tcgggtcata	tccatggtat	tctgctcaag	acgaatatcg	gattcgacag	2220
actcaagacg	tttcgacaga	atagcctgat	gttcagggga	gatttgttta	ttactgtctt	2280
taatacccag	actttccgtg	gcgctggttc	cggcattaga	tttaagcgtc	gcatcattaa	2340
gatttttcgt	cgcatcggta	ccggttttct	tcatatttaa	cgatttcaga	gaatcgacgc	2400
cttcagcacc	gagtttgacg	ctattctgcc	cgttcagcac	gtttttaata	ctgtggcttt	2460
cagtggtcag	tttatcgatc	ttcgcggcat	tatgtttaag			2500
SEQ ID NO: FEATURE source	20	<pre>moltype = Location/g 12500 mol type =</pre>	DNA length Qualifiers = other DNA	n = 2500		
		organism :	= synthetic	construct		
SEQUENCE: 2	20	-	-			
cgcgcctctt	tcattctgca	gccccttata	ttccagtttg	gcgcccacgc	cagtgatccc	60
caactgaagc	gcgctctggg	aaatactacc	ggacaacgca	ttcatccctt	cgcgcatcat	120
ggagettgee	gtcgttttag	ctgcatcaaa	actgactaat	gacaacttac	cagacagttt	180
gctatcagcc	tggttcaacg	tcagcattaa	cgtattcgcg	gcagccaaca	gcgcaacggc	240
actggaagac	attccgctaa	tatcaaaaaa	ctttccgact	tctgcctgct	gctcgcgtaa	300
ctgggtttgc	acaacctcat	tcgctttagt	cgtgacatta	tttgccagag	cattcaaatc	360
ctgattcatg	teggtattt	gaatactggc	ttttaaaaag	gacgtgatcg	tteegggggt	420
ttgegttaat	accectggeg	caggegeget	cagigiagga	cicaaceeea	ggtcactgac	480 E40
tatatata	ctattctcaa	caceatcatt	addatte	gegeeaaegg	ttattgcgaage	600
attactaatt	aacatatttt	tetecetta	ttttaacaat	ttttatacac	gactetogea	660
cacaataaaa	cacacaccet	ccacatttta	ctataccaca	daadacatdd	ctttttacaa	720
ttccaccatt	accttctoot	tttcaccaaa	tatttctacq	gattgtttaa	accactacta	780
aatctgatcc	atggcaaaac	qqqcqaqcat	aaaatcaqca	agcgcctcgc	tggcattttt	840
aataaatacq	ccctcqqcaa	caccaccqqc	tqactqqqct	qcqqtattcq	tgacttccat	900
geecaacgee	actttattta	gggtattacc	taccagetet	ttacttaaqq	cattcqtttq	960
caggcccatc	ttgctaccca	cattacccag	accgctagta	atacgttgca	tcccctgggt	1020
aaagagtttg	ctgccgtttt	gcgccaactg	tttcagcacg	ttaggcacca	acttcttaat	1080
cgtttcgccc	atcattttgc	tcagcgcgtt	acccagtttc	gccgccgcgc	ctttcccgac	1140
aactgcgacc	accacaatga	ccgccaccat	ggcaatagcg	gcgacaatcg	caccaacaat	1200
getgeeggee	atctctgccg	ttttcttatc	gacgcctaat	ccttccagcg	ctttggtaat	1260
cgccttgcca	atcageteca	ttaacggctt	cagcacatgc	tccataatcg	ggtttagcgc	1320
ctgctgaata	aacgacactc	ccgtcgccgc	cttcacaatt	tcatcggcca	ccattaccgc	1380
aagtcccacc	gcagccagcg	ccagactcgc	cccaccggta	aaaacagcgg	ccacaacgct	1440
gacaatggtt	agcagcgcgc	cgaggacttt	cccgatacat	cccataatgc	ggttcgtttc	1500
ctcggctttg	egegtetett	cctggaattc	ageegattte	ttttccatct	ccgcctgacg	1560
agaaaaata	tapatapag	tagagetag	alegittige	aggetttett	ttagagagatt	1620
atectectea	ccctcccaaca	cctgattctg	agagggggggg	ttagggtgattc	cctccattt	1740
aatcagaatg	ttatccgctt	tetegaettt	cactttaaca	tetataceta	ctttaaccgt	1800
cacatecata	geettateta	aggetett	cacctctate	acticitite	caacctatte	1860
taccgcggct	tcagettgtg	catageeggg	atcaaccaaa	tccagcgatt	gcaatttatt	1920
ttacacctac	atcaatttt	taatcacaac	gtcataaaca	ctcttagcag	tatccqtctt	1980
tttgatactg	getteataga	gatccgtcgc	ctcctgagcc	tctcccagag	ccatctagaa	2040
ttctttcgat	acctgaatcc	ccatctcttt	ttgtgactca	atcatcocct	gccataccgc	2100
cagacgagac	tccaqttqaq	acagcgaaac	atcoccaot	agggtcatta	acttoccaao	2160
cagtaatgtc	aattgccctt	cactagagag	tttttcccaa	acaacat.cca	taggcggctt	2220
tagacccacc	gtattaatag	cacteteace	ggacttatt	ccqqctttaa	aatcacccac	2280
tttcgttgcc	accacat.ctt	taaaaqcttt	atccgccgct	tttaaaaadt	ccatattett	2340
acgaacgcct	tcaaaagccg	cctcaccaac	acacaaattt	taggtatato	cactacaact	2400
aatgetactt	acatcattta	ccataattat	teetttett	atteactata	ctactctatc	2460
tecacattt	ttagracete	cagatagagg	aacgettttg	Jeconologicy		2500
		- agacagaee				2000
SEQ ID NO: FEATURE	21	<pre>moltype = Location/g </pre>	DNA lengtł Qualifiers	n = 2218		
source		12218 mol time	- other DNA			
		moı_type = organism =	= otner DNA = synthetic	construct		

36

-continued

SEQUENCE: 2	21					
ctatcgtgtc	atgtaatctt	gcatccgatc	ttgcaacgct	gtaaatgttt	cgaagccatc	60
ctcttctaag	aagtgccctc	catcttccac	gattcgcaag	ttcccctcta	atgcattcat	120
taaacgctgg	gtttctttat	atgaaacgta	tttgtcattt	ttagaactca	atccgtaaaa	180
attgtcaact	ttcttttaa	tattatcgta	atcaatggtt	acattactta	aatcaatatc	240
taaatctata	ttttctgcat	cttctttaaa	gcccgctata	ctaaaaaagc	cttcaatcgg	300
ctgatcaatc	atttcaatat	attttaaagc	tgtgattgaa	cctaaaccat	gtgttacaaa	360
atatgtatcc	tttttgcgta	cattaatttg	tttcgtcata	gcttcaatcc	actgatccac	420
tgtcttcgct	tcaggggatt	caaaattaaa	taatgttacg	tcatatcctt	ctaaagttaa	480
gttatgctcc	aaccactgat	accaatgatt	tctactattt	ccatgcatag	aatgtacaat	540
aattacatct	gtcatctcat	tctctccttt	caacttacta	cttctttct	atttttaaaa	600
aaatgactga	ttacctataa	ttgtaaaata	aaaacacctt	aattagaaat	gttatatcgc	660
aaagtgacat	ttctaattaa	agtgtattgt	catcatttca	atatcattca	aaaacagcta	720
aacctttgtc	tctgcttcaa	tttcacaaaa	ataatteeeg	ctgaaagtat	ctatatttac	780
acattacttc	caccattata	taacttaaaa	atgactatat	ttcatcaaac	attatctaaa	840
ggcgtcgcac	ctacaccaac	accatccaac	aattaactta	caactctgcg	attacttctt	900
cagcagcaac	tttaccttgt	gtaatacaat	caggtagtcc	aaccgcttca	aaagatgcac	960
cagttactct	aagtcgtgga	tatgtttgtt	taatatgtgc	ttgaatctgt	ctaatttgtt	1020
gaatatgacc	gacatggtac	tgtggcatac	ttttcggcaa	acgattgaca	attgtaaatt	1080
caggatcacc	tttaaatgtc	atcatttgac	ttaaatctct	acgtacaatc	gatactaatt	1140
cattatctgt	atgatcatca	accacagtat	cacctggttt	acctacatac	gcacgaatca	1200
aaaccttacc	ttctggtgta	gtaaatggcc	atttttcga	tgtccaagta	catgcggtaa	1260
tgtctgtatc	actcgttctc	gcaatcacga	agecagtace	atcataagta	ttttcaatgt	1320
ctttttcatc	aaatgccaat	acaacagttg	caacagtcgt	actatccatc	gttttaaagt	1380
aatcaaatgc	tggatettgt	ccgaaccaat	tcaaaaagac	ttgatgcggt	gttgtcacta	1440
ataccccatc	gaatacatct	tettgttgat	tactgtaaac	aattttatat	tgettttgag	1500
atgtaataat	atcatccact	gacgtattgt	agegtattgt	cacacettta	tttttcacat	1560
cttgttctaa	tgetteaata	aatgagetta	aaccatgett	aaattgtttg	aattgtcctt	1620
ttggtgcgcc	aggatataat	tgtcttgtt	tcagacgctt	atttttctca	teetteatae	1680
CITITATCAG	acttccgaat	geetettett	tttctttaaa	attaggaaac	gtactcatca	1740
aacttaattt	atcaatatcg	gtaccataaa	taccacccat	taaaggetea	attaagttet	1800
caagtacctc	attacctaat	cttgctctga	aaaatgcacc	aacagaaatg	tcaccatctt	1860
gcatttgtat	aggettttg	attaaatcta	atcetgetet	taatttacca	agtggcgata	1920
ttaatttgt	agtaacaaat	ggtttaatat	ctgttggaat	acccataatt	gaaccacctg	1980
gaateggata	taatttattt	ttcgcaaaaa	tatatgattg	tecagtegta	tttgtaacaa	2040
tatettgtte	taatccaata	tettegeta	attetgteat	aatcgttttt	CTACCTAAAT	2100
aagattcagg	ccctagttca	atcatataac	catcttacg	atacgattga	atetteece	2160
ccggacgatt	egatgettea	aagatggtta	catcaatatt	aggatettge	tgttttaa	2218
SEQ ID NO: FEATURE source	22	<pre>moltype = Location/ 12775 mol_type =</pre>	DNA length Qualifiers = other DNA	n = 2775		
SEQ ID NO: FEATURE source	22	<pre>moltype = Location/ (12775 mol_type = organism =</pre>	DNA length Qualifiers = other DNA = synthetic	n = 2775 construct		
SEQ ID NO: FEATURE source SEQUENCE: 2	22	<pre>moltype = Location/ (12775 mol_type = organism =</pre>	DNA length Qualifiers = other DNA = synthetic	n = 2775 construct		
SEQ ID NO: FEATURE source SEQUENCE: 2 gacttgattt	22 22 catcaacaat	<pre>moltype = Location/o 12775 mol_type = organism = tgcaccgata</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat	n = 2775 construct gtgtattcgg	cattttgga	60
SEQ ID NO: FEATURE source SEQUENCE: 2 gacttgattt cgataataat	22 22 catcaacaat tcgcaccaat	<pre>moltype = Location/ L.2775 mol_type = organism = tgcaccgata atcatcgcaa</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac	n = 2775 construct gtgtattcgg attcataatc	catttttgga attgtcataa	60 120
SEQ ID NO: FEATURE source SEQUENCE: 2 gacttgattt cgataataat agcacctcta	22 22 catcaacaat tcgcaccaat aatgctcaca	<pre>moltype = Location/G 12775 mol_type = organism = tgcaccgata atcatcgcaa tacaaaacct</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat	n = 2775 construct gtgtattcgg attcataatc atataaagtt	catttttgga attgtcataa tttatactga	60 120 180
SEQ ID NO: FEATURE source SEQUENCE: 2 gacttgattt cgataataat agcacctcta tgtttttcat	22 22 catcaacaat tcgcaccaat aatgctcaca ataaatcacg	<pre>moltype = Location/g 12775 mol_type = organism = tgcaccgata atcatcgcaa tacaaaacct tgttaaatct</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtacatctg	construct gtgtattcgg attcataatc atataaagtt gccctaacca	catttttgga attgtcataa tttatactga aggtgtacct	60 120 180 240
SEQ ID NO: FEATURE source SEQUENCE: 2 gacttgattt cgataataat agcacctcta tgttttcat gtattacctt	22 Catcaacaat tcgcaccaat aatgctcaca ataaatcacg cagattgcca	<pre>moltype = Location/(12775 mol_type = organism = tgcaccgata atcatcgcaa tacaaaacct tgttaaatct accaatcgcg</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtacatctg atatgttcaa	construct gtgtattcgg attcataatc atataaagtt gccctaacca tattagattg	catttttgga attgtcataa tttatactga aggtgtacct ttctttaatt	60 120 180 240 300
SEQ ID NO: FEATURE source SEQUENCE: gacttgattt cgataataat agcacctcta tgtttttcat gtattacctt aaaagcgcag	22 catcaacaat tcgcaccaat ataatgctcaca ataaatcacg cagattgcca tatgttctag	<pre>moltype = Location/(12775 mol_type = organism = tgcaccgata atcatcgcaa tacaaaacct tgttaaatct gttaaatct gttcatcgcg ttcttgtgga</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtacaacttg atatgttcaa tatggatcat	n = 2775 construct gtgtattcgg attcataatc atataaagtt gccctaacca tattagattg tattcttttc	catttttgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct	60 120 180 240 300 360
SEQ ID NO: FEATURE source SEQUENCE: 2 gacttgattt cgataataat agcacctcta tgttttccat gtattacctt aaaagcgcag tttggcaaac	22 catcaacaat tcgcaccaat aatgctcaca ataaatcacg cagattgcca tatgttctag tatgtgccga	<pre>moltype = Location/G 12775 mol_type = organism = tgcaccgata atcatcgcaa tacaaaacct tgttaaatct gttcatgtgga aacaactaat</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtacatctg atatgttcaa tatggatcat accgtgtctt	n = 2775 construct gtgtattcgg attcataatc atataaagtt gccctaacca tattagattg tattcttttc tatgttcctc	catttttgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct ttccggtatt	60 120 180 240 300 360 420
SEQ ID NO: FEATURE source SEQUENCE: 2 gacttgattt cgataataat agcacctcta tgtttttcat gtattacctt aaaagcgcag tttggcaaac tgagctaatg	22 catcaacaat tcgcaccaat aatgctcaca ataaatcacg cagattgcca tatgttctag tatgtgccga tttcgttgac	<pre>moltype = Location/G 12775 mol_type = organism = tgcaccgata atcatcgcaa tacaaaacct tgttaaatct accaatcgcg ttcttgtgga aacaactaat tttattcgtc</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtacatctg atatgttcaa tatggatcat accgtgtctt caatattcaa	n = 2775 construct gtgtattcgg attcataatc atataaagtt gccctaacca tattagattg tattcttttc tatgttcctc taaattagg	catttttgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct ttccggtatt ttgttcataa	60 120 180 240 300 360 420 420
SEQ ID NO: FEATURE source SEQUENCE: 2 gacttgattt cgataataat agcacctcta tgtttttcat gtattacctt aaaagcgcag tttggcaaac tgagctaatg taatgtttca	22 catcaacaat tcgcaccaat aatgctcaca ataaatcacg cagattgcca tatgttctag ttatgtgccga tttcgttgac catgtgtaag	<pre>moltype = Location/G 12775 mol_type = organism = tgcaccgata atcatcgcaa tacaaaacct tgttaaatct accaatcgcg ttcttgtgga aacaactaat tttattcgtc ttgaatacca</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtacatctg atatggtcat acggtgtctt caatattcaa tattgtcaa tattgtcaa	n = 2775 construct gtgtattcgg attcataatc atataaagtt gcctaacca tattagattg tattctttc taagttcctc taagttcctc taagttcatca	catttttgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct ttccggtatt ttgttcataa agcacgtttg	60 120 180 240 300 360 420 480 540
SEQ ID NO: FEATURE source SEQUENCE: gacttgattt cgataataat agcacctcta tgtttttcat gtattacctt aaaagcgcag ttgggcaaac tgagctaatg tcaatgtttca	22 catcaacaat tcgcaccaat aatgctcaca ataaatcacg cagattgcca tatgttctag tatgtgccga tttcgttgac catgtgtaag ctactgaaaa	<pre>moltype = Location/(12775 mol_type = organism = tgcaccgata atcatcgcaa tacaaaacct tgttaaatct accaatcgcg ttcttgtgga aacaactaat tttattcgtc ttgaagaataa</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtacatctg atatgttcaa tatggatcat accgtgtctt caatattcaa tattttgcag tgtggtgcta	construct gtgtattcgg attcataatc atataaagtt gccctaacca tattagattg tattcttttc tatgttcctc taaatttagg cttcttcatc gtactaccg	cattittgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct ttccggtatt ttgttcataa agcacgtttg gattgcttca	60 120 180 240 300 420 480 540 600
SEQ ID NO: FEATURE source SEQUENCE: gacttgattt cgataataat agcacctcta tgattacctt aaaagcgcaag ttgggcaaac tgagctaatg ttaatgtttca tcatatgatc	22 catcaacaat tcgcaccaat ataatcacg cagattgcca tatgttctag tatgtgccga tttcgttgac catgtgtaag ctactgaaaa cattgtgcaa	<pre>moltype = Location/(12775 mol_type : organism : tgcaccgata atcatcgcaa tactacgca tgttaaatct accaatcgcg ttcttgtgga aacaactaat tttattcgtc ttgaagaataa tggtcaacc</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtacatctg atatgttcaa tatggatcat accgtgtctt caatattcaa tatttgcag tgtggtgcta gcatcttcga	n = 2775 construct gtgtattcgg attcataatc atataaagtt tattagattg tattctttc tatgttcctc taaattagtcatc gtactaccgt taaatgtggtga	catttttgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct ttccggtatt ttgttcataa agcacgtttg gattgcttca aatgggtttt	60 120 180 240 360 420 480 540 600 660 660
SEQ ID NO: FEATURE source SEQUENCE: 2 gacttgattt cgataataat agcacctcta tgttttacctt aaaagcgcag tttggcaaac tgagctaatg taatgtttca tcatatgatc gtaataccat aatcctaagt	22 catcaacaat tcgcaccaat atagctcaca ataatcacca tatgttctag tatgtgccga tttcgttgac catgtgtgaa catgtgcat atagttctaag ctactgaaca	<pre>moltype = Location/G 12775 mol_type = organism = tgcaccgata atcatcgcaa tacaaaacct tgttaaatct accaatcgcg ttcttgtgga aacaactaat tttaatcgtc ttgaatacca tgaagaataa tggagaataa tggtcaacc ttcacactct</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtgacatctg atatgttcaa tatggtctt caatattcaa tattttgcag tgtggtgcta gcatcttcga gcatatgct	construct gtgtattcgg attcataatc atataaagtt gccctaacc tattgttcctc tatgttcctc taaatttagg gtactaccgt taaatggtga tattcattaatgg	catttttgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct ttccggtatt ttgttcataa agcacgtttg gattgcttca aatgtgtttt tgaaactagt	60 120 180 240 360 420 480 540 660 660 720
SEQ ID NO: FEATURE source SEQUENCE: 2 gacttgattt cgataataat agcacctcta tgtttttcat gtattacctt aaaagcgcag tttggcaaac tgagctaatg tcatatgatca gtaatgtttca tcatatgatc gtaataccat aatcctaagt	22 catcaacaat tcgcaccaat aatgctcaca ataatcacg cagattgcca tatgttctag tatgtgccga tttcgtgaag ctactgaaaa cattgtgcat atagtttaaa ggtcatctgt	<pre>moltype = Location/G 12775 mol_type : organism : tgcaccgata atcatcgcaa tacaaaacct tgttaaatct accaatcgcg ttcttgtgga aacaactaat tttaatcgtc ttgaatacca tgaagaataa tgaagaataa ttgttcaacct ttcaacatct tgtaactgt ttctaactct tgaacactat</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtgacatctg atatgttcaa tatggatcat accgtgtctt caatattcaa tgtggtgcta gcatcttcga gcatcttcga	construct gtgtattcgg attcataatc atataaagtt gccctaacca tattagattg tattcttttc tatgttcctc gtactaccg gtactaccgt taaatggtga tatttaatgc aaccacctat	catttttgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct ttccggtatt ttgttcataa agcacgtttg gattgcttca aastgtgttt tgaaactagt aaattcatat	60 120 180 240 300 360 420 480 540 660 720 780
SEQ ID NO: FEATURE source SEQUENCE: 2 gacttgattt cgataataat agcacctcta tgttttcat gtattacctt aaaagcgcag tttggcaaac tgagctaatg ttaatgtttca tcatatgatc gtaataccat aatcctaagt gcatcagctt ctatcttca	22 catcaacaat tcgcaccaat aatgctcaca ataaatcacg cagattgcca tatgttctag ttcgttgac catgtgtaag catctgaaaa cattgtgcat atagtttaaa ggcatctgt aatcttgaag	<pre>moltype = Location/G 12775 mol_type = organism = tgcaccgata atcatcgcaa tactaaaacct tgttaaatct accaatcgcg ttcttgtgga aacaactaat tttattcgtc ttgaatacca tggaagaataa tgttcaacct ttcaacatct tgtacctgct ttcacttttaac tgtacctgct ttctattcttaa</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtacatctg atatgttcaa tatggatcat accgtgtctt caatatttgcag tgtggtgcta gcatattctag gcatatgctt aatggtgata gcatatggtgata gcatatggtgata	construct gtgtattcgg attcataatc atataaagtt gcctaacca tattgattg tattctttc taagttcctc taaattagg cttcttcatc gtactactcg taatatggtg tattcttaatgc aaccacctat taccatgtca	catttttgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct ttccggtatt ttgttcataa agcacgtttg gattgcttca aatgtgtttt tgaaactagt aaattcatat aatatctgta	60 120 180 240 300 360 420 480 540 660 720 780 840
SEQ ID NO: FEATURE source SEQUENCE: gacttgattt cgataataat agcacctcta gtattacctt aaaagcgcag ttgggctaatg ttaatgtttca tcatatgatc gtaataccat gcatcagctt ctatctttca taatattgct	22 catcaacaat tcgcaccaat ataatcacg cagattgcca tatgttctag tatgtgccga tttcgttgaa catgtgtaag ctactgaaaa cattgtgcat atagttcaat aggcatctgt aatcttgaag ctactgaaa	<pre>moltype = Location/(12775 mol_type : organism : tgcaccgata atcatcgcaa tactacgcaa tactatcgcg ttcttgtgga aacaactaat tttattcgtc ttgaatacca tgaagaataa tgttcaacc ttcaacatct tgtacacct ttcactct tgtacctgct tcttettca tctttataa</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtacatctg atatgttcaa tatggatcat accgtgtctt caatatttgcag tgtggtgcta gcatcttcga gcatcttcga gcatcttcga gatggtgtata gatggtgtata	construct gtgtattcgg attcataatc atataaagtt gccctaacca tattagattg tattctttc tatgttcctc gtactaccgt taaattggtga tattattaatggtga tattattattg taccatgtct aaccacctat	cattittgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct ttccggtatt ttgttcataa agcacgtttg gattgcttca aatgtgtttt tgaaactagt aattcatat aatacccc	60 120 240 360 420 540 600 660 660 720 780 840 900
SEQ ID NO: FEATURE source SEQUENCE: gacttgattt cgataataat agcacctcta tgttttacctt aaaagcgcag tttggcaaac tgagctaatg ttaatgtttca tcatatgatt gcatcagct gcatcagct ctacttttca taatatggct atatgtttca	22 catcaacaat tcgcaccaat atagctcaca ataatcacg tatgttctag tatgtgccga tttcgttgca catgtgtaag ctactgaaaa cattgtgcat atagtttaaa ggccatctg aactttgaag ctactgaaa	<pre>moltype = Location/(12775 mol_type = organism = tgcaccgata atcatcgcaa tactacgca tactatcgca tcttgtgga aacaactaat tttattcgtc ttgaatacca tgaagaataa tggacacaac tgaacaactat tgtaccacct ttgaactgct ttcttettca tcttettctaa tactatcgc</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtacatctg atatgttcaa tatggatcat accgtgtctt caatattcag tgtggtgcta gcatcttcga gcatatgcta aatggtgata gatgggacgtt ggtggtgcat taaatggacgtt	construct gtgtattegg atteataatc atataaagtt gcectaacca tattagattg tattetttte tatgtteete gtactacegt taaattaggtga tattataatge aaccacctat taccatgtet aagceataaca atetteate	cattittgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct ttccggtatt ttgttcataa agcacgtttg gattgcttca aatgtgtttt tgaaactagt aaattcatat aatatccgta taatacccc tgcttcaatg	60 120 240 360 420 480 540 600 660 720 780 840 900 960 960
SEQ ID NO: FEATURE source SEQUENCE: 2 gacttgattt cgataataat agcacctcta tgttttacctt aaaagcgcag tttggcaaac tgagctaatg tcatatgttca tcatatgatc gtaataccat gcatcaagt gcatcagctt ctactttca taatatggct	22 catcaacaat tcgcaccaat aatgctcaca ataatcacg tatgtgccga tatgtgccga tttcgttgac catgtgtaag ctactgaaaa cattgtgcat atagtttaag gtcatctgaag ctattgtcatg atcttgaag ctattgtacac ttcattgataa	<pre>moltype = Location/G 12775 mol_type = organism = tgcaccgata atcatcgcaa tacaaaacct tgttaaatct ttcttgtgga aacaactaat tttattcgtc ttgaatacca tgaagaataa ttgttcaacca ttgtacatgct tcttettct tgtacctgct ttcttettca tctttataa taccatctt tgtacctgct</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtggacatt caatattcaa tattgtcaa tattgtcaa tatggtgcta gcatcttcga gcatcttcga gcatatgctt aatggtgata gatgggcgtat taaatggtgata gatggacgtt ggtgtgccat taaatgaatt	construct gtgtattcgg attcataatc atataaagtt gccctaaccg tattdgttcctc taagttcctc gtactaccgt tattattagg gtattcatc gtactaccgt taaatggtga tattcattg aaccacctat taccatgtct aagccataac atcttcatg	cattittgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct ttccggtatt ttgttcataa agcacgtttg gattgcttca aatgtgtttt tgaaactagt aaattcatat aatactgta taataaccc tgcttcaatg acgtacgt	60 120 180 240 360 420 480 660 720 780 840 900 960 1020
SEQ ID NO: FEATURE source SEQUENCE: 2 gacttgattt cgataataat agcacctcta tgttttcat ttggcaaac ttggcaaac ttggcaaac tgagctaatg tcatatgttca tcatatgatc gtaataccat aatcctaagt gcatcagctt atattttttag taatatgct	22 catcaacaat tcgcaccaat aatgctcaca ataatcacg cagattgcca tatgttctag tatgtgccga tttcgtgacg catgtgtaag ctatgtgcat atagtttaaa ggtcatctgt aatcttgaag ctatgtcact tcattgtacat	<pre>moltype = Location/G 12775 mol_type : organism : tgcaccgata atcatcgcaa tacaaaacct tgttaaatct accaatcgcg ttcttgtgga aacaactaat tttattcgtc ttgaatacca tgaagaataa ttgttccaacct ttcacactct tgtacctgct ttcttcttataa taccttcctt tgtatatgtg aacaaccgtgt</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtacatctg atatgtcaa tatggatcat accgtgtctt caatattcaa gcatcttcga gcatcttcga gcatatgctt agatggacgtt ggtgtgccat taaatgaatt tgtacgaatt ccaaattaa	construct gtgtattcgg attcataatc atataaagtt gccctaacca tattagattg tattcttttc tatgttcctc taaattagg gttcttcatc gtactaccgt tacataggtga tatttaatgc aaccacctat taccatgtc aagccataac atctttcatg	cattittgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct ttgttcataa agcacgtttg gattgcttca aatgtgtttt tgaaactagt aattcatat aatatctgta taataaccc tgcttcaatg acgtaacgtc accgttctce	60 120 180 240 300 420 480 540 660 720 780 840 960 1020 1020 1020
SEQ ID NO: FEATURE source SEQUENCE: gacttgattt cgataataat ggacctcta tgtttttcat gtattacctt aaaagcgcag ttgggctaatg ttaggtttca tcatatgatc gtaatacctag catcagctt ctatctttca tattttttag taatatggct attatttttag taatactggt taatactag	22 catcaacaat tcgcaccaat taggtcaaca ataaatcacg cagattgcca tatgttctag tatgtgcgtga catgtgtaag ctactgaaaa cattgtgcat atagtttaaa ggcatctgt aatcttgaag ctattgaag ctattgaag ctattgaag ctattgaag ctattgaag	<pre>moltype = Location/G 12775 mol_type = organism = tgcaccgata atcatcgcaa taccaatcgcag ttcttgtgag aacaactaat tttattcgtc ttgaatacca tggaagaataa ttgttcaacc ttcaaccgct ttcttcttca tcttcttca taccatcgt ttcttcttca tgaacactat tgtacctgct ttcttcttataa taccttcctt tgaatacct tgaacaccgtgt tttcaatct</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtacatctg atatgttcaa tatggatcat accgtgtctt caatattcaa tattttgcag tgtggtgcta gcatatgctt aatggtgtgtat gatggtgcat taaatgatgatt taaatgatt taaatgatt taaatgatt taaatgatt	construct gtgtattcgg attcataatc atataaagtt gccctaacca tattagattg tattctttc tatgttcctc gtactaccg tactacgtga tatttaatgc aaccacctat taccatgtct aggcttacttc aggcttactt aggtggttc	cattittgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct ttccggtatt ttgttcataa agcacgtttg gattgcttca aatgtgtttt tgaaactagt aaattcgta taataacccc tgcttcaatg acgtaacgtc accgttctcc tgcttcatataaa	60 120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140
SEQ ID NO: FEATURE source SEQUENCE: gacttgattt cgataataat agcacctcta gtattacctt aaaagcgcag ttggctaatg ttggctaatg tcatatgtttca tcatatgatc gcatcagctt ctatctttca taatattgtt catatgtcta tcatatggct aatacttgat gcatcagct tcatatggtg aatacttgat taatgttgatgat	22 catcaacaat tcgcaccaat atagctcaca ataatcccg tatgttctag tatgtgccga tttcgttgac catgtgtaag ctactgaaaa cattgtgcat atggtcat atggtcat atgttcag gtcatctgaaa cattgtgcat atgttcac gtcatctgaag ctatgtcact tcatggtaag ctatgtcact	<pre>moltype = Location/(12775 mol_type : organism : tgcaccgata atcatcgcaa tactacgca tactatcgcg ttcttgtgga aacaactaat tttattcgtc ttcaacatcac tgaagaataa tggtcaaccac tgaagaataa tgttcaacac tgtacaccgct ttcttettca tactettett gtatatgt gaacaccgtgt tttcaatct tgtaatgtg aacaaccgtgt</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtacatctg atatgttcaa tatggatcat accgtgtctt caatattca gcatcttcga gcatcttcga gcatcttcga gcatcttcga gcatggtgtat agtggggcat tgagggcgtt tgaagaatt cctaaattaa tcttcaatga	construct gtgtattcgg attcataatc atataaagtt gccctaacca tattagattg tattctttc tatgttcctc gtactaccgt taaattggtga tatttaatggtga tattattaatg caccatgtc aaccacctat taccatgtct agggttacttc agggttactt cagatgtgttt cattccatgg ctacttcatg	cattittgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct ttccggtatt ttgttcataa agcacgtttg gattgcttca aatgtgtttt tgaaactagt aaattcatat aatatctgta taataacccc tgcttcaatg acgtaacgtc ctgctaataa agcccgatta	60 120 180 240 360 420 600 660 660 660 660 660 840 900 960 1020 1080 1140 1200
SEQ ID NO: FEATURE source Sequence: gacttgattt cgataataat agcacctcta tgtttttca tgattacctt aaaagcgcag tttggcaaac tgagctaatg tcatatgtttca tcatatgtttca tcatatgtttca tcatatgtttca taatgtttca tcatatggct atacgttttttttag taatacttttttag taatacttttttag taatacttgtg taatacttggtgca ataccttgat attgatggat ataggttca	22 catcaacaat tcgcaccaat atggtcaca ataatcacg tatgttctag tatgtgccga tttcgttgca catgtgtaag ctactgtaag ctactgtaaa ggtcatctg aacttgaaa cattgtcact tcatgtaag ctatgtcact tcatgtaag ctatgtcact tcatgtaag ctatgtcact tcatgtaag ctatgtcact tcatgtaag ctatgtcact tcatgaaa attatcttg ctatggaa ctattggaa	<pre>moltype = Location/(12775 mol_type = organism = tgcaccgata atcatcgcaa tactatcgca tactatcgcg ttcttgtgga aacaactaat tttattcgtc ttgaatacca tgaagaataa tggacataat tgtaccacct tgtacctgct ttcttettca tccttettcaa tactatcgt ttcttatagg aacaccggt ttcttatagt gaacaccgtgt ttctaatact</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtacatctg atatgttcaa tattgtcaa tattgtca tattgtca gcatattcga gcatattcga gcatattcga gatggtgcta ggtgtgcat tgacagtt tgtacaatta acgtgtata gatggacgtt tgtacaatat caaataata atgtgata gatggtgcaa tatttgtacaat tgtacaata tattacaatgaat tgtacaattaa tctcaaataa	construct gtgtattcgg attcataatc atataaagtt gccctaacca tattagattg tattettttc tatgttcctc taaattaggtga tattaatgg gtactaccgt taaatggtga tattcattcatg cgcttacttcatg cgcttacttag gcgcttactta aggcgttactta agatgtgttt catcccatgg catcatcg catcatcatg	cattittgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct ttccggtatt ttgtcataa ggatggtttt tgaaactagt aaattcatat aatatctgta taataacccc tgcttaataa agcctgatta ttgctacaat	60 120 180 240 360 420 480 540 660 660 720 780 840 900 960 1020 1080 1140 1200 1200
SEQ ID NO: FEATURE source Sequence: gacttgattt cgataataat agcacctcta tgttttacctt aaaagcgcag tttggcaaac tgagctaatg tcatatgatc gtaataccta gcatcaget gcatcaget attcttttag taatatggct atttttttag taatactag tatggttgca atccttggt atttttttag taatactag tatggttgca ataccttgat atacctggt attggttgca	22 catcaacaat tcgcaccaat aatgctcaca ataatcacg tatgtgccga tatgtgccga tttcgttgac catgtgtaag ctactgaaaa cattgtgcat atagttcaag gtcatctgaag ctattgacat atagttaag ctattgacat atagttaag ctattgacat catgtgcact tcattgataa ctatgtcacct tcattgataa ctatgtcacct tcattgataa ctatgtcacct tcattgataa ctatgtcacct tcattgataa	<pre>moltype = Location/G 12775 mol_type = organism = tgcaccgata atcatcgcaa tacaaaacct tgttaaatct ttgtaatctgt ttcttgtgga aacaactaat tttattcgtc ttgaatacca tgaagaataa ttgttcaacca ttcttcttca ttcttcttca tcttcttctaa tacttcctt tgtatatgt gaacaacgtgt ttcaacact</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtggacatt accgtgtctt caatattcaa tattggtgata gcatcttcga gcatcttcga ggtgtgccat tgaaggacgtt ggtgtgccat tgtacactta ataggacgtt ggtgtgccat tcaaatgaatt accggaatt accggaatt gatggacgta accggaatt	construct gtgtattcgg attcataatc atataaagtt gccctaacca tattgttcctc tatgttcctc taaattagg gttcttcatc gtactaccgt tacatggtga tattettaatg caccacctat taccatgtct aagcgttacttc aggtggttt cattccatg gcttactcatg gcttacttcatg cgcttacttcatg cgcttacttcatg cgcttacttcatg cgcttacttcatg cgcttacttcatg cgcttacttcatg cgcttacttcatg cgcttacttcatg cgcttacttcatg catcccatggtttt	cattittgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct ttccggtatt ttgttcataa agcacgtttg gaatgcttca aatgtgtttt tgaaactagt aattcatat aatatctgta taataacccc tgcttcaatg acgttacgtc accgttccc tgctaataaa agcctgatta ttcattgatt	60 120 180 240 300 420 480 660 660 720 780 840 960 1020 1020 1020 1140 1200 1260 1320
SEQ ID NO: FEATURE source SEQUENCE: 2 gacttgattt cgataataat gcacctcta tgtttttcat gtattacctt aaagcgcag ttggctaatg tcatatgatc gtatcatgatc gcatcagett ctatctttca taatattggt taatattgtt taatattgtt taatattgtt aatacttgat gcatcagett attctttag taatactatg tctggttgca ataccttgat atacgatgat atagatgat ataggttcat	22 catcaacaat tcgcaccaat aatgctcaca ataatcacg cagattgcca tatgttctag tatgtgccga ttcgtgaag ctactgaaaa cattgtgcat atagtttaaa ggtcatctgt aatcttgaag ctatgtacact tcattgataa attatcttg ctactggaa ctatgtcact tcattggaa ctatgtcact tcattgataa	<pre>moltype = Location/G 12775 mol_type : organism : tgcaccgata atcatcgcaa tacaaaacct tgttaaatct accaatcgcg ttcttgtgga aacaactaat tttattcgtc ttgaatacca tgaagaataa ttgttcaacct ttctctttat accatcgtg ttcttgtagga aacaactaat ttgtacctgct ttctatcgtc ttctattata tgtactgtg aacaccgtgt tttcaatct tggataatgt gaataaaatt tggattaatgtg gaataaaatt tggtttaatgtg</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtacatctg atatgtcaa tatggatcat accgtgtctt caatattcaa gatggtgcta gcatcttcga gcatatgctt aggggggcaat tgacagaatt tgtacgaatt cctaaataa tcttcaatga tagtacactaa tatggacgt gatggacgt gatggacgt taaatgaatt cctaaataa tcttcaatga tagtacactcgga accggcacat taacggcacat	construct gtgtattcgg attcataatc atataaagtt gccctaacca tattgttcctc tatgttcctc taagttgtcctc gtactaccgt tactatggtga tatttaatgc aaccacctat taccatgtc aggttacttc aggtggtt tatcttcatg gcttacttcatg cgcttactt aagtgggtt cattcatgg gcttacttcatg cgcttactt aagtggttt cattccatgg ctaattgtg aaccatccag ctaattgtg aaccatccag ctaattgtg ctaattgtg aaccatccag	cattittgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct ttgttcataa agcacgtttg gattgcttca aatgtgtttt tgaaactagt aattcatat aatatctgta taataacccc tgcttcaatg acgtaacgtc accgttctcc tgcttaataa agcctgatta ttcattgat ttcattgat	60 120 180 240 300 420 480 540 660 720 780 840 960 1020 1020 1020 1140 1200 1260 1320 1380
SEQ ID NO: FEATURE source SeQUENCE: gacttgattt cgataataat agcacctcta gtattacctt gtattacctt gtattacctt gtaggtaata tcataggttca tcatatgatc gtaataccat gcatcagctt ctatctttca taatattggt taatattggt gcatcagctt atatatggt taatacttgat ataccttgat ataccttgat ataccttgat ataccttgat ataccttgat catacctgat catacctgat catacctgat ataccttgat atacgacgtc	22 catcaacaat tcgcaccaat ataatgctcaca tatgttctag tatgtgccga tttcgttgca catgtgtaag ctactgtaaag ctactgtaaag ctactgtaaag gtcatctgt aatgttcact tcatgttcact tcatgtgcat atgtctacag catgttcact tcatgtgcat catgtcaca catcacc catgacacac catgacacac catgacacac	moltype = Location/(12775 mol_type : organism : tgcaccgata atcatcgcaa tactacgcaa tactatcgca tcttgtggg aacaactaat tttattcgtc ttcaatcatc tgaagaataa tgttcaacc ttcaacatct ttcttcttca tcttcttctaa taccttctt tgtaatacg aacaaccgtgt tttcaatct tgtaatatg aacaccgtgt tttcaatct tgtaatact gaataaaatt gctaataca gaataaaatt	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actuitac actuitac atatgtcaa tatggatcat accgtgtctt caatattcaa tattttgcag tgtggtgcat gcatcttcga gcatcttcga gcatatgctt daatggacgtt ggtgtgccat taaatgaatt cctaaataa tcttcaatga ttagtaacgc tcaatcgtcat tgtaggacgtt ggtgtgccat taacggacgtt ggtgtgcaat tagtagacgt tgaaataa tcttcaatga ttagtaacgc tcaatcgtagt taacggcacat	construct gtgtattcgg attcataatc atataaagtt gtattctttc tatgttcctc gtactaccgt tataatgtgg gttcttcatc gtactaccgt taaatggtga tattaatggtga tattcattcatc aaccacctat taccatgtct aagtgtgttt cattccatgg ctattctcatg ggttacttc agatgtgttt cattccatgg ctacttccatgg ctacttccatgg ctacttccatgg ctacttccatgg ctacttccatgg ctacttccatgg ctacttccatgg ctacttccatgt ctattccatgtctt agatgtgttt catccatgtcttc aaccactcat	cattittgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct ttccggtatt ttgttcataa agcacgtttg gattgcttca aatgtgtttt tgaaactagt taataacccc tgcttcaatg acgtaacgtc acgtactcc tgctaataa agcccgatta ttcatgata ttcatgaa ttcatgaa agctgataa agctgataa	60 120 180 240 300 360 420 600 660 660 660 960 1020 1020 1020 1080 1140 1260 1320 1380 1440
SEQ ID NO: FEATURE source Sequence: gacttgattt cgataataat agcacctcta tgattacctt aaaagcgcag ttggctaatg ttggctaatg tcatatgttca tcatatgatc gcatcagctt ctatctttca taatatgttca tcatatggtca aatcctagt tcatactttca taatatggtca ataccttgt taatacttg taatacctag tcatacttgat aatccttgat aatccttgat aatcgatgat aatgatcagctt caatagacgtc aaatgactgg ctgattaatc	22 catcaacaat tcgcaccaat atggtcaca ataatcacg tatgttctag tatgtgccga tttcgttgac catgtgtaag ctactgaaaa cattgtgcat atggtcat atgttcact tcatgtgaag ctactgaaaa ggcatctgt aatcttgagaa attatcttg ctatgggaa ctaatattgg ctaatattgg ctaatatcg ctaatattgg actaatatcg atcaatatca attacttag atcaatatcaa attacttag atcaatatcaa attactaaa attacttag ctaatattag ctaatattag ctaatattag ctaatattag ctaatattag atcaatatag aaccaacaa gaatcaaaa attacaacaa	moltype = Location/(12775 mol_type : organism : tgcaccgata atcatcgcaa tacatacgca tcttgtgga aacaactaat tttattcgtc ttgaatacca tgaagaataa tggtcaaccgt ttcttettca tgtactectt tgtactgt tgtatatgt aacaccgtgt tttcaatctc ttgaatatg agaataaatt ggattaatgt gaataaaatt tggttaatgt tgaatatat	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtacatctg atatgttcaa tatggtcat caatattca gcatcttcga gcatcttcga gcatcttcga gcatcttcga gcatcttcga gcatcttcga gcatcttcga tgtgtgtgcat tgtaggacgtt tgtagacgtt aatggtgata accggtacat accgatatgctt taatggacgtt tgtagacgtt tgtagtgcat taatgaatt cctaaattaa tcttcaatga ttagtaacgc tcaatcggta accggcacctg attagacga	construct gtgtattcgg attcataatc atataaagtt gccctaacca tattagattg tattcttttc tatgttcctc gtactaccgt taaatggtga tatttaatgc aaccacctat taccatgtct aaggcgttacttt aggtgtgttt cattccatgg ctattcatg cgcttacttag agccataac accacctat taccatgtct aagtgtgttt cattccatgg ctaattgtg aaccacctagt ctattcatgg cgcttacttt agagtgttt cattccatgg ctaattgttg aaccactcaga ctagttttc	cattittgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct ttccggtatt ttgttcataa agcacgtttg gattgcttca aatgtgtttt tgaaactagt aatatcctgta taatacccc tgcttcaatg acgtaacgtc accgttccc tgctaataa agcctgatta ttcattgatt ttcattgat ttcattgat attcattga ttcattga ttcattga ttcattga ttcattga ttcattga ttcattga ttcattga acgttaacgtc accgttaacga ttcattga ttcattga ttcattga attcattga attcattga	60 120 180 240 360 420 480 540 600 660 720 780 840 900 960 1020 1020 1080 1140 1200 1320 1380 1440 1500
SEQ ID NO: FEATURE source Sequence: gacttgattt cgataataat agcacctcta tgtttttcat tgttttcat tgatgctaatg ttggctaatg tcatagtttca tcatatgatc gcatcagct gcatcagct tatggttgca tatggttgca tatggttgca tatatgtttta tatatatggct atatatggtg taataccttgat atacctagt ctagttgca tatggtggat atagacgttc aatgacgtc atagacgtc atagacgtc atagacgtc atagacgtc atagacgtc ctacctcgat atagacgtc atagacgtc ctacccag tattaaccag tattaaccag	22 catcaacaat tcgcaccaat atggtcaca ataatcacg tatgttctag tatgttctag tatgtgccga tttcgttgcat atggtgcac catgtgtaag ctactgaaaa ggtcatctg aatcttgaag ctatgtcact tcatgtcact tcatgtaag ctatgtcact tcatgtaag ctatgtcact tcatgtaag ctatgtcact tcatgtaag ctatgtcact tcatgtaaa attatcttg ctctgggaa ctattatttg ctcatgaaat ctaattcacc ccaatcaacc gaatcataac caatcaacac ctttgtaaa	<pre>moltype = Location/G 12775 mol_type = organism = tgcaccgata atcatcgcaa tacaaaacct tgttaaatct ttgttaaatct ttgatatgg ttgaatacaa ttgttcaaccatct tgtacctgct ttcttcttcaa ttctttattcgtc tgtacctgct ttcttcttcaa ttctttataa taccttcctt gaacaccgtgt ttctaatgt gaacaacatat tggaataaatt tggaataaa tggaataaatt tggaataaaatt tggaataaaatt tggaataaatt tggaataaatt tggaataaatt tggaataaatt tggaataaatt</pre>	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtacatctg atatgttcaa tattgtcaa tattttgcag tgtggtgcta gcatcttcga gcatatgctt aatggtgata ggtgtgccat tgacgacgtt tgtagaacgtt gtaggacgtt gcatataat accggcacat accggcacat accggcacat taatggtgata gatggacgtt tgtaggacgtt gtaggacgtt tgtagtaca taatataa accgtgtaa accgtgtaa taatataa accgtgtaa taatataa accggcacat tcaataa tcaataa tcaataa tcaataa tcaataa tcaataa tcaataa tcaataa tcaataa tcaataa tcaataa tcaataa tcaataa tcaataa tcaataa tcaataa tcaaataa tcaaataa tcaataa tcaataa tcaataa tcaataa tc	construct gtgtattcgg attcataatc atataaagtt gccctaacc tattgttcctc tatgttcctc taaattggtga tattcattaatgc aaccacctat tacatgtgtc aaggtgttt aggtgtgtt cattccatg ctattcatg ctcttcatc gtactaccgt tacatgtttta aggtgtgtt catcccatgc ctaattgttg aaccatctca catgttttcc aaccactta tacatgttttc	cattittgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct ttccggtatt ttgtcataa agcacgtttg gattgcttca aatgtgtttt tgaaactagt aatatcatgt taataacccc tgcttcaatg acgttctcc accgttctcc tgctaataaa agcctgatta ttcattgatt tttaacctca atttaatgac	60 120 180 240 360 420 480 540 660 660 720 900 960 1020 1080 1140 1200 1260 1380 1440 1500 1560
SEQ ID NO: FEATURE source Sequence: gacttgattt cgataataat agcacctcta tgttttacctt aaaagcgcag tttggcaaac tgagctaatg tcatatgatc gtaataccat gcatcaget ctatctttca taatatggct aatggttgca atcctggttgca atttttttag taatactaget ctaccttga atacctagat atacgacgat atacacacgat acaatgacagat atacacacacg ctaatgacagat atacatcacacacacag atacatcacacacacacacacacacacacacacacacac	22 catcaacaat tcgcaccaat aatgctcaca ataatcacg tatgttctag tatgtgccga tttcgttgac catgtgtaag ctactgaaaa cattgtgcat atagtttaag gtcatctg aatcttgaag ctatgtcact tcattgataa ctatgtcact tcattgataa ctatgtcacc tcattgataa attatctttg ctcctggaa ctaatatcg ctaatatcg ctaatatcg aatcatcaac caatata cataatacc caatata caatatcaac caatataa ctaatatca ctaatataa ctaatatca ctaatataa ctaatatca ctaatataa ctaatatcaac caatataa caataataa caataataa caataaa caataaaaa caataaaaa caataaaaaaaa	moltype = Location/G 12775 mol_type = organism = tgcaccgata atcatcgcaa tacaaaacct tgttaaatct ttgttaaatct ttgatactgcg ttcttgtgga aacaactaat tttattcgtc ttgaatacca tgaagaataa ttgttcaacca ttcttcttca ttcttcttca ttcttcttca ttcttcttca ttcttcttca tctttatagtg aacaaccgtgt ttcaacacgtg ttcaatact tgtaatagtt gcctaataca gaataaaatt tggttaaatgt agaataaatt tggttaattc	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtacatctg atatgttcaa tatggtcat gcatattca gcatattca gcatatgct taatggtgata gcatcttcga gcatatgctt taatggtgcat tcaaatgaatt tgtacgaatt ctcaaataa tcttcaatga tcttcaatga accggcacat tcaatcggta accggcacat tcaatggtgat accggcacat tcaatggtgat accggcacat tcaatggtgat accggcacat tcaatggtgat accggcacat tcaatggtgat attagtacgga attagatggtc attagcggcacat	construct gtgtattcgg attcataatc atataaagtt gccctaacca tattgttcctc tatgttcctc taaattaggtga tattctttc taaatggtga tatttaatgc aaccacctat taccatgtct aagtgtttt cattccttcatg gcttacttcatg cgcttactt aggtgttt tacatgtct aagtgtttt cattccatg ctattcatg catctccatg cgcttacttc aggtgtttt catcccatgttg aatcattcca catgttttc aatcatcgact catgttttc	cattittgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct ttccggtatt ttgttcataa agcacgtttg gattgcttca aatgtgtttt tgaaactagt aatatcatat aatatctgta taataacccc tgcttcaatg acgtaacgtc accgtactca tgctaataaa agcctgatta ttcattgatt tttaacctca agctgttcaa ttcattaggat	60 120 180 240 300 420 420 480 660 720 780 840 960 1020 1080 1140 1200 1260 1320 1320 1320 1340 1550 1560
SEQ ID NO: FEATURE source SEQUENCE: gacttgattt cgataataat agcacctcta gtattacctt gtattacctt gtattacctt gtagcacacg traggctaaac tgagctaatgatc gtatatgatc gtatcagett ctatctttca tattttttta atacttgatggt taatactag tctggttgca ataccttgat ataccttgat ataccttgat gtatacctg tataccttgat atacgacgtc atagggtta atacgacgtc atagggtta atagggtt atagggtt ataggttca atagacgtc gtgattaatc cctacccatg tactactag gtattaatag gtgattaata	22 catcaacaat tcgcaccaat atagtccaca tatgtccac tatgtccac tatgttctag tatgtgccga tatgttctag ctactgtgaag ctactgtaaa gtcattgtgat atgttcaa ggtcatctgt aatcttgagaa ctattggaa ctattggaa ctattggaa ctattggaa ctattggaa attatctttg ctcatggaa ctattggaa attatctttg ctaaattcc tccaatcaac gaatcatatg aatcgaaaat atacttgaaaat atacttgaaaat atacttaaatcaac ttttgtaaa	moltype = Location/(12775 mol_type = organism = tgcaccgata atcatcgcaa tactacgcaa tactacgcag tcttgtgga aacaactaat ttgatacca tgaagaataa ttgttcaacc ttcaacatct tgtacacc ttcaacatct tgtactgct ttcttttataa taccttctt tgtaatgtg aacaccgtgt tttcaatct tggaataaa tggttaatg gaataaaatt tggttaatg tggattaatg tagaatcaat tagaatcaat tagaataaatt tggttaatg	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac tgtacatctg atatgtcaa tatggatcat accggggtacat gcatattcaa tattttgcag tgtggtgcat gcatatgctt aatggtgtaa gcatatgctt aatggtgtgcat taaatgaatt cctaaattaa tcttcaatga ttagtagacgtt gtagtgccat taacggcacat taacggcacat taacggcacctg atcagcgga acatctcgt	construct gtgtattcgg attcataatc atataaagtt gccctaaatt gccctaagttg tattctttc tatgttcctc gtactaccg ttataattggtga tattaatggtga tattaatggtga tactaccgt taacatgtct aaccacctat taccatgtct aggtggttt cattcattg gattcttcatc gtactaccgt tacatgtgtt catcctcgac tg atcattccatgg ctaattgtg atcattccatgg ctaattgttg aaccactcgac cttcgacttg accatgttcc cgccttcaatt cggggtcta	cattittgga attgtcataa tttatactga gattgatacct ttctttaatt gattaaacct ttcggtatt ttgttcataa agcagtttg gattgcttca aatgtgtttt tgaaactagt aatatcatat aatatcgta taataacccc tgctaataaa agcctgatta ttcattgat tttaacca agctgttaca atttaatgca agctgttaca ttcattcta	60 120 180 240 300 360 420 600 660 660 660 960 1020 1020 1020 1020 1080 1140 1260 1320 1320 1320 1380 1440 1560 1620 1620
SEQ ID NO: FEATURE source SeQUENCE: gacttgattt cgataataat agcacctcta tgattacctt aaaagcgcag ttgggctaatg ttaggctaatg tcatatgttca tcatatgatc gcatcagctt ctatctttca taatattggt taatacttgat attcggttgca ataccttgat attgatgatgat atagacgtta atgacctcg taatagacgtg taatagacgtg taatagacgta aaaagactgg ctaatttaacaag tccaccatg tattaacaat gcatcaagctt atttaacaag tccaccatg tattaacaat tccaccatg tattaacaacat gcataatgtaa aaaagttaa tcccacaca	22 catcaacaat tcgcaccaat atgatcaca ataatcaca tatgtccaa tatgtccaa tatgtgccga tttcgttgaag ctactgtaag ctactgtaag ctactgtaag ctactgtaag ctatgtcat atgtctaa gtcatctg catatgtcact tcatgtgaag ctatgtcact tcatgtgaag ctatgtcact tcatgataag ctatgtcact tcatgataag attatcttg ctactggaa attatcttg ctaaattccg cacaactag cacaactaat gaaccaaca gaatcatatg aatcgaaaat atggtgccca cttgtataa	moltype = Location/(12775 mol_type : organism : tgcaccgata atcatcgcaa tacataacct tgttaaatct accaatcgcg ttcttgtgga aacaactaat tttattcgtc ttcaacatcat tgtaagaataa tggtcaacca tgtacaccgt ttcttettca tacttetttaa tacttett tgtaatatgt aacaccgtgt tttcaatctc ttgtaatgt gaataaaatt ggataaaatt tggttaaatg tggattaatg tggatcaat gaataaaatt tagttaatgt tacatgattc atggattaatg ttgaatcat tacatatggt ttgaatct	DNA length Qualifiers = other DNA = synthetic aataatggat acaactttac actggcgtat tgtacatcttac actggcgtat caatattcaa tatggatcat gcatcttcga gcatcttcga gcatcttcga gcatcttcga gcatcttcga gcatatgctt tgaaggacgtt ggtgtgccat tcaatagaat cctaaatgaat tcaatagaat cctaaatga ttagtacac tcggcacct taacggcacat tcagtcgt tcggcacctg attagcgca actctcgt tcggcacctg attagcgca acatctccgt tcaatcgtcgt	construct gtgtattcgg attcataatc atataaagtt gccctaacca tattagattg tattctttc tagttcctc gtactaccgt taaatggtga tattaatggtga tattcattcatc gtactaccgt taacatgtct aagccataac accatgtct cagtcttcatc gggttacttt cagtgtgttt cattccatgg ctaattgtg catcattca agatgtgttt catcatccga catgttttc aaccatgttg catcatccga catgttttc aaccatgttg cgccttcaat cggggtcat	cattittgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct ttccggtatt ttgttcataa agcacgtttg gattgcttca aatgtgtttt tgaaactagt aattcatat aatatcdga tactaaccc tgctaataa agcctgatta ttcatgatt tttaacctca agctgttcac tgctaatgac ttcatcgta ttcatcgta ttcatcgta ttcatcgta ttcatctca acgtttccc tgctaataa agcctgatta ttcatccta catatatgca acgtttccca ttcatctcta ttcatcgtt ttcatcgtt	60 120 180 240 300 360 420 600 660 660 660 720 780 840 900 960 1020 1020 1020 1140 1200 1320 1320 1320 1380 1440 1500 1560 1620 1680 1740
SEQ ID NO: FEATURE source Sequence: gacttgattt cgataataat agcacctcta tgattacctt aaaagcgcag tttggcaaac tgagctaatgatc gtatagtttca tcatatgatc gcatcaagtt ctatctttca taatatggtca atcctagtg taatacctagt tctggtgca ataccttgat attgatggat aatgacgtg ctgattaaccat gtatacctagt tatggtgca ataccttgat attgatgat atcggtgca ataccttgat attgatgat atcatatgatgat atagacgttc caaatgactgg ctgattaaccatg tattataccatg tattacacatg tattatacatg tctaccacatg tattatacatg tattaacatgat aaaagttaa atcctaagt	22 catcaacaat tcgcaccaat ataatcaca ataatcaca tatgtccaa tatgtccaa tatgtgcca tttcgttgaa catgtgcaa catgtgcaa gtcatctgaaa ggcatctg aatcttgaaa attacttgaaa attacttgaaa attacttggaa ctatggaaat ctatggaaat ctatggaaat ctatggaaat ctatgtaaa attacttg ctactgaaa attacttg ctatggaa ctatgtcact tcaatcac gaatcatatg cactacac gaatcatatg cactacaca ctttgtaaa atggtgcccc	moltype = Location/(12775 mol_type = organism = tgcaccgata atcatcgcaa tactatcgca tcttgtgga aacaactaat tttattcgtc ttgaatacca tgaagaataa tggagaataa tggtcaaccgt ttcttettca tcttettcta gaacaccgtgt ttctattgt gaacaccgtgt ttctattgt gaacaccgtgt ttctatatgt aacaccgtgt ttctatatgt gaataatatt tggataatgt ggattaatgt tggataatca tggataatca tggataatca tggataatca gaataaatt tggataatca tacatatgt ttgaatgatca tggataatca tgaagatca gaataatt tagataatca	DNA length Qualifiers = other DNA = synthetic aataatggat accactttac actggcgtat tgtacatctg atatgttcaa tatggtcat caatattca gcatcttcga gcatcttcga gcatcttcga gcatctcga gcatctcga gcatctcaatga ttagtacaatta accggcgcat tgtggtgccat tcaatgaatt tgtagtacagatt tgtagtacagt tgtagtgccat tcaatgat tcaatgat tcaatgat tcaatgat tcaatgat tcaatgat tcaatgat tcaatgt tcaatgt tcaatgt tcaatgt tcaatgt tcaatgt tcaatgt tcaatgt tcaatgt tcaatgt tcaatgt tcaatgt tcaatgt tcaatgt accgt tcaatgt tcaatgt accgt tcaatgt tcaatgt tcaatgt tcaatgt tcaatgt tcaatgt tcaatgt tcaatgt acctaatta tcaatgat tcaatgt tcaatgt acctaatta tcaatgta tcaatgt tcaatgt tcaatgt acctaattaa tcgatgtc attaagta tcaatgata tcaatgata tcaatgata tcaatgata tcaatgata tcaatgata tcaatgata	construct gtgtattcgg attcataatc atataaagtt gccctaacca tattagattg tattcttttc tatgttcctc taaattaggtga tattaatgg gtactaccgt taaatggtga tattcattcatg cgcttacttcatg cgcttacttatg cgcttacttt aggtgtgttt catcccatgtc aaccacctat taccatgtct agatgtgttt catccctcga ctattgtttc atcctcgacttg accactgttg ccctcgacttg accactgttg ccctcgacttg accactgttg ccctcgacttg accactgttg ccctcgacttg accactgttg ccctcgacttg accactgttg ccctcgacttg accactgttg ccctcaat cctgggtctat ctggggtctat tctggaccaat	cattittgga attgtcataa tttatactga aggtgtacct ttctttaatt gattaaacct ttccggtatt ttgttcataa agcacgttg gattgcttca aatgtgtttt tgaaactagt aatatcctgta taatacccc tgcttcaatg acgtaacgtc accgttccc tgctaataa agcctgatta ttcattgatt tttaatgca agtgttaca ttcattctct tgttaatga ttcattctt tttaagca agctgttaca ttcattctt ttgagaaagt ttcattgtt ttgagaaagt	60 120 180 240 360 420 480 540 600 660 720 780 840 900 960 1020 1020 1020 1140 1200 1320 1380 1440 1500 1560 1680 1740 1800

-continued

tgtgtaatat	cgaatagtga	atatttttct	ttcaattttc	gatattctgg	ttgcgaacgg	1920
ccagettgte	gcataaacca	aacaggtgta	tgtgatgttt	cttcaccttt	gatcatttt	1980
aaaattgtat	tgtttttatt	atgcaccata	aaggcctcct	aaattaaaat	cattettate	2040
tttaatcata	gaactattta	ttataaattt	aaattotaaa	atcattatt	ttatatcatt	2160
acttctaaat	atctcqcaaq	attcattata	qtaattttaa	tcaattatta	ataqtqqtaa	2220
tgactagttt	atcatcgtat	aataaataaa	aacataaggg	ggacctttca	tatgaagaaa	2280
ctatatacat	cttatggcac	ttatggattt	ttacatcaaa	taaaaatcaa	taacccgacc	2340
catcaactat	tccaattttc	agcatcagat	acttcagtta	tttttgaaga	aactgatggt	2400
gagactgttt	taaaatcacc	ttcaatatat	gaagttatta	aagaaattgg	tgaattcagt	2460
gaacatcatt	tgattagtge	adaccataat	ttcacaacag	aagatcatge	taaaaggtat	2520
catttattaa	gacctgctaa	aggtacaaca	tataaaattt	atttcggatt	tactaatcaa	2640
catgcatacg	aagactttaa	gcaatctgat	gcctttaatg	accatttttc	aaaagacgca	2700
ttaagtcatt	actttggttc	aagcggacaa	cattcaagtt	attttgaaag	atatctatac	2760
ccaataaaag	aatag					2775
SEQ ID NO:	23	moltype =	DNA length	n = 2222		
FEATURE		Location/G	Qualifiers			
source		12222				
		mol_type =	= other DNA			
anounnan .		organism =	= synthetic	construct		
SEQUENCE: 1	23	tagatataga	agatttagaaa	attasattaa	atatoatota	60
catctttag	gacatcaagt	aatggcgcggg	gacaaaaatg	aagattcagt	tcaaagtata	120
tctgacaagg	taacccattc	acttataqtq	gatgttactg	atgagcaagc	gttaaggtca	180
ttaggtttag	gtaactttga	tgtagcagta	gttgcaatag	gttctgatat	aagggcatct	240
ataatggcga	ctcttatage	caaagaaatg	ggtgtagagt	tgataatatg	taaggcaaag	300
gatgaattac	aagctaaagt	gctttataaa	attggcgcag	atagagttgt	atttccagaa	360
agagatatgg	gagtaagagt	tgcacacaat	ttagtttcgg	ataatatatt	agaccatatt	420
gaacttgacc	cagagtattc	aattgttgaa	atcgtaactc	caaatagttg	ggttggcaag	480
acacttatag	taaatottac	accttctcca	ratgagataa	ttacadccdd	aagtatoota	540 600
ggtataatcg	gtcaaaatac	tagtataaca	gcgataacat	ctggaaataa	gggggataatt	660
agaagaagat	aatttactat	ttaatatata	tttaattgca	atgaaagtaa	agagtatcat	720
ataattatga	atagttatat	gatactattt	ttatttaatc	gaaggtagta	tttatttgta	780
agattagata	aagagaagtt	aaattaaaag	taaggaggct	gtgctaatat	aaaaatttat	840
aagttattag	catttagata	aaatgattac	aaatataaac	agtaaggata	atgaaaagtt	900
aaagtataca	agagcactat	taaaatcaaa	gaataggaat	aaagagtcaa	agttcataat	960
tatcaatcaa	agaalaglaa	ataagaaaga	agatotaaaa	geaaacettg	attargrar	1020
aaaaaacaca	aagatataca	agactactaa	taaaaacttt	aaagaattag	tggatacaga	1140
aaatactcaa	qqaataataq	qtqtaqtttc	atttaaqaaa	aaaaaattaa	qtqaaaqtat	1200
aaataaaaaa	gataaatttg	tattgatttt	agatagaata	caagacccag	gaaatatggg	1260
gactataata	aggactgctg	attctgctgg	agtagatgcc	ataatagcac	taaagggatg	1320
tgtcgatata	tacaacccaa	aagtaattag	gtctactatg	ggttctattt	ttgatatgaa	1380
cataattgat	getteacaag	atgaaactgt	ggacatgett	aaatcattgg	atttaatat	1440
agcettooto	ataggaaacg	aaggaaatgg	aataaatgaa	gaacttotat	caaagtetga	1560
tattttqqtt	aagataccta	tatatqqtaa	agccgagtcg	ttaaatgctg	cgataagete	1620
tgctatactg	atgtatgaaa	taaaaaaata	cttaatttaa	tgtattgtaa	taaatataat	1680
gtcatgttat	aatcttgaat	taaatagtag	agtatcaaaa	atagtcaata	tatattaaaa	1740
aaataattaa	attaattata	tattagatgt	atatcatata	aaaaatgatt	gagttgatta	1800
tgtattagat	atatattata	taaaaaataa	ttgagttaat	tatgcattag	atgtatatta	1860
tataaaaaat	aattgagtta	attatgcatt	agatatatat	tatataaaaa	ataattaaat	1920
actaaaataa	acaatataat	attotaaato	gleadalaal	rugaaryyaa	ttgattaaac	2040
ttagtaaaga	gataaacacc	taggetggga	gtgttttcta	agaggtcatg	agaagttccc	2100
tctqqaqtaa	caqaqctqaa	attttacaqt	aqqctttqac	qtcaaaaacq	cqttaaqttt	2160
gttagaggtg	gtttgatgat	ttttaaattg	ttaaactact	agggtggtac	cgcgaaacta	2220
ta						2222
SEO ID NO.	24	moltype -	DNA length	n - 2530		
FEATURE	21	Location/	Dualifiers	1 = 2000		
source		12530				
		mol type :	= other DNA			
		organism =	= synthetic	construct		
SEQUENCE : 2	24					
tagacaggga	ttgaggggct	tttttatac	aaaaaacga	aagggtgata	tgtgtgcaag	60
aaaaattact	tgctttacgt	gaagcagctt	tggctgaaat	aaaagaagca	caaagcatag	120
aaagtgtaga	aagtttaaga	gttaagtact	taggaaaaaa	aggtgagata	actgccatac	180
ttaaagaaat	gggtaaatta	tctgctgaag	aaagaccagt	agttggtaag	gttgccaatg	240
aggtaagaga	aaacattgaa	cttagcataa	attctaaaaa	agaagaaata	aatgctattg	300
aaaaagaaag	aaaattaaaa	gaggaagtga	tagatgttac	tcaaccagga	aaagttttaa	360
aygttgggaa	gaagcateca	acaactcaaa	LEATAGATGA	agtaacagat	acatttateg	420 400
yaaryyyall	ullarayud	yaayyyuuaa	uayuuyayaC	uyuuyaaaaC	uaullyauy	

-continued

cattaaacgc	tcctaaagac	catccatcaa	gagatatgag	cgatacattc	tatatcaatg	540
atggggtatt	acttagaact	caaacatctc	cagttcaagt	aagaactatg	agaagtcaag	600
agttaccaat	aaaagtaatt	gcaccaggta	gatgttttag	gtcagactcg	ccagatgcta	660
cacactcacc	aatgttccat	cagatagaag	ggcttgttgt	tggaaaagat	gttactatgg	720
cagaatttaa	aggaactatg	gatatcttcg	ttgaaaaatt	gtttggttct	gatatcaaaa	780
ctaagtttag	acctcacaac	ttcccattta	cagaaccaag	tgcagaggtt	gatgttactt	840
gtttcaaatg	tggtggtaaa	ggttgcccaa	tgtgtaaata	tgaaggttgg	atagaaatat	900
taggttcagg	tatggttcat	ccaaatgtgc	ttagaaattg	tggaatagac	ccagaagttt	960
acagtggatt	tgcatttgga	gttggggttg	aaagacttgc	aatgcttaaa	tacgaaatag	1020
atgatattag	attattattc	gaaaatgata	tgagattctt	aaatcaattt	taattaggag	1080
ggtatgtaga	tgttagtatc	tttaaaatgg	cttagagact	atgttgatat	agacatggat	1140
gtaaaagagt	tcgctgataa	aatgacaatg	acaggaacta	aagttgaaac	aatagattat	1200
tatggtgaag	aaatagaaaa	tatattggtt	ggaaagattt	tagaaataaa	acaacatcca	1260
aatgctgata	agttggttgt	aactaaagta	gatattggag	ataaagttgt	tcaaatagtt	1320
acaggagcta	caaatatatc	agaaggagat	tatattccag	tagctgtaaa	tggttctaag	1380
ttacctggag	gagttgaaat	caaacagact	gatttcagag	gtgaattatc	agatggtatg	1440
atgtgttcag	cagctgaact	aggtatagat	gaacattaca	ttgaggagta	taaaagaggt	1500
ggtatatata	ttttagacca	cgaagattct	tatgaattag	gaaaagatat	aaaagatgtt	1560
ttaggattaa	aagatgcttt	aatagatttt	gaattaactt	caaacagacc	tgattgtaaa	1620
tgcatgatgg	gtatagctag	agaagcagct	gcaactatag	gaacaaaagt	aaaatatcct	1680
gaaatcgaag	taaaagaaag	tgacgaagag	atagatttca	aagttgagat	agataatcca	1740
gatttatgta	gaagatatgt	tgctagaatg	gttacagatg	taaaaataga	accttctcca	1800
tattggatgc	aaagaagact	tacagaagca	ggagtaagac	ctataagtaa	catagtcgat	1860
ataacaaact	tcgtaatgtt	agagcttggt	caaccacttc	atgcttttga	tataaatcaa	1920
gtagagactg	gaagaatagt	agtaagaaat	gctaaagatg	gagagaaact	tgtaacatta	1980
gatgatgttg	agagaacatt	agataaagat	atgctagtta	taacaaatgg	agaaaaatca	2040
cttggtttag	ctggtgtaat	gggtggtgct	aactcagaaa	taacttctaa	tacgaagact	2100
gtactttttg	aaagtgccaa	tttcaaacca	gaaaacataa	gaatgacagc	taaaaaagtt	2160
ggtattaggt	cagaagcatc	ttcaagaaat	gaaaaagact	tagaccctaa	tcttgcagag	2220
atagcagcaa	atagagctgc	acaacttgtt	gaaatgttag	gagcaggaaa	agttttaaaa	2280
ggtgttgtag	atgtatatcc	aaataaacca	gaacctaaaa	aattggtagt	aaatcctcaa	2340
agaattaacc	acctattagg	tgtagatgta	ccaatggagc	agtttgtagg	aattttagaa	2400
tcattagagt	ttaaatgtaa	tttggtagct	aatgataaat	tagaaataga	tgtaccaagc	2460
tttagaacag	atatggaaca	agaagctgat	gtatgggaag	aaatagctag	aatttatgga	2520
tttgagaata						2530

1. A cell-based DNA sensor comprising a competent cell comprising a genetic circuit, wherein the genetic circuit comprises:

a pair of homology arms in a DNA strand, wherein the homology arms comprise a first homology arm and a second homology arm, the first homology arm is homologous to a first portion of a target DNA, the second homology arm is homologous to a second portion of the target DNA, and the first homology arm and the second homology arm are separated within the DNA strand by an interstitial region of the DNA strand; and

at least one of a reporter switch and a kill switch, wherein:

- the reporter switch comprises a reporter gene and a negative regulator of the reporter gene, wherein the reporter gene comprises a promoter and a coding sequence that are not comprised within the interstitial region of the DNA strand, and wherein the negative regulator of the reporter gene is comprised within the interstitial region of the DNA strand; and
- the kill switch comprises one or more genetic elements configured for inhibiting growth of the competent cell, wherein at least one of the one or more genetic elements is comprised within the interstitial region of the DNA strand.

2. The DNA sensor of claim 1, wherein the negative regulator of the reporter gene comprises a repressor gene, wherein the repressor gene expresses a repressor that represses expression of the reporter gene.

3. The DNA sensor of claim **1**, wherein the reporter gene is a fluorescent or luminescent protein gene.

4. The DNA sensor of claim **1**, wherein the interstitial region comprises at least one of a growth inhibitor gene, a positive regulator of a growth inhibitor gene, and a negative regulator of a selectable marker gene.

5-7. (canceled)

8. The DNA sensor of claim 1, wherein the kill switch comprises a toxin gene and a repressor gene, wherein the repressor gene expresses an inducible repressor of the toxin gene, and wherein the toxin gene is comprised within the interstitial region.

9. The DNA sensor of claim **1**, wherein the kill switch comprises a toxin gene and a positive regulator of the toxin gene, wherein one or both of the toxin gene and the positive regulator of the toxin gene is comprised within the interstitial region.

10. (canceled)

11. The DNA sensor of claim **1**, wherein the kill switch comprises a counter-selectable marker gene comprised within the interstitial region.

12. The DNA sensor of claim **1**, wherein the kill switch comprises a selectable marker gene and a negative regulator of the selectable marker gene, wherein the selectable marker gene is not comprised within the interstitial region of the DNA strand, and wherein the negative regulator of the selectable marker gene is comprised within the interstitial region of the DNA strand.

13. The DNA sensor of claim **12**, wherein the negative regulator of the selectable marker gene is also the negative regulator of the reporter gene.

14. The DNA sensor of claim 1, wherein the genetic circuit comprises both the reporter switch and the kill switch.

17. The DNA sensor of claim **1**, wherein the target DNA is native DNA.

18-19. (canceled)

20. A composition comprising two or more cell-based DNA sensors, wherein each of the two or more cell-based DNA sensors is a cell-based DNA sensor as recited in claim **1**, wherein:

- the pairs of homology arms in the two or more cell-based sensors are each homologous to different target DNA sequences;
- each of the two or more cell-based DNA sensors comprises the reporter switch; and
- the reporter genes in the two or more cell-based DNA sensors express reporters that are each detectably different from each other.
- 21. (canceled)

22. A method of detecting target DNA with the cell-based DNA sensor of claim **1**, the method comprising:

culturing the DNA sensor in a culture medium comprising the target DNA for a time effective to transform the DNA sensor with the target DNA; and

detecting the transformed DNA sensor.

23. The method of claim **22**, wherein the target DNA is non-isolated cellular DNA.

24. The method of claim **22**, wherein the target DNA is non-isolated bacterial DNA.

25-26. (canceled)

27. The method of claim 22, wherein the cell-based DNA sensor comprises two or more cell-based DNA sensors, wherein:

- the pairs of homology arms in the two or more cell-based sensors are each homologous to different target DNA sequences;
- each of the two or more cell-based DNA sensors comprises the reporter switch; and
- the reporter genes in the two or more cell-based DNA sensors express reporters that are each detectably different from each other.

28. (canceled)

29. A method of detecting a target cell comprising target DNA with the cell-based DNA sensor of claim **1**, the method comprising:

culturing the DNA sensor in a culture medium with the target cell for a time effective to transform the DNA sensor with the target DNA; and

detecting the transformed DNA sensor.

30. The method of claim **29**, wherein the culturing is performed without lysing the target cell.

31. The method of claim **29**, wherein the target cell comprises a bacterium.

32-33. (canceled)

34. The method of claim **29**, wherein the cell-based DNA sensor comprises two or more cell-based DNA sensors, wherein:

- the pairs of homology arms the two or more cell-based sensors are each homologous to different target DNA sequences from different target cells;
- each of the two or more cell-based DNA sensors comprises the reporter switch; and
- the reporter genes in the two or more cell-based DNA sensors express reporters that are each detectably different from each other.

35. (canceled)

* * * * *