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(57) ABSTRACT 

A system and method for assessing a product or product 
design includes receiving a set of physical parameters and a 
mesh of finite elements of a product or product design. The 
mesh of finite elements include tangles. For elements in the 
mesh of finite elements, the method includes identifying 
positive and negative parametric regions. For tangled ele­
ments in the mesh of finite elements, the method includes 
relaxing a constraint of full invertibility between the positive 
and negative parametric regions to piecewise invertibility to 
decompose the tangled elements into invertible regions. The 
method further includes performing an analysis of the prod­
uct or product design using the mesh of finite elements with 
the tangled elements decomposed into the invertible regions 
and the set of physical parameters and generating a report 
indicating a performance of the product or product design 
under the set of physical parameters. 
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SYSTEM AND METHOD FOR FINITE 
ELEMENT ANALYSIS IN THE PRESENCE 
OF CONCAVE ELEMENTS AND METHOD 

OF TESTING OR MANUFACTURING 
PRODUCTS USING SAME 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

[0001] NIA 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH NIA 

BACKGROUND 

[0002] The present disclosure relates to systems and meth­
ods for product manufacturing, design, testing, forensic 
analysis, and the like. More particularly, the present disclo­
sure relates to systems and methods for performing a finite 
element method (FEM) as part of a process, where the mesh 
created as part of the FEM includes one or more concave 
elements or, put another way, the mesh is tangled, yet the 
process can be performed with the resources and computa­
tional efficiency previously available only without the tan­
gling. Thus, the underlying computer systems utilized are 
improved and more efficient than previously available and/ 
or the process for manufacturing or analyzing the products 
using FEM are improved. 

[0003] Traditional finite element methods (FEM) or analy­
ses (FEA) are analysis techniques that allows a user to model 
and analyze systems by breaking the systems down into a 
finite number of simple problems. In FEM, the geometry of 
the proposed design is identified. The geometry is broken up 
into a discrete representation, known as a mesh or grid. The 
mesh is made up of a plurality of finite elements defined by 
simple polynomial shape functions, where the vertices of the 
shape define nodes. Boundary conditions (e.g. stress, con­
straints and/or loads) are applied to the mesh and the 
displacement of the elements is determined by the nodal 
displacements. Once the nodal displacements are known, 
element stresses and strains can be calculated. The govern­
ing equations are assembled into matrix form and are solved 
numerically. 

[0004] FEM is often used by engineers and designers in 
new product design and in the refinement or forensic analy­
sis of existing products. Using FEM, a user is able to verify 
a product design will perform in accordance with desired 
specifications prior to manufacturing or construction of such 
product. Thus, in many industries, such as the automobile or 
aircraft industries, all parts, subsystems, and whole systems 
are subjected to exhaustive FEM protocols as part of the 
manufacturing and design process. 

[0005] Though FEM is an indispensable tool in countless 
industries, it is subject to some well-known limitations that 
have persisted despite efforts to overcome the limitations. 
For example, while FEM is a ubiquitous choice for solving 
boundary-value problems, a mesh must be created that 
meets several requirements before FEM can be utilized. One 
of the requirements is that, for every element of the mesh, 
the determinant of the Jacobian associated with the para­
metric mapping between the physical and parametric coor­
dinates must remain positive. Said another way, the mesh 
must be free of concave elements or not be tangled. 

1 
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[0006] If the determinant of the Jacobian is negative 
throughout an element, the element is said to be "fully 
inverted," and the mesh is said to be "explicitly tangled." An 
example of an explicitly tangled quadrilateral mesh is illus­
trated in FIG. la. If the determinant of the Jacobian is 
negative in parts of an element, the element is said to be 
partly inverted, and the mesh is said to be implicitly tangled. 
FIG. lb illustrates an implicitly tangled quadrilateral mesh, 
with a concave element. 

[0007] It is well known that tangled meshes can lead to 
erroneous results in FE simulations. As explained in M. 
Livesu, A. Sheffer, N. Vining, M. Tarini, Practical hex-mesh 
optimization via edge-cone rectification, ACM Transactions 
on Graphics (TOG) 34 (4) (2015) 1-11. "Even a single 
concave element makes a mesh unusable for simulation." 
Unfortunately, tangling can appear, for example, during any 
of a variety of states of FEM, including mesh generation, 
mesh optimization, large deformation, and shape optimiza­
tion. 

[0008] In light of this, most FEM systems perform a check 
of meshes at various states to determine if there is a tangling. 
For example, if the determinant of the Jacobian is negative 
in any part of an element, the mesh is identified as tangled 
and the process must be revised or restarted, which is time 
consuming and complex. 

[0009] In light of this substantial problem with tangling, 
various strategies have been proposed to address tangling. 
For example, "untangling" is perhaps the most common, 
which is where one attempts to modify the mesh to remove 
the concave element(s). However, untangling is not always 
possible/reliable and, often, one cannot determine whether 
untangling will be effective without undertaking the process. 
As described by P. M. Knupp, Hexahedral and tetrahedral 
mesh untangling, Engineering with Computers 17 (3) (2001) 
261-268., " ... there are no known a priori test to determine 
if a mesh can be untangled." Thus, untangling can be 
expensive, and can pose challenges in mapping of simula­
tion data. 

[0010] As such, others have proposed that a concave quad 
element can be split into triangle elements to remove the 
concave quad element. For example, this is undesirable in 
non-static applications, such as shape optimization and mesh 
morphing, where concave quad elements can appear/disap­
pear at random locations. 

[0011] Consequently, several approaches have been pro­
posed for directly handling tangled elements. For example, 
in computer graphics, the method of invertible finite ele­
ments has been proposed, but this effort is focused on visual 
correctness, rather than on establishing accurate results as 
models for real-world physics. 

[0012] For accurate analysis, non-traditional methods can 
potentially be used to handle concave quadrilateral ele­
ments. These include smoothed finite element (SFEM) 
polygonal finite element methods (PolyFEM) using mean 
value coordinates, generalized barycentric coordinates such 
as harmonic, and maximum-entropy coordinates. In addi­
tion, the virtual element method (VEM), where the element 
stiffness matrix can be computed without explicitly con­
structing the basis functions, have been used in particular 
situations to handle concave elements. However, these 
methods do not simplify to the well-established FEM when 
the quadrilateral mesh is non-tangled. Moreover, handling of 
explicit tangling has not been achieved using these methods. 
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[0013] Within the context of computational fluid dynamics 
(CFD), a strategy for handling zero and negative volume 
elements has been proposed where an edge-based discreti­
zation over triangle meshes was used. In this case, by 
explicitly accounting for signed-volume, one can handle 
tangled meshes, without a loss in accuracy. However, to 
deploy this method, an implicitly tangled quadrilateral mesh 
must be converted into a triangle mesh in order to maintain 
second-order accuracy, and this may not be desirable for 
reasons stated above, including computational efficiency. 
[0014] Further still some have attempted to handle explic­
itly tangled simplex (triangular and tetrahedral) and non­
simplex (quadrilateral) elements by performing a method 
that reduces to standard FEM when the mesh is regular, and 
in the case of tangling, additional correction terms are 
incorporated to the standard stiffness matrix. However, 
implicit tangling that is much more challenging than explicit 
tangling and, as such, was not addressed by such efforts. 
[0015] Thus, there is a need for systems and methods that 
are able to efficiently address both explicitly and implicitly 
tangled two-dimensional (2D) and three-dimensional (3D) 
meshes, thereby applying to both quadrilateral and hexahe­
dral elements. 

SUMMARY 

[0016] The present disclosure provides systems and meth­
ods that overcome the aforementioned drawbacks by pro­
viding systems and methods for efficiently processing 
meshes, even in the presence of tangling, and irrespective of 
whether the mesh is an explicitly or implicitly tangled 
two-dimensional (2D) or three-dimensional (3D) mesh. That 
is, the systems and methods of the present disclosure break 
from the traditional paradigm that dictates that tangles 
cannot be accepted or, at best, cannot be processed with 
effectively the same computational overhead as without the 
tangles. Thus, the systems and methods of the present 
disclosure accept that tangles may be present because the 
systems and methods of the present disclosure are able to 
address tangles and still be computationally efficient. 
[0017] In accordance with one aspect of the disclosure, a 
computer system is provided that includes a memory storing 
a mesh of finite elements of a product or product design, 
wherein the mesh of finite elements include tangles, an input 
configured to receive a set of physical parameters to be 
applied to the product or production design to assess the 
product or product design, and a processor. The processor is 
configured to receive the mesh of finite elements and the set 
of physical parameters and to carry out steps that include, for 
elements in the mesh of finite elements, identifying positive 
and negative parametric regions. The processor is further 
configured to carry out steps including, for tangled elements 
in the mesh of finite elements, relaxing a constraint of full 
invertibility between the positive and negative parametric 
regions to piecewise invertibility to decompose the tangled 
elements into invertible regions, performing an analysis of 
the product or product design using the mesh of finite 
elements with the tangled elements decomposed into the 
invertible regions and the set of physical parameters, and 
generating a report indicating a performance of the product 
or product design under the set of physical parameters. The 
computer system further includes a display or printer con­
figured to deliver the report to a user. 
[0018] In accordance with another aspect of the disclo­
sure, a method for assessing a product or product design is 
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provided that includes receiving a set of physical parameters 
to be applied to the product or production design, accessing 
a mesh of finite elements of a product or product design, 
wherein the mesh of finite elements include tangles, and, for 
elements in the mesh of finite elements, identifying positive 
and negative parametric regions. The method also includes, 
for tangled elements in the mesh of finite elements, relaxing 
a constraint of full invertibility between the positive and 
negative parametric regions to piecewise invertibility to 
decompose the tangled elements into invertible regions, 
performing an analysis of the product or product design 
using the mesh of finite elements with the tangled elements 
decomposed into the invertible regions and the set of physi­
cal parameters, and generating a report indicating a perfor­
mance of the product or product design under the set of 
physical parameters. 
[0019] In accordance with one other aspect of the disclo­
sure, non-transitory computer-readable storage medium is 
provided having instructions stored thereon that, when 
executed by a computer processor, causes the computer 
process to carry out a method for analysis of a product or 
product design. The method includes steps comprising 
receiving a set of physical parameters and a mesh of 
elements of a product or product design, wherein the mesh 
of elements include tangles. The method also includes, for 
elements in the mesh of elements, identifying positive and 
negative parametric regions and, for tangled elements in the 
mesh of elements, relaxing a constraint of full invertibility 
between the positive and negative parametric regions to 
piecewise invertibility to decompose the tangled elements 
into invertible regions. The method further includes per­
forming an analysis of the product or product design using 
the mesh of elements with the tangled elements decomposed 
into the invertible regions and the set of physical parameters 
and generating a report indicating a performance of the 
product or product design under the set of physical param­
eters. 
[0020] The foregoing and other aspects and advantages of 
the invention will appear from the following description. In 
the description, reference is made to the accompanying 
drawings which form a part hereof, and in which there is 
shown by way of illustration a preferred embodiment of the 
invention. Such embodiment does not necessarily represent 
the full scope of the invention, however, and reference is 
made therefore to the claims and herein for interpreting the 
scope of the invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0021] The patent or application file contains at least one 
drawing executed in color. Copies of this patent or patent 
application publication with color drawing(s) will be pro­
vided by the Office upon request and payment of the 
necessary fee. 
[0022] FIG. lA is an example of explicit tangling in a 
mesh. 
[0023] FIG. 1B is an example of implicit tangling in a 
mesh. 
[0024] FIG. 2A is an illustration of a concave quad in 
parametric space. 
[0025] FIG. 2B is a is a mapping of the concave quad of 
FIG. 2A mapped onto physical space. 
[0026] FIG. 2C is a is an illustration of the concave 
element of FIG. 2A and with the folded region. 
[0027] FIG. 3A is an example of a two element mesh. 
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[0028] FIG. 3B is a graph showing L2 error versus d for 
FEM. 
[0029] FIG. 4A is a concave element shown with a 2D 
domain discretized into two bilinear quads. 
[0030] FIG. 4B shows positive and negative Jacobian 
regions of the concave element of FIG. 4A. 
[0031] FIG. 4C shows the convex element of the mesh of 
FIG. 4A. 
[0032] FIG. 4D is an illustration of a physical space 
showing a self-overlapping region. 
[0033] FIG. 5 is an illustration of FIG. 4D showing that 
equality conditions imposed at all concave vertices. 
[0034] FIG. 6 is a graph showing a comparison of 
g-TFEM and FEM for two-element mesh: L2 error vs. d. 
[0035] FIG. 7 is a schematic illustrating parts contributing 
to the field definition. 
[0036] FIG. SA is an illustration of parametric space. 
[0037] FIG. 8B is an illustration of a triangulation of a 
concave element. 
[0038] FIG. 9 is a schematic illustrating numerical inte­
gration based on triangulation of the concave element. 
[0039] FIG. lOAis a schematic showing g-TFEM involves 
integrating over the tangled region and concave region 
[0040] FIG. 10B is a schematic showing i-TFEM involves 
integrating only over the concave region. 
[0041] FIG. llA shows an untangled hex element. 
[0042] FIG. 11B shows a tangled hex element. 
[0043] FIG. 12 shows the boundary of a negative Jacobian 
region. 
[0044] FIG. 13 shows multiple views of a tetraheralized 
concave element. 
[0045] FIG. 14 is an illustration of concave hexahedral 
element with two re-entrant vertices. 
[0046] FIG. 15A is an illustration of a self-penetrating 
hexahedral element. 
[0047] FIG. 15B is an illustration of an acceptable con­
cave element obtained by moving a node. 
[0048] FIG. 16A is a graph comparing i-TFEM and FEM 
for two-element mesh based on L2 error vs. d. 
[0049] FIG. 16B is a graph comparing i-TFEM and FEM 
for two-element mesh based on condition number vs. d. 
[0050] FIG. 17 is an illustration of an implicitly tangled 
mesh with four elements. 
[0051] FIG. 18A is a graph showing a comparison of 
i-TFEM and FEM for four-element mesh via error vs. a. 
[0052] FIG. 18B is a graph showing a comparison of 
i-TFEM and FEM for four-element mesh via condition 
number vs. a. 
[0053] FIG. 19A is a schematic illustration of a cantile­
vered product with parabolic loading. 
[0054] FIG. 19B is a schematic illustration of the product 
of FIG. 19A as a mesh with concave elements. 
[0055] FIG. 20 is a graph showing Error in u2 for FEM and 
i-TFEM. 
[0056] FIG. 21A is a graph showing axx for FEM and 
i-TFEM. 
[0057] FIG. 21B is a graph showing -cxy for FEM and 
i-TFEM. 
[0058] FIG. 22 is a set of sample meshes for a convergence 
study with a number of nodes from 43 to 88 to 149 to 319. 
[0059] FIG. 23A is a graph showing La norm errors for 
FEM and i-TFEM, as a function of the number of nodes. 
[0060] FIG. 23B is a graph showing energy norm errors 
for FEM and i-TFEM, as a function of the number of nodes. 
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[0061] FIG. 24A is a graph showing axx at point B. 
[0062] FIG. 24B is a graph showing u2 at point C. 
[0063] FIG. 25A is a schematic illustration of cross­
section of a pressurized cylinder. 
[0064] FIG. 25B is a typical mesh for the cylinder of FIG. 
25A with concave elements. 
[0065] FIG. 26 is a graphic illustration of sample meshes 
for convergence study, where the number of nodes and the 
number of concave elements were 77, 32; 163, 72; and 281, 
128, respectively. 
[0066] FIG. 27A is a graphs showing L2 error norm as a 
function of number of nodes in a mesh for the pressurized 
cylinder of FIG. 25A. 
[0067] FIG. 27B is a graphs showing CPU time as a 
function of number of concave elements in a mesh for the 
pressurized cylinder of FIG. 25A. 
[0068] FIG. 28A is an illustration of an eight-element 
rectangular grid. 
[0069] FIG. 28B is an illustration of an eight-element 
tangled mesh with a concave hex element. 
[0070] FIG. 29A is a graph showing a comparison of L2 

error vs. d for i-TFEM and FEM for an eight-element hex 
mesh. 
[0071] FIG. 29B is a graph showing a comparison of 
condition number vs. d for i-TFEM and FEM for an eight­
element hex mesh. 
[0072] FIG. 30 is a graphic illustration of a connecting rod 
mesh. 
[0073] FIG. 31A is a color-coded illustration of the con­
necting rod mesh of FIG. 30 relative to a displacement 
analysis. 
[0074] FIG. 31B is a color-coded illustration of the con­
necting rod mesh of FIG. 30 relative to a van-Mises stress 
field analysis. 
[0075] FIG. 32A is a graphic representation of Cook's 
membrane problem. 
[0076] FIG. 32B is a tangled mesh with one concave 
element. 
[0077] FIG. 33A is an illustration of the concave element 
of FIG. 32B. 
[0078] FIG. 33B is a graph of relative error in tip dis­
placement versus d for FEM. 
[0079] FIG. 34 is a graph of relative error in tip displace­
ment versus d for FEM and i-TFEM. 
[0080] FIG. 35A a graphic representation of an initial 
configuration for a regular mesh without any tangling for the 
Cook's membrane problem. 
[0081] FIG. 35B is a graphic representation of a tangled 
mesh with N=3=8x8 for the Cook's membrane problem. 
[0082] FIG. 36 is a graph showing vertical displacement 
versus the load step for Cook's membrane problem. 
[0083] FIG. 37A is a color-coded mapping of vertical 
displacement of a deformed configuration of the regular 
mesh of FIG. 35A. 
[0084] FIG. 37B is a color-coded mapping of vertical 
displacement of a deformed configuration of the tangled 
mesh of FIG. 35B crated using i-TFEM. 
[0085] FIG. 38 is a graph showing the results of a con­
vergence study for Cook's membrane problem. 
[0086] FIG. 39 is a graph showing H1 error norm versus 
the number of nodes for Cook's membrane problem. 
[0087] FIG. 40 is a graphic illustration of an initial con­
figuration of the punch problem with mesh size N=2=8x4 
and the tangled mesh. 
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[0088] FIG. 41 is a graph showing vertical displacement 
versus the load step for the punch problem. 

[0089] FIG. 42A is a color-coded mapping of vertical 
displacement of a deformed configuration for a regular mesh 
via FEM. 

[0090] FIG. 42B is a color-coded mapping of vertical 
displacement of a deformed configuration for a tangled mesh 
via i-TFEM for the punch problem. 

[0091] FIG. 43 is a graph showing the results of a con­
vergence study for the punch problem. 

[0092] FIG. 44 is a graph showing H1 error norm versus 
the number of nodes for the punch problem. 

[0093] FIG. 45 is a flow chart setting forth some non­
limiting example steps of a method in accordance with the 
present disclosure. 

[0094] FIG. 46 is a schematic illustration of a computer 
system that may be configured in accordance with the 
present disclosure. 

DETAILED DESCRIPTION 

[0095] Finite element methods (FEM), sometimes referred 
to finite element analysis (FEA), and variations thereon, 
such as iso-geometric analysis (IGA), are essential to the 
designing, manufacturing, and testing (including forensic 
analysis) of modem products. Entire industries, such as the 
automobile or aircraft industry, could not exist in today's 
form if not for FEM and its variations, referred to hereafter 
as FEM. Products from medical devices to building com­
ponents are designed, analyzed, manufactured, and tested 
using FEM. 

[0096] However, as described above, tangled meshes in 
FEM present a substantial challenge in FEM. Even as 
computer systems have developed, incorporating improved 
processors and distributed processing environments using 
specialized processors like GPUs, tangled meshes cannot be 
handled in a computationally-efficient manner by modern 
computer systems. Thus, given the limitations of traditional 
FEM being performed on modern computer systems, 
inverted or concave elements (tangled meshes) can stop 
FEM in its tracks. Thus, tangles have generally required 
expensive efforts to remove the tangled mesh, either man­
hours to remove the concave elements or complex tech­
niques to attempt to computationally remove the tangle, 
which can greatly increase processing time and is only 
successful in narrow situations. 

[0097] The systems and methods of the present disclosure 
overcome these problems by improving the computer sys­
tems and methods, such that tangles are no longer a barrier 
in FEM, either a practical barrier or so computationally 
inefficient or costly as to be an effective barrier. The systems 
and methods of the present disclosure accept that tangles 
may be present because tangles they can still be computa­
tionally efficient. 

FEM Over Concave Elements 

[0098] The above-described challenges with inverted or 
concave elements in FEM can be conceptualized mathemati­
cally. For illustrative purposes, the weak form for static 
elasticity problems can be considered: 

4 
Jun. 13, 2024 

[0099] Find uE H, H O 1(.Q), such that VwE H O 
1

: (.Q), 

f('ilw)' D('ilu)dfl = f wbdfl; 
Eq. (1) 

n n 

[0100] where, Vu denotes the symmetric part of displace­
ment gradient while D is the material elasticity tensor and b 
is the body force. Recall that, in standard FEM, the under­
lying field at a point, p, belonging to the element Ej is 
approximated using shape functions Ej as follows: 

Eq. (2) 

[0101] Substituting Eq. 2 in the standard Galerkin form 
results in: 

Eq. (3) 

[0102] where fi represent the global degrees of freedom. 
This leads to the linear system: 

Eq. (4); 

[0103] where, 

K 0 = n fvNrD'ilN·dfl· J J , 

Assemble Ej 

Eq. (5) 

f= n J 'ilNJbdfl. 
Assemble Ej 

Eq. (6) 

[0104] To compute Eq. 5 and Eq 6, one must rely on 
parametric mapping. Consider the standard parametric map­
ping from (~. 17) space in FIG. 2A to the concave (partly 
inverted) element in the physical space (x, y) in FIG. 2B. For 
this particular concave element, one can show that the 

Jacobian I JI vanishes on the line 3~+317=2, dividing the 

parametric space into a positive I J I region and a negative I 

JI region as illustrated in FIG. 2A. The corresponding curve 
in the physical space is quadratic, as shown in FIG. 2C. 
[0105] Observe that parametric points such as a (~=2/3, 

17=2/3) and b (~=0, 17=0) map to the same point p (x=5/16, 

y=5/16) that lies in the folded region. Therefore, the para­
metric mapping for a concave element is not fully invertible. 
[0106] Next to illustrate the impact of a concave element 
on FEM, consider a mesh with just two elements, where one 
of the element is concave, as illustrated in FIG. 3A. A simple 
plane-stress elastostatics problem can be considered with 
Young's modulus E=l, Poisson's ratio V=0.3, where the 
exact fields are given by: 

u 1(x, y)=0.549x+0.264y+0.34, uo(x, y)=0.486x+0. 
351y-0.62 

[0107] Dirichlet boundary condition can be imposed on 
the left edge, and Neumann (traction) boundary conditions 
can be imposed on the remaining edges. For numerical 
integration, 9 quadrature points can be considered. Next, the 
position of node 5, as in FIG. 3A, can be varied, where dE (0, 
0.5). Observe that for all values 0<d<0.5, element E 1 is 
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concave. For each value of d, one can solve for the two 
fields, using standard Gaussian integration to evaluate Eq. 5 
and Eq 6. To measure the accuracy of FEM solution, L2 error 
defined as follows can be employed: 

llu - uhllr2(fl) = j(u - uh)2 d!..i; 

n 

Eq. (7) 

[0108] where u and uh are the exact and computed solu­
tions respectively. FIG. 3B illustrates L2 error-norm, i.e., 
FEM leads to erroneous results for 0<d<0.5. 
Generalized Tangled FEM (g-TFEM) 
[0109] To address the above problem, a process referred to 
herein a generalized tangled FEM (g-TFEM) was devel­
oped. As will be described, g-TFEM handles the positive 
and negative parametric regions of the concave element 
separately, thus, relaxing the constraint of full invertibility to 
piecewise invertibility. Specifically, one can define the set of 
points in the physical space which maps from the positive 

(negative) I JI parametric region as positive (negative) com­
ponent Ct(C 1-), as illustrated in in FIG. 4A and FIG. 4B. 
[0110] The concave element (E1) can then be expressed as 
the difference between the two components: 

Eq. (8). 

[0111] On the other hand, the convex element E2 has only 
the positive component: 

Eq. (9). 

[0112] Observe that the components Ct and c 1- overlap, 
and the overlapping region (tangled region) lies completely 
outside the physical boundaries of the element E 1 . Further 
C 1 - also intersects with E2 . Thus, a concave quadrilateral 
element not only self-intersects, but also intersects the 
neighboring element(s). 
[0113] Thus, any point in the implicitly tangled region can 
be interpreted as belonging to: (a) different parametric 
regions of the same element, and (b) multiple elements. 
Thus, fundamentally, the field is ambiguous in the tangled/ 
folded region and Eq. 2 is invalid. Redefining the field over 
the tangled region achieved in g-TFEM. 
[0114] To define the field unambiguously, g-TFEM rec­
ognizes the fact the parametric mapping is piecewise invert­
ible. In other words, g-TFEM defines two shape functions 
N 1 + and N 1- corresponding to C/ and cj-• respectively. For 
example, for the point p=(x=5/16, y=5/16) in FIG. 2B, Nt(p), 
are the shape functions of elements E 1 evaluated at (~=0, 
ri=0) whereas N 1 -(p) are the shape functions of element E 1 

evaluated at (~=2/3, ri=2/3). For the convex element, only N2+ 

exists, while N2+ is defined to be zero. 
[0115] With these definitions, the field at any point p can 
be defined in g-TFEM as the oriented sum of the contribu­
tions from all components the point belongs to: 

uh(p) = I NJ(p)u1 - I N1(p)u1; Eq. (10) 

JlpECJ JlvECj 

[0116] Eq. 10 can be referred to as the unambiguity 
condition, that is, because the field is now unambiguously 
defined everywhere. For the above example, we have: 

Eq (II). 
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[0117] Substituting this in the Galerkin formulation (for 
Eq. 1) results in: 

Eq. (12) 

[0118] Regrouping leads to the stiffness matrix: 

K=K°+K5+KN Eq. (13); 

[0119] where: 

n ( J T f T ] Eq. (14a) Ko= v'Nj Dv'Njd!..i+ v'Nj DVN;dn 

Assemble cj Cf 

Eq. (14b) 

n (- f v' NJ' Dv' Nj d!..i - f v' N1T Dv' NJ d!..i] 
Assemble c; ncy c; ncy 

KN= Eq. (14c) 

n (- f v'Nj' Dv'N:dn- f v'NJT Dv'N:dn-

Assembte c; net Ci net 

f 
c;nc;: 

[0120] Observe that K0 is nothing but the classical stiff­
ness matrix, while K 5 and KN are the correction terms. 
Similarly, the forcing term takes the form: 

Eq. (15) 

[0121] In addition, in g-TFEM, a piecewise compatibility 
constraint is needed at all re-entrant vertices to ensure 
compatibility. Consider a point, p, in FIG. 5. Since p belongs 
to three different components Ct, C 1 -, and C2 +, the field at 
point pis given by Eq. 11. 

[0122] In the limit p➔t, which represents the limit as p 
approaches the physical location corresponding to vertex v5, 
the last two terms in Eq. 11 cancel each other, resulting in: 

Eq. (16); 

[0123] that is: 

Eq. (17). 

[0124] Here, the node numbers are denoted using super­
scripts while element numbers are denoted using subscripts. 
To be physically meaningful, u\t) must match the corre­
sponding nodal value u5

, resulting in: 

Eq. (18); 

[0125] where Eq. 18 is referred to here as the piecewise 
compatibility or equality condition that must be imposed at 
reentrant vertices of all concave elements in the mesh. This 
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condition, together with the unambiguity condition, captures 
constant strain fields. The piecewise compatibility condition 
can be expressed as: 

Cfi=O Eq. (19); 

[0126] where the number of rows in C is equal to the 
number of concave vertices times the degrees of freedom 
(DOF) per vertex. In summary, g-TFEM provides the frame 
work to then solve the following linear system of equations: 

Eq. (20) 

[0127] After solving Eq. 20, the unknown degrees of 
freedom fi, along with the Lagrange multipliers µ are 
obtained. The Lagrange multipliers arise due to the finite set 
of constraint equations, and have no role in the field inter­
polation. Thus, g-TFEM is based on the field defined by Eq. 
10 and the piecewise compatibility condition, satisfies the 
following conditions for convergence: 

[0128] 1. Continuity: The field is continuous within the 
element, and across element boundaries. 

[0129] 2. Rigid body: The element is strain free under 
rigid body (constant field) conditions (elasticity will be 
addressed later). 

[0130] 3. Constant strain: One can reproduce constant 
strain conditions exactly. 

[0131] To illustrate, consider again the example discussed 
above regarding FEM over concave elements. That is, FIG. 
6 confirms that g-TFEM leads to machine-precision accu­
racy for all the values of d. 
Isoparametric TFEM (i-TFEM) 

[0132] As described above, g-TFEM provides machine­
precision accuracy for FEM over concave elements. How­
ever, to do so the g-TFEM formulation integrates over the 
fold to compute the correction terms. This can be program­
matically difficult and computationally intensive. Moreover, 
care must be taken to avoid integration points very close to 

the I J 1=0 curve. With this in mind the present disclosure 
provides further systems and methods, referred to herein as 
the isoparametric tangled finite element method (i-TFEM) 
that overcomes the programmatical challenges and compu­
tationally intensive processes that can result with g-TFEM. 

[0133] For the two-element mesh in FIG. 5, with the 
coordinates of the nodes of element E 1 be denoted by x=(x1

, 

x2

, x5

, x4

) and E
2

, by x
2
=(x2

, x3

, x4

, x5

). In isoparametric 
mapping, recall that, the spatial interpolation is the same as 
the field interpolation. Thus, for any point, p, inside the fold, 
by definition, Eq 

[0134] Further, since the formulation must reproduce a 
constant strain field, when u=x, 

Eq. (21). 

[0135] In other words, in an isoparametric formulation, the 
field value at any point within the fold must be the same 
independent of whether the positive or negative shape 
functions are used. The present disclosure recognizes this 
point and how to exploit this result to simplify the formu­
lation. 
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[0136] As p➔t (as shown in FIG. 5), N 1-(t)fi1=u5
. There­

fore, Eq. 21 can be rewritten in the form: 

Eq. (22). 

[0137] Now recall that the field at p within a fold is defined 
to be (as derived using Eq. 10): 

Eq. (23). 

[0138] Simplifying, yields: 

Eq. (24). 

[0139] Thus, in an isoparametric element, the field at any 
point in the fold is the field defined by considering only the 
neighboring element E

2
. Therefore, in i-TFEM, one can treat 

the fold as being part of the element E
2

. Consequently, the 
mesh can be divided just into two parts: E2 and E1, as shown 
in FIG. 7. The contribution of E

2 
to the stiffness matrix is 

given by the standard expression (the superscript '+' is 
dropped henceforth from the shape functions for brevity): 

kg = fr"lNi D'v N2 )d!..i. 
Eq. (25) 

Ez 

[0140] This is the same as classical FEM, and standard 
Gauss quadrature schemes can be adopted. Next, consider 
the contribution of E1 to the stiffness matrix. Note that the 
field in E1 is given by: 

Eq. (26). 

[0141] Therefore, the stiffness matrix is given by (the 
superscript '+' is dropped henceforth from the shape func­
tions for brevity): 

k1 = j(vN[DVN1)dn. 
Eq. (27) 

E1 

[0142] Observe that E1 is not the same as E1 . Though both 
have the same physical boundary, they represent different 
regions of parametric space. Specifically, E 1 represents the 
entire parametric space while E1 represents only a subset of 

positive I JI region as illustrated in FIG. SA. Hence, standard 
Gauss quadrature scheme for quadrilateral elements cannot 
be used to evaluate k: 1 . Instead, the concave region can be 
triangulated as in FIG. 8B for integration purposes. 
[0143] In particular, a mesh may contain several concave 
elements, where a typical contribution, k, due to a concave 
element E is given by: 

k = j(v NT nv N)dn. 
Eq. (27a) 

E 

[0144] To evaluate the above expression, the above region 
E is triangulated as illustrated in FIG. 9, as: 

k = I f (v NT DV N)dxdy. 
triangles triangle 

Eq. (27b) 
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[0145] Then each triangle, t, is mapped to a standard 
triangle in (y, s)space, as illustrated in FIG. 9. In this case, 
IJ,I is the Jacobian associated with this triangle mapping. 
Thus, this gives: 

1 1-y 

ii= I.ff (V Nr DV N)IJ,ldyd,;. 
1 0 0 

Eq. (27c) 

[0146] Consider a quadrature point (yq, sq) of the standard 
triangle with weight w q as shown in FIG. 9. The correspond­
ing point (xq, yq) in the physical space is shown in FIG. 9. 
Let (~q. 17q) be the coordinates in the quadrilateral paramet­
ric space. This point can be numerically determined via 
Newton-Raphson algorithm. The Jacobian matrix (Jq) asso­
ciated with the quadrilateral parametric mapping at these 
quadrature points. Let: 

Bq=(Jq)-1V,,~N(~q• TJ") Eq. (28). 

[0147] Summing the contribution from all triangles results 
m: 

ii= L,L,(Bq)' D(Bq)IJ,lwq. Eq. (29) 

t q 

[0148] Similarly, the forcing term f can be computed by 
integrating over E. 
[0149] Moving to a global assembly, one can now 
assemble as follows: 

Eq. (30) 

Assemble-convex 

kconcave = Eq. (31) 
Assemble-concave 

[0150] The final global stiffness matrix for i-TFEM is then 
given by: 

Eq. (32). 

[0151] Similarly the forcing term is given by: 

f ;,a=f convex°+ f concave Eq. (33); 

[0152] where, 

n Jo. 
J • 

Eq. (34) 

Assemble-convex 

and 

n Eq. (35) 
Assemble-concave 

[0153] Finally, the following linear system of equations 
can be solved for: 

Eq. (36) 
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[0154] where the compatibility matrix C remams 
unchanged. 
[0155] Observe that if the mesh does not contain any 
concave elements, only the terms corresponding to the 
convex elements (Kconvex° and f convex°) remain. Thus, 
i-TFEM reduces to the standard FEM for meshes without 
concave elements. 
[0156] Comparing g-TFEM and i-TFEM, there are some 
appreciable distinctions. In g-TFEM, one must integrate 
over the tangled region and over the concave region, such as 
illustrated in FIG. lOA, and as described above. However, in 
i-TFEM, only the concave region, such as illustrated in FIG. 
10B must be integrated over. 
[0157] In order to integrate over the fold, g-TFEM trian­
gulates the region, as shown in FIG. lOA. Further, to 

triangulate the fold, I J 1=0 curve is approximated with 
sufficiently large number of segments. To illustrate, let the I 

J 1=0 curve (highlighted) be approximated by four line 
segments, and the polygonal fold triangulated, as in FIG. 
lOA. Observe that the integration points for some of the 
triangles lie outside the folded region. This will lead to 
singularities, and therefore erroneous results. Hence, suffi­
ciently large number of segments are employed to approxi-

mate I J 1=0 curve leading to a large number of triangles. 
Thus, integrating over the fold is computationally expensive 
and programmatically complex, as described. 
[0158] On the other hand, in i-TFEM, a small number of 
triangles can be employed to integrate over Ej as shown in 
FIG. 10B, making i-TFEM computationally more efficient. 
This is demonstrated further following below. However, 
first, i-TFEM (and g-TFEM) can be readily extended to 3D 
applications. 

Extension to 3D 

[0159] To apply the i-TFEM framework in 3D, consider a 
canonical 8-node hexahedral element, such as illustrated in 
FIG. llA. If node 6 is moved diagonally towards node 4, as 
shown in FIG. 11B, it can become concave, i.e., tangled. 
[0160] Different views of the corresponding tangled 
region are shown in FIG. 12. Observe that the tangled region 
is much more complex in 3D. Since i-TFEM avoids inte­
gration over such complex tangled regions, it is advantage 
over g-TFEM in such 3D situations. 
[0161] The standard elemental stiffness matrices for con­
vex 3D elements k/ are computed as in 2D. For a concave 
element, the sti~ness matrix kj is computed by tetrahedral­
izing the region Ej as ~hown in FIG. 13. The contribution of 
each tetrahedron to kj is computed by generalizing the 
procedure discussed above with respect to Eq. (27a) through 
Eq. (29). 
[0162] However, unlike in a 2D application, Ej is not a 
polyhedron. In general, the bounding surfaces are non­
planar since there are four points that define each surface. 
Thus, they need to be approximately triangulated. Finer 
surface triangulation results in better approximation as illus­
trated below in the example experiments. 
[0163] The final step in i-TFEM involves applying piece­
wise compatibility conditions. In 2D, a concave quadrilat­
eral element has only one re-entrant vertex, and one con­
straint per DOF is applied at the re-entrant vertex. On the 
other hand, a concave hexahedral element can have more 
than one re-entrant vertex due to geometry as well as 
triangulations. For instance, the element in FIG. 14 has two 
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re-entrant vertices (6 and 7). Further, the triangulation will 
induce several re-entrant vertices along the edge 5-6. 
[0164] Hence, one cannot determine, a priori, the number 
of constraints per DOF in 3D. However, techniques can be 
used to determine the appropriate number of constraints. As 
one example, a technique based on the rank of the element 
stiffness matrix can be employed to determine the appropri­
ate number of constraints per DOF as described below. First, 
a re-entrant vertex is identified. The piecewise compatibility 
conditions are computed at this vertex for all DOFs (such as 
using Eq. (21)), and these are appended to the elemental 
stiffness matrix k or k:F Next, the rows and columns corr~­
sponding to fixed DOFs are removed from the appended k. 
The rank of the resultant matrix k is then determined. If the 
matrix k is full-ranked, the constraints are computed at 
another re-entrant vertex (or any other non-singular point) in 
the tangled region and appended to the matrix. Then the 
above step is repeated as long as the matrix k remains 
full-ranked. Once the matrix becomes rank-deficient, the 
constraints associated with the latest point are removed. 
Thus, the number of piecewise compatibility conditions is 
the maximum number of conditions that result in a full 
ranked matrix. These conditions are then appended to the 
i-TFEM global stiffness matrix Kiso to form Eq. (36). 

[0165] Thus, the fundamental changes in 3D i-TFEM 
relative to 3D g-TFEM include (1) in general, the surfaces 
of the concave elements are curved and can be approximated 
by piecewise triangles, and (2) the number of piecewise 
compatibility conditions required can be determined by 
examining the rank of the elemental stiffness matrix. Again 
this yields computational efficiency. 

[0166] The above-described systems and methods are 
applied to tangled meshes that do not contain self-penetrat­
ing elements. A self-penetrating hexahedral element is 
shown in FIG. 15A. i-TFEM may be extended to such 
elements by perturbing the nodes such that the element can 
be processed in the current framework. For example, node-6 
in FIG. 15A can be moved such that the element does not 
self-penetrate (but the element is still concave) as in FIG. 
15B. 

Non-Limiting Example Experiments 

[0167] A variety of numerical experiments were per­
formed to demonstrate i-TFEM. Plane stress/strain problems 
in 2D and solid mechanics problems in 3D were solved over 
various tangled meshes. Numerical experiments were con­
ducted under the following conditions. First, the implemen­
tation was in MATLAB R202lb, on a standard Windows 10 
desktop with Intel(®) Core(™) 19-9820X CPU running at 
3.3 GHz with 16 GB memory. The number of quadrature 
points for convex quadrilateral elements was 4, while 8 
quadrature points were used for convex hexahedral elements 
unless otherwise stated. Next, in 2D, the triangulation of a 
concave element was performed by employing MATLAB' s 
inbuilt mesher-generate Mesh. The number of quadrature 
points for triangles was 3. In 3D, tetrahedralization of 
concave elements are performed using Tetgen. The bound­
ing surfaces were triangulated using generateMesh, and 
served as input to Tetgen. The surface mesh-size was set a 
relative size of ht=0.05, where ht was defined as the maxi­
mum allowable edge length of a surface triangle. The 
number of quadrature points for tetrahedrons was chosen to 
be 4. 
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[0168] The questions being investigated through the 
experiments were 
[0169] Accuracy: How does the accuracy of i-TFEM 
compare against that of the FEM? Note that g-TFEM 
accuracy will match that of i-TFEM (but will be more 
expensive). To measure accuracy, we considered both the L2 
error norm as defined in Eq. (7), and the energy error norm 
defined as: 

ehllE(B) = j(e- e')' D(e- eh)d!..i; 

n 

Eq. (37) 

[0170] where E and Eh are the exact and computed strain 
fields respectively. 
[0171] Condition Number: How does the condition num­
ber of i-TFEM compare against FEM and g-TFEM? The 
condition number is a measure of a matrix's invertibility; it 
is desirable to have a condition number close to unity. To 
compute the 1-norm condition number, we employed MAT­
LAB's built-in function condest. 
[0172] Computational Cost: Is i-TFEM computationally 
more efficient than g-TFEM? MATLAB's built-in cputime 
function was employed to measure the computational cost. 
[0173] Convergence: What is the convergence rate of 
i-TFEM and FEM as the element size decreases? 

2D Patch Tests-Two Element Mesh 

[0174] In the first experiment, we solved the problem 
discussed with respect to Eq. (8) through Eq. (20) using 
i-TFEM. FIG. 16A shows the L2 errors in FEM and 
i-TFEM, for varying degrees of tangling. i-TFEM achieved 
machine precision accuracy while classic FEM failed when 
the mesh gets tangled (g-TFEM matches the accuracy of 
i-TFEM but is harder/costlier to implement). On the other 
hand, the condition number of i-TFEM is lower than that of 
g-TFEM, as illustrated in FIG. 16B. This is because, in 

i-TFEM, integration over the regions close to the I J 1=0 
curve is avoided. The CPU time for FEM was 0.0406 
seconds whereas, it was 0.0625 sand 1.0125 s for i-TFEM 
and g-TFEM, respectively. 

2D Patch Tests-Four Element Mesh 

[0175] Next a square domain .0.=(0, l)x(0, 1) was consid­
ered, which was discretized into four quadrilateral elements, 
one of which is concave as in FIG. 17. The folded region was 
shared by three neighboring convex elements. To introduce 
asymmetry, move vertex 9 was moved along an arc of a 
circle as illustrated, where a varied from 15 degrees to 75 
degrees and radius r=0.125✓2. 
[0176] A plane stress elastostatics problem was solved 
with the displacement fields, elastic constants, and boundary 
conditions as in the two-element example considered earlier. 
FIG. 18A illustrates the L2 errors in FEM and i-TFEM, 
while FIG. 18B compares the condition numbers. As with 
the previous example, i-TFEM achieved machine precision 
accuracy while classic FEM failed. In terms of the condition 
number, i-TFEM again fared better than FEM and g-TFEM, 
as illustrated in FIG. 18B. Finally, FEM required 0.0257 s 
while i-TFEM and g-TFEM required 0.0335 sand 2.7902 s, 
receptively. Thus, i-TFEM outperformed g-TFEM in terms 
of speed and condition number. 
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Cantilever Beam With Parabolic Loading 

[0177] Consider a cantilever beam of length L=48 m, 
height H=l2 m and a unit thickness subjected to a parabolic 
traction P=lO00 N on the right edge, as illustrated in FIG. 
19A. Assuming plane stress, the analytical solution is given 
by: 

Eq. (38) 

p [ H
2

v l u2 = GEi (L - x)3vy2 + (4 + 5v) 4 + (2L - x)x2 
; Eq. (39) 

[0178] where I=H3/l2, E=3Xl07 kPa and V=0.3. 
[0179] To solve this problem using finite elements, the 
domain is discrized to form a tangled mesh as shown in FIG. 
19B and the boundary conditions are applied as shown in 
FIG. 19A. Here, the basic repeating unit is a 2-element mesh 
(such as illustrated in FIG. 3A) with d=0.4. 
[0180] To evaluate the performance of FEM and i-TFEM, 
the error in the vertical displacement measured along y=0 
was plotted, as illustrated in FIG. 20. FIG. 21 compares the 
stresses obtained using FEM and i-TFEM. Here, the stresses 
were measured at the element center along x=23 .05. i-TFEM 
is more accurate than FEM, even when the exact solutions 
lie outside the span of the finite element space. 

Convergence 

[0181] To study the convergence for the cantilever beam 
problem, various meshes were constructed as shown in FIG. 
22. The basic repeating unit was the two-element mesh (see 
FIG. 3A) with d=0.4. 
[0182] The L2 and energy norm errors for FEM and 
i-TFEM, as a function of the number of nodes, are illustrated 
in FIGS. 23A and 23B. For i-TFEM, the L2 and energy norm 
convergence rates were 2.03 and 1.03 respectively, i.e., they 
were optimal. 

Effect of Element Distortion 

[0183] In the previous experiments, the extent of tangling 
was fixed with d=0.4. In this experiment, the effect of 
tangling on the computed solutions was considered by 
varying d from Oto 0.49. In particular, we computed cr= at 
the point B (located at the bottom left comer of the canti­
lever) and the vertical displacement u2 at point C (located on 
the right edge) in FIG. 19A. 
[0184] When d=0, all quadrilaterals reduce to triangles 
and error is due to element distortion; i-TFEM reduces to 
FEM in this case. As d is increased, tangling increases and 
FEM error increases. On the other hand, i-TFEM error 
(mainly due to distortion) decreased as d increased, as 
illustrated in FIG. 24A and FIG. 24B. 

Pressurized Cylinder 

[0185] Consider a long hollow cylinder with internal 
radius a=l and external radius b=4, such as illustrated in 
FIG. 25A. A uniform pressure p=l is applied to the inner 
surface (r=a) and the cylinder deforms in plane strain. Let 
Poisson's ratio, V=0.3 and Young's modulus, E=2.6. Due to 
the axisymmetric nature of the problem, only a quarter of the 
cylinder is modeled. The analytical solution is as follows: 
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Eq. (40) 

[0186] A typical mesh, shown in FIG. 25B, was con­
structed by using the two-element mesh as the basic repeat­
ing unit. To study the convergence behavior, various meshes 
were constructed as shown in FIG. 26. 
[0187] FIG. 27A shows that i-TFEM leads to optimal 
convergence rate as opposed to FEM. Next, the CPU time 
for FEM, i-TFEM, and g-TFEM for various mesh sizes was 
analyzed. FIG. 27B shows that i-TFEM is much faster than 
g-TFEM. FEM can be the fastest, but is inaccurate. Note that 
for the meshes of FIG. 26 that were used, there are equal 
number of concave and convex elements. However, in 
practical scenarios, this is rarely the case since the number 
of concave elements will be much smaller compared to the 
convex elements. Therefore, the additional cost incurred by 
i-TFEM will be minimal in a real-world situation where 
there are limited convex elements. 

3D Patch Test: Eight-Element Hex Mesh 

[0188] A cubic domain .0.=(0, 2)x(0, 2)x(0, 2) was also 
considered. The domain was discretized into eight hexahe­
dral elements, as shown in FIG. 28A. For the regular 
(untangled) mesh, the central node was located at (1, 1, 1). 
To demonstrate TFEM, the central node was moved so that 
one becomes concave as shown in FIG. 28B. Note that the 
concave element has only one re-entrant vertex. To vary the 
extent of tangling, the central node was given as: (1, 1, 
1)-dx(l, 0.95, 0.98) where the parameter dE (0, 0.9). For 
d=0, the mesh is the regular grid as shown in FIG. 28A. 
[0189] The material parameters were E=l, and V=0.3. The 
exact displacement field u was: 

[0190] U 1=0.579 x+0.246 y+0.482 z-0.374 
[0191] U2 =0.486 x+0.351 y+0.947 z-0.62 
[0192] U 3 =0.512 x+0.746 y+0.548 z-0.48 

[0193] The corresponding Dirichlet boundary conditions 
were applied on the left surface, while Neumann conditions 
were applied on the remaining surfaces. As shown in FIG. 
29A, i-TFEM was significantly more accurate than FEM. 
Recall that the accuracy of i-TFEM in 3D depends on how 
well the bounding surfaces of the concave element are 
approximated via surface triangulations. To study the effect 
of surface-mesh size on the i-TFEM accuracy, three were 
considered: h,=0.035, 0.007, and, 0.005. Here, h, indicates 
the maximum edge length of triangles. Finer surface trian­
gulation results in better accuracy of i-TFEM solution as 
illustrated in FIG. 29A. Forh,=0.005, i-TFEM is 1010 times 
more accurate than FEM. FIG. 29B compares the condition 
number for FEM and i-TFEM (for all values of h,). 

Application: Connecting Rod 

[0194] A connecting rod mesh, as illustrated in FIG. 30, 
was considered. The units were in cm. The mesh contained 
14783 nodes and 11316 hexahedral elements, out of which 
16 elements were concave. Some of the elements were 
self-penetrating. Therefore, the nodes were perturbed such 
that the elements do not self-penetrate. An axial load 
P=300N was applied on the upper half region of the larger 
end, while the smaller end was fixed. The material properties 
were as follows: the Young's modulus E=l.lxl05 MPa and 
the Poisson's ratio V=0.35. 
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[0195] Then i-TFEM was employed to carry out the linear 
quasi-static structural analysis. The resultant displacement 
field is shown in FIG. 31A, while the von-Mises stress field 
is plotted in FIG. 31B. The total computational time was 
18.742 s, out of which, 1.7 s was spent processing the 
concave elements, i.e., the overhead due to i-TFEM was 
found to be minimal. 

Nonlinear Elasticity 

[0196] The above-described systems and methods can be 
utilized in situations with compressible nonlinear elasticity. 
Consider a body occupying domain .0.E R2 subject to a body 
force b and traction T undergoing a large-deformation u, 
where the material is assumed to be hyper-elastic. The 
potential energy of this system can be written as: 

n(u)= f'l'(F(u))dV- f'l'-bdV- f u-TdS; 
Eq. (41) 

n n anh 

[0197] where F is the deformation gradient and <I> is the 
strain energy density. Further, using the standard (Bubnov-) 
Galerkin variational formulation, one arrives at the residual 
equation: 

R(il)=O Eq. (42); 

[0198] that is typically solved iteratively via Newton­
Raphson algorithm: 

Eq. (43); 

[0199] where K is the tangent matrix and 1r is the incre­
mental displacement vector at nth Newton iteration. When 
the mesh is of high-quality and not tangled, one obtains 
accurate solutions to such problems. However, as is well 
known, when the mesh is tangled, the solution becomes 
erroneous. 

[0200] To illustrate, consider the Cook's membrane prob­
lem illustrated in FIG. 32A. The left edge of the tapered 
cantilever is fixed while a uniformly distributed load p=5 is 
applied on the right edge. A geometrically nonlinear plane­
strain problem with Lame parameters µ=50 and A=lO0 in 
FIG. 1B illustrates a quadrilateral mesh with one concave 
element that was experimentally utilized. 

[0201] The extent of tangling was varied by moving the 
re-entrant vertex D along the diagonal BC as shown in FIG. 
33A. When the parameter d=0, the point D lies half-way 
between B and C, and when 0<d<0.5, the point D moves 
towards B, i.e., the element gets tangled. The large-defor­
mation problem can be solved using the normal procedure as 
described above, with 10 load steps. The tip displacement 
was compared against the expected value (using a high 
quality non-tangled mesh). When d>0.l, a negative lz,57 I 
value is encountered at one or more Gauss points, and FIG. 
33B illustrates the resulting erroneous solution. 

[0202] Applying i-TFEM to non-linear elasticity can be 
shown by generalizing the residual in Eq. 42 and the 
iteration in Eq. 43. Towards this end and going back to 
FIGS. 4A-4D, Eq. (10) can be simplified toward the example 
as: 

u(p)=u 1+-u 1-+ut Eq. (43). 
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[0203] This can be rewritten with the assumption that the 
element is iso-parametric. Thus, for optimal convergence, an 
additional compatibility condition must also be satisfied: 

[0204] From Eq. 43 and Eq. 45, this gives: 

u(p)=u2+(p), 'tpEF1 

Eq. (45). 

Eq. (46). 

[0205] In other words, for iso-parametric elements, the 
tangled region can be considered as being part of just E2 , as 
described above. Again, this naturally leads to division of 
the mesh into two parts: E2 and E1 as illustrated in FIG. 5. 
That is, the tangled region for iso-parametric elements can 
be disregarded. In summary, for any pair of tangled elements 
E 1 and E2 , they can be decomposed into fully invertible 
regions E1 and E2 . For stiffness matrix computations, only 
the parametric region corresponding to E1 is considered. The 
constraint equation (Eq. 45) is imposed at reentrant vertices. 

[0206] The constraints in Eq. 45 can be incorporated 
directly into the potential energy in Eq (41) as follow: 

n(u) = f('l'(u,)-i = u, -b)dV + f('l'(u2)-u2·b)dV-
Eq. (47) 

E1 E2 

f u, • TdS - f u2 • TdS + f ;\,(ut - u1)dV; 

8Ehl 8Eh2 F1 

[0207] where an additional term is included to account for 
the piecewise compatibility, and A are the corresponding 
Lagrange multipliers. Observe that, given several concave 
elements Ej associated with tangled regions Fj, the potential 
energy can be generalized to: 

n- f f f °\' f Eq. (4S) (u)= 'l'(u)dV- u-bdV- u-TdS+L, ;\,(uj-u1)dV. 

n n anh 1 Fi 

[0208] Now the variation of the potential energy with 
respect to u and A can be set to zero: 

Eq. (49); 

[0209] that is, 

Eq. (50) 

[0210] This leads to the following weak form: 

J(P: ~~ -ou-+v- f ou-TdS + I,f A·(ouj -ou1)dv + 
n a~ 1~ 

Eq. (51) 

or:JR 



US 2024/0193324 Al 

[0211] Next, the fields can be approximated using the 
standard (Bubnov-) Galerkin formulation as: 

u
1
=N/ij, u/zN/U1, u1-z}'1-a1, ~NA'A 

[0212] where N'"=l for simplicity. This leads to: 

oiFR+o5.7Ci1=0 

Eq. (52); 

Eq. (53). 

[0213] Observe from Eq. (51) that the residual R can be 
expressed as: 

R(il, ic)=R"(il)+d=O Eq. (54); 

[0214] where Ru is a function of fi alone and involves 
integrating over convex and concave elements: 

"I"=Rconvex "+Rconcavc u Eq. (55). 

[0215] The computation ofRconvexu is as in standard FEM. 
However, recall that the integration over the concave ele­
ments must be carried out over the subset of parametric 
space (see FIGS. SA and SB and accompany discussion). To 
solve Eq. (54) through iterations, consider the first order 
Taylor series: 

[0216] that is, 

K'f..il+Cf..ic=-(R"+d) 

[0217] where 

K'=Kconvcx'+Kconcavc
1 

Eq. (56) 

Eq. (57); 

Eq. (58). 

[0218] Here, Kcanvex' and Kcancave' are tangent matrices 
corresponding to convex and concave elements respectively. 
Further, from Eq. (53), we have 

er f..fi=O Eq. (59). 

[0219] From Eq. (57) and Eq. (59), the final set of linear 
equations one must solve iteratively is: 

[
K' c]{/1u"+

1

}={-(R"+ct)}· 
CT O f).,\:"+l 0 

Eq. (60) 

[0220] Again, if the mesh does not contain any tangled 
elements, i-TFEM reduces to standard FEM. To compute 
Rconvexu in Eq. (55), standard FEM procedures with Gauss 
quadrature can be used. However, to compute Rconcav/, 

only the fully invertible subset of parametric space E1 is 
considered. Therefore, standard Gauss quadrature cannot be 
employed. Instead, as described above with respect to FIG. 
SB, E1 can be triangulated. The triangulation is used merely 
for the purpose of integration and does not lead to additional 
degrees of freedom in i-TFEM. 
[0221] Similarly, to compute Kconvex', standard FEM pro­
cedures can be used. However, to compute Kconcave', the 
triangulation in FIG. SB is used. Finally, to computer the 
constraint matrix, C, not that: 

C = fcNi - Nif dV. 
Eq. (61) 

F1 

[0222] Direct integration over the tangled region F 1 is 
computationally expensive, and may lead to singularities. 
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Since N'" is unity, it is sufficient to evaluate the integrand at 
a single point. Therefore, C can be evaluated the at the 
re-entrant vertex. 

Numerical Experiments 

[0223] i-TFEM was demonstrated using plane strain non­
linear elasticity problems over various tangled meshes. 
Numerical experiments were conducted under the following 
conditions. First, the implementation is in MATLAB 
R2020b, on a standard Windows 10 desktop with Intel(®) 
Core(™) i9-9820X CPU running at 3.3 GHz with 16 GB 
memory. Next, the number of quadrature points for convex 
quadrilateral elements is 4 unless otherwise stated. Further, 
the triangulation of a concave element is performed by 
employing MATLAB's inbuilt mesher-generateMesh. The 
number of quadrature points for triangles was 3. Finally, the 
load was applied incrementally in 10 steps. The stopping 
criteria for Newton Raphson was IILlull<l0-9. 

[0224] Through the experiments, the following were 
investigated: 
[0225] Cook's problem, single concave element: For 
Cook's membrane problem, the error in tip displacement 
due to the presence of a single concave element is reported 
as the severity of tangling is increased. 
[0226] Cook's problem, multiple concave elements: For 
Cook's membrane problem, with numerous tangled ele­
ments: (a) The displacement at a prescribed location is 
reported for each load step. (b) Deformed configurations for 
tangled and regular meshes are also compared. (c) Conver­
gence of the tip displacement as a function of mesh size is 
studied and compared against standard FEM. (d) Finally, the 
convergence rate is evaluated. 
[0227] Punch problem, material non-linearity: For a punch 
problem [24], we include material nonlinearity and study the 
convergence characteristics of i-TFEM. 

2D Cook's Membrane: Single Concave Element 

[0228] To begin , the Cook's membrane problem was 
solved over the mesh with one concave element illustrated 
earlier in FIG. 32B. Recall that the extent of tangling is 
controlled by the parameter d. For d>0.l, a sharp increase in 
FEM error was observed, as illustrated in FIG. 34. On the 
other hand, using i-TFEM, the error, in fact, slightly 
decreased for d>0.l, as illustrated in FIG. 34. 

2D Cook's Membrane: Multiple Concave Elements 

[0229] Next, a regular mesh, illustrated in FIG. 35A, and 
a highly tangled mesh in FIG. 35B where every other 
element is concave were considered. The Cook's membrane 
problem was solved over the regular mesh using standard 
FEM, and over the tangled mesh using i-TFEM. The vertical 
displacement at top right comer point for every load step is 
reported FIG. 36. As illustrated, there is close agreement 
between the methods applied to the two very-different 
situations. The deformed configuration for regular and 
tangled meshes after the last load step are shown in FIG. 
37A and FIG. 37b, respectively. 
[0230] To study convergence, the number of elements was 
controlled by a mesh-index N, where the number of ele­
ments in the regular mesh was 2Nx2N. FIG. 35A illustrates 
the regular mesh when N=3, and FIG. 35B illustrates the 
corresponding tangled mesh. The solutions from standard 
FEM over regular mesh, standard FEM over tangled mesh, 
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and i-IFEM over tangled mesh were compared. The vertical 
displacements at the top right comer point for all three were 
plotted as a function ofN in FIG. 38. Notably, the FEM over 
a regular mesh and i-TFEM over the tangled mesh converge 
to (approximately) the same displacement. On the other 
hand, FEM over a tangled mesh leads to erroneous results. 
[0231] To study the rate of convergence, we define the 
displacement error in H1 error norm as: 

IIVu -v'uhll [J 2 lo.5 [J lo.5 Eq. (62) 
eh= llv'ull = IVu-v'ulldn I lv'ul2dn ; 

n n 

[0232] where u is the reference solution from a fine mesh 
with N=7, and uh is the solution under consideration. FIG. 39 
illustrates the error vs. number of nodes on log-log scale 
over the untangled mesh, as well as over the tangled mesh 
using FEM and i-TFEM. A near-optimal convergence rate is 
found for i-TFEM. 

Punch Problem: Materially Nonlinearity 

[0233] A punch problem was considered with geometric 
and material nonlinearities. Specifically, a compressible 
isotropic generalized neo-Hookean material model was con­
sidered where the strain energy density is given by: 

Eq. (64) 

[0234] where J v=det F and b=FFT are the left Cauchy­
Green deformation tensor, while µ=500 and K=l 700 are the 
material parameters (equivalent to shear and bulk moduli 
respectively in the small strain limit). A rectangular block is 
subject to a vertical load p (per unit length) uniformly 
distributed over top left half of the block where p=lO00 and 
H=l, as illustrated in FIG. 40. The top and left sides of the 
block are fixed in the horizontal direction, while the bottom 
is fixed in the vertical direction. To this end, FIG. 41 
captures the vertical displacement of a point located at the 
top left corner for every load step. The results for the regular 
mesh and tangled mesh (using i-TFEM) match well. For 
both meshes, the solution converged in about 5 Newton 
iterations for each load step. On the other hand, standard 
FEM failed to converge for the tangled mesh. FIG. 42A and 
FIG. 42B illustrate the deformed configurations for the 
regular mesh and tangled meshes respectively, after the final 
load step. 
[0235] To study the convergence, the mesh index N where 
the number of elements in the regular mesh is 2N+1x2N was 
used. The regular and tangled meshes with N=2 are shown 
in FIG. 40. A convergence study was then carried as N was 
varied. The vertical displacement ~ at point A for the two 
methods was plotted against the mesh index N, as shown in 
FIG. 43. It is clear that the two methods converge to the 
same solution (while standard FEM over the tangled mesh 
did not converge). Finally, FIG. 44 illustrates the H 1 error 
over the tangled mesh using i-TFEM and over the regular 
mesh. The reference solution was obtained with N=7. Once 
again, i-TFEM exhibited an optimal convergence rate of 1. 

Methods 

[0236] In one non-limiting example, a method 100 imple­
menting the frameworks and steps described above may 
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begin by accessing (or generating) a mesh of finite elements 
of a product or product design at process block 102. The 
mesh may represent or model any physical element, part, or 
complete product, or may represent or model a product 
design that has not yet been manufactured or built. At 
process block 104, a set of physical parameters may be 
supplied by a user to apply. These steps need not be 
preformed in this order. 
[0237] At process block 106, as described above, for 
elements in the mesh of finite elements, positive and nega­
tive parametric regions are identified and, at process block 
108, for tangled elements in the mesh of finite elements, a 
constraint of full invertibility between the positive and 
negative parametric regions is relaxed to piecewise invert­
ibility to decompose the tangled elements into invertible 
regions. At process block 110, an analysis of the product or 
product design can be performed using the mesh of finite 
elements with the tangled elements decomposed into the 
invertible regions and the physical parameters. When the 
analysis is complete, a report is generated at process block 
112. As indicated at optional process block 114, he infor­
mation in the report may be used to manufacture or redesign 
the product or product design. 

Systems 

[0238] The non-limiting method described above or any 
process implemented based on the overall disclosure pro­
vided herein may be implemented using a computer system. 
In particular, FIG. 46 is a schematic diagram of one non­
limiting example a computer system 200 in accordance with 
the present disclosure. The computer system 200 may be 
realized as a desktop computer, a mobile computer, a server, 
a mobile computing device, and/or may be decentralized as 
a cloud computing device. That is, though, as will be 
described, the computer system 200 may include a variety of 
components, these components may be incorporated into a 
single physical device, such as a computer, laptop, phone, 
server, or the like, or may be decentralized and networked or 
otherwise communicate. Furthermore, thought a variety of 
components are illustrated and will be described, the com­
puter system may not include all or some of these compo­
nents. 
[0239] In the non-limiting example, the computer system 
200 may include a processor or "CPU" 202 that is config­
ured to, alone or in combination with other components of 
the computer system 200, carry out the steps of the process­
ing described above. To do so, the CPU 202 may commu­
nicate with a memory 204. 
[0240] The CPU 202 and memory 204 may communicate 
directly and/or may be connected through a communications 
bus 206. The communications bus 206 may provide con­
nections to a variety of other components, including a 
storage controller 208, to provide access to a disk 210 or 
other long-term storage. Also, the communications bus 206 
may be connected to a network controller 212 that, thereby, 
connects to a network 214, which may be a local area 
network, wide area network, intranet, or the internet, or 
portions thereof. Furthermore, the communications bus 206 
may connect to a display controller 216 to then connect to 
a display 218. The display 18 may be used to communicate, 
for example, the report described above, or may otherwise 
be physically printed from a peripheral, as will be described. 
[0241] The communications bus 206 may connect to a 
variety of other components, which may further be optional 
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or present only in particular implementations. For example, 
the communications bus 206 may connect to a sound con­
troller 220 that connects to speakers 222, or an input/output 
(I/O) interface 226, which can connect to other devices, such 
as a keyboard/mouse 228, touch screen 230, or other periph­
erals 232, in addition to these user interfaces. 
[0242] Therefore, systems and methods are provided 
where tanging is no longer a constraint. That is, in traditional 
FEM, quality and tangling are often competing constraints. 
The systems and methods provided herein remove tanging 
as a constraint, which can allow for quality to be the focus. 
[0243] As used herein, the phrase "at least one of A, B, and 
C" means at least one of A, at least one of B, and/or at least 
one of C, or any one of A, B, or C or combination of A, B, 
or C. A, B, and C are elements of a list, and A, B, and C may 
be anything contained in the Specification. 
[0244] The present invention has been described in terms 
of one or more preferred embodiments, and it should be 
appreciated that many equivalents, alternatives, variations, 
and modifications, aside from those expressly stated, are 
possible and within the scope of the invention. 

1. A computer system comprising: 
a memory storing a mesh of finite elements of a product 

or product design, wherein the mesh of finite elements 
include tangles; 

an input configured to receive a set of physical parameters 
to be applied to the product or production design to 
assess the product or product design; 

a processor configured to receive the mesh of finite 
elements and the set of physical parameters and to carry 
out steps comprising: 
for elements in the mesh of finite elements, identifying 

positive and negative parametric regions; 
for tangled elements in the mesh of finite elements, 

relaxing a constraint of full invertibility between the 
positive and negative parametric regions to piece­
wise invertibility to decompose the tangled elements 
into invertible regions; 

performing an analysis of the product or product design 
using the mesh of finite elements with the tangled 
elements decomposed into the invertible regions and 
the set of physical parameters; 

generating a report indicating a performance of the 
product or product design under the set of physical 
parameters; and 

a display or printer configured to deliver the report to a 
user. 

2. The system of claim 1, wherein the processor is further 
configured to apply piecewise compatibility conditions to 
the mesh of finite elements. 

3. The system of claim 1, wherein the mesh of finite 
elements include quadrilateral or hexahedral elements. 

4. The system of claim 1, wherein, when the physical 
parameters include stiffness, only analyzing a parametric 
region corresponding to a subset of positive Jacobian values. 

5. The system of claim 1, wherein the processor is further 
configured to triangulate a concave region for integration to 
decompose the tangled elements. 

6. The system of claim 1, wherein, if the tangles are 
removed from the mesh, relaxing a constraint of full invert­
ibility reduces to full invertibility across the mesh of finite 
elements. 

7. The system of claim 1, wherein the mesh of finite 
elements is a three-dimensional mesh. 
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8. The system of claim 1, wherein the physical parameters 
includes at least one of elasticity, thermal, fluid, electromag­
netics, or vibration. 

9. A method for assessing a product or product design 
comprising: 

receiving a set of physical parameters to be applied to the 
product or production design; 

accessing a mesh of finite elements of a product or 
product design, wherein the mesh of finite elements 
include tangles; 

for elements in the mesh of finite elements, identifying 
positive and negative parametric regions; 

for tangled elements in the mesh of finite elements, 
relaxing a constraint of full invertibility between the 
positive and negative parametric regions to piecewise 
invertibility to decompose the tangled elements into 
invertible regions; 

performing an analysis of the product or product design 
using the mesh of finite elements with the tangled 
elements decomposed into the invertible regions and 
the set of physical parameters; and 

generating a report indicating a performance of the prod­
uct or product design under the set of physical param­
eters. 

10. The method of claim 9, further comprising manufac­
turing the product or the product design using information 
from the report. 

11. The method of claim 9, further comprising applying 
piecewise compatibility conditions to the mesh of finite 
elements. 

12. The method of claim 9, wherein the mesh of finite 
elements include quadrilateral or hexahedral elements. 

13. The method of claim 9, wherein, when the physical 
parameters include stiffness, only analyzing a parametric 
region corresponding to a subset of positive Jacobian values. 

14. The method of claim 9, wherein decomposing the 
tangled elements includes triangulating a concave region for 
integration. 

15. The method of claim 9, wherein, if the tangles are 
removed from the mesh, relaxing a constraint of full invert­
ibility reduces to full invertibility across the mesh of finite 
elements. 

16. The method of claim 9, wherein the mesh of finite 
elements is a three-dimensional mesh. 

17. The method of claim 9, wherein the physical param­
eters includes at least one of elasticity, thermal, fluid, 
electromagnetics, or vibration. 

18. A non-transitory computer-readable storage medium 
having instructions stored thereon that, when executed by a 
computer processor, causes the computer process to carry 
out a method for analysis of a product or product design 
including steps comprising: 

receiving a set of physical parameters and a mesh of 
elements of a product or product design, wherein the 
mesh of elements include tangles; 

for elements in the mesh of elements, identifying positive 
and negative parametric regions; 

for tangled elements in the mesh of elements, relaxing a 
constraint of full invertibility between the positive and 
negative parametric regions to piecewise invertibility 
to decompose the tangled elements into invertible 
regions; 
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performing an analysis of the product or product design 
using the mesh of elements with the tangled elements 
decomposed into the invertible regions and the set of 
physical parameters; and 

generating a report indicating a performance of the prod­
uct or product design under the set of physical param­
eters. 

19. The storage medium of claim 18, wherein decompos­
ing the tangled elements includes triangulating a concave 
region for integration. 

20. The storage medium of claim 18, further comprising 
applying piecewise compatibility conditions to the mesh of 
elements. 

* * * * * 
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