
��������������	��
 ��
���������

1111111111111111 IIIIII IIIII 1111111111 11111 111111111111111 IIIII IIIII IIIII 1111111111 11111111
US 20230376766Al

(19) United States
(12) Patent Application Publication

Gupta et al.

(10) Pub. No.: US 2023/0376766 Al

(43) Pub. Date: Nov. 23, 2023

(54) SYSTEMS, METHODS, AND MEDIA FOR
GENERATING AND USING NEURAL
NETWORKS HAVING IMPROVED
EFFICIENCY FOR ANALYZING VIDEO

(52) U.S. CI.
CPC G06N 3/082 (2013.01); G06N 3/0481

(2013.01) ; G06V 10182 (2022.01)

(57) ABSTRACT
(71) Applicant: WISCONSIN ALUMNI RESEARCH

FOUNDATION, Madison, WI (US)
In accordance with some embodiments, systems, methods,
and media for generating and using neural networks having
improved efficiency for analyzing video are provided. In
some embodiments, the method comprises: providing image
data to a trained neural network; receiving, at a neuron, a
delta-based input l',.,n from a previous layer; generating an
output g(!>,.,n) of a linear transform g; generating an updated
state variable a based on g(!>,.,n) and a current a; generating
an output f(a) of an activation function f based on updated
a; generating an updated state variable d based on a current
d, a state variable b, and f(a); generating an updated b based
on output f(a); transmitting d to a next layer based on a
transmission policy and subtracting the value from d; and
receiving an output from the trained neural network that
represents a prediction based on the image data.

(72) Inventors: Mohit Gupta, Madison, WI (US);
Matthew Dutson, Madison, WI (US)

(21) Appl. No.: 17n47,545

(22) Filed: May 18, 2022

Publication Classification

(51) Int. CI.

110

G06N 3/08
G06N 3/04
G06V 10182

Computing Device

104~
. --· --------,
I I

: Computer Vision:
: System :
I I
I -----------1

1~2~--- --- __
' I I I
I I.

: Image Data Source :
I I
I I ~---------------~

(2006.01)
(2006.01)
(2006.01)

100

108

Communication Network

102 , I ,- ,_).. __ - ------ ~
I I
I I
I I
1 Image Data Source :
I I
I I

L---------------~

Server

104, #"' __ '\.. ________ ,
I I

: Computer Vision:
: System :
I I
I -----------1

��������������	��

��
���������

100

108

Communication Network

llO

Computing Device

104,
~--\.. ________ ,
I I

'c v· • 1
1 omputer • 1s1011 1
I I , System 1
I I

I -----------1

1~:-~------------~
I I
I I
I . . . I
, Image Data Source :
I
I I
I I

~---------------~

1~2~------------~
I I
I I
I . I
, Image Data Source :
I I
I I

~- - -- - ---- -- --- __ ,
FIG. 1

120

Server

104,
,.,. __). _________ ,
I I

'c '!. /' . I 1 omputer v 1s 1011 1
I I , System ,
I I

L-----------i

--= = ;-
=

~ -.... r') = Q-.
0 =
--= = O' = r')

=
0 =
z
0
~
N
~
N
0
N
~

r,;
=­('D
('D
0
00

c
r,;
N
0
N
~

---0
~
.......:i
0'I
.......:i
0'I
0'I

>

��������������	��

��
���������

102

__ Image Data Source

222, 224\

Processor ~ ~ Sensor(s) -. ,.

228\ 226\

Memory ... Communications - ~

System(s)

110

" Computing Device

202\ 208\ ~r H

Processor Communications
- ~

System(s)

204\ 210,

Display ~ - Memoty - ,

206\

Input(s) +-

♦- i------ ·-

120

"

FIG. 2

200

- 108 - ~

'

Communication Network

'~-~"

Server

212\ 218\
~-

Processor Communications
- ~

System(s)

214\ 220\

Display ~ - Memory - ,

216,

lnput(s) ~

'"d =
('D

=
> "t:l

"t:l -.... (')

=
0 =
'"d = O" -.... (')

=
0 =
2
0
~
N
~~

N
0
N
~

rJ)_

=­('D
('D
N
0
QO

0
rJ)_

N
0
N
~

---0
~
-...J
0'I
-...J
0'I
0'I

>

��������������	��
 ��
��	������

Patent Application Publication Nov. 23, 2023 Sheet 3 of 8 US 2023/0376766 Al

��������������	��

��
���������

(a) Conventional
Value"-based

(b) EvNet
Value-based

FIG. 4

(c) EvNet
Delta-based

I d •t:-- d + f(a.) .,... b / !
: Accumulator

1
.. I / t ;-----. 1 Output va ue

,, a,-- ll + c1(Ltn) • <. . • • - • •• • • • • ••• • L • • ,,,
lnputve('!or ;. • ···.•·.•.·•.•.•.•. •.•.•.•·•.•·•.•·•.•·•.•·•.•·•.•·•.•·•.•·•.•·•.•.•. •.•.•. ••.··.. / ••• ' .~ • I t, Policy I - .r -- ► Llout

== / --1 I I' :, ------· -·

Ain- - - 1.- ~ .• -:ia: Ill~ I • .1.• .. • .. • .. • .. • .. • .. • .. • .. • .. • .. 1.• .. • .. • .. • .. • .. • .. • .. • .. • .. • .. • .. • .. • .. • .. • .. • .. • .. • .. 1. !i! - -►Delta
,,. Linear Activation ••••••••••••••••••••••••••••• :\:
I transform B . i ---►- Value

est estimate •==

b .-. f (a)
:•:❖- ',:•:•: : :•:•:•:• ,:•:•:•: .. :•:•:• ',:•:•:•: :-:•:❖ •• ;.:-: . :•:•:• ,:•:•:•: . ❖:•: .. :•:❖ - ',:•:•:•: :•:•:•:• ❖:•:•: :-:•:•:, ' ••• ;.; : : :•:, ·•:•:•:•: ❖:•:• : ••• ;.; ·•:•:•: : :•:❖ • ,:•:•:. :•:•:•: .. ,:•:•:•: :•:-:,:_ ·,:.:-:•: ❖:•: .. ' •;•:•: ❖:❖ :•:•:•: ❖:•: : :,:•:•:• ',:•:•:. :•:•:•:• ,:•:•:•: . :•:❖ •:•:•:•: : : :•: .. :•:•:,: ❖:•: : :•:❖ • ❖:•:- : :•:•:• . ·,:.:-:-: :-:•:•:• ,:•:-:/:

FIG. 5

'"d =
('D

=
> "t:l

"t:l -.... (')

=
0 =
'"d = O" -.... (')

=
0 =
2
0
~
N
~~

N
0
N
~

rJ)_

=­('D
('D
~

0
QO

0
rJ)_

N
0
N
~

---0
~
-...J
0'I
-...J
0'I
0'I

>

��������������	��
 ��
���������

Patent Application Publication Nov. 23, 2023 Sheet 5 of 8 US 2023/0376766 Al

~
s,_

o
3:
"tu
C:
-ro

I.....
:J
(l)
C -(1J
C
0 ·-+J
C:
(I)
>
C:
0

(...)

indino

/\UO:J

indu1

.. • ,,,t ,,,

1111,,,,,,,,,,,,,,,,,,,~i:~,,,,,,,,,,,,,,,,, ... llll
j l

\0

A
I

•
,:r'·_._._..,.:.I.:::.,.,.,.,.,_._._..,.,.,.,.,.,.,.,.,.,.,.,_._._..,,,,

l_a,s_J

4ndu1

��������������	��
 ��
���������

Patent Application Publication Nov. 23, 2023 Sheet 6 of 8 US 2023/0376766 Al

700

702

RECEIVE A PRE-TRAINED NEURAL NETWORK (NN) AND/OR TRAIN A NN
l)

+ 704
MODIFY THE NETWORK ARCHITECTURE WITH COMPONENTS THAT

IMPLEMENT MEMORY AND/OR A TRANSMISSION POLICY OF AN EVENT
l)

NEURAL NETWORK (ENN)

+ 706

- RECEIVE IMAGE DATA (E.G., VIDEO DATA) FROM A DATA SOURCE r
l)

+ 708

PROVIDE IMAGE DATA (E.G., A FRAME OF VIDEO) TO THE ENN l)

i 710
PROPAGATE UPDATES THROUGH THE ENN BASED ON THE PROVIDED

IMAGE DATA

i 712

RECEIVE OUTPUT FROM THE ENN

t
PRESENT CONTENT BASED ON AN OUTPUT(S) OF THE ENN AND/OR

714

iJ
PERFORM A COMPUTER VISION TASK BASED ON A CURRENT OUTPUT OF

TI-IEENN

FIG. 7

��������������	��
 ��
��
������

Patent Application Publication Nov. 23, 2023 Sheet 7 of 8 US 2023/0376766 Al

1
.,...,
C
<l)

""·:~::~- ~~" - • - ' -
··-·-·-- •• : · ·: ·: : • • ••• ,,,,,.,,,,,,,,.,,;:;:•::,::,,:,,:-:-::❖:-:-:-:-:-y __ ,,,.,., .. , .. ·: .,.,.,.,.,,,,.,,,,:,:;:;::,:;:; E

(IJ
<l) ,._
0)
<(

• - With long-term memory
,,,,,,,,,,,,,,,,,,,,,,,,, Without long-term memory

0 - -----.--~,-----.---...... -
0 Time step 40

1\1.odel

~10del

OperiPose
YOLO
HDRNet-a
HDRNet-f
PWC#Net

OpenPose
YOLO
HDRNet-a
HDRNet-f
PWC-Net

10.lx
:t:J:Jx
5.78x
2:3.9x
2.68x

FIG. 8

None

17.ax
fi.64:x
6,19x
') '1 <) •>'- · • .-X

5.4lx

FIG. 9

11.Jx
~-3.95x
6.02x
29.7x
•·) ')9·. ,) _ X

Agreement

0.904PCK
0.817 m.APSO
:39.4 PSNR
39.4 PSNR
0.8~35EPE

FIG. 10

1\.1ode1 Savings Conventional

Open.Pose
P\VC-Net

I0.4x (L709 PCKh
1..89x 2.86 EPE

FIG. 11

Major

8.40x
2.65x
5.55x
20.0x
2.llx

Overhead

Event

0.688-- .PCKh
B.B-BE.PE

��������������	��

��
���������

Conventlorial Event Savings

24.2x

8.24x

18.3x

8.89x

FIG. 12

Variant

Conventional
No dmnking
2 x 2 chunks
4 x 4 chunks
8 x 8 dmriks
Channels

0.3

C:
0
E
£
((}
0 v

Threshold

0.05
r {)-, l7) d . . ':J/\ l -

o.o;5/V4
CL05/V8
(L02

FIG. 13

PCK

1.000
0.005
0.904
0.8Wl
0.88[1
0.876

GOps

138 >< 101).

1.44 X 1010

2.10)(10' 0

:un x 1010

4.1G .x HJiu
4.78 X 1010

Mirtor camera ,notion

0.0 __ _.,.. ________ _.,.. ____ ~

0 Layer index 90

FIG. 14

'"d =
('D

=
> "t:l

"t:l -.... (')

=
0 =
'"d = O" -.... (')

=
0 =
2
0
~
N
~~

N
0
N
~

rJ)_

=­('D
('D
00
0
00

0
rJ)_

N
0
N
~

---0
~
-J
0'I
-J
0'I
0'I

>

��������������	��
 ��
����������

US 2023/0376766 Al

SYSTEMS, METHODS, AND MEDIA FOR
GENERATING AND USING NEURAL

NETWORKS HAVING IMPROVED
EFFICIENCY FOR ANALYZING VIDEO

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

(0001] This invention was made with government support
under 1943149 awarded by the National Science Founda­
tion. The government has certain rights in the invention.

CROSS-REFERENCE TO RELATED
APPLICATIONS

(0002] NIA

BACKGROUND

(0003] In recent years, improvements in computer vision
tasks have focused on improving accuracy. For example,
over the past decade, the computer vision community has
largely embraced an "accuracy first" philosophy in which
"state-of-the-art" usually implies achieving the highest
accuracy for a particular task. However, improved accuracy
for a particular task may not be useful practically if the task
cannot be performed quickly (e.g., with low latency), or if
the amount of power expended to perform the task is
relatively high.
(0004] Accordingly, new systems, methods, and media for
generating and using neural networks having improved
efficiency for analyzing video are desirable.

SUMMARY

(0005] In accordance with some embodiments of the dis­
closed subject matter, systems, methods, and media for
generating and using neural networks having improved
efficiency for analyzing video are provided.
(0006] In accordance with some embodiments of the dis­
closed subject matter, a method for using a neural network
with improved efficiency is provided, the method compris­
ing: receiving image data; providing the image data to a
trained neural network, the trained neural network compris­
ing a plurality of neurons; receiving, at a neuron of the
plurality of neurons, a delta-based input />,-;n provided from a
previous layer of the trained neural network; generating, for
the neuron, an output g(li.,,,) of a linear transform g based on
ti.,,, ; generating, for the neuron, an updated value of a state
variable a based on g(li.,,,) and a value of the state variable
a at a time when ti.,,, is received; generating, for the neuron,
an output f(a) of an activation function f based on the
updated value of the state variable a; generating, for the
neuron, an updated value of a state variable d based on a
value of the state variable d, a value of a state variable b
corresponding to a previous output of the activation func­
tion, and the output f(a) ; generating, for the neuron subse­
quent to updating the value of the state variable d, an
updated value of the state variable b based on the output f(a);
determining whether to transmit the value of the state
variable d based on a transmission policy and the updated
value of the state variable d; in response to determining that
the value of state variable d is to be transmitted, transmitting
the value of the state variable d to a next layer of the trained
neural network; in response to transmitting the value of state
variable d to the next layer, subtracting the transmitted value
from the state variable d; and receiving an output from the

1
Nov. 23, 2023

trained neural network, wherein the output from the trained
neural represents a prediction based on the image data.
(0007] In some embodiments, the transmission policy is
applied to each of the plurality of neurons individually, and
comprises a threshold value h, andwherein determining
whether to transmit the updated value of the state variable d
based on the transmission policy and the value of the state
variable d comprises determining whether ldl satisfies the
threshold value h.
(0008] In some embodiments, image data is a frame of
video data, and the previous output of the activation function
was generated based on a prior frame of video data.
(0009] In some embodiments, the image data comprises
data generated by an image sensor comprising a plurality of
single photon detectors.
(0010] In some embodiments, the plurality of neurons are
included in a single layer of the neural network, and wherein
a state tensor a is associated with the single layer of the
neural network, and stores the state tensor a for each of the
plurality of neurons.
(0011] In some embodiments, the value of the state vari­
ables a, b , and d are stored in memory and are associated
with the neuron.
(0012] In some embodiments, the output comprises an
image with higher dynamic range than the image data.
(0013] In some embodiments, the output comprises object
detection information indicative of the location of one or
more objects in the image data.
(0014] In accordance with some embodiments of the dis­
closed subject matter, a system for using a neural network
with improved efficiency is provided, the system compris­
ing: at least one processor that is configured to: receive
image data; provide the image data to a trained neural
network, the trained neural network comprising a plurality
of neurons; receive, at a neuron of the plurality of neurons,
a delta-based input ti.,,, provided from a previous layer of the
trained neural network; generate, for the neuron, an output
g(li.,,,) of a linear transform g based on ti.,,,; generate, for the
neuron, an updated value of a state variable a based on g(!i.,,,)
and a value of the state variable a at a time when ti.,,, is
received; generate, for the neuron, an output f(a) of an
activation function f based on the updated value of the state
variable a; generate, for the neuron, an updated value of a
state variable d based on a value of the state variable d, a
value of a state variable b corresponding to a previous output
of the activation function, and the output f(a); generate, for
the neuron subsequent to updating the value of the state
variable d, an updated value of the state variable b based on
the output f(a); determine whether to transmit the value of
the state variable d based on a transmission policy and the
updated value of the state variable d; in response to deter­
mining that the value of state variable d is to be transmitted,
transmit the value of the state variable d to a next layer of
the trained neural network; in response to transmitting the
value of state variable d to the next layer, subtracting the
transmitted value from the state variable d; and receive an
output from the trained neural network, wherein the output
from the trained neural represents a prediction based on the
image data.
(0015] In accordance with some embodiments of the dis­
closed subject matter, a method for modifying a neural
network to operate with improved efficiency is provided, the
method comprising: receiving a trained neural network;
adding a first gate layer configured to: receive a plurality of

��������������	��
 ��
����������

US 2023/0376766 Al

values and output a plurality of differentials to a layer
comprising a corresponding plurality of neurons, each con­
figured to perform a linear transform, where each differential
is based on a difference between a value of the plurality of
values and a corresponding previously received value of a
plurality of previously received values; adding an accumu­
lator layer configured to: receive an output from each of the
plurality of neurons; store a corresponding plurality of state
variables a based on the output received from the corre­
sponding neuron; andoutput current values of the plurality of
state variables a to a layer configured to perform a non-linear
activation; and adding a second gate layer configured to
generate, in connection with each of the plurality of neurons,
an updated value of a state variable d based on a value of the
state variable d, a value of a state variable b corresponding
to a previous output of the non-linear activation function,
and the output the non-linear activation function; generate,
for the neuron subsequent to updating the value of the state
variable d, an updated value of the state variable b based on
the output of the non-linear activation function; and storing
a modified version of the neural network including at least
the first gate layer, the accumulator layer, and the second
gate layer in memory.

(0016] In some embodiments, the method further com­
prises: causing a transmission policy to be applied to each
neuron, the transmission policy comprising a threshold
value h, and causing transmission of the value of the state
variable d to be inhibited unless ldl>h.

(0017] In some embodiments, the method further com­
prises: configuring the second gate layer to set to transmit
the updated value of the state variable d and subtract the
transmitted value from the state variable d in response
determining that the value of d satisfies the transmission
policy.

BRIEF DESCRIPTION OF THE DRAWINGS

(0018] Various objects, features , and advantages of the
disclosed subject matter can be more fully appreciated with
reference to the following detailed description of the dis­
closed subject matter when considered in connection with
the following drawings, in which like reference numerals
identify like elements.

(0019] FIG. 1 shows an example of a system for generat­
ing and using neural networks having improved efficiency
for analyzing video in accordance with some embodiments
of the disclosed subject matter.

(0020] FIG. 2 shows an example of hardware that can be
used to implement an image data source, a computing
device, and a server, shown in FIG. 1 in accordance with
some embodiments of the disclosed subject matter.

(0021] FIG. 3 shows examples illustrating persistence in
video data, and improvements in the efficiency of, and/or
results of, a computer-vision task using neural networks
implemented in accordance with some embodiments of the
disclosed subject matter.

(0022] FIG. 4 shows examples of neuron transmission
schemes, including a conventional value-based transmission
scheme, a value-based neuron transmission scheme imple­
mented in accordance with some embodiments of the dis­
closed subject matter, and a delta-based transmission
scheme implemented in accordance with some embodiments
of the disclosed subj ect matter.

2
Nov. 23, 2023

(0023] FIG. 5 shows an example of an event neuron with
a delta-based neuron transmission scheme implemented in
accordance with some embodiments of the disclosed subj ect
matter.
(0024] FIG. 6 shows an example of a portion of a con­
ventional neural network and a modified neural network
implemented as an event neural network in accordance with
some embodiments of the disclosed subject matter.
(0025] FIG. 7 shows an example of a process for gener­
ating and using an even neural network with improved
efficiency to analyze image data in accordance with some
embodiments of the disclosed subject matter.
(0026] FIG. 8 shows an example of errors that can accu­
mulate due to lack of sufficient long-term memory in an
event neural network in accordance with some embodiments
of the disclosed subject matter.
(0027] FIG. 9 shows examples of efficiency improvements
that can be realized using mechanisms described herein to
modify existing neural networks that perform different com­
puter vision tasks in accordance with some embodiments of
the disclosed subject matter based on video data with
various levels of camera motion.
(0028] FIG. 10 shows examples of efficiency improve­
ments that can be realized using mechanisms described
herein to modify existing neural networks, metrics indica­
tive of performance of the network with modifications in
accordance with some embodiments of the disclosed subject
matter, and overhead attributable to modifications associated
with modifying the networks as event neural networks.
(0029] FIG. 11 shows examples of efficiency improve­
ments that can be realized using mechanisms described
herein to modify existing neural networks in accordance
with some embodiments of the disclosed subject matter, and
metrics indicative of comparative performance of the net­
works with and without modifications.
(0030] FIG. 12 shows examples of efficiency improve­
ments that can be realized using mechanisms described
herein to modify existing neural networks in accordance
with some embodiments of the disclosed subject matter, and
results of computer vision tasks generated by the networks
with and without modifications.
(0031] FIG. 13 shows examples of efficiency improve­
ments that can be realized using mechanisms described
herein and the impact of transmission policies with various
levels of granularity in accordance with some embodiments
of the disclosed subject matter.
(0032] FIG. 14 shows an example of the computational
cost at various layers of a particular network modified as an
event neural network in accordance with some embodiments
of the disclosed subject matter as a fraction of the compu­
tational cost of the network without modifications.

DETAILED DESCRIPTION

(0033] In accordance with various embodiments, mecha­
nisms (which can, for example, include systems, methods,
and media) for neural networks having improved efficiency
for analyzing video are provided.
(0034] Real-world visual data typically includes portions
that are repetitive over time. Such portions can be described
as having the property of persistence. For example, with a
typical frame rate, the value of a pixel at time t correlates
strongly with the values of that pixel at time t±l. In a
particular example, as described below in connection with
FIG. 3, panel (a), frames t and t+l , despite being separated

��������������	��
 ��
����������

US 2023/0376766 Al

by one second, appear quite similar. Human vision relies on
the persistent nature of visual data to allocate scarce per­
ceptual resources. For example, instead of constantly ingest­
ing the entire scene at maximum resolution, the human
visual system points a small region of dense receptor cells
(referred to as the fovea) at areas containing motion or
detail. This allocation of attention reduces visual processing
and eye-to-brain communication.

(0035] In contrast, many state-of-the-art neural networks
operate without an assumption of temporal continuity. For
example, many conventional neural networks process each
frame of visual data independently, implicitly assuming that
all frames (e.g. , including adjacent frames of video) are
statistically independent. This assumption can lead to inef­
ficient use of resources due to the repeated processing of
image regions containing little or no new information.

(0036] One potential solution is to skip processing image
regions containing few changes in low-level pixel values.
However, such methods (e.g. , including event cameras and
neural networks designed for data generated by event cam­
eras) cannot recognize persistence in features such as tex­
tures, patterns, and/or high-level semantics when such fea­
tures do not coincide with consistent pixel values.

(0037] Note that because neural networks extract a hier­
archy of features from the network inputs, such neural
networks contain a built-in lens for detecting repetition
across many levels of complexity. For example, shallow
layers can detect low-level patterns, and deeper layers can
detect higher-level semantics. Temporal repetition at a given
level of complexity can translate to persistent values in the
corresponding portion of the neural hierarchy. For example,
if the pixel values remain relatively constant, the values in
the shallow layers and the deeper layers can be expected to
remain relatively constant. As another example, if the pixel
values change while textures, patterns, and/or higher-level
semantics remain relatively constant (e.g. , camera motion
may cause pixel values to change, while the composition of
a frame as a whole remains relatively consistent), the values
in the shallow layers can be expected to change to reflect
changes in lower level features, while the deeper layers can
be expected to remain relatively constant.

(0038] In some embodiments, mechanisms described
herein can be used to implement event neural networks
(sometimes referred to herein as EvNets, and sometimes
referred to herein as ENNs), a family of neural networks in
which neurons can be configured to transmit (e.g. , thereby
triggering downstream computation) only when there is a
significant change in the activation of that neuron. For
example, neurons can be configured to fire only when the
neuron has something "interesting" to say. Applying such a
strategy to neurons over multiple layers (e.g. , up to every
neuron over all layers), mechanisms described herein can be
used to detect and exploit temporal persistence across many
levels of abstraction in visual data.

(0039] One characteristic that can be used to identify
Ev Nets is that each neuron that has been implemented as an
event neuron can be associated with state variables that
provide the neuron long-term memory. For example, each
event neuron, instead of re-computing from scratch for every
new input, can be configured to accumulate information
over time. This memory can facilitate EvNets performing
robust inference over long video sequences that include

3
Nov. 23, 2023

significant camera motion while reducing computational
costs (e.g., as described below in connection with FIG. 3,
panels (b) and (c)).
(0040] In some embodiments, mechanisms described
herein can be used to implement various structural compo­
nents for EvNets, both at the individual neuron level (e.g.,
memory state variables) and at the network level (e.g. , layers
and transmission policies). As described below (e.g. , in
connection with FIGS. 6 and 9-14) such components can be
used to modify virtually any conventional neural network
into an EvNet. For example, as described below in connec­
tion with FIGS. 9-14, mechanisms described herein were
used to implement EvNet versions of various state-of-the-art
neural networks that perform several high-level and low­
level tasks, such as: pose recognition, object detection,
optical flow, and image enhancement. Modifying such net­
works using mechanisms described herein can cause order­
of-magnitude reductions in arithmetic operations (e.g.,
between 2x and 20x, depending on the model) , while
maintaining high accuracy even under large camera motion.
(0041] In some embodiments, mechanisms described
herein can be used with various hardware platforms and/or
computation models, and the description below does not
assume use of a particular hardware platform and/or com­
putation model. Experimental results described below (e.g.,
in connection with FIGS. 9-14) are reported based on
arithmetic and memory operations (a platform-invariant
measure of computational cost) as opposed to wall-clock
time, which depends on many situational variables (e.g.,
compiler, machine learning framework, and hardware plat­
form).
(0042] Mainstream machine learning hardware platforms
(e.g. , graphics processing units (GPUs) and tensor process­
ing units (TPUs)) are suited to block-wise computation and
coarse-grained control. Event neural networks as described
herein are not optimized for this computation model. In
some embodiments, mechanisms described herein can be
implemented with hardware that can implement each neuron
to operate independently and asynchronously, facilitating
massive parallelism and distributed computation. Note that
mechanisms described herein do not necessarily directly
compete with conventional neural networks on existing
hardware. In some embodiments, neural networks imple­
mented in accordance with mechanisms described herein
can, if successful, lead to capabilities (e.g. , high accuracy
inference with extremely lightweight computations) that
were hitherto considered impossible.
(0043] There have been many attempts to reduce the high
computational cost of neural networks. For example, one
approach attempts to build architectures that require fewer
parameters and arithmetic operations. Another approach
uses lower precision networks to achieve computation sav­
ings. Mechanisms described herein can be used to comple­
ment conventional architecture-based and/or precision­
based efficiency techniques. Such conventional architecture­
based and/or precision-based efficiency techniques reduce
the cost of inference on a single time step, and Ev Nets can
be used to reduce or eliminate repetitive computation
between multiple time steps. As a more particular example,
pruning techniques can be used to remove redundant neu­
rons and/or synapses during training to improve efficiency.
Instead of pruning universally redundant neurons as is done
by pruning algorithms, an EvNet can be implemented to
ignore temporally redundant neurons (e.g., neurons without

��������������	��
 ��
����������

US 2023/0376766 Al

significant changes over time) adaptively for each input, and
an Ev Net can update such a neuron as the input changes and
the neuron starts changing. In some embodiments, on or
more pruning techniques can be used to remove universally
redundant neurons from a network (e.g. , generating a pruned
neural network), and mechanisms described herein can be
used to implement the pruned neural network as an EvNet,
which can provide further efficiency improvements.

(0044] Adaptive models attempt to modify computations
that are being performed to suit the difficulty of each
inference. Many adaptive model approaches include custom
tailoring for each network architecture. In contrast, mecha­
nisms described herein for modifying a neural network to
implement an EvNet can be applied with virtually any
network architecture and can be implemented without addi­
tional training (e.g., without retraining). Note that a network
implemented as an EvNet can be trained (e.g., from scratch,
via transferring learning techniques, etc.). Other adaptive
models vary the input image size based on the instance
difficulty. Such approaches are only useable with networks
that have resizable inputs (e.g. , images). Mechanisms
described herein can be used as a general approach that can
be used with any input type, including abstract feature
vectors with no spatial dimensions. In some embodiments,
on or more adaptive modeling techniques can be used to
modify computations that are being performed to suit the
difficulty of an inference, and mechanisms described herein
can be used to implement the neural network as an EvNet,
which can provide further efficiency improvements.

(0045] Conventional techniques that attempt to leverage
repetition in videos often take a keyframe-based approach,
computing expensive features on keyframes, and transform­
ing these features to other frames. In general, such tech­
niques require extensive modifications to each network
architecture. Other techniques based on two-stream compu­
tation and video compression share this drawback. Skip­
cony networks process values that have changed signifi­
cantly between frames. However, the skip-cony algorithm is
specific to convolutional layers and does not generalize to
other layer types (e.g., fully-connected layers). Additionally,
unlike EvNets described herein, skip-cony networks are not
able to integrate long-term changes. This "forgetfulness"
limits skip-cony networks to videos without camera motion
and requires them to frequently re-initialize their state. As
described below (e.g. , in connection with FIGS. 9-14), a
network implemented as an Event using mechanisms
described herein can maintain high accuracy over hundreds
of frames and can be effective on videos with significant
camera motion.

(0046] Event sensors (e.g., as described in Lichtsteiner et
al. , "A 128xl28 120 dB 15 ms latency asynchronous tem­
poral contrast vision sensor," IEEE Journal of Solid-State
Circuits, (2008)) generate sparse frames by computing a
quantized temporal gradient at each pixel. Many networks
configured to perform inferences on event data generated by
such a device have efficient, sparse dynamics. However,
such networks make strong assumptions about the math­
ematical properties of the network (e.g., that the network is
piecewise linear). A network can be implemented as an
EvNet using mechanisms described herein with few con­
straints on the model, and mechanisms described herein are
compatible with a broad array of existing network architec­
tures.

4
Nov. 23, 2023

(0047] Many computer vision tasks, latency and power
use are important factors that can impact performance of a
computer vision system. For example, real time applica­
tions, such as mixed reality (MR), augmented reality (AR),
virtual reality (VR), embodied perception, and autonomous
navigation, computer vision tasks (e.g. , image classification,
scene measurement, etc.) may require low latency to operate
successfully. Additionally, many real time applications may
be performed by a power constrained system (e.g., a battery
powered system). In many computer vision tasks, frame­
based, floating-point inferences may incur unavoidable tem­
poral delays and high energy costs, making such techniques
ill-suited for resource-constrained real-time applications.
For example, as deep learning applications have matured,
new axes in the performance space have begun to emerge for
new classes of applications (e.g. , embodied perception,
autonomous navigation, AR, MR, and VR) where latency
and power consumption may be as important as accuracy. In
such applications, it is important to consider not just overall
accuracy, but a notion of streaming accuracy indicative of
whether the computer vision task is performed with suffi­
cient accuracy while adhering to a set of time and power
constraints.
(0048] In some embodiments, mechanisms described
herein can improve the efficiency of computer-vision tasks
using techniques described herein to implement a neural
network as an event neural network, which can reduce the
number of computations performed at each time step, and
reduce the amount of computational resources need to
perform real-time computer vision tasks using video data.
(0049] FIG. 1 shows an example 100 of a system for
generating and using neural networks having improved
efficiency for analyzing video in accordance with some
embodiments of the disclosed subject matter. As shown in
FIG. 1, a computing device 110 can receive image data from
an image data source 102. In some embodiments, computing
device 110 can execute at least a portion of a computer
vision system 104 to perform a computer vision task, such
as image classification, object detection, image segmenta­
tion, object tracking, optical flow, and/or any other suitable
computer vision task.
(0050] In some embodiments, computing device 110 can
execute at least a portion of a computer vision system 104
to use an ENN to perform a computer vision task with
improved efficiency (e.g., with reduced latency, using
reduced computational resources, and/or reduced power
consumption).
(0051] Additionally or alternatively, in some embodi­
ments, computing device 110 can collllllunicate data
received from image data source 102 to a server 120 over a
collllllunication network 108, which can execute at least a
portion of computer vision system 104. In such embodi­
ments, server 120 can return information to computing
device 110 (and/or any other suitable computing device)
indicative of an output of one or more ENNs used to
implement computer vision system 104 to take an action
based on an outcome of the computer vision task. In some
embodiments, computer vision system 104 can execute one
or more portions of process 700 described below in con­
nection with FIG. 7.
(0052] In some embodiments, computing device 110 and/
or server 120 can be any suitable computing device or
combination of devices, such as a desktop computer, a
laptop computer, a smartphone, a tablet computer, a wear-

��������������	��
 ��
���	������

US 2023/0376766 Al

able computer, a server computer, a virtual machine being
executed by a physical computing device, etc.
(0053] In some embodiments, image data source 102 can
be any suitable source of image data (e.g. , video data) and/or
other data that can be used to evaluate characteristics of a
physical environment of image data source 102. For
example, image data source 102 can one or more digital
cameras that generate and/or output color image data, mono­
chrome image data, image data representing light from one
or more wavelengths outside the visible spectrum (e.g.,
infrared (IR), near infrared (NIR), ultraviolet (UV), x-ray,
etc.), two-dimensional image data, three-dimensional image
data, any other suitable image data, or any suitable combi­
nation thereof. In a more particular example, image data
source 102 can include an imaging device configured to
detect arrival of individual photons (e.g. , using avalanche
photodiodes), such imaging devices described in U.S. patent
application Ser. No. 16/844,899, filedApr. 9, 2020, and titled
"Systems, methods, and media for high dynamic range
quanta burst imaging." As another example, image data
source 102 can be a light detection and ranging (LiDAR)
device that generates and/or outputs data indicative of
distance to one or more points in a physical environment of
the LiDAR device (e.g. , corresponding to one or more
objects, surfaces, etc.). As yet another example, image data
source 102 can be any other suitable device that can produce
asynchronous image data.
(0054] In some embodiments, image data source 102 can
be local to computing device 110. For example, image data
source 102 can be incorporated with computing device 110
(e.g., computing device 110 can be configured as part of a
device for capturing and/or storing image data). As another
example, image data source 102 can be connected to com­
puting device 110 by a cable, a direct wireless link, etc.
Additionally or alternatively, in some embodiments, image
data source 102 can be located locally and/or remotely from
computing device 110, and can communicate image data to
computing device 110 (and/or server 120) via a communi­
cation network (e.g. , communication network 108).
(0055] In some embodiments, communication network
108 can be any suitable communication network or combi­
nation of communication networks. For example, commu­
nication network 108 can include a Wi-Fi network (which
can include one or more wireless routers, one or more
switches, etc.), a peer-to-peer network (e.g., a Bluetooth
network), a cellular network (e.g., a 3G network, a 4G
network, a 5G network, etc. , complying with any suitable
standard, such as CDMA, GSM, LTE, LTE Advanced, NR,
etc.), a wired network, etc. In some embodiments, commu­
nication network 108 can be a local area network, a wide
area network, a public network (e.g., the Internet), a private
or semi-private network (e.g., a corporate or university
intranet), any other suitable type of network, or any suitable
combination of networks. Communications links shown in
FIG. 1 can each be any suitable communications link or
combination of communications links, such as wired links,
fiber optic links, Wi-Fi links, Bluetooth links, cellular links,
etc.
(0056] FIG. 2 shows an example 200 of hardware that can
be used to implement image data source 102, computing
device 110, and/or server 120 in accordance with some
embodiments of the disclosed subject matter. As shown in
FIG. 2, in some embodiments, computing device 110 can
include a processor 202, a display 204, one or more inputs

5
Nov. 23, 2023

206, one or more communication systems 208, and/or
memory 210. In some embodiments, processor 202 can be
any suitable hardware processor or combination of proces­
sors, such as a central processing unit (CPU), an application
specific integrated circuit (ASIC), a field-programmable
gate array (FPGA), a graphics processing unit (GPU), a
tensor processing unit (TPU), etc. In a particular example,
processor 202 can be a neuromorphic processor or neuro­
morphic processors configured to implement neurons for an
ENN. In some embodiments, display 204 can include any
suitable display devices, such as a computer monitor, a
touchscreen, a television, etc. In some embodiments, inputs
206 can include any suitable input devices and/or sensors
that can be used to receive user input, such as a keyboard,
a mouse, a touchscreen, a microphone, etc.

(0057] In some embodiments, communications systems
208 can include any suitable hardware, firmware, and/or
software for communicating information over communica­
tion network 108 and/or any other suitable communication
networks. For example, communications systems 208 can
include one or more transceivers, one or more communica­
tion chips and/or chip sets, etc. In a more particular example,
communications systems 208 can include hardware, firm­
ware and/or software that can be used to establish a Wi-Fi
connection, a Bluetooth connection, a cellular connection,
an Ethernet connection, etc.

(0058] In some embodiments, memory 210 can include
any suitable storage device or devices that can be used to
store instructions, values, etc., that can be used, for example,
by processor 202 to perform a computer vision task, to
present content using display 204, to communicate with
server 120 via communications system(s) 208, etc. Memory
210 can include any suitable volatile memory, non-volatile
memory, storage, or any suitable combination thereof. For
example, memory 210 can include random access memory
(RAM), read-only memory (ROM), electronically-erasable
programmable read-only memory (EEPROM), one or more
flash drives, one or more hard disks, one or more solid state
drives, one or more optical drives, etc. In some embodi­
ments, memory 210 can have encoded thereon a computer
program for controlling operation of computing device 110.
For example, in such embodiments, processor 202 can
execute at least a portion of the computer program to use an
ENN(s) in the performance of one or more computer vision
tasks, present content (e.g., images, information about an
object included in image data, information about distances
to one or more points in a scene, etc.), receive information
and/or content from server 120, transmit information to
server 120, etc. As another example, processor 202 can
execute at least a portion of the computer program to
implement computer vision system 104. As yet another
example, processor 202 can execute at least a portion of
process 700 described below in connection with FIG. 7.

(0059] In some embodiments, server 120 can include a
processor 212, a display 214, one or more inputs 216, one or
more communications systems 218, and/or memory 220. In
some embodiments, processor 212 can be any suitable
hardware processor or combination of processors, such as a
CPU, an ASIC, an FPGA, a GPU, a TPU, etc. In some
embodiments, display 214 can include any suitable display
devices, such as a computer monitor, a touchscreen, a
television, etc. In some embodiments, inputs 216 can
include any suitable input devices and/or sensors that can be

��������������	��
 ��
����������

US 2023/0376766 Al

used to receive user input, such as a keyboard, a mouse, a
touchscreen, a microphone, etc.

(0060] In some embodiments, communications systems
218 can include any suitable hardware, firmware, and/or
software for communicating information over communica­
tion network 108 and/or any other suitable communication
networks. For example, communications systems 218 can
include one or more transceivers, one or more communica­
tion chips and/or chip sets, etc. In a more particular example,
communications systems 218 can include hardware, firm­
ware and/or software that can be used to establish a Wi-Fi
connection, a Bluetooth connection, a cellular connection,
an Ethernet connection, etc.

(0061] In some embodiments, memory 220 can include
any suitable storage device or devices that can be used to
store instructions, values, etc., that can be used, for example,
by processor 212 to present content using display 214, to
communicate with one or more computing devices 110, etc.
Memory 220 can include any suitable volatile memory,
non-volatile memory, storage, or any suitable combination
thereof. For example, memory 220 can include RAM, ROM,
EEPROM, one or more flash drives, one or more hard disks,
one or more solid state drives, one or more optical drives,
etc. In some embodiments, memory 220 can have encoded
thereon a server program for controlling operation of server
120. For example, in such embodiments, processor 212 can
execute at least a portion of the server program to use an
ENN(s) in the performance of one or more computer vision
tasks, transmit content (e.g., images, information about an
object included in image data, information about distances
to one or more points in a scene, etc.) to a computing device
(e.g., computing device 110), receive information and/or
content from computing device 110, transmit information to
computing device 110, etc. As another example, processor
212 can execute at least a portion of the computer program
to implement computer vision system 104. As yet another
example, processor 212 can execute at least a portion of
process 700 described below in connection with FIG. 7.

(0062] In some embodiments, image data source 102 can
include a processor 222, one or more sensors 224, one or
more communications systems 226, and/or memory 228. In
some embodiments, processor 222 can be any suitable
hardware processor or combination of processors, such as a
CPU, an ASIC, an FPGA, a TPU, etc. In some embodiments,
sensor(s) 224 can be any suitable components to generate
image data (e.g. , video data) representing a portion of a
scene. For example, sensor(s) 224 can include a CMOS
sensor, a CCD sensor, an array of single-photon avalanche
diodes (SPADs), an array of jots (e.g. , as described in U.S.
patent application Ser. No. 16/844,899), a LiDAR sensor,
etc. Although not shown, image data source 102 can include
one or more light sources (e.g., a Li DAR light source, a light
source for structured light imaging, a modulated light source
for continuous time-of-flight imaging, etc.).

(0063] Note that, although not shown, image data source
102 can include any suitable inputs and/or outputs. For
example, image data source 102 can include input devices
and/or sensors that can be used to receive user input, such as
a keyboard, a mouse, a touchscreen, a microphone, a track­
pad, a trackball, hardware buttons, software buttons, etc. As
another example, image data source 102 can include any
suitable display devices, such as a computer monitor, a
touchscreen, a television, etc., one or more speakers, etc.

6
Nov. 23, 2023

(0064] In some embodiments, communications systems
226 can include any suitable hardware, firmware, and/or
software for communicating information to computing
device 110 (and, in some embodiments, over communication
network 108 and/or any other suitable communication net­
works). For example, communications systems 226 can
include one or more transceivers, one or more communica­
tion chips and/or chip sets, etc. In a more particular example,
communications systems 226 can include hardware, firm­
ware and/or software that can be used to establish a wired
connection using any suitable port and/or communication
standard (e.g. , VGA, DVI video, USB, RS-232, etc.), Wi-Fi
connection, a Bluetooth connection, a cellular connection,
an Ethernet connection, etc.
(0065] In some embodiments, memory 228 can include
any suitable storage device or devices that can be used to
store instructions, values, image data, etc., that can be used,
for example, by processor 222 to: control sensor(s) 224,
and/or receive outputs from sensor(s) 224; generate image
data; present content (e.g., images, a user interface, etc.)
using a display; communicate with one or more computing
devices 110; etc. Memory 228 can include any suitable
volatile memory, non-volatile memory, storage, or any suit­
able combination thereof. For example, memory 228 can
include RAM, ROM, EEPROM, one or more flash drives,
one or more hard disks, one or more solid state drives, one
or more optical drives, etc. In some embodiments, memory
228 can have encoded thereon a program for controlling
operation of image data source 102. For example, in such
embodiments, processor 222 can execute at least a portion of
the program to generate image data, transmit information
and/or content (e.g., image data) to one or more computing
devices 110, receive information and/or content from one or
more computing devices 110, transmit information and/or
content (e.g. , image data) to one or more servers 120, receive
information and/or content from one or more servers 120,
receive instructions from one or more devices (e.g. , a
personal computer, a laptop computer, a tablet computer, a
smartphone, etc.), etc. As another example, processor 222
can execute at least a portion of the program to implement
computer vision system 104. As yet another example, pro­
cessor 222 can execute at least a portion of process 600
described below in connection with FIG. 6.

(0066] FIG. 3 shows examples illustrating persistence in
video data, and improvements in the efficiency of, and/or
results of, a computer-vision task using neural networks
implemented in accordance with some embodiments of the
disclosed subject matter.
(0067] FIG. 3, panel (a), shows two frames from a video
sequence separated by one second. Over this time, some
areas of the image maintain consistent pixel values (e.g., the
sky region). However, these areas only represent a small
fraction of the frame. In other regions, the pixel values
change, but other features, such as mid-level textures (e.g.,
vertical lines) and/or high-level semantics (e.g. , tree
branches) remain consistent. Each type of persistence can
correspond to a different depth in a neural network hierar­
chy.
(0068] FIG. 3, panel (b), shows results generated by a
neural network trained to perform pose recognition using a
conventional architecture, and implemented using mecha­
nisms described herein as an ENN. As shown in FIG. 3,
panel (b), both neural networks generate similar pose infor­
mation at frames 0, 100, and 200 of a video sequence. Event

��������������	��
 ��
����������

US 2023/0376766 Al

neural networks can leverage temporal persistence in video
streams across multiple levels and yield significant compu­
tation savings while maintaining high accuracy. The con­
ventional neural network required about 35.8 billion opera­
tions to make a pose inference for each frame (on average),
while the same network implemented as an ENN required
about 2.06 billion operations to make a pose inference for
each frame (on average). Note that, as described below, the
number of operations performed for each frame can be
relatively consistent for the conventional network, while the
number of calculations performed for each frame can sub­
stantially decrease for a time for the ENN.
(0069] FIG. 3, panel (c), shows results generated by a
neural network trained to perform object detection using
implemented using mechanisms described herein as an ENN
without long-term memory, and with long-term memory. As
shown in FIG. 3, panel (c), long-term memory can facilitate
an ENN to perform robust inference even over long video
sequences containing significant camera motion while sig­
nificantly reducing the computation resources utilized to
make an inference at each frame.
(0070] FIG. 4 shows examples of neuron transmission
schemes, including a conventional value-based transmission
scheme, a value-based neuron transmission scheme imple­
mented in accordance with some embodiments of the dis­
closed subject matter, and a delta-based transmission
scheme implemented in accordance with some embodiments
of the disclosed subj ect matter.
(0071] FIG. 4, panel (a) shows neurons in a conventional
neural network, and which neurons perform a computation
(s), and which neurons transmit an output(s) to a next layer.
As shown in FIG. 4, panel (a), conventional neurons com­
pletely recompute their activations on each time step.
(0072] Consider a neuron in a conventional neural net­
work. Let x=[x1 , x2 , ... , xnl be a vector of input values, and
y be an output generated by the neuron. Suppose the neuron
composes a linear function g (e.g., a convolution or fully­
connected transform) with a nonlinear activation function f.
In such a neuron, the linear function g and the output y can
be represented using the following relationships:

yccf(g(x)) (2)

where the vector w=[w10 w2 , ... , wn] contains the weights
of the function g. In a conventional network, every neuron
recomputes both f and g for every input frame, resulting in
large computational costs over a video sequence.
(0073] FIG. 4, panel (b), shows neurons in an ENN that
are configured with a value-based transmission scheme, and
FIG. 4, panel (c), shows neurons in an ENN that are
configured with a delta-based transmission scheme. The
value-based event neurons of FIG. 4, panel (b), are config­
ured to only transmit activations that have changed signifi­
cantly. However, a value-based transmission can still trigger
a potentially large number of downstream computations.
The delta-based event neurons of FIG. 4, panel (c), are
configured to only transmit differential updates to activa­
tions, resulting in considerable computational savings with
respect to the value-based ENN neurons and the conven­
tional neurons.
(0074] In some embodiments, mechanisms described
herein can be used to implement a class of event neurons that
can leverage temporal persistence in the activation of the
neuron to achieve computation savings. Event neurons can

7
Nov. 23, 2023

have characteristics that can facilitate computational sav­
ings, such as sparse transmission, and delta-based transmis­
sion.

(0075] In a sparse transmission scheme, an event neuron
can be confignred to transmit its output to subsequent layers
only when there is a sufficient change between its current
activation and the previously transmitted value. FIG. 4,
panel (b) shows transmissions based on an update policy that
transmits an activation that sufficiently different than a
previous activation. This property can reduce the quantity of
updates that are sent to downstream neurons, which can lead
to a reduction in computations. However, a value transmis­
sion can still trigger a large number of downstream compu­
tations that may be unnecessary. For example, suppose a
given neuron receives an updated value along an input xi,

causing the neuron to recompute output y (e.g. , to generate
an output y') associated with that neuron. In such an
example, the updated value of xi alone does not contain
sufficient information to compute a new output y'. Comput­
ing y' requires re-reading all the elements of x and evaluating
the product wixi for each. As shown in FIG. 4, panel (b),
when a neuron in a first layer generates an updated output
value that is transmitted to downstream neurons, down­
stream neurons also need outputs associated with other
neurons in the first layer to calculate an updated output value
for the downstream neurons.

(0076] In some embodiments, mechanisms described
herein can be used to implement delta-based event neurons,
which can further reduce the number of calculations that are
performed in response to an updated upstream activation. In
a delta-based event neuron, each neuron can transmit a
differential value (e.g. , in lieu of transmitting the value of its
activation). This differential can encode a change from the
neuron's previous output. For example, suppose a neuron
receives a vector of incoming differentials />,.in (e.g., with one
element for each incoming synapse). In such an example, />,.in

can be sparse. As described above, neurons configured in
accordance with some embodiments of the disclosed subject
matter can be configured to transmit when a sufficient
change has occurred, and to transmit a differential from a
previous transmission. In a neural network that includes
such neurons, />,.in can include zeros at each position other
than positions corresponding to values for upstream neurons
that just transmitted a value (e.g. , based on a significant
change in the output of that neuron). The updated value of
the linear function g can be computed as:

(3)

(0077] In some embodiments, a neuron implemented as a
delta-based event neuron can store a value of g(x) in a state
variable a, and can generate an updated value g(x+/>,.in) based
on a combination of the stored value and an output based on
analysis of the new values (e.g. , rather than calculating
g(x+/>,.in) from scratch).
(0078] In some embodiments, when a neuron receives a
new input, the neuron can retrieve a stored value of g(x)
from a, and can compute the new value g(x)+g(/>,.in), and can
save the result in state variable a. This can reduce the
number of calculations associated with updating the neuron,
as the neuron only needs to compute the product wixi for the
nonzero elements of />,. in • As shown in FIG. 4, panel (c), by
calculating values based on />,. im downstream neurons can
calculate updated values without requiring that the most
recent outputs from an upstream layer can be transmitted

��������������	��
 ��
����������

US 2023/0376766 Al

and used to calculate the updated value. The savings in a
delta-based approach can be significant. For example, in a
pair of fully connected layers with N and M neurons, a single
value-based transmission causes NxM multiplications.
However, a delta-based transmission causes only M multi­
plications, one for each updated synapse.
(0079] In some embodiments, layers that include a non­
linear activation function f cannot be updated incrementally
like a linear transform g. In such embodiments, whenever a
changes for a delta-based event neuron, the activation func­
tion f(a) can be computed, and the updated value off can be
stored in another state variable associated with the neuron.
Note that f is often a simple, lightweight function (e.g. , a
ReLU), and the cost of recomputing f is generally far smaller
than the cost of computing the products w;x,.
(0080] FIG. 5 shows an example of an event neuron with
a delta-based neuron transmission scheme implemented in
accordance with some embodiments of the disclosed subject
matter. As shown in FIG. 5, a delta-based event neuron can
include various state variables (e.g., a, b, and d) and update
rules, and shows that incremental updates to a can be
converted from a delta-based representation to a value-based
representation. In some embodiments, the subtraction f(a)-b
can be used to generate an output to a delta-based repre­
sentation.
(0081] In some embodiments, an event neuron can include
multiple state variables shown in FIG. 5. For example, an
event neuron can include an accumulator state variable a,
which can be used to store a most recently calculated value
of g(x) (e.g. , a value of g(x) calculated prior to receiving a
new input 11;n). As another example, an event neuron can
include a best estimate state variable b, which can be used
to store a most recently calculated value off(a) (e.g. , a value
off(a) calculated prior to receiving a new input 11,n). As yet
another example, an event neuron can include a difference
state variable (d), which can store a difference between b and
an output calculated based on an updated output (e.g., a
difference between b and f(a+g(l1;n))).
(0082] In some embodiments, a neuron can receive a
differential update 11;,, from one or more of its inputs (e.g.,
one or more upstream neurons), and the neuron can update
one or more state variables in an order that reduces the
occurrence of errors. For example, a neuron can update state
variables a, b, and d in the following order:

(4)

In such an example, the new value of a can be a+g(l1;n), f(a)
can be calculated for the new value of a, the new value of
d can be d+f(a)-b, and the new value of b can be the new
value of f(a).
(0083] In some embodiments, a delta-based event neuron
can be configured to transmit a value (e.g., forming an
element of 11,n) when some condition on b and/or d is
satisfied. For example, a transmission policy can define
when a neuron is to transmit a value based on the new value
ofb and/or d (e.g., as described below in connection with
FIG. 6). When the condition is satisfied, the neuron can
transmit !1

0
u, (e.g., equal to the current value of d) to

downstream neighbors, and the neuron can subtract the
transmitted value from the state variable d. In a particular
example, if the transmitted value is the same as the current
value of the state variable d, the subtraction can reset d.,_O
(e.g., indicating that the current best estimate bis the same
as the most recent update).

8
Nov. 23, 2023

(0084] In some embodiments, state variable d can accu­
mulate corrections to the neuron output that have not yet
been transmitted. State variable d can represent long-term
memory associated with a neuron, whereas state variable b
can represent short-term memory of the neuron. In some
embodiments, inclusion oflong-term memory can prevent a
neuron from discarding information when the neuron does
not transmit. This can be characterized as an error retention
property of the neuron, which can grant certain guarantees
on the behavior of the neuron, as described below.
(0085] For example, an event neuron can receive a series
of inputs /':,.n Cll, /1 C2l, ... , 11,n (7) over T time steps, and the
state variables a, b , and d can have initial values aC0l, f(aC0 l),
and zero, respectively. In this example, the transmitted
output values at each time step can be !1

0
u,Ul, !1

0
)

2 l, ... ,
!1

0
u,Cn (some of which can be zero). By repeatedly applying

neuron update rules, the neuron can arrive at the state:

(5)

(6)

As shown in EQ. (6), dis equal to the difference between the
actual and transmitted changes in the activation. This is true
regardless of the order or temporal distribution of the
outputs /1. As the neuron stores d, the neuron always has
sufficient information to bring the transmitted activation into
precise agreement with the current "correct" activation b. In
some embodiments, this property can be used to bound the
error within an Ev Net. For example, each neuron's error can
be bounded in a range [-h, +h] by transmitting whenever d
exceeds those bounds.
(0086] FIG. 6 shows an example of a portion of a con­
ventional neural network and a modified neural network
implemented as an event neural network in accordance with
some embodiments of the disclosed subject matter. As
shown in FIG. 6, accumulators and gates can be inserted into
the architecture of a neural network, which can ensure that
the input to linear layers (e.g., convolution layers, fully­
connected layers, linear pooling layers, etc.) are delta-based,
and that the input to nonlinear layers (e.g., ReLU activation
layers, max pooling layers, etc.) is value-based.
(0087] The design and characteristics of individual event
neurons were described above in connection with FIG. 5,
and a broader perspective related to layers and networks is
described in connection with FIG. 6. In general, a " layer"
can be an atomic tensor operation (e.g. , any atomic tensor
operation, such as a convolution). Using such a definition of
layer, the functions g and f described above in connection
with FIG. 4 can correspond to two different layers.
(0088] In some embodiments, mechanisms described
herein can be used to implement various layers that can be
used in an EvNet. For example, mechanisms described
herein can be used to implement an accumulator layer
configured to use a state tensor a (e.g., a tensor of any
suitable rank based on the output of the input to the
accumulator layer, such as a tensor of rank 1, a vector, a
tensor of rank 2, a matrix, etc.) that includes values of state
variable a associated with various neurons in the layer. As
another example, mechanisms described herein can be used
to implement a gate layer configured to use state tensors
(e.g. , vectors, matrices, etc.) b and d that include values of
state variables b and d, respectively, associated with neurons
in the layer. As still another example, mechanisms described
herein can be used to implement a buffer layer configured to
store inputs in a state tensor (e.g., vectors, matrices, etc.) x

��������������	��
 ��
���
������

US 2023/0376766 Al

for future use by a subsequent layer. Such a buffer layer can
facilitate non-pointwise, nonlinear layers (e.g., max pool­
ing).
(0089] In some embodiments, state tensors (e.g., vectors,
matrices, etc.) a, b, and/or d can be updated using expanded
(e.g., vectorized) versions of the operations described above
in connection with EQ. (4). For example, an accumulator
layer can be configured to convert its input from delta-based
to value-based. As another example, a gate layer can be
configured to convert from value-based to delta-based. In
some embodiments, gates can be configured to restrict the
flow of updates through the network by applying a trans­
mission policy (e.g. , as described below).
(0090] In some embodiments, mechanisms described
herein can create an EvNet via insertion of gates and
accumulators into a pretrained network such that linear
layers receive delta-based inputs and nonlinear layers
receive value-based inputs, as shown in FIG. 6.
(0091] Additionally, in some embodiments, mechanisms
described herein can place a gate at the beginning of the
network and an accumulator at the end. For example, the
input gate (e.g., a gate layer that receives input data from a
data source) can use input values (e.g. , pixel values) instead
off(a), and can update b (e.g. , a received pixel value, a value
derived from the input value to be compatible with the
neural network, etc.) and d (e.g. , a difference between a
current value of b and a previous value of b) at every
timestep.
(0092] In some embodiments, an input gate (and/or one or
more associated components) can generate a value that is
suitable for use by the neural network. For example, the
input gate can aggregate a predetermined number of inputs
(e.g., based on a difference in a count of photon detections
from a SPAD-based, or other single photon detector-based,
sensor over a predetermined period of time, and a count in
a previous predetermined time).
(0093] As another example, the output accumulator can
update a sparsely, but can read all the elements at every time
step (e.g., every frame of video data). Tbroughout the model,
the functions computed by the preexisting layers (the f and
g) can remain unchanged, and can, so it is not necessary to
re-train the network.
(0094] In some embodiments, a processor (e.g., processor
202, processor 212, processor 222, etc.) can be programmed
to perform a process (e.g., without user intervention) that
includes inserting gates and accumulators into a pretrained
(e.g., as described below in connection with FIG. 7).
(0095] Note that mechanisms described herein can be used
to convert an entire network to an EvNet, and can also be
used to convert one or more isolated portions of a network
into an EvNet. For example, FIG. 6 illustrates the conversion
of an entire (very simple) network. As another example, in
an experiment performed on HDRNet (e.g. , as described in
Gharbi et al. , "Deep bilateral learning for real-time image
enhancement," ACM Transactions on Graphics, (2017)), one
of the HDRNet subnetworks (the guidemap network) was
excluded from conversion to an Ev Net to avoid reducing the
output quality.
(0096] In some embodiments, update rules described
above in connection with FIG. 5 can define how a system
executing an EvNet updates the neuron state variables
associated with each neuron that has been converted to
operate as an event neuron, but the rules do not specify the
initial values of the state variables. Mechanisms described

9
Nov. 23, 2023

herein can be used with different initialization strategies. For
example, consider a simple initialization strategy where the
initial values of a and d are set to zero for all neurons (e.g.,
a=0 and d=0 for all event neurons). Note that since the
activation function f is nonlinear, the value of the state
variable b=f(a) may be nonzero. In general, this nonzero b
translates to a nonzero value of a in the next layer. Accord­
ingly, initializing all neurons to a=0 can create inconsisten­
cies.
(0097] In some embodiments, mechanisms described
herein can be configured to constrain initial values of state
variables to maintain internal consistency. For example,
consider a neuron associated with state variables a, d, and b.
Let b;n and d;n be vectors (or tensors of any suitable rank)
containing the states of the neurons in the previous layer. A
network can be considered internally consistent state if, for
all neurons,

(7)

(8)

In some embodiments, mechanisms described herein can use
any suitable technique to satisfy criteria represented in EQS.
(7) and (8). For example, one relatively simple technique to
satisfy these criteria is to flush some canonical input through
the network. Starting with neurons in the first layer and
progressively moving through all subsequent layers, the
values of state variables a, b, and d can be set using as
follows:

(9)

(0098] In experiments described below in connection with
FIGS. 9-14, the canonical input used to initialize the state
variables was the first input data (e.g., a first frame of video
data).
(0099] In some embodiments, mechanisms described
herein can use a transmission policy to determine when to
transmit values (e.g., delta values) to one or more neurons in
a next layer. A transmission policy can be defined as a
function P: d-m that maps the tesnor d for a particular layer
to a binary mask m that is indicative of which neurons
should transmit.
(0100] In some embodiments, transmission policies can be
selected with a particular level of locality and granularity.
The definition of transmission policy described above (e.g.,
P: d-m) permits different levels of locality, which can be
characterized based on the number of elements from d
required to compute each element of m. For example, a
global policy can consider all elements of d when computing
each m;. As a more particular example, a global policy can
be configured to transmit then largest d-values in a layer at
a particular time step. As another example, a local policy can
consider some subset of d (e.g., with size> 1) when comput­
ing each element of m. As a more particular example,
Gumbel gates (e.g., as described in Habibian et al. , "Skip­
convolutions for efficient video processing," in Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2021)) can be used to implement a
local transmission policy. As another example, thresholds
can be applied to spatially pooled d to implement a local
transmission policy. As yet another example, an isolated
policy can consider only the element d; when computing m;
(e.g. , determining whether d; satisfies a threshold).
(0101] In addition to the locality of a transmission policy,
the definition of transmission policy described above (e.g.,

��������������	��
 ��
����������

US 2023/0376766 Al

P: d-m) permits different levels of granularity, which can
be characterized based on how outputs are tied together. For
example, groups of neurons can be constrained to have the
same value of m. As a more particular example, a chunked
policy can tie neurons together into local groups, producing
one value of m for each group. As another more particular
example, a singular policy can individually assign each
neuron a value of m.

(0102] In some embodiments, mechanisms described
herein can use a linear-cost policy, which can be character­
ized as an isolated, singular policy based on a threshold.
Such a policy can be represented using the relationship:

(10)

where H is the Heaviside step function and h, is the threshold
for neuron i. An advantage of this policy is the relatively low
overhead caused by the policy. For example, in response to
receiving an incoming transmission, a system executing an
EvNet using the policy can evaluate whether ldl >h (one
subtraction) for neuron i, in addition to the updates to a, d,
and b. Neurons not receiving any updates (e.g. , neurons in
a static image region) do not incur any overhead using such
a transmission policy. The cost of the policy is linear in the
number of updated neurons. Combined with the linear cost
of computing the neuron updates described above in con­
nection with EQ. (4), utilizing a linear-cost policy can results
in a network with an overall cost that is linear in the number
of updates. The cost of such a network scales with the
amount of change in its inputs, not with the quantity of data
it receives. This linear cost can have significant implications
for networks processing rapid, sparse updates. For example,
consider a high-speed camera operating at 10,000 frames per
second. The differences between adjacent frames may be
minuscule, leading to a sparse set of network updates on
each frame. In such an example, the cost of computing a
policy with a fixed per-frame overhead (e.g. , utilizing a
Gumbel gate) can grow to dominate the runtime computing
costs associated with the network. In contrast, a linear-cost
policy can give a fixed ratio between the policy and update
costs.

(0103] Similar situations can arise with event sensors and
single-photon sensors. For example, such sensors can oper­
ate both at extremely high frame rates (e.g., 100,000 FPS) or
in an asynchronous, "free-running" mode in which a sensor
records each photon as a separate event. EvNets with a
linear-overhead transmission policy provide a natural solu­
tion for processing such data. Each input photon can be
consumed immediately by the network, triggering a sparse
set of updates and a proportionally sparse set of policy
computations.

(0104] With a chunked policy, neurons within a neighbor­
hood can be configured to wait until some agreed-upon time
(e.g., a predetermined time step), and can then simultane­
ously compute m and transmit according to the value of m.
In contrast, a singular policy allows each neuron to operate
independently from other neurons in the same layer. How­
ever, there are situations where grouping neurons into
"bundles" may be practically desirable. For example, current
GPU hardware can compute in 32-thread warps. In this case,
a 32-neuron, chunked granularity may better leverage the
available thread-level parallelism provided by a GPU than a
singular policy, which may result in superior performance.
The nature of the input data may impact whether a singular
policy executed by a CPU or a chunked policy executed by

10
Nov. 23, 2023

a GPU provides superior performance. For example, if
events are relatively asynchronous (e.g., changes are not
necessarily aligned with a particular frame) and/or the input
changes relatively slowly (e.g. , events are relatively sparse),
a CPU executing a singular policy may outperform a GPU
executing a chunked policy (e.g., based on the total number
of operations performed, based on the power used to per­
form the operations, based on the time taken to generate an
output, etc.). As another example, if events are synchronous
(e.g. , processed in frames) and/or the input changes rela­
tively often (e.g., events are relatively dense), a GPU
executing a chunked policy may outperform a CPU execut­
ing a singular policy (e.g., based on the power used to
perform the operations, based on the time taken to generate
an output, etc.).
(0105] Note that the transmission policies analyzed herein
represent a small sample of the available design space of
transmission policies. For example, a transmission policy
can incorporate a stochastic firing strategy (e.g. , treating ldl
as a firing probability). As another example, a firing thresh­
old (e.g. , h,) can be used a trainable parameter of an EvNet.
Although a relatively simple linear-cost policy has many
desirable properties, it may be sub-optimal in terms of its
efficiency-accuracy trade-off in some situations.
(0106] FIG. 7 shows an example of a process 700 for
generating and using an even neural network with improved
efficiency to analyze image data in accordance with some
embodiments of the disclosed subject matter.
(0107] As shown in FIG. 7, at 702, process 700 can
receive a pre-trained neural network and/or can train a
neural network. In some embodiments, the neural network
can be any suitable type of neural network, such as a
convolutional neural network (CNN), a fully connected
network, an autoencoder, or any other suitable type of neural
network. Additionally, although mechanisms described
herein are generally described in connection with networks
that are trained to perform a machine vision task or a task
related to machine vision (e.g., tasked described below in
connection with FIGS. 9-14), mechanisms described herein
can be used to convert a neural network trained to perform
another type of task to an Ev Net.
(0108] In some embodiments, process 700 can use any
suitable technique or combination of techniques to train the
neural network. For example, process 700 can train a neural
network using techniques described in connection with
502-510 in U.S. patent application Ser. No. 17/246,219, filed
Apr. 30, 2021. As another example, process 700 can train a
neural network using techniques described in Cao et al.,
"Realtime multi-person 2D pose estimation using part affin­
ity fields ," in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2017); in Red­
mon et al., "You only look once: Unified, real-time object
detection," in Conference on Computer Vision and Pattern
Recognition (CVPR) (2016); Gharbi et al. , "Deep bilateral
learning for real-time image enhancement," ACM Transac­
tions on Graphics, (2017) ; Sun et al., "PWC-Net: CNNs for
optical flow using pyramid, warping, and cost volume," in
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2018); and/or using any other
suitable technique or combination of techniques.
(0109] At 704, process 700 can modify a network archi­
tecture of the trained neural network using components that
implement memory and/or a transmission policy of an event
neural network (ENN). In some embodiments, process 700

��������������	��
 ��
����������

US 2023/0376766 Al

can use any suitable technique or combination of techniques
to modify the network architecture of the trained neural
network. For example, process 700 can add, to one or more
individual neurons, an accumulator state variable a to a
neuron (e.g. , by associating the neuron with a portion of
memory used to store state variable a) , a best estimate state
variable b (e.g., by associating the neuron with a portion of
memory used to store state variable b), and/or a difference
state variable d to a neuron (e.g., by associating the neuron
with a portion of memory used to store state variable d). As
another example, process 700 can implement a transmission
policy, and can associate with the transmission policy with
one or more individual neurons (e.g. , by associating the
transmission policy with identifying information of neurons
to which the transmission policy is to be applied).
(0110] As yet another example, process 700 can add, in
connection with one or more layers, an accumulator layer
associated with an accumulator state tensor (e.g. , vector,
matrix, etc.) a (by associating the neurons of a layer with a
portion of memory used to store state tensor a). As still
another example, process 700 can add, in connection with
one or more layers, a gate layer associated with a best
estimate state vector b, and/or a difference state variable d
(e.g., by associating the neurons of a layer with a portion of
memory used to store state tensor b and d).
(0111] In some embodiments, process 700 can modify all
neurons and/or all layers in the trained neural network using
state variables a, b, and/or d, and/or state tensors (e.g.,
vectors, matrices, etc.) a, b, and/or d. Additionally or alter­
natively, process 700 can modify a subset of neurons and/or
a subset of layers in the trained neural network using state
variables a, b , and/or d, and/or state tensors a, b, and/or d. In
some embodiments, process 700 can receive input (e.g.,
provided via a user input device, such as input 206 and/or
input 216, via a communication system, such as communi­
cation system 208 and/or communication system 218, and/or
from any other suitable source).
(0112] At 706, process 700 can receive image data from a
data source. For example, process 700 can receive one or
more frames of video data from an image sensor and/or from
a camera incorporating an image sensor. In such an example,
the frame(s) of video data can include two dimensional
image data (e.g., each pixel can be associated with an
intensity value and/or information indicative of a color(s)
associated with the pixel). Additionally or alternatively, in
some embodiments, the frame(s) of video data can include
depth information associated with portions of the scene. As
another example, process 700 can receive one or more data
points associated with a point in a scene (e.g., one or more
photon detections by a single photon sensor such as a single
photon avalanche diode (SPAD), a jot, etc.; one or more
events indicative of a change in a scene output by an event
camera; etc .). As yet another example, process 700 can
receive one or more data points associated
(0113] In some embodiments, process 700 can be
executed, at least in part, by a processor of a data source. For
example, process 700 can be executed by a device that
includes an image sensor, such as a smartphone, a tablet
computer, a laptop computer, a security camera, a vehicle
with one or more integrated image sensors and/or other
sensors (e.g. , sonar, radar, lidar, etc.), etc. Additionally or
alternatively, in some embodiments, process 700 can be
executed, at least in part, by a processor of a device that
receives data from one or more data sources. For example,

11
Nov. 23, 2023

process 700 can be executed by a device, such as a server,
a vehicle control system, etc., that receives data from a
device that incorporates an image sensor (e.g. , via a net­
work, via a peer to peer wireless connection, via a wired
connection, etc.).
(0114] Note that although process 700 is generally
described in connection with receiving image data (e.g.,
video data; asynchronous image data such as image data
from a SPAD-based (or other single photon detector-based)
sensor and/or event camera; depth image data; medical
imaging data such as ultrasound, medical resonance imaging
(MRI), etc.; etc.), this is an example, and process 700 can be
used in connection with other time-varying data (e.g. , mul­
tidimensional data). For example, process 700 can be used
in connection with depth data (e.g., data generated by a lidar,
data generated by a radar system, data generated by a sonar
system, data generated by a depth camera such as an RGBD
sensor, etc.), which may or may not be associated with color
data, and which can be arranged in any suitable format (e.g.,
a matrix corresponding to sensor position in two or more
dimensions, a point cloud, etc .). As another example, pro­
cess 700 can be used in connection with audio data (e.g.,
speech recorded using a microphone). As yet another
example, process 700 can be used in connection with
rendering content, such as neural rendering techniques that
can involve scanning a neural network over locations in a
rendered scene to synthesize views of the scene for different
viewing directions (e.g., as described in Mildenhall et al.,
"NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis," available at arxiv(dot)org/pdf/2003.08934
(dot)pdf (2020)).
(0115] At 708, process 700 can provide at least a portion
of image data (and/or other data) received at 706 to the ENN.
For example, process 700 can provide a frame of image data
(e.g. , generated from video data) to the ENN. As another
example, process 700 can provide data that includes counts
of photon detections by SPAD-based pixels (and/or other
single-photon detector-based pixels) over a predetermined
period of time.
(0116] At 710, process 700 can cause updates to be
propagated through the ENN based on the provided image
data. For example, as described above in connection with
FIGS. 5 and 6, process 700 can utilize update rules (e.g.,
described above in connection with EQ. (4)) and a trans­
mission policy (e.g., as described above in connection with
FIG. 6) to propagate updates based on the input through the
ENN.
(0117] At 712, process 700 can receive an output(s) from
the ENN corresponding to a prediction based on the data
received at 706. For example, the output can be any suitable
data, such as a prediction based on the input at a particular
time step. In a more particular example, the prediction can
correspond to a transformed version of the input data (e.g.,
a high dynamic range image, a deblurred image, etc.). As
another more particular example, the prediction can corre­
spond to data indicative of a location (e.g. , a two dimen­
sional location, a three dimensional location). As yet another
more particular example, more particular example, the pre­
diction can correspond to a label(s) associated with an object
in a scene (e.g., a person, a car, an animal, etc.). As still
another more particular example, the prediction can corre­
spond to data indicative of a pose of a person. As a further
more particular example, the prediction can correspond to
data indicative of motion of at least a portion of a scene (e.g.,

��������������	��
 ��
����������

US 2023/0376766 Al

optical flow data). As a yet further more particular example,
the prediction can correspond to another any suitable com­
bination of data (e.g., a location of an object within the scene
in two or three dimensions, and a label associated with the
object). In some embodiments, the output can be formatted
in the format provided by the trained neural network prior to
modification as an ENN.
(0118] At 714, process 700 can present content based on
an output(s) of the ENN and/or can perform a computer
vision task based on a current output of the ENN. For
example, process 700 can present an image generated by the
ENN (e.g., using display 204, using display 214), and/or can
cause another device to present the image. In a more
particular example, process 700 can present a high dynamic
range image generated by the ENN, and/or can cause the
high dynamic range image to be presented. In another more
particular example, process 700 can present a modified
image (e.g., modified to add a filter effect to the image, such
as a filter to change the appearance of an object in the
image), and/or can cause the high dynamic range image to
be presented.
(0119] As another example, process 700 can present an
image with one or more annotations generated by the ENN
(e.g., using display 204, using display 214), and/or can cause
the annotated image to be presented. In a more particular
example, process 700 can present an image with labels
associated with one or more objects in a scene, and/or can
cause the annotated image to be presented.
(0120] As yet another example, process 700 can perform
a computer vision task based on a current output of the ENN.
In a more particular example, process 700 can use object
detection information output by the ENN to determine the
location of one or more objects in a physical environment of
a device executing process 700. As another more particular
example, process 700 can use pose information output by the
ENN to control a user interface based on the pose. As yet
another more particular example, process 700 can use pose
information output by the ENN to map the detected pose to
a virtual avatar used to represent a subject for which pose
information was generated. As still another more particular
example, process 700 can use pose information output by the
ENN to inform image editing (e.g., photo or video editing)
used to apply spatial or color transformations to one or more
subject in an image(s) (e.g., to add a filter effect).
(0121] In some embodiments, process 700 can return to
706 and/or 708, and can receive additional image data and/or
provide additional image data to the ENN.
(0122] FIG. 8 shows an example of errors that can accu­
mulate due to lack of sufficient long-term memory in an
event neural network in accordance with some embodiments
of the disclosed subject matter. The results in FIG. 8
compare an ENN trained to perform pose estimation that
uses state variables a, b, and d, and an ENN implemented
without using state variable d.
(0123] In FIG. 8, the effect of ablating the long-term
memory dis shown (implemented by resetting d to zero after
each input). The model used to generate the data in FIG. 8
is based on the OpenPose model described in Cao et al.,
"Realtime multi-person 2D pose estimation using part affin­
ity fields," in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2017) using
images from the autolabelled MPII dataset described in
Andriluka et al. , "2D human pose estimation: New bench­
mark and state of the art analysis," in Proceedings of the

12
Nov. 23, 2023

IEEE Conference on Computer Vision and Pattern Recog­
nition (2014). Other than resetting d, the two models shown
are identical (including using the same thresholds). As
shown in FIG. 8, the long-term memory d is critical for
maintaining stable accuracy, as ablating state variable d
causes a rapid decay in accuracy. The y-axis shows agree­
ment between the conventional version of a pose recognition
model (i.e., prior to conversion to an ENN), and ENN
versions of the pose recognition model with and without
state variable d. In the version without state variable d, the
neurons compute the difference between state variable b on
adjacent time steps, and then transmit or discard the differ­
ence, without storing the remainder. Under this model, the
final state of the neuron depends strongly on the order and
temporal distribution of inputs.
(0124] For example, the neuron can be configured to
transmit if the frame-to-frame difference in b exceeds a
threshold Ii. Consider a scenario A where the neuron's
activation jumps from 0 to 2 Ii. Because 2 ll>ll, the neuron
transmits the change 2 Ii and ends in a state of zero error.
Now, consider another scenario B, where the neuron's
activation gradually increases from Oto 2 Ii in steps 0.1 Ii,
0.2 Ii, ... , Ii. Gradual changes like this are common in
practice (e.g. , when panning over a surface with an intensity
gradient). Now, because 0.1 ll<ll, the neuron never transmits
and ends in a state with error -2 Ii. Additionally, because the
neuron discards non-transmitted activations, it has no way to
determine that it is, in fact, in a state with error -2 Ii. This
error is unknowingly carried into all of its future computa­
tions.
(0125] As shown in FIG. 8, without a means of accumu­
lating non-transmitted errors, the accuracy decays rapidly.
Additionally, FIG. 3, panel (c) shows an example result for
bounding box detection with and without state variable d.
The frame-to-frame model on the left fails to correctly track
the bounding box. Note that although the bounding box does
not move, this model still computes over a billion operations
per frame.
(0126] FIG. 9 shows examples of efficiency improvements
that can be realized using mechanisms described herein to
modify existing neural networks that perform different com­
puter vision tasks in accordance with some embodiments of
the disclosed subject matter based on video data with
various levels of camera motion.
(0127] In FIG. 9 results shown were generated from four
different neural networks converted to ENNs with signifi­
cant variations in architecture. Performance of two high­
level tasks and two low-level tasks were evaluated: high­
level pose recognition and object detection tasks, and low­
level image enhancement and optical flow tasks. For all
models, the number of multiply-accumulate (MAC) opera­
tions are presented as a measure of computational costs.
Some models include specialized transforms (e.g. , the bilat­
eral transform for HDRNet). These transforms represent a
small portion of the overall computational cost of the
models, and such specialized transforms are excluded when
counting MAC operations. Because these transforms are not
generally linear, accumulator layers were inserted before
those operations, and gate layers were inserted following the
operations.
(0128] For evaluating EvNet performance on the pose
recognition task, the OpenPose model was used for single­
frame, multi-person pose estimation. The original pretrained
weights (trained on the MPII dataset) and a global threshold

��������������	��
 ��
����������

US 2023/0376766 Al

of h=0.05 for the transm1ss10n policy. The models were
evaluated using the PCKh benchmark (described in Andri­
luka et al., "2D human pose estimation: New benchmark and
state of the art analysis," in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(2014)) when head annotations were available, and using the
PCK benchmark described in Yang et al., "Articulated
human detection with flexible mixtures of parts," IEEE
Transactions on Pattern Analysis and Machine Intelligence
(2013) with a=0.2 otherwise.
[0129] For evaluating EvNet performance on the object
detection task, the YOLOv3 model (described in Redmon et
al. , "You only look once: Unified, real-time object detec­
tion," in Conference on Computer Vision and Pattern Rec­
ognition (CVPR) (2016)) was used for multi-object detec­
tion. The pretrained MS-COCO weights provided by
Redmon et al. were used to evaluate on the mAP-50 metric
(e.g., as described in Everingham et al., "The Pascal Visual
Object Classes (VOC) challenge," International Journal of
Computer Vision (2010), and Padilla et al., "A comparative
analysis of object detection metrics with a companion open­
source toolkit," Electronicsweek, (2021)) . YOLO includes a
batch normalization transform after each linear layer; and
the y associated with each batch normalization was used to
scale the policy thresholds to better match the activation
distribution of each channel. More particularly, the thresh­
olds for the transmission policy were set to

0.06
h =-.

y

[0130] For evaluating EvNet performance on the image
enhancement task the Local Laplacian version of HDRNet
(e.g., as described in Paris et al. , "Local Laplacian Filters:
Edge-aware image processing with a Laplacian pyramid,"
ACM Transactions on Graphics (2011)) was used for image
enhancement. HDRNet has two subnetworks: a deep, low­
resolution feature network and a shallow, high-resolution
guidemap network. The guidemap network represents about
90% of the overall operations, and converting it to an Ev Net
has a noticeable effect on the visual quality of the output.
Therefore, only the feature network was converted to an
EvNet. Operation counts are shown for both the overall
model (both subnetworks) and the feature network (the
EvNet portion). These operation counts are referred to as
"HDRNet-a" and HDRNet-f," respectively. A threshold of
h=0.l was used, and performance was evaluated using peak
signal-to-noise ratio (PSNR).
[0131] For evaluating EvNet performance on the optical
flow task, the PWC-Net model (as described in Sun et al.,
"PWC-Net: CNNs for optical flow using pyramid, warping,
and cost volume," in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (2018)) was
used for optical flow computation. Unlike the models above
which take a single frame as input, the PWC-Net model
takes a pair of frames. A threshold of h=0.01 was used, and
performance was evaluated using the EPE metric described
in Baker, et al., "A database and evaluation methodology for
optical flow," International Journal of Computer Vision
(2011).
[0132] Large-scale EvNet evaluation is challenging, for at
least two reasons. For example, the datasets used for training
the models used for evaluation (e.g., MS-COCO) are usually

13
Nov. 23, 2023

single-frame. However, these single-frame inputs are not as
useful for evaluating performance of Ev Nets on analysis of
long video sequences. As another example, another impor­
tant component of the analysis described herein is the extent
to which camera motion in a video effects the performance
of an EvNet. As there were no known large-scale machine
learning datasets containing camera motion labels, a custom
dataset derived from MPII was generated to evaluate per­
formance of mechanisms described herein. A subset of MPII
videos (the first 246) having a uniform length (exactly 41
frames) were selected, and each video was labeled as having
"no camera motion" (perfectly stationary camera), "minor
camera motion" (slight camera shake), or "major camera
motion." These splits include 59, 46, and 141 videos,
respectively. Synthetic labels were generated by passing
video frames through the conventional version of each
model and taking the output as ground truth. Task-specific
metrics were then used to measure the agreement between
the conventional and EvNet outputs on the video data with
various levels of motion. Frames were resized to 288x512
pixels for OpenPose, YOLO, and PWC-Net, and resized to
540x960 pixels for HDRNet.
[0133] In FIG. 9 computation savings for various levels of
camera motion are presented as a multiplier between the
computations performed by EvNet version of the network
compared to the conventional form of the network. For
example, for the OpenPose network, the conventional ver­
sion performed 17.3 times as many calculations to generate
results on the 41 frames of video than were performed by the
EvNet version of the OpenPose network (which can be
referred to herein as a 17 .3 times reduction in computations) .
[0134] As shown in FIG. 9, large computation savings
(e.g., on the order of a 5x to 20x reduction in MAC
operations) are achieved when there is no motion. However,
significant savings are also achieved when there is large
motion (e.g., on the order of 2x to 9x reduction in MAC
operations). "HDRNet-a" represents the whole model,
including the guidemap subnetwork, and "HDRNet-f' rep­
resents only the feature subnetwork.
[0135] FIG. 10 shows examples of efficiency improve­
ments that can be realized using mechanisms described
herein to modify existing neural networks, metrics indica­
tive of performance of the network with modifications in
accordance with some embodiments of the disclosed subject
matter, and overhead attributable to modifications associated
with modifying the networks as event neural networks. The
overall savings, agreement between conventional and ENN
models, and overhead percentage (based on the number of
extra operations expended for each operation saved). Opera­
tion savings are shown as "arithmetic overhead"/"memory
overhead".
[0136] As shown in FIG. 10, the metric values indicate
strong agreement. This is consistent with qualitative experi­
ments (e.g ., as described below in connection with FIG. 12),
where the ENN predictions are nearly identical to the
conventional predictions.
[0137] The overhead percentages represent the number of
extra arithmetic and memory operations as a fraction of the
computational savings. For example, an arithmetic overhead
ratio of 5% indicates that one extra operation is computed by
the neuron for every 20 operations that are saved by imple­
menting the neuron in an ENN using techniques described
herein, rather than in a conventional neural network. Over­
head is calculated as follows. An update to an accumulator

��������������	��
 ��
����������

US 2023/0376766 Al

requires one load (of state variable a), one addition (a+g(L'1)),
and one store (of a). An update to a gate requires two loads
(of state variables b and d), three additions (d+f(a)-b and
ldl-h), and two stores (of state variables b and d). A
transmission requires one load (d) and one store (d).
(0138] To confirm the high agreement shown in FIG. 10,
pose and optical flow models were also evaluated on train­
ing-set ground-truth labels from MPII and Sintel (e.g. , as
described in Butler et al. , "A naturalistic open source movie
for optical flow evaluation," in Computer Vision-ECCV
2012, Lecture Notes in Computer Science (2012)), respec­
tively. The first 737 videos from the MPII training set and all
23 videos in the Sintel training set were used for evaluation.
To generate the agreement metrics for the OpenPose net­
work, the output of a conventional network was used as
ground truth, and the output of the EvNet version of the
network was evaluated based on the ground truth using the
PCK metric. For example, the value 0.904 indicates that
"90.4% of the time, the human joint predicted by the EvNet
is close to the joint predicted by the conventional model."
The metrics for the YOLO network and the PWC-Net
network were calculated using a similar technique using the
mAP50 and EPE metrics. PSNR can be characterized as a
measure of how close two images are. For example, a PSNR
around 40 dB indicates strong agreement between the
ground truth and predicted images.
(0139] FIG. 11 shows examples of efficiency improve­
ments that can be realized using mechanisms described
herein to modify existing neural networks in accordance
with some embodiments of the disclosed subject matter, and
metrics indicative of comparative performance of the net­
works with and without modifications . In FIG. 11, compu­
tation savings, conventional metric performance, and event
metric performance are shown from the evaluations
described above in connection with FIG. 10. For both
models only minor reductions in metric performance are
observed. As shown in FIG. 11, the high agreement on the
auto-labelled data translates to similar metric performance
on separate ground truth.
(0140] FIG. 12 shows examples of efficiency improve­
ments that can be realized using mechanisms described
herein to modify existing neural networks in accordance
with some embodiments of the disclosed subject matter, and
results of computer vision tasks generated by the networks
with and without modifications. FIG. 12 includes example
outputs from several conventional neural networks and
versions of those networks that have been converted to
Ev Nets. As shown in FIG. 12, may types of models can be
modified and implemented as Ev Nets. The examples in FIG.
12 showing frame 153 from a video sequence with a static
background. The frame shows a subject mid-jump (indicated
by the blue region in the optical flow maps). The EvNet
tracks the subject correctly, even under rapid motion. Addi­
tional results are included in Appendix A.
(0141] FIG. 13 shows examples of efficiency improve­
ments that can be realized using mechanisms described
herein and the impact of transmission policies with various
levels of granularity in accordance with some embodiments
of the disclosed subject matter. In FIG. 13, results for
various implementations of the OpenPose network are
shown with various thresholds, and different transmission
policies. FIG. 13 shows results generated using the MPII
auto-labelled dataset as inputs, and the effect of increasing
the granularity of the policy. Both a spatial chunking policy

14
Nov. 23, 2023

(e.g. , considering a group of neighboring neurons to deter­
mine when to transmit values downstream, as described
above in connection with FIG. 6), and a policy that chunks
along the channel dimension (e.g., using a Gumbel gate). In
the chunked transmission policies, each neighborhood com­
putes a mean of several I di , and the thresholds were reduced
to keep the accuracy from dropping significantly. The results
show that increasing the chunk size reduces the operation
savings. However, chunking may, in practice, allow more
efficient execution on GPUs.
(0142] FIG. 14 shows an example of the computational
cost at various layers of a particular network modified as an
event neural network in accordance with some embodiments
of the disclosed subject matter as a fraction of the compu­
tational cost of the network without modifications. The
averages are taken over all videos and frames within a
particular dataset split.
(0143] The computational cost of the OpenPose model is
shown in FIG. 14 as a function of the layer depth (on the
auto-labelled MPII dataset). The relative cost generally
decreases deeper in the network. This highlights the benefits
of leveraging repetition in the deep layers of the network,
and not just near the input.
(0144] Note that mechanisms described herein that utilize
a neuron-level transmission policy (e.g. , are generally
described in connection with use with a processor, such as
a CPU, that are capable of relatively little parallel execution,
while conventional GPU hardware is generally designed for
massive parallel, block-wise computation with coarse con­
trol flow. An event network with neuron-level transmission
can be expected to be inefficient under the computation
model used by conventional GPUs. Accordingly, implemen­
tations on hardware designed for a high degree of parallel
execution can be expected to provide superior performance
with an alternative transmission policy, such as chunking.
Note that event neurons do not need to operate by a common
clock, as each neuron can operates independently - consum­
ing new input as it arrives and transmitting output once it is
computed. This permits an asynchronous, networked-based
execution model in contrast to the ordered, frame-based
model in conventional machine learning. Note that spiking
neural networks share this asynchronous computation
model, and have motivated the development of several novel
hardware platforms (such as neuromorphic platforms
designed for spiking neural networks that support on-chip
learning and complex, nonlinear update rules within each
neuron). By contrast, a neuromorphic platform designed for
EvNets can be configured to compute simple linear func­
tions, and can be expected to achieve a better performance/
energy tradeoff. For example, circuitry that is used in a
neuromorphic chip to implement elements of a spiking
neural network can be eliminated.
(0145] For certain special cases of transmission policies
(e.g. , a threshold policy with h=0), the output of an event
network can be guaranteed to be equal to that of an equiva­
lent conventional network. As the transmission policy is
configured to be selective (e.g. , by increasing h), the effi­
ciency of the event network improves, but its output can be
expected to increasingly deviate from that of the conven­
tional network. This behavior is described herein qualita­
tively (e.g., as shown in FIG. 13).
(0146] In some embodiments, any suitable computer read­
able media can be used for storing instructions for perform­
ing the functions and/or processes described herein. For

��������������	��
 ��
���	������

US 2023/0376766 Al

example, in some embodiments, computer readable media
can be transitory or non-transitory. For example, non-tran­
sitory computer readable media can include media such as
magnetic media (such as hard disks, floppy disks, etc.),
optical media (such as compact discs, digital video discs,
Blu-ray discs, etc.), semiconductor media (such as RAM,
Flash memory, electrically programmable read only memory
(EPROM), electrically erasable programmable read only
memory (EEPROM), etc.), any suitable media that is not
fleeting or devoid of any semblance of permanence during
transmission, and/or any suitable tangible media. As another
example, transitory computer readable media can include
signals on networks, in wires, conductors, optical fibers,
circuits, or any suitable media that is fleeting and devoid of
any semblance of permanence during transmission, and/or
any suitable intangible media.
(0147] It should be noted that, as used herein, the term
mechanism can encompass hardware, software, firmware, or
any suitable combination thereof.
(0148] It should be understood that the above-described
steps of the processes of FIG. 7 can be executed or per­
formed in any order or sequence not limited to the order and
sequence shown and described in the figures. Also, some of
the above steps of the processes of FIG. 7 can be executed
or performed substantially simultaneously where appropri­
ate or in parallel to reduce latency and processing times.
(0149] Although the invention has been described and
illustrated in the foregoing illustrative embodiments, it is
understood that the present disclosure has been made only
by way of example, and that numerous changes in the details
of implementation of the invention can be made without
departing from the spirit and scope of the invention, which
is limited only by the claims that follow. Features of the
disclosed embodiments can be combined and rearranged in
various ways.

What is claimed is:
1. A method for using a neural network with improved

efficiency, the method comprising:
receiving image data;
providing the image data to a trained neural network, the

trained neural network comprising a plurality of neu­
rons;

receiving, at a neuron of the plurality of neurons, a
delta-based input 11;n provided from a previous layer of
the trained neural network;

generating, for the neuron, an output g(l1;n) of a linear
transform g based on 11;n;

generating, for the neuron, an updated value of a state
variable a based on g(l1;n) and a value of the state
variable a at a time when 11;n is received;

generating, for the neuron, an output f(a) of an activation
function f based on the updated value of the state
variable a;

generating, for the neuron, an updated value of a state
variable d based on a value of the state variable d, a
value of a state variable b corresponding to a previous
output of the activation function, and the output f(a);

generating, for the neuron subsequent to updating the
value of the state variable d, an updated value of the
state variable b based on the output f(a);

determining whether to transmit the value of the state
variable d based on a transmission policy and the
updated value of the state variable d;

15
Nov. 23, 2023

in response to determining that the value of state variable
dis to be transmitted, transmitting the value of the state
variable d to a next layer of the trained neural network;

in response to transmitting the value of state variable d to
the next layer, subtracting the transmitted value from
the state variable d; and

receiving an output from the trained neural network,
wherein the output from the trained neural represents a
prediction based on the image data.

2. The method of claim 1, wherein the transmission policy
is applied to each of the plurality of neurons individually,
and comprises a threshold value h, and

wherein determining whether to transmit the updated
value of the state variable d based on the transmission
policy and the value of the state variable d comprises
determining whether ldl satisfies the threshold value h.

3. The method of claim 1, wherein image data is a frame
of video data, and the previous output of the activation
function was generated based on a prior frame of video data.

4. The method of claim 1, wherein the image data
comprises data generated by an image sensor comprising a
plurality of single photon detectors.

5. The method of claim 1, wherein the plurality of neurons
are included in a single layer of the neural network, and
wherein a state tensor a is associated with the single layer of
the neural network, and stores the state tensor a for each of
the plurality of neurons.

6. The method of claim 1, wherein the value of the state
variables a, b, and d are stored in memory and are associated
with the neuron.

7. The method of claim 1, wherein the output comprises
an image with higher dynamic range than the image data.

8. The method of claim 1, wherein the output comprises
object detection information indicative of the location of one
or more objects in the image data.

9. A system for using a neural network with improved
efficiency, the system comprising:

at least one processor that is configured to:
receive image data;
provide the image data to a trained neural network, the

trained neural network comprising a plurality of
neurons;

receive, at a neuron of the plurality of neurons, a
delta-based input 11;n provided from a previous layer
of the trained neural network;

generate, for the neuron, an output g(l1;n) of a linear
transform g based on 11;n;

generate, for the neuron, an updated value of a state
variable a based on g(l1;n) and a value of the state
variable a at a time when 11;n is received;

generate, for the neuron, an output f(a) of an activation
function f based on the updated value of the state
variable a;

generate, for the neuron, an updated value of a state
variable d based on a value of the state variable d, a
value of a state variable b corresponding to a previ­
ous output of the activation function, and the output
f(a);

generate, for the neuron subsequent to updating the
value of the state variable d, an updated value of the
state variable b based on the output f(a);

determine whether to transmit the value of the state
variable d based on a transmission policy and the
updated value of the state variable d ;

��������������	��
 ��
����������

US 2023/0376766 Al

in response to determining that the value of state
variable d is to be transmitted, transmit the value of
the state variable d to a next layer of the trained
neural network;

in response to transmitting the value of state variable d
to the next layer, subtracting the transmitted value
from the state variable d; and

receive an output from the trained neural network,
wherein the output from the trained neural represents
a prediction based on the image data.

10. The system of claim 9, wherein the transmission
policy is applied to no more than one neuron, and comprises
a threshold value h, and

wherein the at least one processor is further configured to:
determine whether ldl satisfies the threshold value h.

11. The system of claim 9, wherein image data is a frame
of video data, and the previous output of the activation
function was generated based on a prior frame of video data.

12. The system of claim 9, wherein the image data
comprises data generated by an image sensor comprising a
plurality of single photon detectors.

13. The system of claim 9, wherein the plurality of
neurons are included in a single layer of the neural network,
and wherein a state vector a is associated with the single
layer of the neural network, and stores the state vector a for
each of the plurality of neurons.

14. The system of claim 9, further comprising memory,
wherein the value of the state variables a, b, and dare stored
in the memory and are associated with the neuron.

15. The system of claim 9, wherein the output comprises
an image with higher dynamic range than the image data.

16. The system of claim 9, wherein the output comprises
object detection information indicative of the location of one
or more objects in the image data.

17. A method for modifying a neural network to operate
with improved efficiency, the method comprising:

receiving a trained neural network;
adding a first gate layer configured to:

receive a plurality of values and output a plurality of
differentials to a layer comprising a corresponding
plurality of neurons, each configured to perform a

16
Nov. 23, 2023

linear transform, where each differential is based on
a difference between a value of the plurality of values
and a corresponding previously received value of a
plurality of previously received values;

adding an accumulator layer configured to:

receive an output from each of the plurality of neurons;

store a corresponding plurality of state variables a
based on the output received from the corresponding
neuron; and

output current values of the plurality of state variables
a to a layer configured to perform a non-linear
activation; and

adding a second gate layer configured to

generate, in connection with each of the plurality of
neurons, an updated value of a state variable d based
on a value of the state variable d, a value of a state
variable b corresponding to a previous output of the
non-linear activation function, and the output the
non-linear activation function;

generate, for the neuron subsequent to updating the
value of the state variable d, an updated value of the
state variable b based on the output of the non-linear
activation function; and

storing a modified version of the neural network including
at least the first gate layer, the accumulator layer, and
the second gate layer in memory.

18. The method of claim 17, further comprising:

causing a transmission policy to be applied to each
neuron, the transmission policy comprising a threshold
value h, and causing transmission of the value of the
state variable d to be inhibited unless ldl>h.

19. The method of claim 18, further comprising:

configuring the second gate layer to set to transmit the
updated value of the state variable d and subtract the
transmitted value from the state variable d in response
determining that the value of d satisfies the transmis­
sion policy.

* * * * *

