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ABSTRACT 
In accordance with some embodiments, systems, methods, 
and media for generating digital images using low bit depth 
image sensor data are provided. In some embodiments, the 
system comprises: an image sensor; a processor pro
grammed to: receive, from the image sensor, a series oflow 
bit depth frames; provide low bit depth image information to 
a trained machine learning model comprising: a 3D convo
lutional layer; a 2D convolutional LSTM layer; a concat
enation layer configured to generate a tensor that includes an 
output of the 2D convolutional LSTM layer and the low bit 
depth image information; and a 2D convolutional layer 
configured to generate an output based on the tensor; and 
generate a high bit depth image of a scene based on an output 
of the two-dimensional convolutional layer. 
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SYSTEMS, METHODS, AND MEDIA FOR 
GENERATING DIGITAL IMAGES USING 
LOW BIT DEPTH IMAGE SENSOR DATA 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

[0001] This invention was made with government support 
under 1943149 awarded by the National Science Founda
tion. The government has certain rights in the invention. 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

[0002] NIA 

BACKGROUND 

[0003] In general, image sensors that are capable of detect
ing the arrival of individual photons, which can be referred 
to as quanta image sensors, can generate data that has 
relatively low read noise, relatively high temporal granular
ity, and relatively high dynamic range. However, raw binary 
frames from a quanta image sensor contain high shot noise 
due to their short duration. 
[0004] Accordingly, new systems, methods, and media for 
generating digital images using low bit depth image sensor 
data are desirable. 

SUMMARY 

[0005] In accordance with some embodiments of the dis
closed subject matter, systems, methods, and media for 
generating digital images using low bit depth image sensor 
data are provided. 
[0006] In accordance with some embodiments of the dis
closed subject matter, a system for generating digital images 
is provided, the system comprising: an image sensor con
figured to generate low bit depth frames ; at least one 
processor that is progra=ed to: receive, from the image 
sensor, a series of low bit depth frames ; provide low bit 
depth image information based on the series oflow bit depth 
frames to a trained machine learning model, the trained 
machine learning model comprising: a three-dimensional 
convolutional layer; a two-dimensional convolutional long 
short term memory (LSTM) layer configured to receive an 
output of the three dimensional convolutional layer; a con
catenation layer configured to generate a tensor that includes 
a concatenation of an output of the 2D convolutional LSTM 
layer and the low bit depth image information; and a 
two-dimensional convolutional layer configured to generate 
an output based on the tensor generated by the concatenation 
layer; and generate a high bit depth image of the scene based 
on an output of the two-dimensional convolutional layer. 
[0007] In some embodiments, the image sensor comprises 
a plurality of single-photon avalanche diodes. 
[0008] In some embodiments, the series of low bit depth 
frames comprises a series of binary frames. 
[0009] In some embodiments, pixels of the low bit depth 
frames are represented using no more than 4 bits. 
[0010] In some embodiments, pixels of the high bit depth 
image are represented using at least 8 bits. 
[0011] In some embodiments, the two-dimensional con
volutional LSTM layer is a bidirectional two-dimensional 
convolutional LSTM layer. 
[0012] In some embodiments, the trained machine learn
ing model further comprises: three LSTM blocks, each 
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comprising: two 3D convolutional layers; a bidirectional 2D 
convolutional LSTM layer configured to receive an output 
of the second three-dimensional convolutional layer; and a 
concatenation layer configured to concatenate an input to the 
LSTM block and an output of the bidirectional two-dimen
sional convolutional LSTM layer, wherein the three-dimen
sional convolution layer, the two-dimensional convolutional 
LSTM layer, and the concatenation layer are included in the 
third LSTM block. 
[0013] In some embodiments, the trained machine learn
ing model comprises a plurality of input channels, each 
corresponding to a color channel. 
[0014] In accordance with some embodiments of the dis
closed subject matter, a method for generating range digital 
images is provided, the method comprising: receiving, from 
an image sensor, a series of low bit depth frames ; providing 
low bit depth image information based on the series of low 
bit depth frames to a trained machine learning model, the 
trained machine learning model comprising: a three-dimen
sional convolutional layer; a two-dimensional convolutional 
long short term memory (LSTM) layer configured to receive 
an output of the three dimensional convolutional layer; a 
concatenation layer configured to generate a tensor that 
includes a concatenation of an output of the 2D convolu
tional LSTM layer and the low bit depth image information; 
and a two-dimensional convolutional layer configured to 
generate an output based on the tensor generated by the 
concatenation layer; and generating a high bit depth image 
of the scene based on an output of the two-dimensional 
convolutional layer. 
[0015] In accordance with some embodiments of the dis
closed subject matter, a non-transitory computer readable 
medium containing computer executable instructions that, 
when executed by a processor, cause the processor to 
perform a method for generating range digital images is 
provided, the method comprising: receiving, from an image 
sensor, a series of low bit depth frames ; providing low bit 
depth image information based on the series oflow bit depth 
frames to a trained machine learning model, the trained 
machine learning model comprising: a three-dimensional 
convolutional layer; a two-dimensional convolutional long 
short term memory (LSTM) layer configured to receive an 
output of the three dimensional convolutional layer; a con
catenation layer configured to generate a tensor that includes 
a concatenation of an output of the 2D convolutional LSTM 
layer and the low bit depth image information; and a 
two-dimensional convolutional layer configured to generate 
an output based on the tensor generated by the concatenation 
layer; and generating a high bit depth image of the scene 
based on an output of the two-dimensional convolutional 
layer. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0016] Various objects, features, and advantages of the 
disclosed subject matter can be more fully appreciated with 
reference to the following detailed description of the dis
closed subject matter when considered in connection with 
the following drawings, in which like reference numerals 
identify like elements. 
[0017] FIG. 1 shows an example of a high noise low bit 
depth frame of a scene and a low-noise high bit depth frame 
of the scene that can be generated using the low-bit depth 
frame in accordance with some embodiments of the dis
closed subject matter. 
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[0018] FIG. 2 shows an example of a system for generat
ing digital images using low bit depth image sensor data in 
accordance with some embodiments of the disclosed subject 
matter. 
[0019] FIG. 3 shows an example of hardware that can be 
used to implement an image data source, a computing 
device, and a server, shown in FIG. 2 in accordance with 
some embodiments of the disclosed subject matter. 
[0020] FIG. 4 shows an example of a topology of a 
convolutional neural network that can be used to implement 
mechanisms for generating digital images using low bit 
depth image sensor data in accordance with some embodi
ments of the disclosed subject matter. 
[0021] FIG. 5 shows an example of another topology of a 
convolutional neural network that can be used to implement 
mechanisms for generating digital images using low bit 
depth image sensor data in accordance with some embodi
ments of the disclosed subject matter. 
[0022] FIG. 6 shows an example of a process for gener
ating digital images using low bit depth image sensor data in 
accordance with some embodiments of the disclosed subject 
matter. 
[0023] FIG. 7 shows an example of a low bit depth frame 
of a scene generated from a still image with simulated 
motion, a predicted low noise high bit depth frame of the 
scene generated from a stream of low bit depth frames using 
mechanisms described herein, and a ground truth image of 
the scene. 
[0024] FIG. 8 shows examples of low bit depth frames 
based on varying numbers of binary frames generated from 
a still image with simulated motion, predicted low noise 
high bit depth frames of the scene generated from streams of 
the low bit depth frames using mechanisms described 
herein, and a ground truth image of the scene. 
[0025] FIG. 9 shows an example of a low bit depth frame 
of a scene generated from video data, a predicted low noise 
high bit depth frame of the scene generated from a stream of 
low bit depth frames using mechanisms described herein, 
and a ground truth image of the scene. 
[0026] FIG. 10 shows an example of a high bit depth 
frame of the scene generated from a set up binary frames 
using another technique, a predicted low noise high bit depth 
frame of the scene generated from a stream oflow bit depth 
frames using mechanisms described herein, and a ground 
truth image of the scene. 
[0027] FIG. 11 shows an example of results of an object 
detection operation performed on a low bit depth frame of a 
scene generated from video data, a predicted low noise high 
bit depth frame of the scene generated from a stream oflow 
bit depth frames using mechanisms described herein, and a 
ground truth image of the scene. 

DETAILED DESCRIPTION 

[0028] In accordance with various embodiments, mecha
nisms (which can, for example, include systems, methods, 
and media) for generating digital images using low bit depth 
image sensor data are provided. 
[0029] In some embodiments, mechanisms described 
herein can be used to generate relatively low noise images 
with relatively high bit depths (e.g., at least 8 bits per pixel 
per color channel) using relatively high noise frames with 
relatively low bit depths ( e.g. , 1 bit per pixel per color 
channel, 2 bits per pixel per color channel, 3 bits per pixel 
per color channel, 4 bits per pixel per color channel , no more 
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than 4 bits per pixel per color channel). In some embodi
ments, mechanisms described herein can generate high bit 
depth images at a rate that is comparable to a rate at which 
frames ( or a relatively short series of frames) are output by 
a quanta image sensor. 
[0030] For example, single-photon avalanche diodes 
(SPADs) are a class of single-photon image sensor that can 
be operated at very high frame rates (e.g., on the order of 
100,000 frames per second). Conventional image sensors 
(e.g., CMOS image sensors, CCD image sensor) generally 
return an integer value from each pixel that is proportional 
to brightness of the scene at that pixel. Image sensors that are 
implemented with SPADs (and/or other QIS technologies) 
generally return binary values when configured in a frame 
read out mode. For example, a pixel implemented with a 
SPAD can output a 1 if at least one photon was detected and 
can output a O otherwise. SPADs offer several benefits over 
conventional sensors, including low read noise, high tem
poral granularity, and high dynamic range. However, the raw 
binary frames from a SPAD (or any quanta image sensor) 
contain high shot noise due to their short duration. 
[0031] In some embodiments, mechanisms described 
herein can be implemented to recover relatively low noise 
and high bit depth images from low bit depth image data 
output by a QIS. For example, given a sequence of noisy 
frames {b0 , b 1 , ... , b,} that include arbitrary scene and 
camera motion, mechanisms described herein can attempt to 
estimate a low-noise frame sequence {f0 , :Fi, ... , f,} that 
corresponds to a true sequence of frames { f0 , fi, ... , f,} 
corresponding to the scene. In some embodiments, mecha
nisms described herein can leverage the high frame rate of 
the input to create output with a high frame rate ( e.g., an 
equally high frame rate) while merging the intensity infor
mation from multiple frames to reduce noise. 
[0032] In some embodiments, mechanisms described 
herein can estimate a frame f, using information from before 
and after the frame (e.g., from bsi and from b;;e:i, if such 
future information is available). Additionally or alterna
tively, in some embodiments, mechanisms described herein 
can estimate a frame f in real time or near real time ( e.g., an 
estimate f, soon after b; arrives, an estimate f; soon before b, 
arrives), and can exclude use of any futlJ!e information, such 
that mechanisms described herein can f; using frames {b0 , 

b 1 , ... , b;}. 
[0033] In some embodiments, mechanisms described 
herein can compensate for motion between high-noise 
frames (e.g., output from a QIS) using a recurrent convo
lutional neural network (RCNN). Convolutional neural net
works can be used for many computer vision tasks, and are 
effective for processing spatially localized structures in 
images. Recurrent neural networks can be used for temporal 
sequence processing, and are capable of processing and 
generating sequences of arbitrary length. In some embodi
ments, mechanisms described herein can utilize an RCNN to 
process spatially localized structures in a sequence of high 
noise frames to generate a series of low noise frames. 
[0034] In some embodiments, mechanisms described 
herein can utilize one or more convolutional long short-term 
memory (LSTM) layers to recover relatively low noise and 
high bit depth images from low bit depth image data output 
by a QIS. LSTMs can be configured to model long-term 
dependencies by adaptively updating an internal state. Con
volutional LSTMs can replace the dense operations in a 
regular LSTM with convolutional operations. As described 
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below, a model implemented using one or more bidirectional 
LSTMs, which allow information flow both backward and 
forward in time, achieved the highest performance. In order 
to utilize a bidirectional LSTM, all frames to be analyzed are 
captured and stored before processing. Alternatively, a 
model can be implemented using one or more unidirectional 
LSTMs (which processes frames in the forward temporal 
direction only). For example, such a model can be imple
mented for real-time applications, and/or for use with 
devices with low-memory and/or processing resources. 
[0035] In some embodiments, mechanisms described 
herein can be implemented in a variety of different imple
mentations with different computational costs. For example, 
in applications where resources (e.g., memory and/or com
puting resource) are limited, the number of layers and the 
size of each layer can be reduced. In general, a tradeoff space 
between smaller, more efficient networks and larger, high
fidelity networks can be expected. 
[0036] In some embodiments, mechanisms described 
herein can be implemented to ingest new frames in real time, 
and to output high bit depth predicted frames at a similar 
rate. For example, after an RNN implemented in accordance 
with mechanisms described herein uses a new frame to 
update an internal state, that frame can be discarded (note 
that this is only the case for unidirectional RNNs). Other 
techniques (e.g., quanta burst photography) include captur
ing and storing all frames that are to be used prior to 
performing the analysis. 
[0037] In some embodiments, mechanisms described 
herein can be implemented with high inherent parallelism 
that facilitate efficient execution on a graphics processing 
unit (GPU). For example, preliminary results show orders of 
magnitude lower computation time compared to quanta 
burst photography. 
[0038] In some embodiments, mechanisms described 
herein can be used to implement a model ( e.g., a convolu
tional RNN model) that can be trained end-to-end with one 
or more downstream neural networks that are configured to 
perform image processing tasks and/or machine vision tasks. 
For example, mechanisms described herein can be used to 
implement a convolutional RNN that can be trained con
currently with a CNN that is configured to perform object 
detection. Such end-to-end training can facilitate the con
volutional RNN and the downstream network can mutually 
optimize their parameters, facilitating higher quality output 
with noisier input. 
[0039] In some embodiments, a convolutional RNN 
implemented in accordance with mechanisms described 
herein can learn statistical priors on video structure, which 
can cause such a convolutional RNN to outperform conven
tional, non-learned algorithms on videos with extremely 
high noise. 
[0040] FIG. 1 shows an example of a high noise low bit 
depth frame of a scene and a low-noise high bit depth frame 
of the scene that can be generated using the low-bit depth 
frame in accordance with some embodiments of the dis
closed subject matter. As shown in FIG. 1, a binary frame 
which may be output by a quanta image sensor is generally 
very noisy. To obtain a usable non-binary image, the infor
mation from multiple consecutive binary frames can be 
merged. Binary frame merging can be considered a special 
case of a more general problem: imaging and high-level 
vision under motion. When a scene contains motion, imag
ing systems can either reduce the exposure time to reduce 
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the amount of motion captured during the exposure (which 
leads to noisier images), or increase the exposure time to 
deal with noise (which leads to blurred images). In either 
case, the result is a low-quality image. If this low-quality 
image is then fed to a downstream model (e.g., a machine 
learning system for object detection), that model will suffer 
from reduced accuracy. 
[0041] FIG. 2 shows an example 200 of a system for 
generating digital images using low bit depth image sensor 
data in accordance with some embodiments of the disclosed 
subject matter. As shown in FIG. 2, a computing device 210 
can receive image data from an image data source(s) 202. In 
some embodiments, computing device 210 can execute at 
least a portion of an image processing system 204 to perform 
an image processing task, such as generating a high bit depth 
image from low bit depth images using a neural network, 
training a neural network to generate high bit depth image 
from low bit depth images, etc. Additionally, in some 
embodiments, computing device 210 can execute at least a 
portion of a machine vision system (not shown) to perform 
a machine vision task, such as image classification, object 
detection, image segmentation, object tracking, and/or any 
other suitable computer vision task. For example, a machine 
vision system can receive one or more images ( e.g., high bit 
depth images, etc.) generated by image processing system 
204, and can perform a machine vision task(s) based on the 
image(s) received from image processing system 204. 
[0042] Additionally or alternatively, in some embodi
ments, computing device 210 can communicate data 
received from image data source 202 to a server 220 over a 
communication network 208, which can execute at least a 
portion of image processing system 204 and/or at least a 
portion of a machine vision system. In such embodiments, 
server 220 can return information to computing device 210 
(and/or any other suitable computing device) indicative of 
an output of an image processing task performed by image 
processing system 204 and/or a computer vision task per
formed by a computer vision system. In some embodiments, 
image processing system 204 can execute one or more 
portions of process 600 described below in connection with 
FIG. 6. 
[0043] In some embodiments, computing device 210 and/ 
or server 220 can be any suitable computing device or 
combination of devices, such as a desktop computer, a 
laptop computer, a smartphone, a tablet computer, a wear
able computer, a server computer, a computing device 
integrated into a vehicle (e.g. , an autonomous vehicle), a 
camera, a robot, a virtual machine being executed by a 
physical computing device, etc. 
[0044] In some embodiments, image data source 202 can 
be any suitable source of low bit depth image data (e.g., 
implemented with single-photon pixels, implemented with a 
combination of conventional pixels and single-photon pix
els) and/or other data that can be used to generate high bit 
depth image data as described herein ( e.g., depicting a scene 
in a physical environment of image data source 202). For 
example, image data source 202 can be implemented using 
one or more digital cameras that generate and/or output 
image data indicative of an arrival time of single photons. In 
a more particular example, image data source 202 can 
include an imaging device configured to detect arrival of 
individual photons (e.g., using avalanche photodiodes), such 
as imaging devices described in U.S. patent application Ser. 
No. 16/844,899, filed Apr. 9, 2020, and titled "Systems, 
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methods, and media for high dynamic range quanta burst 
imaging." As another more particular example, image data 
source 202 can include an imaging device configured to 
detect arrival of individual photons (e.g., using jot-based 
detectors), such as imaging devices described in Fossum et 
al. , "The quanta image sensor: Every photon Counts," 
Sensors, (2016). 
[0045] In some embodiments, image data source 202 can 
be local to computing device 210. For example, image data 
source 202 can be incorporated with computing device 210 
(e.g., computing device 210 can be configured as part of a 
device for capturing, storing, and/or processing image data). 
As another example, image data source 202 can be con
nected to computing device 210 by a cable, a direct wireless 
link, etc. Additionally or alternatively, in some embodi
ments, image data source 202 can be located locally and/or 
remotely from computing device 210, and can communicate 
image data (e.g., single-photon sensor image data, etc.) to 
computing device 210 (and/or server 220) via a communi
cation network (e.g., communication network 208). 
[0046] In some embodiments, communication network 
208 can be any suitable communication network or combi
nation of communication networks. For example, commu
nication network 208 can include a Wi-Fi network (which 
can include one or more wireless routers, one or more 
switches, etc.), a peer-to-peer network (e.g. , a Bluetooth 
network), a cellular network (e.g. , a 3G network, a 4G 
network, a 5G network, etc. , complying with any suitable 
standard, such as CDMA, GSM, LTE, LTE Advanced, NR, 
etc.), a wired network, etc. In some embodiments, commu
nication network 208 can be a local area network, a wide 
area network, a public network (e.g. , the Internet), a private 
or semi-private network (e.g., a corporate or university 
intranet), any other suitable type of network, or any suitable 
combination of networks. Communications links shown in 
FIG. 2 can each be any suitable communications link or 
combination of communications links, such as wired links, 
fiber optic links, Wi-Fi links, Bluetooth links, cellular links, 
etc . 
[0047] FIG. 3 shows an example of hardware that can be 
used to implement image data source 202, computing device 
210, and/or server 220, shown in FIG. 2 in accordance with 
some embodiments of the disclosed subject matter. As 
shown in FIG. 3, in some embodiments, computing device 
210 can include a processor 302, a display 304, one or more 
inputs 306, one or more communication systems 308, and/or 
memory 310. In some embodiments, processor 302 can be 
any suitable hardware processor or combination of proces
sors, such as a central processing unit (CPU), a graphics 
processing unit (GPU), an application specific integrated 
circuit (ASIC), a field-programmable gate array (FPGA), a 
digital signal processor (DSP), a microcontroller (MCU), 
etc . In some embodiments, display 304 can include any 
suitable display devices, such as a computer monitor, a 
touchscreen, a television, an infotainment screen, etc. In 
some embodiments, inputs 306 can include any suitable 
input devices and/or sensors that can be used to receive user 
input, such as a keyboard, a mouse, a touchscreen, a micro
phone, etc. 
[0048] In some embodiments, communications systems 
308 can include any suitable hardware, firmware, and/or 
software for communicating information over communica
tion network 208 and/or any other suitable communication 
networks. For example, communications systems 308 can 
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include one or more transceivers, one or more communica
tion chips and/or chip sets, etc. In a more particular example, 
communications systems 308 can include hardware, firm
ware and/or software that can be used to establish a Wi-Fi 
connection, a Bluetooth connection, a cellular connection, 
an Ethernet connection, etc. 
[0049] In some embodiments, memory 310 can include 
any suitable storage device or devices that can be used to 
store image data, instructions, values, etc., that can be used, 
for example, by processor 302 to perform an image pro
cessing task, to perform a machine vision task, to present 
content using display 304, to communicate with server 220 
via communications system(s) 208, etc. Memory 310 can 
include any suitable volatile memory, non-volatile memory, 
storage, or any suitable combination thereof. For example, 
memory 310 can include random access memory (RAM), 
read-only memory (ROM), electronically-erasable program
mable read-only memory (EEPROM), one or more flash 
drives, one or more hard disks, one or more solid state 
drives, one or more optical drives, etc. In some embodi
ments, memory 310 can have encoded thereon a computer 
program for controlling operation of computing device 210. 
For example, in such embodiments, processor 302 can 
execute at least a portion of the computer program to 
perform one or more image processing tasks described 
herein and/or to perform one or more machine vision tasks 
based on an output generated by an image processing task 
described herein, present content (e.g., images, information 
about an object included in image data, information about 
distances to one or more points in a scene, etc.), receive 
information and/or content from image data source 202, 
transmit information to image data source 202, receive 
information and/or content from server 220, transmit infor
mation to server 220, etc. As another example, processor 302 
can execute at least a portion of the computer program to 
implement image processing system 204 and/or a machine 
vision system. As yet another example, processor 302 can 
execute at least a portion of process 600 described below in 
connection with FIG. 6. 

[0050] In some embodiments, server 220 can include a 
processor 312, a display 314, one or more inputs 316, one or 
more communications systems 318, and/or memory 320. In 
some embodiments, processor 312 can be any suitable 
hardware processor or combination of processors, such as a 
CPU, a GPU, an ASIC, an FPGA, a DSP, an MCU, etc. In 
some embodiments, display 314 can include any suitable 
display devices, such as a computer monitor, a touchscreen, 
a television, etc. In some embodiments, inputs 316 can 
include any suitable input devices and/or sensors that can be 
used to receive user input, such as a keyboard, a mouse, a 
touchscreen, a microphone, etc. 
[0051] In some embodiments, communications systems 
318 can include any suitable hardware, firmware, and/or 
software for communicating information over communica
tion network 208 and/or any other suitable communication 
networks. For example, communications systems 318 can 
include one or more transceivers, one or more communica
tion chips and/or chip sets, etc. In a more particular example, 
communications systems 318 can include hardware, firm
ware and/or software that can be used to establish a Wi-Fi 
connection, a Bluetooth connection, a cellular connection, 
an Ethernet connection, etc. 
[0052] In some embodiments, memory 320 can include 
any suitable storage device or devices that can be used to 
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store instructions, values, etc., that can be used, for example, 
by processor 312 to present content using display 314, to 
communicate with one or more computing devices 210, to 
communicate with one or more image data sources 202, etc. 
Memory 320 can include any suitable volatile memory, 
non-volatile memory, storage, or any suitable combination 
thereof. For example, memory 320 can include RAM, ROM, 
EEPROM, one or more flash drives, one or more hard disks, 
one or more solid state drives, one or more optical drives, 
etc . In some embodiments, memory 320 can have encoded 
thereon a server program for controlling operation of server 
220. For example, in such embodiments, processor 312 can 
execute at least a portion of the server program to perform 
one or more image processing tasks described herein and/or 
to perform one or more machine vision tasks based on an 
output generate by an image processing task described 
herein, present content (e.g. , images, information about an 
object included in image data, information about distances 
to one or more points in a scene, etc .), receive information 
and/or content from image data source 202, transmit infor
mation to image data source 202, receive information and/or 
content from computing device 210, transmit information to 
computing device 210, etc. As another example, processor 
312 can execute at least a portion of the server program to 
implement image processing system 204 and/or a machine 
vision system. As yet another example, processor 312 can 
execute at least a portion of process 600 described below in 
connection with FIG. 6. 

[0053] As shown, image data source 202 can include an 
image sensor 322 ( e.g., an area sensor that includes an array 
of single photon detectors, such as a SPAD array or array of 
jots, e.g., as described in U.S. patent application Ser. No. 
16/844,899); optics 324 (which can include, for example, 
one or more lenses, one or more attenuation elements such 
as a filter, a diaphragm, and/or any other suitable optical 
elements such as a beam splitter, etc.); a processor 326 for 
controlling operations of image data source 202 which can 
include any suitable hardware processor (which can be a 
CPU, a GPU, an FPGA, an ASIC, a DSP, an MCU, etc.) or 
combination of hardware processors; an input device(s) 328 
(such as a shutter button, a menu button, a microphone, a 
touchscreen, a motion sensor, etc., or any suitable combi
nation thereof) for accepting input from a user and/or from 
the environment; a display 330 (e.g. , a touchscreen, a liquid 
crystal display, a light emitting diode display, etc.) to present 
information ( e.g. , images, user interfaces, etc.) for consump
tion by a user; memory 332; a signal generator 334 for 
generating one or more signals to control operation of image 
sensors 322; a communication system or systems 336 for 
facilitating communication between image data source 202 
and other devices, such as a smartphone, a wearable com
puter, a tablet computer, a laptop computer, a personal 
computer, a server, an embedded computer (e.g. , for con
trolling an autonomous vehicle, robot, etc .), etc., via a 
communication link. In some embodiments, memory 332 
can store image data, and/or any other suitable data. 
Memory 332 can include a storage device ( e.g., RAM, 
ROM, EEPROM, one or more flash drives, one or more hard 
disks, one or more solid state drives, one or more optical 
drives, etc.) for storing a computer program for controlling 
processor 326. In some embodiments, memory 332 can 
include instructions for causing processor 326 to execute 

5 
Sep. 7,2023 

processes associated with the mechanisms described herein, 
such as process 600 described below in connection with 
FIG. 6. 
[0054] In some embodiments, image sensors 322 can be 
include an image sensor that is implemented at least in part 
using an array of SPAD detectors (sometimes referred to as 
a Geiger-mode avalanche diode) and/or one or more other 
detectors that are configured to detect the arrival time of 
individual photons (e.g. , jots) . In some embodiments, one or 
more elements of a single photon image sensor 322 can be 
configured to generate data indicative of the arrival time of 
photons from the scene via optics 324. For example, in some 
embodiments, image sensor 322 can be an array of multiple 
SPAD detectors. As yet another example, image sensor 322 
can be a hybrid array including SPAD detectors and one or 
more conventional light detectors (e.g. , CMOS-based pix
els). 
[0055] In some embodiments, image data source 202 can 
include additional optics. For example, although optics 324 
is shown as a single lens, optics 324 can be implemented as 
compound lenses or combinations of lenses. Note that 
although mechanisms described herein are generally 
described as using SPAD-based detectors, this is merely an 
example of a single photon detector. As described above, 
other single photon detectors can be used, such as jot-based 
image sensors. 
[0056] In some embodiments, signal generator 334 can be 
one or more signal generators that can generate signals to 
control image sensors 322. For example, in some embodi
ments, signal generator 334 can supply signals to enable 
and/or disable one or more pixels of image sensor 322 ( e.g., 
by controlling a gating signal of a SPAD used to implement 
the pixel). As another example, signal generator 334 can 
supply signals to control readout of image signals from 
image sensor 322 (e.g. , to memory 332, to processor 326, to 
a cache memory associated with image sensor 322, etc.). 
[0057] In some embodiments, image data source 202 can 
communicate with a remote device over a network using 
communication system(s) 336 and a communication link. 
Additionally or alternatively, image data source 202 can be 
incorporated as part of another device and/or integrated as 
part of another device ( e.g. , computing device 210), such as 
a smartphone, a tablet computer, a laptop computer, an 
autonomous vehicle, a robot, etc. Parts of image data source 
202 can be shared with a device within which image data 
source 202 is integrated. For example, if image data source 
202 is integrated with an autonomous vehicle, processor 326 
can be a processor of the autonomous vehicle and can be 
used to control operation of image data source 202. 
[0058] In some embodiments, display 330 can be used to 
present images and/or video generated by image data source 
202 and/or by another device (e.g. , computing device 210, 
server 220, etc.), to present a user interface, etc. In some 
embodiments, display 330 can be implemented using any 
suitable device or combination of devices, and can include 
one or more inputs, such as a touchscreen. 
[0059] FIG. 4 shows an example 400 of a topology of a 
machine learning model that can be used to implement 
mechanisms for generating digital images using low bit 
depth image sensor data in accordance with some embodi
ments of the disclosed subject matter. In some embodiments, 
a machine learning model based on topology 400 can 
receive input generated by a quanta image sensor (e.g., 
implemented with an array of SPADs). Such input can be 
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formatted in various ways. For example, the input can be 
received as a sequence (e.g., a stream) of binary low bit 
depth frames (e.g., 1 bit frames). As another example, the 
input can be received as a sequence of non-binary low bit 
depth frames (e.g., a 2 bit frame, a 3 bit frame, etc.). In a 
more particular example, a multibit (e.g. , 2 bit, 3 bit, 4 bit) 
frame include a value, at each pixel, corresponding to a sum 
of multiple binary frames. In such an example, a 2 bit frame 
can be a sum ofup to four binary frames , a 3 bit frame can 
be a sum of up to eight binary frames, etc. As still another 
example, the input can be received as a sequence of aver
aged low bit depth frames. In such an example, data from 
each pixel location in a frame can be averaged across 
multiple frames ( e.g. , two frames , four frames , eight frames , 
or any other suitable number of frames) . In a particular 
example, an average of eight frames can be calculated by, at 
each pixel location, determining a sum of pixel detections 
(e.g., for 1 bit frames, a value from Oto 8), and dividing by 
8. Note that multibit frames can include information from 
multiple binary frames, and an averaged low bit depth frame 
can be generated from one or more multibit frames. For 
example, data from four binary frames can be used to 
generate a 2 bit frame, and two 2 bit frames can be used to 
generate an average of eight frames by determining a sum of 
pixel values in the two frames, and dividing by 8. 

[0060] In some embodiments, topology 400 can be utilize 
data from multiple color channels, and can output high bit 
depth color image data. For example, topology 400 can be 
modified to include multiple input channels (e.g., three 
image channels corresponding to red, green, and blue data, 
or more than three channels for color image data that 
includes more than three color channels) and multiple output 
channels ( e.g., corresponding to colors associated with the 
input data). 

[0061] In some embodiments, topology 400 can include 
one or more 3D convolutional layers. Such 3D convolutions 
can generate features that reflect spatiotemporal patterns in 
the input. For example, topology 400 can include a single 3D 
convolutional layer prior to a convolutional LSTM layer. As 
another example, topology 400 can include multiple 3D 
convolutional layers prior to a convolutional LSTM layer. In 
some embodiments, each 3D convolutional layer can use 
any suitable kernel. For example, a 3D convolutional layer 
can use a 3x3x3 kernel. As another example, a 3D convo
lutional layer can use a lxlxl kernel, a 5x5 x5 kernel, a 
7x7x7 kernel, or any other suitable kernel. In some embodi
ments, each 3D convolutional layer can include any suitable 
number of output channels, which can result in a corre
sponding number of kernels being trained. For example, 
each 3D convolutional layer can generate 128 output chan
nels using 128 kernels. As another example, each 3D con
volutional layer can generate more than 128 output channels 
(e.g., 256 output channels, 512 output channels, 1024 output 
channels, etc.). In some embodiments, each 3D convolu
tional layer can utilize any suitable activation function. For 
example, 3D convolutional layers can utilize a rectified 
linear unit (ReLU) activation with any suitable leak rate 
(e.g., a leak rate of 0.3 , or any other suitable leak rate). 

[0062] In some embodiments, one or more convolutional 
LSTM layer can be implemented using a unidirectional 
convolutional LSTM. Additionally or alternatively, one or 
more convolutional LSTM layers can be implemented using 
a bidirectional convolutional LSTM. For example, a unidi
rectional convolutional LSTM layer can utilize a single 
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convolutional LSTM cell, which can sequentially receive as 
outputs of a 3D convolutional layer as inputs. As another 
example, a bidirectional convolutional LSTM layer can 
utilize multiple convolutional LSTM cells. In such an 
example, an LSTM cell can sequentially receive outputs of 
a 3D convolutional layer as inputs in an order in which the 
outputs are generated, and another LSTM cell can sequen
tially receive outputs a 3D convolutional layer as inputs in 
a reverse order to the order in which the outputs were 
generated. 

[0063] In some embodiments, topology 400 can include 
one or more skip connections. For example, topology 400 
can include a skip connection between an input and an 
output of an LSTM layer. In such an example, the input to 
the model and an output of the LSTM layer can be concat
enated (e.g., via a concatenation layer) using any suitable 
technique or combination of techniques. In some embodi
ments, concatenation can be performed along the channel 
axis. For example, an input corresponding to a frame at time 
t can be concatenated with an output corresponding to a 
frame at time t. For example, if an input has 128 channels 
and an output has 128 channels, the concatenated output can 
have 256 channels. As another example, topology 400 can 
include a skip connection between an output of an LSTM 
layer and an output of a subsequent LSTM layer. In such an 
example, the input to the model, an output of the first LSTM 
layer, and an output of the subsequent LSTM layer can be 
concatenated (e.g. , via a concatenation layer) using any 
suitable technique or combination of techniques. As yet 
another example, using skip connections and concatenation, 
a block I (e.g., including one or more 3D convolutional 
layers and a convolutional LSTM layer) can receive the 
input to block 1-1 , and also the input to all previous blocks 
(e.g., including the original model input). 

[0064] In some embodiments, a model implemented in 
accordance with mechanisms described herein (e.g. , using 
one or more bidirectional LSTM layers, using only unidi
rectional LSTM layers) can, when estimating i;, leverage 
information collected before frame f, (e.g. , using frames 
with indices bsi) and information collected after frame from 
f, (e.g. , using frames with indices b;;,;i). For example, both 
bidirectional LSTMs and 3D convolutions (which can utilize 
receptive fields that extend a fixed distance into both the past 
and future in a stream of input frames) can leverage infor
mation from before and after a particular frame. As another 
example, in certain applications (e.g. , real-time applications) 
where an output is generated before an entire input sequence 
is received as input, the convolutional LSTM can be imple
mented as a unidirectional LSTM and the 3D convolutions 
can lead to a fixed dela_y between receiving a frame b, and 
producing an estimate f,. 

[0065] In some embodiments, topology 400 can include at 
least one 2D convolutional layer that can generate an output 
frame. For example, a 2D convolutional layer can receive 
the output of a concatenation (e.g. , including at least the 
output of a convolutional LSTM layer and the input data). In 
some embodiments, the 2D convolutional layer can use any 
suitable kernel. For example, the 2D convolutional layer can 
use a lxl kernel. The 2D convolutional layer can operate 
independently on output associated with each time step (e.g., 
output data associated with a particular input frame b,). In 
some embodiments, the 2D convolutional layer can include 
any suitable number of output channels, which can corre
spond to an output frame ( e.g., estimate i;). For example, the 
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2D convolutional layer can have a single output channel. In 
some embodiments, an output of the 2D convolutional layer 
can be in a particular range (e.g. , 0 to 1). For example, 
outputs outside of a particular range can be clipped to the 
particular range (e.g., a value below zero can be set to zero, 
and a value above one can be set to one) . As another 
example, an activation function (e.g., a sigmoid activation 
function) can be used to generate an output in a particular 
range. In some embodiments, an output of the 2D convo
lutional layer can be mapped to a high bit depth image (e.g. , 
using any suitable tone mapping technique). For example, 
values can be converted to an integer value in a range 
including O and 255. In such an example, the mapping can 
be linear or non-linear. 

[0066] In some embodiments, a model implemented in 
accordance with mechanisms described herein (e.g., based 
on topology 400, based on topology 500 described below in 
connection with FIG. 5, etc.) can be trained using any 
suitable technique or combination of techniques, and/or 
using any suitable training data. For example, the model can 
be trained using data that includes synthetic motion and/or 
data that includes video with real world motion. In a more 
particular example, some results described below were gen
erated using a model trained using two datasets: a synthetic 
motion dataset and a real video dataset. Both datasets 
contained full-depth frames captured by conventional cam
eras, which were used as the ground tn1th during training. In 
some embodiments, frames used as input for training can be 
generated by applying random Poisson binarization to the 
full-depth frames. 

[0067] In some embodiments, frames with synthetic 
motion can be generated using any suitable technique or 
combination of techniques. For example, a computing 
device (e.g. , a computing device executing process 600) can 
extract a moving sequence of bounding boxes from a still 
image. The computing device can use random walks in each 
coordinate of the bounding box (e.g. , x, y, rotation, and 
scale). Steps in the random walk can be computed using the 
relationship: 

(I ) 

where c is a coordinate (e.g., x coordinate, y coordinate, 
rotation, or scale), !ima/ is the maximum per-step change in 
c, Cm;n and cmax are bounds on c, and µ(-1, 1) is a sample 
from a uniform distribution between -1 and 1. One random 
walk step can correspond to several frames (e.g. , 16 by 
default). Cubic spline interpolation can be used to smooth 
the piecewise linear walk between steps, resulting in C(l ) 
smooth motion. The parameters !imwt , Cm;n, and cm= for 
each coordinate can be tuned (e.g., manually) to achieve 
motion on the order of one pixel per frame. 

[0068] In some embodiments, frames with real motion can 
be generated using any suitable technique or combination of 
techniques. For example, a computing device (e.g., a com
puting device executing process 600) can extract low bit 
depth frames from high bit depth video. For example, low bit 
depth frames were generated from real video from the Need 
for Speed (NFS) dataset, and were used during training of a 
model implemented in accordance with mechanisms 
described herein based on topology 500 described below in 
connection with FIG. 5. The NFS dataset includes 100 
videos with 380,000 total frames captured at 240 frames per 
second (FPS). The frames a have resolution of 1280><720 
pixels, which were downsized to 320x 180 pixels to speed 
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trammg and reduce the magnitude of inter-frame motion 
(measured in pixels per frame). Object bounding boxes 
associated with the videos were not used. 
[0069] In some embodiments, a computing device (e.g., a 
computing device executing process 600) can generate a 
frame that simulates a frame captured by a low bit depth 
sensor from still image data and/or from a frame of video 
data using any suitable technique or combination of tech
niques. For example, the computing device can convert still 
image data or a frame of video to grayscale and reduce the 
bit width of the image (e.g. , generating a binarized image). 
In a more particular example, the computing device can 
generate a binarized image using Poisson statistics. In such 
an example, a pixel with intensity iE [0,1] can be binarizes 
using the relationship: 

P = { I 
0
if U(O, I)> e_, 

else 

(2) 

where 'lJ. (0,1) is a sample from a uniform distribution 
between O and 1. Note that the intensity is not scaled prior 
to binarization. In some embodiments, multibit data can be 
generated by binarizing individual frames and summing or 
averaging multiple frames to generate a multibit frame. 
[0070] In many real applications motion may be much less 
than one pixel per binary frame. Accordingly, it may often 
be computationally wasteful to perform reconstruction at a 
frame rate at which low bit depth frames (e.g. , binary 
frames) are generated by an image sensor, which may be at 
a very high frame rate (e.g., 100,000 FPS or greater) . In 
some embodiments, multiple frames (e.g. , two frames, three 
frames, four frames, five frames, six frames , seven frames , 
eight frames, etc.) can be averaged, and the averaged frame 
can be provided as input to the model (e.g., for training 
and/or to a trained model). For example, inputs to the model 
can be averaged over 8-frame blocks. In such an example, 
the motion speed in the synthetic data can be scaled to give 
motion of approximately one pixel per 8-frame block. In the 
real video dataset, each frame can be repeated 8 times before 
binarization and 8-frame averaging. This 8-frame repetition 
makes the amount of motion between binary frames more 
manageable and can reduce the number of disk reads per 
sequence from 512 to 64. 
[0071] FIG. 5 shows an example 500 of another topology 
of a convolutional neural network that can be used to 
implement mechanisms for generating digital images using 
low bit depth image sensor data in accordance with some 
embodiments of the disclosed subject matter. As shown in 
FIG. 5, topology 500 can include three blocks that each 
include two 3D convolutional layers and a bidirectional 
convolutional LSTM layer, and each block can be followed 
by a concatenation. The 3D convolutional layers can use 
3x3x3 kernels, with 128 output channels, and the bidirec
tional convolutional LSTM layers can include two convo
lutional LSTM cells that can each use 5x5 kernels, and can 
each have 64 output channels. In some embodiments, topol
ogy 500 can include a 2D convolutional layer that can 
generate an output frame. The 2D convolutional layer can 
use a l x l kernel, with 1 output channel. In some embodi
ments, each 3D convolutional layer can utilize a rectified 
linear unit (ReLU) activation with a leak rate of 0.3. 
[0072] In some embodiments, a machine learning model 
implemented in accordance with mechanisms described 
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herein (e.g., using topography 400 and/or topography 500) 
can be trained using any suitable optimizer (e.g., the 
RMSProp optimizer), any suitable learning rate (e.g., a 
learning rate of 10-4), any suitable batch size (e.g., a batch 
size of 1), and any suitable loss function (e.g., an L2 loss 
function). In some embodiments, a training epoch can 
include any suitable number of sequences (e.g., 2048 
sequences), each of which (after any averaging) can include 
any suitable number of input frames of any suitable size 
(e.g., 64 frames of size 32x32). In some embodiments, any 
suitable number of test sequences can be used to evaluate the 
performance of the trained machine learning model. For 
example, test sequences that include 64 frames of size 
128x128 can be taken from a separate partition of the source 
dataset, and can be used to evaluate performance of the 
trained machine learning model. 

[0073] FIG. 6 shows an example 600 of a process for 
generating digital images using low bit depth image sensor 
data in accordance with some embodiments of the disclosed 
subject matter. 

[0074] At 602, process 600 can receive high bit depth still 
images ( e.g. , captured with a conventional image sensor, 
such as a CMOS image sensor, or a CCD image sensor). In 
some embodiments, process 600 can receive the high bit 
depth still images from any suitable source or combination 
of sources. For example, process 600 can receive the high bit 
depth images from a server (e.g. , server 220), from a 
computing device (e.g., computing device 210), from 
memory (e.g., memory 310, memory 320), etc. 

[0075] At 604, process 600 can generate a series of 
simulated frames with interframe motion ( e.g., translation, 
rotation, simulate axial motion, etc.) from each of the still 
frames using any suitable technique or combination of 
techniques. For example, as described above in connection 
with EQ. (1), process 600 can determine a position, orien
tation, and/or scale of a bounding box, and can generate a 
simulated frame based on the position, orientation, and/or 
scale of a bounding box. 

[0076] At 606, process 600 can generate simulated low bit 
depth frames from the series of simulated frames using any 
suitable technique or combination of techniques. For 
example, process 600 can generate a low bit depth image 
from each simulated frame using techniques described 
above in connection with EQ. (2). As another example, 
process 600 can generate multiple low bit depth image from 
each simulated frame. As described above in connection 
with FIG. 4, in some embodiments, process 600 can com
bine information from multiple simulated low bit depth 
frames , for example, by averaging a block of multiple 
frames. 

[0077] In some embodiments, process 600 can omit 602 to 
606. For example, process 600 can generate simulated low 
depth frames from video data, as described below in con
nection with 608 and 610. 

[0078] At 608, process 600 can receive high bit depth 
video data (e.g. , captured with a conventional image sensor, 
such as a CMOS image sensor, or a CCD image sensor). In 
some embodiments, process 600 can receive the high bit 
depth video data from any suitable source or combination of 
sources. For example, process 600 can receive the high bit 
depth images from a server (e.g. , server 220), from a 
computing device (e.g. , computing device 210), from 
memory (e.g., memory 310, memory 320), etc. 
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[0079] At 610, process 600 can generate simulated low bit 
depth frames from frames of the video data using any 
suitable technique or combination of techniques. For 
example, process 600 can generate a low bit depth image 
from each frame of video using techniques described above 
in connection with EQ. (2). As another example, process 600 
can generate multiple low bit depth images from each frame 
of video. As described above in connection with FIG. 4, in 
some embodiments, process 600 can combine information 
from multiple simulated low bit depth frames , for example, 
by averaging a block of multiple frames. 
[0080] At 612, process 600 can train a machine learning 
model ( e.g. , having a topology described above in connec
tion with FIGS. 4 and/or 5) using low bit depth frames (e.g., 
generated at 606 and/or 610) and the intensity from corre
sponding still images and/or frames of video data. In some 
embodiments, process 600 can use any suitable technique or 
combination of techniques to train the machine learning 
model. For example, process 600 can use techniques 
described above in connection with FIGS. 4 and 5 to train 
the machine learning model. For example, as described 
above, in some embodiments, process 600 can use the L2 
loss function, and can use an RMSProp optimizer. 
[0081] At 614, process 600 can receive a series oflow bit 
depth frames from any suitable source. For example, process 
600 can receive SPAD image sensor data (e.g., 1 bit SPAD 
image sensor data, multibit SPAD image sensor data) of a 
scene. As another example, process 600 can receive jot 
image sensor data (e.g. , 1 bit jot image sensor data, multibit 
jot image sensor data) of a same scene. 
[0082] At 616, process 600 can combine information from 
multiple frames received at 614. For example, as described 
above in connection with FIG. 4, multiple frames (e.g., two 
frames, three frames, four frames, five frames, six frames, 
seven frames, eight frames , etc .) can be averaged, and the 
averaged frame can be provided as input to the trained 
machine learning model. In some embodiments, each frame 
can be included in a single average. For example, eight 
frames ( e.g., frames 1 to 8) can be averaged to generate a 
first input, and another eight frames ( e.g. , frames 9 to 16) can 
be averaged to generate a second input. In some embodi
ments, combining information from multiple frames can be 
omitted. For example, if single low bit depth frames are 
provided as input to the trained machine learning model, 
combining information from multiple frames can be omit
ted. 
[0083] At 618, process 600 can provide low bit depth 
image information as input to the trained machine learning 
model. In some embodiments, process 600 can provide a 
sequence of single low bit depth frames as input to the 
trained machine learning model. In some embodiments, 
process 600 can combine information from multiple low bit 
depth frames to generate an aggregated low bit depth frame, 
and provide a sequence of aggregated low bit depth frames 
as input to the trained machine learning model. 
[0084] At 620, process 600 can receive a relatively high 
bit depth (e.g. , a full depth) frame as output from the trained 
machine learning model. For example, as described above in 
connection with FIGS. 4 and 5, the trained machine learning 
model can generate a high bit depth frame for each input 
provided to the trained machine learning model (e.g., for 
each low bit depth frame provided as input to the trained 
machine learning model , for each aggregated low bit depth 
frame). In a more particular example, process 600 can 
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receive the output in real time or near real time ( e.g., 
generated by a trained machine learning model implemented 
with one or more unidirectional convolutional LSTM layers) 
after at least a predetermined number of inputs have been 
provided to the machine learning model. In such an 
example, the output can be generated after a delay corre
sponding to a number of frames in the trained machine 
learning model's receptive field. In such an example, using 
convolutions with 3x3x3 kernels, the receptive field can 
cover 1+2m frames, where m corresponds to the number of 
3D convolutional layers used to implement the machine 
learning model. In a specific example, at a frame rate of 
about 100,000 frames per second, and using an average of 8 
frames for each input frame, the delay can be on the order 
of about 1 millisecond (ms) for a machine learning model 
implemented using topology 500. In another more particular 
example, process 600 can receive the output in real time 
without a substantial delay (e.g. , no delay after the initial 
frame is received at 614 and/or combined at 616) if temporal 
padding is applied prior to an input of a first frame. In yet 
another more particular example, process 600 can receive 
the output with a relatively short delay ( e.g., generated by a 
trained machine learning model implemented with one or 
more bidirectional convolutional LSTM layers) after a pre
determined number of inputs have been provided to the 
machine learning model. In such an example, the output can 
be generated after a delay corresponding to a number of 
frames in the processing window. In such an example, if 
input is processed in 128-frame blocks, the delay can 
correspond to the time taken to acquire the 128 frames. In a 
specific example, at a frame rate of about 100,000 frames per 
second, and using an average of 8 frames for each input 
frame, the delay can be on the order of about 10 ms. 

[0085] In some embodiments, process 600 (or any other 
suitable process) can perform additional image processing 
on an output received at 620. For example, process 600 (or 
any other suitable process) can perform denoising to an 
output received at 620. As another example, process 600 ( or 
any other suitable process) can perform deblurring to an 
output received at 620. In some embodiments, such image 
processing can be used in connection with an output of a 
machine learning model that is relatively light weight ( e.g. , 
having fewer layers, having fewer channels, etc.). For 
example, a machine learning model implemented using 
topology 500 can output relatively high quality images that 
may not benefit much ( or at all) from further image pro
cessing. As another example, a machine learning model 
implemented using fewer layers, fewer channels, etc., may 
utilize fewer computing resources than a machine learning 
model implemented using topology 500, and may generate 
images that are relatively lower quality ( e.g., which may 
benefit from use of additional image processing). In such an 
example, additional image processing may or may not be 
applied prior to utilizing an output of the trained machine 
learning model as input to a downstream task ( e.g., for use 
in a machine vision task) . 

[0086] At 622, process 600 can present one or more output 
images (e.g., using a display), provide one or more output 
images to another device, provide one or more output 
images to a machine vision system ( e.g., to perform a 
computer vision task). For example, process 600 can cause 
the one or more images to be presented via a display ( e.g. , 
display 330, display 304, display 314). As another example, 
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process 600 can use the one or more images in a computer 
vision application (e.g. , object detection and/or recognition) . 
[0087] FIG. 7 shows an example of a low bit depth frame 
of a scene generated from a still image with simulated 
motion, a predicted low noise high bit depth frame of the 
scene generated from a stream oflow bit depth frames using 
mechanisms described herein, and a ground truth image of 
the scene. Results shown in FIGS. 7 to 11 were generated 
using trained machine learning models implemented using 
the topology described above in connection with FIG. 5. The 
machine learning models were trained using the RMSProp 
optimizer, a learning rate of 10-4

, a batch size of 1, and an 
L2 loss function. Each training epoch included 2048 
sequences, each of which (after any averaging) included 64 
frames of size 32x32. Test sequences included 64 frames of 
size 128xl28 and are taken from a separate partition of the 
source dataset. A "core model" was trained for 100 epochs 
on a synthetic motion dataset with averaging over 8 binary 
frames. It achieved a peak signal to noise ratio (PSNR) of 
32.10, and a structural similarity index (SSIM) of 0.8878. 
The predicted image in FIG. 7 was generated using the core 
model. 
[0088] FIG. 8 shows examples of low bit depth frames 
based on varying numbers of binary frames generated from 
a still image with simulated motion, predicted low noise 
high bit depth frames of the scene generated from streams of 
the low bit depth frames using mechanisms described 
herein, and a ground truth image of the scene. 
[0089] In some scenes, non-negligible motion may occur 
between each binary frame. As such, averaging may result in 
blurring and information loss. FIG. 8 shows a comparison of 
four models whose inputs are averaged over 1, 2, 4, and 8 
binary frames. The motion speed between binary frames was 
scaled inversely by the number of averaged frames. In this 
way, the same amount of motion between averaged frames 
was achieved such that the behavior of the models can be 
analyzed as the signal-to-motion ratio decreases. 
[0090] The four models were each trained from scratch for 
50 epochs. The 1, 2, 4, and 8 frame models achieved PSNR 
of27.95, 29.37, 30.11 and 31.68, respectively, and SSIM od 
0.7448, 0.8090, 0.8305 and 0.8710, respectively. Perfor
mance generally decreases as the signal-to-motion ratio 
increases. However, models implemented and trained in 
accordance with mechanisms described herein performed 
quite well in the extreme case where motion is on the order 
of one pixel per binary frame. 
[0091] FIG. 9 shows an example of a low bit depth frame 
of a scene generated from video data, a predicted low noise 
high bit depth frame of the scene generated from a stream of 
low bit depth frames using mechanisms described herein, 
and a ground truth image of the scene. 
[0092] A machine learning model implemented in accor
dance with the topology described above in connection with 
FIG. 5 was initialized with the weights of the core model and 
trained for 50 epochs using training data generated from 
video. The model achieved PSNR of 34.90 and SSIM of 
0.9238. Note that this is better than the performance of the 
synthetic motion model , likely due to the existence of large 
static regions in many real videos that facilitate high per
formance (e.g. , based on the reduced amount of motion in 
the test data). 
[0093] A baseline technique that included averaging all 
input frames together to attempt to generate a high bit depth 
image ( e.g., averaging pixel values using 64 binary frames 
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with no motion correction) was performed as a basis for 
comparison. This resulted in PSNR or 20.52 and SSIM of 
0.6877 on the real video dataset. Another baseline technique 
that included performing a moving average over 64 binary 
frames (or 8 post-averaging frames). This resulted in PSNR 
of 20.83 and SSIM of 0 .5868 on the real video dataset. 
[0094] FIG. 10 shows an example of a high bit depth 
frame of the scene generated from a set up binary frames 
using another technique, a predicted low noise high bit depth 
frame of the scene generated from a stream oflow bit depth 
frames using mechanisms described herein, and a ground 
truth image of the scene. 
[0095] Frames generated from real video data were used to 
generate a high bit depth image using a quanta burst pho
tography (QBP) technique (e.g. , described in U.S. Pat. No. 
11 ,170,549). The results shown in FIG. 10 were generated 
using frames generated from real video data without repeti
tion of the frames (unintentionally), resulting in eight times 
faster motion than was used in the training dataset used to 
train the model described above in connection with FIG. 9, 
and the "predicted image" in FIG. 10 was generated using 
the same model. 
[0096] Both the QBP technique and the trained model of 
FIG. 9 were used to generate high bit depth images from 100 
example sequences of low bit depth images. Since QBP 
recovers only a single frame from each sequence, the 
corresponding frame was extracted from the trained model's 
output for comparison. QBP and QBP-BM3D (a variant of 
QBP with a BM3D denoiser) achieved PSNR of 28.50 and 
29.23 and SSIM of 0.7449 and 0.8160, respectively. The 
trained model yielded PSNR of 29.71 and SSIM of 0.8489. 
Although unintentional, the fact that the test motion speed 
was much higher than in the training dataset demonstrates 
the generalizability of mechanisms described herein to a 
variety of motion speeds. 
[0097] FIG. 11 shows an example of results of an object 
detection operation performed on a low bit depth frame of a 
scene generated from video data, a predicted low noise high 
bit depth frame of the scene generated from a stream oflow 
bit depth frames using mechanisms described herein, and a 
ground truth image of the scene. 
[0098] For many applications, high bit depth frames gen
erated using mechanisms described herein can be used by a 
downstream processing application. For example, a user 
may wish to run an object detector or calculate optical flow 
and/or object recognition tasks. FIG. 11 shows results gen
erated by running an off-the-shelf object detector (YOLOv3, 
e.g., described in Redmon et al., "YOLOv3: An incremental 
improvement," arXiv:1804.02767 (2018)) using an 8 frame 
average of binary frames generated from a frame of video, 
an output of the trained machine learning model described 
above in connection with FIG. 9, and the corresponding 
frame of video (labeled "ground truth"). As shown in FIG. 
11, results of the object detection were similar when per
formed on the original video frame and the image output by 
the machine learning model, whereas an object was not 
detected in the 8 frame average. 
[0099] In some embodiments, any suitable computer read
able media can be used for storing instructions for perform
ing the functions and/or processes described herein. For 
example, in some embodiments, computer readable media 
can be transitory or non-transitory. For example, non-tran
sitory computer readable media can include media such as 
magnetic media (such as hard disks, floppy disks, etc.), 
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optical media (such as compact discs, digital video discs, 
Blu-ray discs, etc.), semiconductor media (such as RAM, 
Flash memory, electrically programmable read only memory 
(EPROM), electrically erasable programmable read only 
memory (EEPROM), etc.), any suitable media that is not 
fleeting or devoid of any semblance of permanence during 
transmission, and/or any suitable tangible media. As another 
example, transitory computer readable media can include 
signals on networks, in wires, conductors, optical fibers, 
circuits, or any suitable media that is fleeting and devoid of 
any semblance of permanence during transmission, and/or 
any suitable intangible media. 
[0100] It should be noted that, as used herein, the term 
mechanism can encompass hardware, software, firmware, or 
any suitable combination thereof. 
[0101] It should be understood that the above described 
steps of the process of FIG. 6 can be executed or performed 
in any suitable order or sequence not limited to the order and 
sequence shown and described in the figures. Also, some of 
the above steps of the process of FIG. 6 can be executed or 
performed substantially simultaneously where appropriate 
or in parallel to reduce latency and processing times. 
[0102] Although the invention has been described and 
illustrated in the foregoing illustrative embodiments, it is 
understood that the present disclosure has been made only 
by way of example, and that numerous changes in the details 
of implementation of the invention can be made without 
departing from the spirit and scope of the invention, which 
is limited only by the claims that follow. Features of the 
disclosed embodiments can be combined and rearranged in 
various ways. 

What is claimed is: 
1. A system for generating range digital images, compris

ing: 
an image sensor configured to generate low bit depth 

frames; 
at least one processor that is programmed to: 

receive, from the image sensor, a series oflow bit depth 
frames ; 

provide low bit depth image information based on the 
series of low bit depth frames to a trained machine 
learning model, the trained machine learning model 
comprising: 
a three-dimensional (3D) convolutional layer; 
a two-dimensional (2D) convolutional long short 

term memory (LSTM) layer configured to receive 
an output of the 3D convolutional layer; 

a concatenation layer configured to generate a tensor 
that includes a concatenation of an output of the 
2D convolutional LSTM layer and the low bit 
depth image information; and 

a 2D convolutional layer configured to generate an 
output based on the tensor generated by the con
catenation layer; and 

generate a high bit depth image of a scene based on an 
output of the 2D convolutional layer. 

2. The system of claim 1, wherein the image sensor 
comprises a plurality of single-photon avalanche diodes. 

3. The system of claim 1, wherein the series of low bit 
depth frames comprises a series of binary frames. 

4. The system of claim 1, wherein pixels of the low bit 
depth frames are represented using no more than 4 bits. 

5. The system of claim 1, wherein pixels of the high bit 
depth image are represented using at least 8 bits. 
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6. The system of claim 1, wherein the 2D convolutional 
LSTM layer is a bidirectional 2D convolutional LSTM 
layer. 

7. The system of claim 1, wherein the trained machine 
learning model further comprises: 

three LSTM blocks, each comprising: 
two 3D convolutional layers; 
a bidirectional 2D convolutional LSTM layer config

ured to receive an output of a second 3D convolu
tional layer of the two 3D convolutional layers ; and 

a concatenation layer configured to concatenate an 
input to the LSTM block and an output of the 
bidirectional 2D convolutional LSTM layer, 

wherein the 3D convolution layer, the 2D convolutional 
LSTM layer, and the concatenation layer are included 
in the third LSTM block. 

8. The system of claim 1, wherein the trained machine 
learning model comprises a plurality of input channels, each 
corresponding to a color channel. 

9. A method for generating range digital images, com
prising: 

receiving, from an image sensor, a series of low bit depth 
frames ; 

providing low bit depth image information based on the 
series of low bit depth frames to a trained machine 
learning model , the trained machine learning model 
comprising: 
a three-dimensional (3D) convolutional layer; 
a two-dimensional (2D) convolutional long short term 

memory (LSTM) layer configured to receive an 
output of the 3D convolutional layer; 

a concatenation layer configured to generate a tensor 
that includes a concatenation of an output of the 2D 
convolutional LSTM layer and the low bit depth 
image information; and 

a 2D convolutional layer configured to generate an 
output based on the tensor generated by the concat
enation layer; and 

generating a high bit depth image of a scene based on an 
output of the 2D convolutional layer. 

10. The method of claim 9, wherein the image sensor 
comprises a plurality of single-photon avalanche diodes. 

11. The method of claim 9, wherein the series of low bit 
depth frames comprises a series of binary frames. 

12. The method of claim 9, wherein pixels of the low bit 
depth frames are represented using no more than 4 bits. 

13. The method of claim 9, wherein pixels of the high bit 
depth image are represented using at least 8 bits. 

14. The method of claim 9, wherein the 2D convolutional 
LSTM layer is a bidirectional 2D convolutional LSTM 
layer. 

15. The method of claim 9, wherein the trained machine 
learning model further comprises: 
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a bidirectional 2D convolutional LSTM layer config
ured to receive an output of a second 3D convolu
tional layer of the two 3D convolutional layers; and 

a concatenation layer configured to concatenate an 
input to the LSTM block and an output of the 
bidirectional 2D convolutional LSTM layer, 

wherein the 3D convolution layer, the 2D convolutional 
LSTM layer, and the concatenation layer are included 
in the third LSTM block. 

16. The method of claim 9, wherein the trained machine 
learning model comprises a plurality of input channels, each 
corresponding to a color channel. 

17. A non-transitory computer readable medium contain
ing computer executable instructions that , when executed by 
a processor, cause the processor to perform a method for 
generating range digital images, comprising: 

receiving, from an image sensor, a series of low bit depth 
frames; 

providing low bit depth image information based on the 
series of low bit depth frames to a trained machine 
learning model, the trained machine learning model 
comprising: 

a three-dimensional (3D) convolutional layer; 

a two-dimensional (2D) convolutional long short term 
memory (LSTM) layer configured to receive an 
output of the 3D convolutional layer; 

a concatenation layer configured to generate a tensor 
that includes a concatenation of an output of the 2D 
convolutional LSTM layer and the low bit depth 
image information; and 

a 2D convolutional layer configured to generate an 
output based on the tensor generated by the concat
enation layer; and 

generating a high bit depth image of a scene based on an 
output of the 2D convolutional layer. 

18. The non-transitory computer readable medium of 
claim 17, wherein the image sensor comprises a plurality of 
single-photon avalanche diodes. 

19. The non-transitory computer readable medium of 
claim 17, wherein the series of low bit depth frames com
prises a series of binary frames. 

20. The non-transitory computer readable medium of 
claim 17, wherein pixels of the low bit depth frames are 
represented using no more than 4 bits, and pixels of the high 
bit depth image are represented using at least 8 bits. 

* * * * * 




