
1111111111111111 IIIIII IIIII 111111111111111 1111111111 111111111111111 111111111111111 11111111 
US 20240103908Al 

c19) United States 
c12) Patent Application Publication 

CHAKRABARTI et al. 
c10) Pub. No.: US 2024/0103908 Al 
(43) Pub. Date: Mar. 28, 2024 

(54) DYNAMIC ADAPTIVE SCHEDULING FOR 
ENERGY-EFFICIENT HETEROGENEOUS 
SYSTEMS-ON-CHIP AND RELATED 
ASPECTS 

(71) Applicants:ARIZONA BOARD OF REGENTS 
ON BEHALF OF ARIZONA STATE 
UNIVERSITY, Scottsdale, AZ (US); 
WISCONSIN ALUMNI RESEARCH 
FOUNDATION, Madison, WI (US); 
UNIVERSITY OF ARIZONA, Tucson, 
AZ (US); BOARD OF REGENTS, 
THE UNIVERSITY OF TEXAS 
SYSTEM, Austin, TX (US) 

(72) Inventors: Chaitali CHAKRABARTI, Tempe, AZ 
(US); Umit OGRAS, Madison, WI 
(US); Ahmet GOKSOY, Madison, WI 
(US); Anish KRISHNAKUMAR, 
Madison, WI (US); Ali AKOGLU, 
Tucson, AZ (US); Md Sahil HASSAN, 
Scottsdale, AZ (US); Radu 
MARCULESCU, Austin, TX (US); 
Allen-Jasmin FARCAS, Austin, TX 
(US) 

(73) Assignees: ARIZONA BOARD OF REGENTS 
ON BEHALF OF ARIZONA STATE 
UNIVERSITY, Scottsdale, AZ (US); 
WISCONSIN ALUMNI RESEARCH 
FOUNDATION, Madison, WI (US); 
UNIVERSITY OF ARIZONA, Tucson, 
AZ (US); BOARD OF REGENTS, 
THE UNIVERSITY OF TEXAS 
SYSTEM, Austin, TX (US) 

True 

Execution 1 

DF= F (Ti) 
Ds = S(T1) 

Leave label for 
T1 Pending 

End of simulation 
Final metric MF 

True 

Label T1 
with F 

Oracle Generation (Offline) 

(21) Appl. No.: 18/470,177 

(22) Filed: Sep. 19, 2023 

Related U.S. Application Data 

(60) Provisional application No. 63/376,316, filed on Sep. 
20, 2022. 

Publication Classification 

(51) Int. Cl. 
G06F 9/48 
G06F 9/54 

(52) U.S. Cl. 

(2006.01) 
(2006.01) 

CPC .............. G06F 9/4881 (2013.01); G06F 9/54 
(2013.01) 

(57) ABSTRACT 

Provided herein are dynamic adaptive scheduling (DAS) 
systems. In some embodiments, the DAS systems include a 
first scheduler, a second scheduler that is slower than the first 
scheduler, and a runtime preselection classifier that is oper­
ably connected to the first scheduler and the second sched­
uler, which runtime preselection classifier is configured to 
effect selective use of the first scheduler or the second 
scheduler to perform a given scheduling task. Related sys­
tems, computer readable media, and additional methods are 
also provided. 
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DYNAMIC ADAPTIVE SCHEDULING FOR 
ENERGY-EFFICIENT HETEROGENEOUS 

SYSTEMS-ON-CHIP AND RELATED 
ASPECTS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

[0001] This application claims the benefit of U.S. Provi­
sional Application No. 63/376,316 filed Sep. 20, 2022, the 
disclosure of which is incorporated herein in its entirety. 

STATEMENT OF GOVERNMENT SUPPORT 

[0002] This invention was made with govermnent support 
under FA8650-18-2-7860 awarded by the Defense 
Advanced Research Projects Agency (DARPA). The gov­
ermnent has certain rights in the invention. 

FIELD 

[0003] The present disclosure relates to application task 
scheduling in computing systems. 

BACKGROUND 

[0004] Homogeneous multi-core architectures have suc­
cessfully exploited thread- and data-level parallelism to 
achieve performance and energy efficiency beyond the limits 
of single-core processors. While general-purpose computing 
achieves programming flexibility, it suffers from significant 
performance and energy efficiency gap when compared to 
special-purpose solutions. Domain-specific architectures, 
such as graphics processing units (GPUs) and neural net­
work processors, are recognized as some of the most prom­
ising solutions to reduce this gap. Domain-specific systems­
on-chip (DSSoCs), a concrete instance of this new 
architecture, aim at bridging the gap between application­
specific integrated circuits (ASICs) and general-purpose 
processors. Traditional operating system (OS) schedulers 
can undermine the potential of DSSoCs since their runtime 
overhead can be orders of magnitude larger than the execu­
tion time of the task itself. 
[0005] Accordingly, there is a need for OS scheduling 
frameworks that combine the benefits of low- and high­
overhead schedulers. 

SUMMARY 

[0006] The present disclosure provides, in certain aspects, 
a dynamic adaptive scheduling (DAS) framework that com­
bines the benefits of a fast (low-overhead) scheduler and a 
slow (sophisticated, high-performance but high-overhead) 
scheduler. In some embodiments, the present disclosure 
provides a scheduling methodology targeted towards het­
erogeneous systems, which can adapt to the desirable sched­
uling method at runtime in the trade space of scheduling 
complexity and quality. By adaptively using these schedul­
ers in a complementary manner, DAS not only outperforms 
both the schedulers individually in terms of scheduling 
quality but also produces task scheduling decisions with 
ultra-low overhead, typically in the order of nanoseconds. 
Obtaining better decisions while simultaneously minimizing 
the scheduling overhead substantially improves the perfor­
mance and the energy efficiency in heterogeneous systems­
on-chip (SoCs). 
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[0007] In some embodiments, the DAS framework of the 
present disclosure is implemented in systems that comprise 
scheduling algorithms including operating system kernels 
and runtime software environments. Most computing sys­
tems such as heterogeneous SoCs, high-performance com­
puting, and embedded devices need fast yet efficient deci­
sion-making to minimize the impact of scheduling 
overheads and maximize system performance. For instance, 
on the one hand, the execution time of tasks executed on 
domain-specific heterogeneous SoCs are in the order of 
nanoseconds, and hence, scheduling overheads must only be 
a small fraction of it to avoid performance degradation. On 
the other hand, high-performance computing applications 
schedule large numbers of tasks in short periods of time, and 
hence demand low-overhead efficient task scheduling deci­
sions. Accordingly, in some embodiments, DAS is used in 
the schedulers of such systems, which include operating 
system kernels and software runtime frameworks. These and 
other aspects will be apparent upon a complete review of the 
present disclosure, including the accompanying figures. 

[0008] According to various embodiments, a dynamic 
adaptive scheduling (DAS) computing system is presented. 
The DAS computing system includes a first operating sys­
tem (OS) scheduler, a second OS scheduler that is slower 
than the first scheduler, and a runtime preselection classifier 
that is operably connected to the first scheduler and the 
second scheduler, which runtime preselection classifier is 
configured to effect selective use of the first scheduler or the 
second scheduler to perform a given scheduling task. 

[0009] Various optional features of the above embodi­
ments include the following. The DAS system outperforms 
either the first OS scheduler or the second OS scheduler 
individually when performing the given scheduling task in 
terms of one or more performance measures selected from 
the group consisting of: execution time, energy-delay prod­
uct (EDP), and energy consumption. The DAS computing 
system achieves an average speedup of at least about 1.2x 
( e.g., at least about 1.21 x, at least about 1.22x, at least about 
1.23x, at least about 1.24x, at least about 1.25x, at least 
about 1.26x, at least about 1.27x, at least about 1.28x, at 
least about 1.29x, or more) and at least about 30% lower 
EDP ( e.g., at least about 31 %, at least about 32%, at least 
about 33%, at least about 34%, at least about 35%, at least 
about 36%, at least about 37%, at least about 38%, at least 
about 39%, or more) relative to the first OS scheduler when 
a workload complexity increases. The DAS computing 
system achieves an average speedup of at least about 1.2x 
( e.g., at least about 1.21 x, at least about 1.22x, at least about 
1.23x, at least about 1.24x, at least about 1.25x, at least 
about 1.26x, at least about 1.27x, at least about 1.28x, at 
least about 1.29x, or more) and at least about 40% lower 
EDP (e.g., at least about 41%, at least about 42%, at least 
about 43%, at least about 44%, at least about 45%, at least 
about 46%, at least about 47%, at least about 48%, at least 
about 49%, or more) relative to the second OS scheduler at 
a low data rate. The runtime preselection classifier is con­
figured to dynamically switch between use of the first OS 
scheduler and the second OS scheduler for the given sched­
uling task as a function of a state of system resources and/or 
workload characteristics. The DAS computing system com­
prises a heterogeneous computing system. The DAS com­
puting system is implemented in a system that comprises 
scheduling algorithms comprising operating system kernels 
and a runtime software environment. The DAS computing 
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system or framework is integrated with Compiler-integrated, 
Extensible DSSoC Runtime (CEDR), an open-source run­
time environment. The DAS computing system is trained, 
deployed, and validated, and evaluated on Xilinx Zynq 
ZCU102 SoC. 
[0010] Various additional optional features of the above 
embodiments include the following. The DAS computing 
system achieves a scheduling overhead comprising less than 
about 5 nJ energy (e.g., less than about 4.9 nJ, less than 
about 4.8 nJ, less than about 4.7 nJ, less than about 4.6 nJ, 
less than about 4.5 nJ, less than about 4.4 nJ, less than about 
4.3 nJ, less than about 4.2 nJ, less than about 4.1 nJ, or 
lower) and less than about 10 ns runtime (e.g., less than 
about 9 ns, less than about 8 ns, less than about 7 ns, less 
than about 6 ns, less than about 5 ns, less than about 4 ns, 
less than about 3 ns, less than about 2 ns, less than about 1 
ns, or lower) for a given medium to low workload and less 
than about 30 nJ energy ( e.g., less than about 29 nJ, less than 
about 28 nJ, less than about 27 nJ, less than about 26 nJ, less 
than about 25 nJ, less than about 24 nJ, less than about 23 
nJ, less than about 22 nJ, less than about 21 nJ, or lower) and 
less than about 70 ns runtime ( e.g., less than about 69 ns, less 
than about 68 ns, less than about 67 ns, less than about 66 
ns, less than about 65 ns, less than about 64 ns, less than 
about 63 ns, less than about 62 ns, less than about 61 ns, or 
lower) for a given heavy workload. The DAS computing 
system comprises a processor and a memory communica­
tively coupled to the processor, the memory storing non­
transitory computer executable instructions which, when 
executed by the processor, perform operations comprising: 
using the runtime preselection classifier to effect the selec­
tive use of the first scheduler or the second scheduler to 
perform the given scheduling task. The runtime preselection 
classifier is configured to effect use of the first scheduler or 
the second scheduler to perform the given scheduling task 
based upon one or more workload characteristics that are 
selected from the group consisting of: a function of appli­
cation arrival rate, a number of application instances being 
processed, and a number of scheduling tasks present in a 
ready queue. The first scheduler comprises a scheduling 
overhead having less than about 10 nJ energy and less than 
about 10 nanoseconds of runtime. The second scheduler 
comprises a scheduling overhead having more than about 10 
nJ energy and more than about 10 nanoseconds of runtime. 
The DAS computing system comprises a heterogeneous 
systems-on-chip (SoCs ), a high-performance computing 
system, and/or an embedded device. The heterogeneous SoC 
comprises a domain-specific SoC (DSSoCs). 
[0011] According to various embodiments, a method of 
scheduling a runtime task in a heterogeneous multi-core 
computing system is presented. The method comprises using 
a runtime preselection classifier of the heterogeneous multi­
core computing system to effect selective use of a first 
scheduler or a second scheduler that is slower than the first 
scheduler to perform a given scheduling task, thereby sched­
uling the runtime task in the heterogeneous multi-core 
computing system. 
[0012] Various optional features of the above embodi­
ments include the following. The runtime preselection clas­
sifier is configured to effect use of the first scheduler or the 
second scheduler to perform the given scheduling task based 
upon one or more workload characteristics that are selected 
from the group consisting of: a function of application 
arrival rate, a number of application instances being pro-
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cessed, and a number of scheduling tasks present in a ready 
queue. The first scheduler comprises a scheduling overhead 
having less than about 10 nJ energy and less than about 10 
nanoseconds of runtime. The second scheduler comprises a 
scheduling overhead having more than about 10 nJ energy 
and more than about 10 nanoseconds of runtime. The 
method comprises generating an oracle, selecting one or 
more features, and training a model for the runtime prese­
lection classifier. 
[0013] According to various embodiments, a computer 
readable media is presented. The computer readable media 
comprises non-transitory computer executable instructions 
which, when executed by at least one electronic processor, 
perform at least: using a runtime preselection classifier to 
effect selective use of a first scheduler or a second scheduler 
that is slower than the first scheduler to perform a given 
scheduling task in a DAS computing system. 

DRAWINGS 

[0014] The above and/or other aspects and advantages will 
become more apparent and more readily appreciated from 
the following detailed description of examples, taken in 
conjunction with the accompanying drawings, in which: 
[0015] FIG. 1 is a flowchart describing the flow of a 
dynamic adaptive scheduling (DAS) framework according 
to an exemplary embodiment disclosed herein: Oracle gen­
eration, feature selection, and training a model for the 
classifier. 
[0016] FIGS. 2A-2F are plots showing the comparison of 
average execution time (A-C) and EDP (D-F) between DAS, 
LUT, ETF, and ETF-ideal for three different workloads. 
[0017] FIG. 3 show decisions taken by a DAS framework 
as bar plots and total scheduling energy overheads of LUT, 
ETF, and DAS as line plots. 
[0018] FIG. 4 is a block diagram of a computer system 100 
suitable for implementing DAS according to an exemplary 
embodiment disclosed herein. 

DESCRIPTION OF THE EMBODIMENTS 

[0019] The embodiments set forth below represent the 
necessary information to enable those skilled in the art to 
practice the embodiments and illustrate the best mode of 
practicing the embodiments. Upon reading the following 
description in light of the accompanying figures, those 
skilled in the art will understand the concepts of the disclo­
sure and will recognize applications of these concepts not 
particularly addressed herein. It should be understood that 
these concepts and applications fall within the scope of the 
disclosure and the accompanying claims. 
[0020] It will be understood that, although the terms first, 
second, etc. may be used herein to describe various ele­
ments, these elements should not be limited by these terms. 
These terms are only used to distinguish one element from 
another. For example, a first element could be termed a 
second element, and, similarly, a second element could be 
termed a first element, without departing from the scope of 
the present disclosure. As used herein, the term "and/or" 
includes any and all combinations of one or more of the 
associated listed items. 
[0021] It will be understood that when an element such as 
a layer, region, or substrate is referred to as being "on" or 
extending "onto" another element, it can be directly on or 
extend directly onto the other element or intervening ele-
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ments may also be present. In contrast, when an element is 
referred to as being "directly on" or extending "directly 
onto" another element, there are no intervening elements 
present. Likewise, it will be understood that when an ele­
ment such as a layer, region, or substrate is referred to as 
being "over" or extending "over" another element, it can be 
directly over or extend directly over the other element or 
intervening elements may also be present. In contrast, when 
an element is referred to as being "directly over" or extend­
ing "directly over" another element, there are no intervening 
elements present. It will also be understood that when an 
element is referred to as being "connected" or "coupled" to 
another element, it can be directly connected or coupled to 
the other element or intervening elements may be present. In 
contrast, when an element is referred to as being "directly 
connected" or "directly coupled" to another element, there 
are no intervening elements present. 
[0022] Relative terms such as "below" or "above" or 
"upper" or "lower" or "horizontal" or "vertical" may be used 
herein to describe a relationship of one element, layer, or 
region to another element, layer, or region as illustrated in 
the Figures. It will be understood that these terms and those 
discussed above are intended to encompass different orien­
tations of the device in addition to the orientation depicted 
in the Figures. 
[0023] The terminology used herein is for the purpose of 
describing particular embodiments only and is not intended 
to be limiting of the disclosure. As used herein, the singular 
forms "a," "an," and "the" are intended to include the plural 
forms as well, unless the context clearly indicates otherwise. 
It will be further understood that the terms "comprises," 
"comprising," "includes," and/or "including" when used 
herein specify the presence of stated features, integers, steps, 
operations, elements, and/or components, but do not pre­
clude the presence or addition of one or more other features, 
integers, steps, operations, elements, components, and/or 
groups thereof. 
[0024] Unless otherwise defined, all terms (including tech­
nical and scientific terms) used herein have the same mean­
ing as commonly understood by one of ordinary skill in the 
art to which this disclosure belongs. It will be further 
understood that terms used herein should be interpreted as 
having a meaning that is consistent with their meaning in the 
context of this specification and the relevant art and will not 
be interpreted in an idealized or overly formal sense unless 
expressly so defined herein. 
[0025] For the purposes of this specification and appended 
claims, unless otherwise indicated, all numbers expressing 
amounts, sizes, dimensions, proportions, shapes, formula­
tions, parameters, percentages, parameters, quantities, char­
acteristics, and other numerical values used in the specifi­
cation and claims, are to be understood as being modified in 
all instances by the term "about" even though the term 
"about" may not expressly appear with the value, amount or 
range. Accordingly, unless indicated to the contrary, the 
numerical parameters set forth in the following specification 
and attached claims are not and need not be exact, but may 
be approximate and/or larger or smaller as desired, reflecting 
tolerances, conversion factors, rounding off, measurement 
error and the like, and other factors known to those of skill 
in the art depending on the desired properties sought to be 
obtained by the presently disclosed subject matter. For 
example, the term "about," when referring to a value can be 
meant to encompass variations of, in some embodiments, 
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±100% in some embodiments ±50%, in some embodiments 
±20%, in some embodiments ±10%, in some embodiments 
±5%, in some embodiments ±1 %, in some embodiments 
±0.5%, and in some embodiments ±0.1 % from the specified 
amount, as such variations are appropriate to perform the 
disclosed methods or related aspects of the present disclo­
sure. 
[0026] Further, the term "about" when used in connection 
with one or more numbers or numerical ranges, should be 
understood to refer to all such numbers, including all num­
bers in a range and modifies that range by extending the 
boundaries above and below the numerical values set forth. 
The recitation of numerical ranges by endpoints includes all 
numbers, e.g., whole integers, including fractions thereof, 
subsumed within that range (for example, the recitation of 1 
to 5 includes 1, 2, 3, 4, and 5, as well as fractions thereof, 
e.g., 1.5, 2.25, 3.75, 4.1, and the like) and any range within 
that range. 

[0027] Domain-specific systems-on-chip (DSSoCs) aim at 
bridging the gap between application-specific integrated 
circuits (ASICs) and general-purpose processors. Tradi­
tional operating system (OS) schedulers can undermine the 
potential of DSSoCs since their runtime overhead can be 
orders of magnitude larger than the execution time of the 
task itself. To address this problem, the present disclosure 
provides a dynamic adaptive scheduling (DAS) framework 
that combines the benefits of a fast (low-overhead) scheduler 
and a slow (sophisticated, high-performance but high-over­
head) scheduler. The goal of DAS is to outperform the 
execution time and EDP of both types of schedulers by 
dynamically switching between them as a function of the 
state of system resources and workload characteristics. To 
this end, DAS runs a lightweight preselection classifier that 
determines if the fast or slow scheduler should be used for 
the next task ready for scheduling, where workload charac­
teristic is represented as a function of application arrival 
rate, number of applications instances that are being pro­
cessed and number of tasks that are in the ready queue. 
Experiments with five real-world streaming applications 
show that DAS consistently outperforms both the fast and 
slow schedulers. More precisely, for 40 different workloads, 
DAS achieves on average 1.29x speedup and 45% lower 
EDP compared to the sophisticated scheduler at low data 
rates, and 1.28x speedup and 37% lower EDP than the fast 
scheduler when the workload complexity increases. 

I. Introduction 

[0028] Heterogeneous systems-on-chip (SoCs), such as 
Samsung Exynos and Nvidia® Xavier™, combine the flex­
ibility benefits of general-purpose cores with the energy 
efficiency and performance of custom designs. An emerging 
example is domain-specific SoCs, which integrate hardware 
accelerators targeting the commonly encountered tasks (i.e., 
computational kernels) in the target domain. 

[0029] DSSoCs present a new challenge to the classical 
scheduling problem due to their specialized pipelines that 
run domain-specific tasks in the order of nanoseconds, i.e., 
orders of magnitude faster than general-purpose cores. 
Hence, achieving high performance with DSSoCs requires 
task scheduling algorithms that can execute in the order of 
nanoseconds. Fast and low-overhead scheduling is an effec­
tive way to minimizing performance and energy consump­
tion overheads. However, while enabling fast decision-
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making, simple schedulers can make poor scheduling 
decisions, especially under heavy workloads. 
[0030] At low data rates, a low-overhead (fast) scheduler 
outperforms a more sophisticated scheduler due to the 
simplicity of the scheduling problem. The number of con­
current tasks and the complexity of scheduling decisions 
grow with the data rate (heavy workload). Consequently, the 
overhead of making better decisions pays off, i.e., the 
sophisticated scheduler starts outperforming the simple one. 
Hence, there is an opportunity to exploit the tradeoff 
between the scheduling overhead and decision quality. 
[0031] Accordingly, the present disclosure provides, in 
some aspects, a dynamic adaptive scheduling (DAS) frame­
work that combines the benefits of both worlds, i.e., a simple 
scheduler with fast decision making and a sophisticated 
scheduler with high-quality scheduling decisions through an 
integrated decision support mechanism. Making a schedul­
ing decision at the scale of nanoseconds is highly challeng­
ing since it requires a scheduler to load the relevant feature 
data and execute possibly complex decision criteria at the 
scale of nanoseconds. The following key observations 
enable us to design the DAS framework that outperforms 
both types of schedulers taken separately: First, the sched­
uling is not an ordinary process that may be called in the 
future with some probability. Instead, it will be called with 
100% certainty and use a subset of available performance 
counters, i.e., features used for scheduling. Hence, a back­
ground process prefetches the relevant features and writes 
them to a preallocated local memory location. Second, the 
same process can also determine whether a simple or a 
sophisticated scheduler with a higher overhead would per­
form better. If the lookup table (LUT) is preferred as the 
simple scheduler, the only extra delay on the critical path is 
the time it takes to access the LUT, which is 6 ns measured 
on Arm Cortex-A53. In some embodiments, the sophisti­
cated scheduler is run only if a complex decision is required 
at runtime. In some of these embodiments, for example, the 
low scheduling overhead of a simple scheduler and the 
decision quality of a sophisticated scheduler are combined 
based on the system workload using a runtime preselection 
classifier to choose between simple and sophisticated sched­
ulers at runtime and thus enable nanosecond-scale overhead. 
[0032] Exemplary contributions of this disclosure are as 
follows: 

[0033] DAS framework that dynamically combines two 
schedulers and outperforms each of them taken sepa­
rately; 

[0034] Low scheduling overhead: for example, 4.2 nJ 
energy and 6 ns runtime for low to medium loads; 27.2 
nJ energy and 65 ns runtime for heavy workloads in 
some embodiments; 

[0035] Experimental results with five streaming appli­
cations and profiling of scheduling overheads on a 
Xilinx Zynq ZCUl 02. 

II. Dynamic Adaptive Scheduling Framework 

A. Overview and Preliminaries 

[0036] In some aspects, the present disclosure considers 
streaming applications that can be modeled by a data flow 
graph (DFG). Consecutive data frames are pipelined through 
the tasks in the graph. Unlike the current practice, which is 
limited to a single scheduler, DAS allows the OS to choose 
one scheduling policy TT EJt

5
={F, S}, where F and S refer 
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to the fast and slow ( or sophisticated) schedulers, respec­
tively. Once the predecessors of a task are completed, the OS 
can call either a fast (it=F) or a slow scheduler (it=s) as a 
function of the system state and workload. The OS collects 
a set of performance counters during the workload execution 
to enable two aspects for the DAS framework: (1) precise 
assessment of the system state, (2) desirable features for the 
classifier to dynamically switch between the fast and slow 
schedulers. 
[0037] Table I presents the performance counters collected 
by DAS. For a DSSoC with 19 PEs, it uses 62 performance 
counters. The goal of the fast scheduler Fis to approach the 
theoretically minimum (i.e., zero) scheduling overhead by 
making decisions in a few cycles with a minimum number 
of operations. In contrast, the slow scheduler S aims to 
handle more complex scenarios when the task wait times 
dominate the execution times. The goal of DAS is to 
outperform the optimization metrics ( execution time and 
EDP) of both underlying schedulers by dynamically switch­
ing between them as a function of system state and work­
load. 

TABLE I 

Type of performance counters used by DAS framework 

Type 

Task 

Processing 
Element 
(PE) 
System 

Features 

Task ID, Execution time, Power consumption, 
Depth of task in DFG, Application ID, 
Predecessor task ID and cluster IDs, Application type 
Earliest time when PE is ready to execute, 
Earliest availability time of each cluster, 
PE utilization, Communication cost 
Input data rate 

B. Zero-Delay DAS Preselection Classifier 

[0038] The first step of DAS is selecting the fast or slow 
scheduler. Since this decision is on the critical path of the 
fast scheduler, it needs to be optimized to approach the 
zero-overhead goal. One of the novel contributions of DAS 
is recognizing this selection as a deterministic task that will 
eventually be executed with probability one. Hence, we 
prefetch the relevant features required for this decision to a 
pre-allocated local register. To minimize the overhead, we 
re-use a subset of the performance counters shown in Table 
I to make this decision, discussed in Section III-B. 

[0039] The OS periodically refreshes the performance 
counters to reflect the current system state. Each time the 
features are refreshed, DAS runs a lightweight classifier that 
determines if the fast or slow scheduler should be used for 
the next ready task. This decision will always be up to date 
since it is refreshed with the features that reflect the most 
recent system state. This way, DAS determines which sched­
uler should be called even before a task is ready for 
scheduling. Hence, the preselection classifier introduces 
zero latency and minimal energy overhead, as described 
next. 

[0040] Oflline Classifier Design: The first step to design 
the preselection classifier is generating the training data 
based on the domain applications known at design time. 
Each scenario in the training data consists of concurrent 
applications and their respective data rates (e.g., a combi­
nation of WiFi transmitter and receiver chains, at a specific 
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upload and download speed). To this end, we run each 
scenario twice, as described in FIG. 1. 
[0041] First Execution: The instrumentation enables us to 
run both fast and slow schedulers each time a task sched­
uling decision is made. If the decisions of the fast (Dp) and 
slow (Ds) schedulers for a task T, are identical, then we label 
task T, with F (i.e., the fast scheduler) and store a snapshot 
of the performance counters. If the schedulers return differ­
ent decisions, then the label is left as pending, and the 
execution continues by following the fast scheduler's deci­
sion, as illustrated in FIG. 1. At the end of the first execution, 
the training data contains a mixture of both labeled (F) and 
pending decisions. 
[0042] Second Execution: The same scenario is executed, 
this time by always following the slow scheduler's deci­
sions. At the end of the execution, we analyze the target 
metric, such as the average execution time and energy-delay 
product. If the slow scheduler achieves a better result, the 
pending labels are replaced with S to indicate that the slow 
scheduler is preferred despite its larger overhead. Otherwise, 
we conclude that the fast scheduler's lower overhead pays 
off and replace the pending labels with F. An alternative to 
replacing all pending labels at once is evaluating each 
decision individually. However, this approach will not be 
scalable since the scheduling decision at time tk affects not 
only the immediate action but also all the remaining execu­
tion flow. 
[0043] The training data is generated using 40 different 
workloads. Each workload is a mix of multiple instances of 
five applications, consisting of approximately 140,000 tasks 
in total and executed at 14 different data rates (Section 
III-A). A higher data rate presents a larger number of 
concurrent applications contending for the same SoC 
resources. Then, we design a low-overhead classifier using 
machine learning techniques and feature selection methods, 
as described in Section III-B and shown in FIG. 1. 
[0044] Online Use of the Classifier: At runtime, a back­
ground process periodically updates a pre-allocated local 
memory with a small subset of performance counters 
required by the classifier. After each update, the classifier 
determines whether the fast F or slow S scheduler should be 
used for the next available task. When a new ready task 
becomes available, the features are already loaded, and we 
know which scheduler is a better choice. Therefore, DAS 
does not incur any extra delay on the critical path. Moreover, 
it has a negligible energy overhead, as demonstrated in 
Section III. 

Algorithm 1: ETF Scheduler 

while ready queue Tis not empty do 
2 I for task T, ET do 

I for PE p1 EP! *P- set of PEs */ 
4 I do 

I I FTr,,,
1
- Compute the finish time ofT, on p1 

I end 
7 end 

(T', p') - Find the task & PE pair that has the minimum FT 
9 Assign task T' to PE p' 

10 end 

C. Fast & Slow (Sophisticated) (F&S) Schedulers 

[0045] The DAS framework can work with any choice of 
fast and slow scheduling algorithms. This work uses a LUT 
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implementation as the fast scheduler since the goal of the 
fast scheduler is to achieve almost zero overhead. The LUT 
stores the most energy-efficient processor in the target 
system for each known task in the target domain. Unknown 
tasks are mapped to the next available CPU core. Hence, the 
only extra delay on the critical path and overhead is the LUT 
access. To profile the scheduling overhead, we developed an 
optimized C implementation with inline assembly code. 
Experiments show that our fast scheduler takes - 7 .2 cycles 
(6 ns on Arm Cortex-A53 at 1.2 GHz) on average and incurs 
negligible (2.3 nJ) energy overhead. 
[0046] The DAS framework uses a commonly used heu­
ristic, earliest task first (ETF), as the slow scheduler. ETF is 
chosen since it performs a comprehensive search to make a 
decision when the SoC is loaded with many tasks. It 
recursively iterates over the ready tasks and processors to 
find the schedule with the fastest finish time, as shown in 
Algorithm 1. Hence, its computational complexity is qua­
dratic on the number of ready tasks. 

III. Experimental Results 

A. Experimental Setup 

[0047] Domain Applications: The DAS framework is 
evaluated using five real-world streaming applications: 
range detection, temporal mitigation, WiFi-transmitter, 
WiFi-receiver applications, and a proprietary industrial 
application (App-1 ). We construct 40 different workloads by 
mixing applications in different ratios for our evaluations. 
[0048] Emulation Environment: One of our key goals in 
this study is to conduct a realistic energy and runtime 
overhead analysis. For this purpose, we leverage an open­
source Linux-based emulation framework. For our analysis, 
we incorporate LUT and ETF schedulers into this emulation 
environment. We generate a wide range of workloads­
ranging from all application instances belonging to a single 
application to a uniform distribution from all five applica­
tions. We measure the trend between the number of tasks 
ready to be scheduled and the scheduling overhead of ETF 
on the Xilinx Zynq ZCUl 02. Based on these measurements, 
we generate a quadratic equation to formulate the ETF 
scheduling overhead. Later, we utilize this equation to 
evaluate the average execution time and the EDP of the DAS 
scheduler. 
[0049] Simulation Environment: We use DS3, an open­
source domain-specific system-on-chip simulation frame­
work, for the detailed evaluation of DAS. DS3 includes 
built-in scheduling algorithms, models for PEs, intercon­
nect, and memory systems. The framework has been vali­
dated with Xilinx Zynq ZCU102 and Odroid-XU3 plat­
forms. 
[0050] DSSoC Configuration: We construct a DSSoC con­
figuration that comprises clusters of general-purpose cores 
and hardware accelerators. The application domains used in 
this study are wireless communications and radar systems. 
The DSSoC used in our experiments uses the Arm big. 
LITTLE architecture with 4 cores each. We also include 
dedicated accelerators for fast Fourier transform (FFT), 
forward error correction (FEC), finite impulse response 
(FIR), and a systolic array processor (SAP). We include 4 
cores each for the FFT and FIR accelerators, one core for the 
FEC, and two cores of the SAP. The FEC accelerates the 
execution of encoder and decoder operations. In total, the 
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DSSoC integrates 19 PEs with a mesh-based network-on­
chip to enable efficient on-chip data movement. 

B. Exploration of Machine Learning Techniques 
and Feature Space for DAS 

[0051] Machine Leaming Technique Exploration: We 
explore different classifiers to co-optimize the classification 
accuracy and model size towards our minimal overhead 
goal. Specifically, we investigated support vector classifiers, 
decision tree (DT), multi-layer perceptron (MLP), and logis­
tic regression (LR). The training process with support vector 
classifiers with simple kernels exceeded 24 hours, rendering 
it infeasible. The latency and storage requirements of the 
MLP (one hidden layer and 16 neurons) did not fit the 
budgets oflow-overhead requirements. Therefore, these two 
techniques are excluded from the rest of the analysis. Table 
II summarizes the classification accuracy and storage over­
heads for the LR and DT classifiers as a function of the 
number of features. DTs achieve similar or higher accuracies 
compared to LR classifiers with lower storage overheads. 
While a DT with depth 16 that uses all features achieves the 
best classification accuracy, there is a significant impact on 
the storage overhead, which in tum influences the latency 
and energy consumption of the classifier. In comparison, 
DTs with depth 2 and 4 have negligible storage overheads 
with competitive accuracies (>85% ). Hence, for the DAS 
framework, we adopt the DT classifier with depth 2. 
[0052] Feature Space Exploration: We collect 62 perfor­
mance counters in our training data. A systematic feature 
space exploration is performed using feature selection and 
importance methods. Among the top six features, growing 
the feature list from a single feature (input data rate) to two 
features with the addition of the earliest availability time of 
the Arm big cluster increases the accuracy from 63.66% to 
85.48%. The data rate is tracked at runtime by an 8-entryx 
16-bit shift register. Therefore, we utilize only two most 
important features to design a DT of depth 2 for the DAS 
classifier model; this takes 13 ns to execute on Arm Cortex­
A53 cores running at 1.2 GHz. 

TABLE II 

Classification accuracies and storage overhead of DAS models 
with different machine learning classifiers and features 

Tree Number of Classification Storage 
Classifier Deptb Features Accuracy (%) (KB) 

LR 2 79.23 0.01 
LR 62 83.1 0.24 
DT 2 63.66 0.01 
DT 2 2 85.48 0.01 
DT 4 85.51 0.03 
DT 16 62 91.65 256 

C. Performance and Scheduling Overhead Analysis 

[0053] This section compares the DAS framework with 
LUT (fast), ETF (slow), and ETF-ideal schedulers. ETF­
ideal is a version of the ETF scheduler which ignores the 
scheduling overhead. It helps us establish the theoretical 
limit of achievable execution time and EDP. Out of the 40 
workloads described in Section II-B, we choose three rep­
resentative workloads for a detailed analysis of execution 
time and EDP trends. These workloads present different data 
rates, which are a function of the applications in the work-
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load. Workload-I (FIGS. 2A,D) presents low data rate, 
workload-2 (FIGS. 2B,E) presents moderate data rates, and 
workload-3 (FIGS. 2C,F) represents a high data rate work­
load. 
[0054] FIGS. 2A-C (FIGS. 2D-F) compare the execution 
times (EDP) of DAS, LUT, ETF, and ETF-ideal. For work­
loads 1 and 2, the SoC is not congested at low data rates. 
Hence, DAS performs similar to LUT. As data rates 
increase, DAS aptly chooses between LUT and ETF at 
runtime. Its execution time and EDP is 14% and 15% lower 
than LUT, and 15% and 42% lower than ETF. For workload-
3, the execution time and EDP of ETF are significantly 
higher than LUT. DAS chooses LUT for >99% of the 
decisions and closely follows its execution time and EDP. 
[0055] This exemplary analysis is extended to all 40 
workloads. At low data rates, DAS achieves 1.29x speedup 
and 45% lower EDP compared to ETF, and 1.28x speedup 
and 37% lower EDP than LUT, when the workload com­
plexity increases. In summary, DAS consistently performs 
better than either one of the underlying schedulers, success­
fully adapts to the workloads at runtime, and aptly chooses 
between LUT and ETF to achieve low execution time and 
EDP. 
[0056] The left axis of FIG. 3 plots the decision distribu­
tion of DAS. It uses LUT for all decisions at the lowest data 
rate and ETF for 95% of decisions at the highest data rate. 
At a moderate workload of 1352 Mbps, DAS still uses LUT 
for 96% of the decisions. The secondary axis of FIG. 3 
shows the energy overhead of using different schedulers. As 
DAS uses LUT and ETF based on the system load, its energy 
consumption varies from that of LUT to ETF. The average 
scheduling latency overhead of DAS under heavy workloads 
is 65 ns, and the energy overhead is 27.2 nJ. 
[0057] We also compared DAS against a heuristic that 
chooses the fast scheduler when the data rate is less than a 
predetermined threshold and uses the slow scheduler other­
wise. The threshold is chosen judiciously by analyzing the 
training data used for DAS. Simulation results show that the 
heuristic closely follows LUT (fast) and ETF (slow) sched­
ulers below and above the data rate threshold, respectively. 
In contrast, DAS consistently outperforms both schedulers 
and achieves on average 13% lower execution time than the 
heuristic across all data rates. 
[0058] Accordingly, in some aspects, the present disclo­
sure provides a dynamic adaptive scheduling framework that 
combines the benefits of fast and sophisticated schedulers 
for heterogeneous SoCs. In some embodiments, DAS 
achieves an overhead that is as low as 6 ns ( 4.2 nJ) for a wide 
range of workload scenarios and on average, 65 ns (27.2 nJ) 
for heavy workloads for wireless communication and radar 
system applications. Hence, the exemplary embodiments 
disclosed herein pave the way for DSSoCs to leverage their 
potential better to, for example, enable peak performance 
and energy-efficiency of domain applications. 

IV. Computer System 

[0059] FIG. 4 is a block diagram of a computer system 100 
suitable for implementing dynamic adaptive scheduling 
(DAS) according to embodiments disclosed herein. Embodi­
ments described herein can include or be implemented as the 
computer system 100, which comprises any computing or 
electronic device capable of including firmware, hardware, 
and/or executing software instructions that could be used to 
perform any of the methods or functions described herein. In 
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this regard, the computer system 100 may be a circuit or 
circuits included in an electronic board card, such as a 
printed circuit board (PCB), a server, a personal computer, 
a desktop computer, a laptop computer, an array of comput­
ers, a personal digital assistant (PDA), a computing pad, a 
mobile device, or any other device, and may represent, for 
example, a server or a user's computer. 
[0060] The exemplary computer system 100 in this 
embodiment includes a processing device 102 or processor, 
a system memory 104, and a system bus 106. The system 
memory 104 may include non-volatile memory 108 and 
volatile memory 110. The non-volatile memory 108 may 
include read-only memory (ROM), erasable programmable 
read-only memory (EPROM), electrically erasable program­
mable read-only memory (EEPROM), and the like. The 
volatile memory 110 generally includes random-access 
memory (RAM) (e.g., dynamic random-access memory 
(DRAM), such as synchronous DRAM (SDRAM)). A basic 
input/output system (BIOS) 112 may be stored in the non­
volatile memory 108 and can include the basic routines that 
help to transfer information between elements within the 
computer system 100. 
[0061] The system bus 106 provides an interface for 
system components including, but not limited to, the system 
memory 104 and the processing device 102. The system bus 
106 may be any of several types of bus structures that may 
further interconnect to a memory bus (with or without a 
memory controller), a peripheral bus, and/or a local bus 
using any of a variety of commercially available bus archi­
tectures. 
[0062] The processing device 102 represents one or more 
commercially available or proprietary general-purpose pro­
cessing devices, such as a microprocessor, central process­
ing unit (CPU), or the like. More particularly, the processing 
device 102 may be a complex instruction set computing 
(CISC) microprocessor, a reduced instruction set computing 
(RISC) microprocessor, a very long instruction word 
(VLIW) microprocessor, a processor implementing other 
instruction sets, or other processors implementing a combi­
nation of instruction sets. The processing device 102 is 
configured to execute processing logic instructions for per­
forming the operations and steps discussed herein. 
[0063] In this regard, the various illustrative logical 
blocks, modules, and circuits described in connection with 
the embodiments disclosed herein may be implemented or 
performed with the processing device 102, which may be a 
microprocessor, field programmable gate array (FPGA), a 
digital signal processor (DSP), an application-specific inte­
grated circuit (ASIC), or other programmable logic device, 
a discrete gate or transistor logic, discrete hardware com­
ponents, or any combination thereof designed to perform the 
functions described herein. Furthermore, the processing 
device 102 may be a microprocessor, or may be any con­
ventional processor, controller, microcontroller, or state 
machine. The processing device 102 may also be imple­
mented as a combination of computing devices (e.g., a 
combination of a DSP and a microprocessor, a plurality of 
microprocessors, one or more microprocessors in conjunc­
tion with a DSP core, or any other such configuration). 
[0064] The computer system 100 may further include or 
be coupled to a non-transitory computer-readable storage 
medium, such as a storage device 114, which may represent 
an internal or external hard disk drive (HDD), flash memory, 
or the like. The storage device 114 and other drives associ-
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ated with computer-readable media and computer-usable 
media may provide non-volatile storage of data, data struc­
tures, computer-executable instructions, and the like. 
Although the description of computer-readable media above 
refers to an HDD, it should be appreciated that other types 
of media that are readable by a computer, such as optical 
disks, magnetic cassettes, flash memory cards, cartridges, 
and the like, may also be used in the operating environment, 
and, further, that any such media may contain computer­
executable instructions for performing novel methods of the 
disclosed embodiments. 
[0065] An operating system 116 and any number of pro­
gram modules 118 or other applications can be stored in the 
volatile memory 110, wherein the program modules 118 
represent a wide array of computer-executable instructions 
corresponding to programs, applications, functions, and the 
like that may implement the functionality described herein 
in whole or in part, such as through instructions 120 on the 
processing device 102. The program modules 118 may also 
reside on the storage mechanism provided by the storage 
device 114. As such, all or a portion of the functionality 
described herein may be implemented as a computer pro­
gram product stored on a transitory or non-transitory com­
puter-usable or computer-readable storage medium, such as 
the storage device 114, volatile memory 110, non-volatile 
memory 108, instructions 120, and the like. The computer 
program product includes complex programming instruc­
tions, such as complex computer-readable program code, to 
cause the processing device 102 to carry out the steps 
necessary to implement the functions described herein. 
[0066] An operator, such as the user, may also be able to 
enter one or more configuration commands to the computer 
system 100 through a keyboard, a pointing device such as a 
mouse, or a touch-sensitive surface, such as the display 
device, via an input device interface 122 or remotely through 
a web interface, terminal program, or the like via a com­
munication interface 124. The communication interface 124 
may be wired or wireless and facilitate communications with 
any number of devices via a communications network in a 
direct or indirect fashion. An output device, such as a display 
device, can be coupled to the system bus 106 and driven by 
a video port 126. Additional inputs and outputs to the 
computer system 100 may be provided through the system 
bus 106 as appropriate to implement embodiments described 
herein. 
[0067] The operational steps described in any of the 
exemplary embodiments herein are described to provide 
examples and discussion. The operations described may be 
performed in numerous different sequences other than the 
illustrated sequences. Furthermore, operations described in a 
single operational step may actually be performed in a 
number of different steps. Additionally, one or more opera­
tional steps discussed in the exemplary embodiments may be 
combined. 
[0068] While the invention has been described with ref­
erence to the exemplary embodiments thereof, those skilled 
in the art will be able to make various modifications to the 
described embodiments without departing from the true 
spirit and scope. The terms and descriptions used herein are 
set forth by way of illustration only and are not meant as 
limitations. In particular, although the method has been 
described by examples, the steps of the method can be 
performed in a different order than illustrated or simultane­
ously. Those skilled in the art will recognize that these and 
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other variations are possible within the spirit and scope as 
defined in the following claims and their equivalents. 

What is claimed is: 
1. A dynamic adaptive scheduling (DAS) computing 

system, comprising: 
a first operating system (OS) scheduler; 
a second OS scheduler that is slower than the first OS 

scheduler; and; 
a runtime preselection classifier that is operably con­

nected to the first scheduler and the second scheduler, 
which runtime preselection classifier is configured to 
effect selective use of the first scheduler or the second 
scheduler to perform a given scheduling task. 

2. The DAS computing system of claim 1, wherein the 
DAS system outperforms either the first OS scheduler or the 
second OS scheduler individually when performing the 
given scheduling task in terms of one or more performance 
measures selected from the group consisting of: execution 
time, energy-delay product (EDP), and energy consumption. 

3. The DAS computing system of claim 1, wherein the 
DAS computing system achieves an average speedup of at 
least about 1.2x and at least about 30% lower EDP relative 
to the first OS scheduler when a workload complexity 
increases. 

4. The DAS computing system of claim 1, wherein the 
DAS computing system achieves an average speedup of at 
least about 1.2x and at least about 40% lower EDP relative 
to the second OS scheduler at a low data rate. 

5. The DAS computing system of claim 1, wherein the 
runtime preselection classifier is configured to dynamically 
switch between use of the first OS scheduler and the second 
OS scheduler for the given scheduling task as a function of 
a state of system resources and/or workload characteristics. 

6. The DAS computing system of claim 1, wherein the 
DAS computing system comprises a heterogeneous com­
puting system. 

7. The DAS computing system of claim 1, wherein the 
DAS computing system is implemented in a system that 
comprises scheduling algorithms comprising operating sys­
tem kernels and a runtime software environment. 

8. The DAS computing system of claim 1, wherein the 
DAS computing system achieves a scheduling overhead 
comprising less than about 5 nJ energy and less than about 
10 ns runtime for a given medium to low workload and less 
than about 30 nJ energy and less than about 70 ns runtime 
for a given heavy workload. 

9. The DAS computing system of claim 1, wherein the 
DAS computing system comprises a processor and a 
memory communicatively coupled to the processor, the 
memory storing non-transitory computer executable instruc­
tions which, when executed by the processor, perform 
operations comprising: using the runtime preselection clas­
sifier to effect the selective use of the first scheduler or the 
second scheduler to perform the given scheduling task. 

10. The DAS computing system of claim 1, wherein the 
runtime preselection classifier is configured to effect use of 
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the first scheduler or the second scheduler to perform the 
given scheduling task based upon one or more workload 
characteristics that are selected from the group consisting of: 
a function of application arrival rate, a number of application 
instances being processed, and a number of scheduling tasks 
present in a ready queue. 

11. The DAS computing system of claim 1, wherein the 
first scheduler comprises a scheduling overhead having less 
than about 10 nJ energy and less than about 10 nanoseconds 
of runtime. 

12. The DAS computing system of claim 1, wherein the 
second scheduler comprises a scheduling overhead having 
more than about 10 nJ energy and more than about 10 
nanoseconds of runtime. 

13. The DAS computing system of claim 1, wherein the 
DAS computing system comprises a heterogeneous sys­
tems-on-chip (SoCs), a high-performance computing sys­
tem, and/or an embedded device. 

14. The DAS computing system of claim 13 wherein the 
heterogeneous SoC comprises a domain-specific SoC (DS­
SoCs ). 

15. A method of scheduling a runtime task in a hetero­
geneous multi-core computing system, the method compris­
ing using a runtime preselection classifier of the heteroge­
neous multi-core computing system to effect selective use of 
a first scheduler or a second scheduler that is slower than the 
first scheduler to perform a given scheduling task, thereby 
scheduling the runtime task in the heterogeneous multi-core 
computing system. 

16. The method of claim 15, wherein the runtime prese­
lection classifier is configured to effect use of the first 
scheduler or the second scheduler to perform the given 
scheduling task based upon one or more workload charac­
teristics that are selected from the group consisting of: a 
function of application arrival rate, a number of application 
instances being processed, and a number of scheduling tasks 
present in a ready queue. 

17. The method of claim 15, wherein the first scheduler 
comprises a scheduling overhead having less than about 10 
nJ energy and less than about 10 nanoseconds of runtime. 

18. The method of claim 15, wherein the second scheduler 
comprises a scheduling overhead having more than about 10 
nJ energy and more than about 10 nanoseconds of runtime. 

19. The method of claim 15, wherein the method com-
prises: 

generating an oracle; 
selecting one or more features; and, 
training a model for the runtime preselection classifier. 
20. A computer readable media comprising non-transitory 

computer executable instructions which, when executed by 
at least one electronic processor, perform at least: using a 
runtime preselection classifier to effect selective use of a first 
scheduler or a second scheduler that is slower than the first 
scheduler to perform a given scheduling task in a DAS 
computing system. 

* * * * * 
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