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(57) ABSTRACT 

A system and method are provided for transcriptomic MRI 
(TMRI) analysis of a subject to determine diagnostic or 
prognostic information about the subject. The method 
includes accessing diffusion-weighted MR image data 
acquired from the subject, processing the diffusion-weighted 
MR image data using a multi-compartment model, and 
processing the diffusion-weighted MR image data using a 
radiomic analysis to generate texture features. The method 
also includes analyzing the texture features to determine 
diagnostic or prognostic information about the subject and 
generating a report communicating the diagnostic or prog­
nostic information about the subject. 
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SYSTEM AND METHOD FOR ANALYZING 
GENE EXPRESSION USING DIFFUSION 
WEIGHTED MAGNETIC RESONANCE 

IMAGING (MRI) 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

[0001] NIA 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

[0002] NIA 

BACKGROUND 

[0003] The field of the invention is systems and methods 
for magnetic resonance imaging (MRI). More particularly, 
the invention relates to systems and methods for using MRI 
to assess gene expression, such as using diffusion MRI 
(dMRI). 
[0004] A fundamental goal of neuroscience is to under­
stand the structure and function of the brain and the neuro­
biological correlates that give rise to cognition and behavior. 
The development of magnetic resonance imaging (MRI) 
provided, for the first time, a powerful tool to study the in 
vivo brain and to uncover the neural substrates of neuro­
logic, neurocognitive, and neuropsychiatric illness. Contem­
porary MRI neuroimaging techniques can only indirectly 
measure underlying pathology by producing imaging-de­
rived phenotypes (IDPs), which serve as indirect macroscale 
proxies for the molecular processes driving pathological 
changes in the brain. However, brain architecture and activ­
ity are governed by transcriptomic measures. Thus, MRI, 
and other modern in vivo imaging modalities, are unable to 
provide clinicians and researchers with the governing 
molecular processes that underly the macroscale anatomy 
and limited physiology that can be imaged at this time. 
[0005] Thus, it would be desirable to have a system and 
method for non-invasively interrogating the underlying 
molecular processes of a neurobiology patient. 

SUMMARY 

[0006] The present disclosure overcomes the aforemen­
tioned drawbacks by providing systems and methods for 
using an MRI system to derive information about gene 
expression and provide an in vivo analysis of the brain in 
healthy and disease states that goes beyond the anatomical 
or basic physiological information traditionally available via 
MRI. For example, unlike traditional MRI that provides 
anatomical information or limited neuro-physiological 
information, such as using the blood-oxygen-level-depen­
dent (BOLD) contrast mechanism levered in functional MRI 
( fMRI), the systems and methods provided herein can utilize 
dMRI and new analysis techniques to derive information 
about gene expression. 
[0007] In accordance with one aspect of the disclosure, a 
magnetic resonance imaging (MRI) system is provided that 
includes a magnet system configured to generate a polariz­
ing magnetic field about at least a portion of a subject 
arranged in the MRI system, a plurality of gradient coils 
configured to apply a gradient field to the polarizing mag­
netic field, and a radio frequency (RF) system configured to 
apply an excitation field to the subject and acquire MR 
image data from the subject. The system also includes a 
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computer system programmed to control the plurality of 
gradient coils and the RF system to acquire diffusion­
weighted MR image data and process the diffusion-weighted 
MR image data using a radiomic analysis to generate texture 
features. The computer system is further programmed to 
analyze the texture features to determine diagnostic or 
prognostic information about the subject and generate a 
report communicating the diagnostic or prognostic informa­
tion about the subject. 
[0008] In accordance with another aspect of the disclo­
sure, a method is provided for performing transcriptomic 
MRI (TMRI) analysis of a subject. The method includes 
accessing diffusion-weighted MR image data acquired form 
the subject, processing the diffusion-weighted MR image 
data using a multi-compartment model, and processing the 
diffusion-weighted MR image data using a radiomic analysis 
to generate texture features. The method further includes 
analyzing the texture features to determine diagnostic or 
prognostic information about the subject and generating a 
report communicating the diagnostic or prognostic informa­
tion about the subject. 
[0009] The foregoing and other aspects and advantages of 
the invention will appear from the following description. In 
the description, reference is made to the accompanying 
drawings, which form a part hereof, and in which there is 
shown by way of illustration a preferred embodiment of the 
invention. Such embodiment does not necessarily represent 
the full scope of the invention, however, and reference is 
made therefore to the claims and herein for interpreting the 
scope of the invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0010] The patent or application file contains at least one 
drawing executed in color. Copies of this patent or patent 
application publication with color drawing(s) will be pro­
vided by the Office upon request and payment of the 
necessary fee. 
[0011] FIG. 1 is a graphic illustration of a tissue model in 
accordance with the present disclosure. 
[0012] FIG. 2 is a block diagram of an exemplary mag­
netic resonance imaging ("MRI") system configured in 
accordance with the present disclosure. 
[0013] FIG. 3 is a flow chart setting forth steps of a process 
utilizing the model and system of FIGS. 1 and 2 in accor­
dance with the present disclosure. 
[0014] FIG. 4A is a graph showing principal component 
analysis of differential gene expression. 
[0015] FIG. 4B is a graph showing principal component 
analysis of NDI texture features. 
[0016] FIG. 4C is a graph showing principal component 
analysis of ODI texture features. 
[0017] FIG. 4D is a graph showing kernel density estima­
tion of permuted correlations for NDI PC! and gene PC!. 
[0018] FIG. 4E is a graph showing kernel density estima­
tion of permuted correlations for NDI PC! and gene PC2. 
[0019] FIG. 4F is a graph showing kernel density estima­
tion of permuted correlations for ODI PC! and gene PC!. 
[0020] FIG. 4G is a graph showing kernel density estima­
tion of permuted correlations for ODI PC! and gene PC2. 
[0021] FIG. SA is a hierarchical clustering and heatmaps 
of permuted correlations between the top 20% of loaded 
NDI PC! features and the top 20% of loaded PC! gene 
expression. 
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[0022] FIG. 5B a hierarchical clustering and heatmaps of 
permuted correlations between the top 20% of loaded ODI 
PC! features and the top 20% of loaded PC2 gene expres­
sion. 
[0023] FIG. 6 is a chart showing heatmap of -log 10 
p-value of the enriched gene ontology terms (significance 
cutoff<! 0-6) from the above clades demonstrates significant 
enrichment in three of four clades for cellular component 
gene ontology. 
[0024] FIG. 7 is a representation of network analysis of 
enriched gene ontology terms demonstrating one large con­
tiguous network of neuronal related processes and other 
discontinuous networks of non-neuronal processes. 
[0025] FIG. 8 is a representation of a network where, 
within each network (and network node), the relative con­
tribution of GO CC terms from each clade are coded. 
[0026] FIG. 9 is a hierarchical clustering of mean ODI 
signal providing minimally interpretive clustering. 
[0027] FIG. 10 is a Venn diagram of model differences in 
the right hippocampus ODI signal that demonstrate unique 
subsets of radiomic features that specifically define each 
genetic subtype. 

DETAILED DESCRIPTION 

[0028] Diffusion MRI (dMRI), also referred to as diffu­
sion-weighted imaging (DWI), enables non-invasive char­
acterization of neuronal cytoarchitecture at the mesa-scale 
(1-100 µm) by measuring the water diffusion signal and 
provides a technical approach towards characterizing clini­
cal conditions. As water diffuses in the complex cellular 
microenvironment, its movement is hindered or restricted by 
biophysical components such as cell membranes and extra­
cellular structures. Therefore, the measured diffusion signal 
more directly relates to underlying cellular and molecular 
phenomenon than traditional structural (Tl, T2) or func­
tional MRI (e.g., BOLD contrast) neuroimaging techniques. 
[0029] More recently, mathematical and technical 
advances have improved upon standard DWI techniques 
(such as diffusion tensor imaging) to enable higher sensi­
tivity and specificity of microstructural properties through 
multicompartment diffusion weighted imaging (MC-DWI). 
MC-DWI produces greater tissue specificity than standard 
DWI techniques by employing biophysical model-based 
strategies designed to measure water diffusion in distinct 
tissue compartments. With this technique, the water diffu­
sion signal specific to the intra-neurite, extra-neurite, and 
cerebral spinal fluid (CSF) compartments can be calculated. 
In doing so, MC-DWI data, fitted to biophysical models like 
neurite orientation dispersion and density index (NODDI), 
have demonstrated increased sensitivity and specificity to 
neurological changes associated with neurodevelopmental 
and neurodegenerative diseases. Recent human studies have 
used the NODDI model to detect microstructural changes in 
autism spectrum disorder (ASD) patients which have been 
correlated with abnormal sensory processing. Further stud­
ies have demonstrated the ability to distinguish control 
adults from ASD adults using intra-neurite and CSF signal 
from the NODDI model. In line with these results, recent 
work has demonstrated the ability of the NODDI model's 
signal to sensitively capture neuroimaging differences in 
genetic and small animal models of neuropsychiatric illness. 
[0030] Despite the sensitivity of the NODDI model to 
microstructural changes, these identified differences remain 
nonspecific as similar changes can be identified in other 
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neurological conditions. Thus, this non-specificity from the 
analyzed diffusion signal makes these differences unsuitable 
as putative neuroimaging biomarkers of clinical conditions. 

[0031] Conventional methods for analysis of diffusion 
data rely primarily on voxel-wise comparisons to identify 
differences in diffusion across the whole brain ( e.g., tract 
based-and gray matter based-spatial statistics) or rely on the 
mean signal to perform region of interest (ROI)-based 
investigations. These conventional analyses likely contrib­
ute to the observed non-specificity in imaging findings that 
limit effective interpretation. Voxel-wise comparisons are 
often hypothesis-free and usually reveal disparate differ­
ences across the brain; interpretability, however, is limited as 
the relationship to functional neuroanatomical structures is 
not apparent. ROI-based investigations provide the advan­
tage of targeting an area of interest, though these analyses 
have only used one measurement (mean signal values) for 
describing an ROI. While more interpretable, this one mea­
surement alone cannot provide enough information to spe­
cifically parse the complex biology underlying identified 
differences in the diffusion signal. 

[0032] Thus, current systems and methods for studying 
neurobiology are highly limited. To date, a considerable 
body of work has established the sensitivity of MRI to 
neurobiology. This sensitivity, however, comes with a sharp 
tradeoff in specificity. The non-specificity of MRI arises 
because of how the MRI signal is processed, where for a 
given pulse sequence, only a single MR measure is typically 
reported. Some have attempted to correlate these single and 
multiple combinations of MR measurements (e.g., Rl, R2*) 
to gene expression data. However, the limited number of 
measurements available ultimately restricts the ability to 
generate interpretable and generalizable correlations 
between MRI measures and gene expression. Previous work 
has also sought to develop new MR contrast mechanisms to 
expand the number of measurements available to correlate to 
genetic data. All of these efforts have failed to provide 
sufficient information to utilize MRI as a tool to readily 
understand the gene expression of a given patient. 

[0033] Instead of attempting to create a new contrast 
mechanism or attempt to combine a wide variety MR signals 
or known contrast mechanisms into a grand correlation of 
gene expression, the present disclosure provides systems 
and methods that use neurobiologically sensitive MR pulse 
sequences that are parameterized to generate a sufficient 
number of measurements that are correlated to gene expres­
sion. As will be described, systems and methods are pro­
vided to perform a texture-based analysis of the MR data to 
quantify spatial arrangement of intensities in an image and 
generate quantitative image parameters and make MR­
transcriptomic correlations. 

[0034] To improve the specificity of imaging data, the 
present disclosure recognizes that image analysis techniques 
such as radiomics can be employed. Radiomics is the 
quantification of highly parameterized texture features from 
medical images. Texture features (radiomic features) capture 
the spatial relationship between signals in an image. The use 
of these features is predicated on the ability to determine that 
radiomic features capture specific information about the 
underlying pathophysiology of the imaged region and, 
importantly, expand the available measurements that can be 
calculated and subsequently associated to underlying neu­
robiology. 
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[0035] As described herein, a multi-compartment diffu­
sion model can be used to quantitatively express how the 
total normalized diffusion MRI signal is comprised by: (1) 
anisotropic diffusion within neuronal process and (2) aniso­
tropic diffusion arising from around these processes. As 
illustrated in FIG. 1, a neurite orientation dispersion and 
density imaging (NODDI) model can be used that advances 
multi-compartment diffusion imaging as a clinically feasible 
imaging technique and leveraged to understand the under­
lying neurobiological gene expression. Other techniques can 
also be used, such as diffusion spectrum imaging (DSI) or 
ActiveAx or other MC-DWI models. 
[0036] To generate greater tissue specificity than standard 
diffusion weighted imaging (DWI) techniques such as DTI, 
NODDI employs a model-based strategy designed to mea­
sure water diffusion arising from distinct tissue compart­
ments. Specifically, FIG. 1 provides a NODDI tissue model 
that is a multi-compartmental model of the total normalized 
diffusion MRI signal and comprises: (1) non-tissue (F;s0); 
(2) extraneurite (orientation dispersion index, ODI); and (3) 
intraneurite (neurite density index, NDI). Non-tissue mate­
rial, such as cerebral spinal fluid (CSF), represents a first 
level (level 1) of the model and can be modeled as a volume. 
Also at level 1 is tissue. However, unlike traditional models 
that model tissue as a single signal, a second level (level 2) 
is included that divides signals that otherwise would be 
attributed to "tissue" to be formed as extra-neurite material, 
such as cell bodies and glial cells (ODI) and intra-neurite 
material, such as axons and dendrites (NDI). 
[0037] In the NODDI model, diffusivity in the extra­
neurite compartment is measured by ODI, which was origi­
nally conceptualized to measure how changes in neurite 
dispersion influence water diffusivity in the extra-neurite 
space without accounting for the potential contribution that 
glial cells (such as microglia) can have on quantitative 
measures of ODI. However, within the extra-neurite com­
partment, glial cells reside, which account for a large per­
centage of non-neuronal cells. 
[0038] Referring now to FIG. 2, a magnetic resonance 
imaging (MRI) system 100 configured to carry out the 
processes and techniques described herein is illustrated in 
FIG. 2. The MRI system 100 includes an operator worksta­
tion 102, which will typically include a display 104, one or 
more input devices 106 (such as a keyboard and mouse or 
the like), and a processor 108. The processor 108 may 
include a commercially available programmable machine 
running a commercially available operating system. The 
operator workstation 102 provides the operator interface that 
enables scan prescriptions to be entered into the MRI system 
100. In general, the operator workstation 102 may be 
coupled to multiple servers, including a pulse sequence 
server 110; a data acquisition server 112; a data processing 
server 114; and a data store server 116. The operator 
workstation 102 and each server 110, 112, 114, and 116 are 
connected to communicate with each other. For example, the 
servers 110, 112, 114, and 116 may be connected via a 
communication system 140, which may include any suitable 
network connection, whether wired, wireless, or a combi­
nation of both. As an example, the communication system 
140 may include both proprietary or dedicated networks, as 
well as open networks, such as the internet. 
[0039] The pulse sequence server 110 functions in 
response to instructions downloaded from the operator 
workstation 102 to operate a gradient system 118 and a 
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radiofrequency ("RF") system 120. Gradient waveforms to 
perform the prescribed scan are produced and applied to the 
gradient system 118, which excites gradient coils in an 
assembly 122 to produce the magnetic field gradients Gx, Gy, 
G

2 
used for position encoding magnetic resonance signals. 

The gradient coil assembly 122 forms part of a magnet 
assembly 124 that includes a polarizing magnet 126 and a 
whole-body RF coil 128. 

[0040] RF waveforms are applied by the RF system 120 to 
the RF coil 128, or a separate local coil (not shown in FIG. 
2), in order to perform the prescribed magnetic resonance 
pulse sequence. Responsive magnetic resonance signals 
detected by the RF coil 128, or a separate local coil, are 
received by the RF system 120, where they are amplified, 
demodulated, filtered, and digitized under direction of com­
mands produced by the pulse sequence server 110. The RF 
system 120 includes an RF transmitter for producing a wide 
variety of RF pulses used in MRI pulse sequences. The RF 
transmitter is responsive to the scan prescription and direc­
tion from the pulse sequence server 110 to produce RF 
pulses of the desired frequency, phase, and pulse amplitude 
waveform. The generated RF pulses may be applied to the 
whole-body RF coil 128 or to one or more local coils or coil 
arrays. 

[0041] The RF system 120 also includes one or more RF 
receiver channels. Each RF receiver channel includes an RF 
preamplifier that amplifies the magnetic resonance signal 
received by the coil 128 to which it is connected, and a 
detector that detects and digitizes the/and Q quadrature 
components of the received magnetic resonance signal. The 
magnitude of the received magnetic resonance signal may, 
therefore, be determined at any sampled point by the square 
root of the sum of the squares of the I and Q components: 

M= ✓l2+Q2; Eqn. 3 

[0042] and the phase of the received magnetic reso­
nance signal may also be determined according to the 
following relationship: 

Eqn. 4 

[0043] The pulse sequence server 110 also optionally 
receives patient data from a physiological acquisition con­
troller 130. By way of example, the physiological acquisi­
tion controller 130 may receive signals from a number of 
different sensors connected to the patient, such as electro­
cardiogramaignals from electrodes, or respiratory signals 
from a respiratory bellows or other respiratory monitoring 
device. Such signals are typically used by the pulse sequence 
server 110 to synchronize, or "gate," the performance of the 
scan with the subject's heart beat or respiration. 

[0044] The pulse sequence server 110 also connects to a 
scan room interface circuit 132 that receives signals from 
various sensors associated with the condition of the patient 
and the magnet system. It is also through the scan room 
interface circuit 132 that a patient positioning system 134 
receives commands to move the patient to desired positions 
during the scan. 
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[0045] The digitized magnetic resonance signal samples 
produced by the RF system 120 are received by the data 
acquisition server 112. The data acquisition server 112 
operates in response to instructions downloaded from the 
operator workstation 102 to receive the real-time magnetic 
resonance data and provide buffer storage, such that no data 
is lost by data overrun. In some scans, the data acquisition 
server 112 does little more than pass the acquired magnetic 
resonance data to the data processor server 114. However, in 
scans that require information derived from acquired mag­
netic resonance data to control the further performance of 
the scan, the data acquisition server 112 is programmed to 
produce such information and convey it to the pulse 
sequence server 110. For example, during prescans, mag­
netic resonance data is acquired and used to calibrate the 
pulse sequence performed by the pulse sequence server 110. 
As another example, navigator signals may be acquired and 
used to adjust the operating parameters of the RF system 120 
or the gradient system 118, or to control the view order in 
which k-space is sampled. In still another example, the data 
acquisition server 112 may also be employed to process 
magnetic resonance signals used to detect the arrival of a 
contrast agent in a magnetic resonance angiography 
("MRA") scan. By way of example, the data acquisition 
server 112 acquires magnetic resonance data and processes 
it in real-time to produce information that is used to control 
the scan. 
[0046] The data processing server 114 receives magnetic 
resonance data from the data acquisition server 112 and 
processes it in accordance with instructions downloaded 
from the operator workstation 102. Such processing may, for 
example, include one or more of the following: reconstruct­
ing two-dimensional or three-dimensional images by per­
forming a Fourier transformation of raw k-space data; 
performing other image reconstruction techniques, such as 
iterative or backprojection reconstruction techniques; apply­
ing filters to raw k-space data or to reconstructed images; 
generating functional magnetic resonance images; calculat­
ing motion or flow images; and so on. 
[0047] Images reconstructed by the data processing server 
114 are conveyed back to the operator workstation 102. 
Images may be output to operator display 112 or a display 
136 that is located near the magnet assembly 124 for use by 
an attending clinician. Batch mode images or selected real 
time images are stored in a host database on disc storage 
138. When such images have been reconstructed and trans­
ferred to storage, the data processing server 114 notifies the 
data store server 116 on the operator workstation 102. The 
operator workstation 102 may be used by an operator to 
archive the images, produce films, or send the images via a 
network to other facilities. 
[0048] The MRI system 100 may also include one or more 
networked workstations 142. By way of example, a net­
worked workstation 142 may include a display 144, one or 
more input devices 146 (such as a keyboard and mouse or 
the like), and a processor 148. The networked workstation 
142 may be located within the same facility as the operator 
workstation 102, or in a different facility, such as a different 
healthcare institution or clinic. The networked workstation 
142 may include a mobile device, including phones or 
tablets. 
[0049] The networked workstation 142, whether within 
the same facility or in a different facility as the operator 
workstation 102, may gain remote access to the data pro-
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cessing server 114 or data store server 116 via the commu­
nication system 140. Accordingly, multiple networked 
workstations 142 may have access to the data processing 
server 114 and the data store server 116. In this manner, 
magnetic resonance data, reconstructed images, or other data 
may be exchanged between the data processing server 114 or 
the data store server 116 and the networked workstations 
142, such that the data or images may be remotely processed 
by a networked workstation 142. This data may be 
exchanged in any suitable format, such as in accordance 
with the transmission control protocol ("TCP"), the internet 
protocol ("IP"), or other known or suitable protocols. 
[0050] The system of FIG. 2 can be used to perform a 
process for acquiring MRI data and processing the MRI data 
using radiomic analysis of a multi-compartment DWI model 
to determine information on the underlying gene expression 
of the patient and, thereby, aid clinical analysis far beyond 
extrapolating from anatomical images, or extrapolated 
physiological biomarkers, such as BOLD or diffusion, con­
trast-weighted imaging. Referring to FIG. 3, such a process 
200 begins with the acquisition of MR data at process block 
202, such as by accessing already-acquired MR data or 
acquiring MR data from a patient, such as using the system 
of FIG. 2. As described above, the MR data may include 
diffusion MRI ( dMRI) data. Furthermore, as described, the 
dMRI data may be acquired with the intent of analyzing the 
data using a multi-compartment model, such as described 
above with respect to FIG. 1. At process block 204, the 
dMRI data is processed to segment the MR data, for 
example, using anatomical atlas information or the like for 
processing diffusion data. The segmented MR data is then 
processed along two tracks, which as illustrated may be done 
in parallel, in one non-limiting example. 
[0051] In a first track, the mean intensity of a selected 
region of interest (ROI) is determined at process block 206 
and then MRI measurements are calculated at process block 
208. For example, the MRI measurements may include 
fractional anisotropy (FA), mean diffusivity (MD), NDI, and 
ODI, in addition to others, such as axial diffusivity (AD), 
radial diffusivity (RD), or the like. 
[0052] In parallel or series, the process 200 may also 
include performing radiomic analysis at process block 210. 
The dMRI data may include neurite orientation dispersion 
and density imaging (NODDI) data. The radiomic analysis 
at process block 210 may be performed to determine, at 
process block 212, texture features. The texture features may 
include, as non-limiting examples, first-order statistic, shape 
based 3D and/or 2D, gray-level cooccurrence matrix 
(GLCM), gray-level run length matrix (GLRLM), gray-level 
size zone matrix (GLSZM), neighboring grey tone differ­
ence matrix (NGTDM), and gray-level dependence matrix 
(GLDM) radiomic features, among others. At process block 
214, the results of the texture analysis and/or MRI measure­
ments may be used to determine diagnostic or prognostic 
metrics, for example, including gene expression metrics or 
information. 
[0053] The above-described system and method provides 
a transcriptomic MRI (TMRI) framework that uses multi­
compartment diffusion MRI ( dMRI) data to interrogate any 
of a variety of conditions or diseases, from neurocognitive 
or neuropsychological to cancer pathology. Determining the 
gene expression or pathophysiology to aid in diagnosis or 
prognosis of pathology is performed through analysis of 
texture features from multi-compartment diffusion weighted 
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MR. As will be further illustrated with respect to the 
non-limiting examples, clustering or other analysis tech­
niques can be used to determine the metrics and/or ultimate 
diagnosis or prognosis. For example, the texture features can 
be correlated to gene expression data of the same tissue 
being imaged. As another example, one or more look-up 
tables may be used that correlate the parameterized texture 
features from multi-compartment diffusion weighted medi­
cal imaging data to a given diagnosis or prognosis. Addi­
tionally, or alternatively, an artificial intelligence or machine 
learning system maybe trained on data, such as further 
described with respect to the non-limiting examples pro­
vided herein, to generate metrics or ultimate diagnosis or 
prognosis. This information may then be used to generate a 
report at process block 216. The report may include images, 
annotated images, maps or color-coded anatomical data, 
and/or text-based reporting. 
[0054] Thus, the present disclosure provides systems and 
methods that, first, recognize that such information can be 
used to determine diagnosis or prognosis of neurological 
pathology and, second, a way to accurately and consistently 
generate metrics, such as gene expression metrics and/or a 
report of diagnosis or prognosis of neurological pathology. 
In seeking to correlate gene expression to MRI measure­
ments, the present disclosure recognized that multi-compart­
ment diffusion imaging could be used to achieve this ambi­
tious goal. The present disclosure recognized that, unlike 
conventional macromolecular or functional neuroimaging 
techniques, water diffusion and the measured diffusion sig­
nal is at once sensitive and biophysically responsive to 
molecular and cellular phenomena. 
[0055] As one non-limiting example, NODDI was used. 
NODDI is an advanced translational dMRI technique 
belonging to a larger family of multi-compartment tech­
niques, which biophysically model the dMRI signal into 
biologically salient compartments. That is, as described 
above, NODDI models neuronal (NDI) and extra-neuronal 
(ODI) tissue compartments that together possess sensitivity 
to molecular neurobiology. The present disclosure recog­
nized that the extensive evidence supporting the correlation 
between gene expression and brain cellular histology and 
between brain cellular histology and dMRI could be lever­
aged to determine correlations of gene expression to mea­
sures of dMRI. Further, the present disclosure recognized 
that, as the diffusion signal itself is spatially defined ( e.g., 
intraneuronal, extracellular), putative correlations of the 
NODDI signal to gene expression could be used to provide 
gene expression correlates that are themselves spatially 
distinct. 

EXPERIMENTS 

Experiment 1 

[0056] To test the above-described system, a wild-type rat, 
and Nrxnl, Pten, Fmrl genetic rat models of autism spec­
trum disorder (ASD) were used. The ASD models were 
chosen as the basis for this study because of the presence of 
both neuronal (synaptic) and extra-neuronal (perineuronal 
net deposition) processes in the pathophysiology of ASD. 
This provides an opportune test of the biological specificity 
of the NODDI biophysical model and how it correlates to 
biological processes defined by gene expression. 
[0057] To do so, the researchers first performed microar­
ray gene expression analysis of the left neocortex of all 
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animals and identified 4399 differentially expressed genes 
(FDR<0.05) and in a separate cohort, performed NODDI 
diffusion imaging of each animal and genotype and 
extracted image texture features from the left neocortex of 
all animals. For gene expression, NDI and ODI texture 
feature datasets, principal components analysis (PCA) was 
performed to understand aspects of each dataset that cap­
tured the most variance, as illustrated in the graphs of FIGS. 
4A-4G. 

[0058] More particularly, the graphs of FIGS. 4A-4G 
illustrate a principal component analysis for differentially 
gene expression (FIG. 4A), NDI texture features (FIG. 4B), 
and ODI texture features (FIG. 4C) was performed to show 
% variance for all principal components. Principal compo­
nents 1 and 2 of differential gene expression captured 46.1 % 
and 21.2% of the variance in the data, respectively. Principal 
components 1 and 2 of the NDI texture features captured 
71.4% and 19.3% of the variance and principal component 
1 and 2 of the ODI texture features 58.9% and 21.7%. Given 
the significant drop off in variance explained between 1 and 
2 of the image texture features, downstream analysis pro­
ceeded with only the first principal component (PC 1) from 
both imaging signals. For FIGS. 4D-4G, kernel density 
estimation plots of the permuted correlations for NDI PC! 
(FIGS. 4D and 4E) and ODI PC! (FIGS. 4F and 4G) are 
shown with differential expressed gene PCs 1 and 2. Biology 
400 indicates that the permutation accounted for the bio­
logical relationship between the two datasets (i.e., paired 
animals of the same genotype across the datasets). Null 402 
indicates that the relationship of the genotypes across the 
dataset was not preserved. The solid line 404 indicates 
median value. A dotted line 406 indicates bounds of the 95% 
confidence interval around the median of the null distribu­
tion and the shaded portion indicates the tail of the distri­
butions that account for a total of 5% of the data. Gene PC! 
demonstrates strong correlation with NDI PC! (FIG. 4D, 
median biology r=0.51) whereas Gene PC2 has a weaker 
correlation with NDI PC! (FIG. 4E, median biology r=-0. 
41). For ODI, Gene PC! correlates very weakly with ODI 
PC! (FIG. 4F, median biology r=0.07). Gene PC2 demon­
strates a very strong correlation with ODI PC! (FIG. 4G, 
median r=-0.72). Biology median values that fall outside of 
the null 95% interval bounds are considered to come from 
significantly different distribution than the null; thus, NDI 
PClxGene PC! and ODI PClxGene PC2 correlations are 
interpreted to represent statistically significant permuted 
distributions. 

[0059] Using this, we next reasoned that a correlation 
between principal components from different datasets sug­
gests the two datasets (e.g., imaging and gene expression) 
capture variation between the samples in a similar manner. 
Thus, if PCs from imaging and gene expression are highly 
correlated, this would suggest that multi-component diffu­
sion imaging datasets are representative of underlying gene 
expression. To test the correlation between the principal 
components of the gene expression data and the imaging 
signals (NDI and ODI), a within-genotype permutation 
correlation analysis was performed as the imaging data and 
gene expression were generated from multiple cohorts. PC! 
ofNDI correlated moderately with both PC 1 and 2 of gene 
expression (FIGS. 4D and 4E). PC! of ODI demonstrated 
strong correlation to PC2 of gene expression only (FIGS. 4F 
and 4G). These findings underscore the relationship between 
multi-compartment imaging datasets and gene expression 
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and, moreover, show how the NDI and ODI signals correlate 
differently with gene expression. Specifically, these results 
indicate imaging-gene expression correlations may be more 
specific in the ODI signal as ODI only correlates with gene 
PC2, unlike NDI which correlates with both PCs 1 and 2 of 
gene expression. 
[0060] To further test and demonstrate the robustness of 
these PC correlations, we next performed a leave one out 
permutation analysis and found similar levels of correlation. 
That similar correlation strength remained between imaging 
and gene expression PCs following a leave one out permu­
tation analysis where approximately 20% of the data were 
removed further underscores the robustness of the relation­
ships we found between imaging and gene expression. 
[0061] To biologically contextualize the observed corre­
lations between imaging and gene expression PCs, we 
extracted the top 20% of genes and image texture features 
loaded in each PC (880 genes per gene PC; 17 NDI and 18 
ODI texture features). Referring to FIGS. SA and 5B, we 
then performed a permutation correlation analysis for each 
gene-imaging feature combination and performed unsuper­
vised hierarchical clustering to generate heatmaps of gene­
feature associations for the NDI PCl-Gene PC! and ODI 
PCl-Gene PC2 correlations (FIGS. SA and 5B, respec­
tively). That is, FIG. SA shows a hierarchical clustering and 
heatmap of permuted correlations between the top 20% of 
loaded NDI PC! features and the top 20% of loaded PC! 
gene expression and FIG. 5B shows the top 20% of loaded 
ODI PC! features and the top 20% of loaded PC2 gene 
expression. 
[0062] Then for each of the heatmaps, gene clades were 
identified. Gene clades then underwent gene ontology (GO) 
cellular component overrepresentation analysis (ORA). Cel­
lular component GO terms were specifically studied because 
the NODDI signal is spatially defined (NDI: neuronal; ODI: 
extra-neuronal/extracellular); thus, we hypothesized that 
enriched genes correlating to either the NDI or ODI signal 
would reflect gene sets that are also representative of neu­
ronal (NDI) and extra-neuronal (ODI) processes and path­
ways. 
[0063] Of the 4 gene clades identified, 3 enriched for 
cellular components, as shown in FIG. 6. Heatmap of -log 
10 p-value of the enriched gene ontology terms (significance 
cutoff<! 0-6) from the above clades demonstrated significant 
enrichment in three of four clades for cellular component 
gene ontology. ODI Clade 1 and NDI Clade 2 strongly 
correlate with extracellular/extraneuronal and intracellular/ 
intraneuronal cellular components, respectively, commensu­
rate with the biophysical compartment each NODDI signal 
models (e.g., ODI, extracellular/extraneuronal; NDI, intra­
cellular/intraneuronal). ODI clade 2 additionally demon­
strates significant correlation with cellular components asso­
ciated with the synaptic membrane, which functionally 
include both neuronal and non-neuronal cellular structures 
(e.g., neuroglial). This observed non-specificity and appar­
ent overlap may be related in part to overlapping GO 
annotations. Thus, in the largest clades identified, we found 
significant enrichment for extracellular matrix and collagen 
trimers (ODI PClxGene PC2; top clade) and significant 
enrichment for synaptic membrane, asymmetric synapses, 
and cation channel complex (NDI PClxGene PC!; bottom 
clade). Overall, these results find two PCs from the gene 
expression dataset (gene PC! and gene PC2) each correlat­
ing to different imaging signals (NDI and ODI); specifically, 
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the ODI signal correlates with gene expression associated 
with extracellular, extra-neuronal processes while the NDI 
signal correlates with gene expression associated with neu­
ronal processes. 
[0064] To further contextualize these findings, we next 
performed network analysis of the identified GO terms, 
which again demonstrates ODI primarily correlating with 
genes specific to extracellular/extraneuronal processes and 
NDI correlating primarily with genes derived from neuronal 
components and processes. In particular, referring to FIG. 7, 
network analysis of enriched gene ontology terms demon­
strated one large contiguous network of neuronal related 
processes and other discontinuous networks of non-neuronal 
processes. Thus, while there is some overlap present in 
enrichment between ODI and NDI specifically in the syn­
aptic cellular components, the percentage of genes that 
correlate with ODI is much smaller than the primary signal 
captured by NDI, again highlighting the increased specific­
ity of the ODI signal. Referring to FIG. 8, within each 
network ( and network node), the relative contribution of GO 
CC terms from each clade were coded. The largest network, 
which primarily describes intracellular/intraneuronal pro­
cesses, is seen to contain predominantly GO terms arising 
from NDI clade 2, consistent with the expectation that the 
NDI MR signal is correlated to intracellular gene expres­
sion. Similarly, ODI clade 2 is strongly correlated to GO 
terms arising from ODI clade 1, which primarily contains 
GO CC terms associated with the extracellular matrix. 
Altogether, these data demonstrate the strong correlation of 
a biophysically defined imaging signal to gene expression 
consistent with the modeled cellular compartment. 

Experiment 2 

[0065] To advance this new field of neurodevelopmental 
radiomic studies and work directly towards the goal of 
autism subtyping, a further study was conducted using 
radiomic analyses applied to MC-DWI neuroimaging data 
comparing four different monogenetic rat models of ASD 
using radiomics. Previous reported work from our group 
demonstrated an inability to effectively distinguish between 
the models when using conventional metrics of analysis 
(e.g., voxel-wise comparisons, ROI mean signal intensity) 
on the intra-neurite signals of FA and NDI from the DTI and 
NODDI models, as described in Rowley P A, Guerrero­
Gonzalez J, Alexander AL, Yu J P J. Convergent micro­
structural brain changes across genetic models of autism 
spectrum disorder-A pilot study. Psychiatry Res Neuroim­
aging 2019;283:83. https://doi.org/10.1016/J.PSCY­
CHRESNS.2018.12.007. and Barnett BR, Casey C P, Tor­
res-Vel'azquez M, Rowley PA, Yu JP J. Convergent brain 
microstructure across multiple genetic models of schizo­
phrenia and autism spectrum disorder: a feasibility study. 
Magn Reson Imaging 2020;70:36-42. https://doi.org/10. 
1016/J.MRI.2020.04.002., each of which is incorporated 
herein by reference. A new study was developed to demon­
strate that the coupling of a neuro-biologically sensitive 
neuroimaging technique (NODDI diffusion weighted imag­
ing) to radiomic analyses enhances our collective ability to 
discriminate neurobiologically dissimilar models of ASD 
and even begin to subtype these models in an unsupervised 
fashion. 
[0066] Male Sprague Dawley rats (300-325 g, Charles 
River) were pair housed in clear cages (lights on for 12 hat 
7:00 A.M.) with ad libitum access to food and water; 
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experiments were performed between 10:00 A.M. and 3:00 
P.M. Facilities and procedures followed the National Insti­
tutes of Health Guide for the Care and Use of Laboratory 
Animals and were approved by the Institutional Animal Care 
and Use Committee at our institution. Fmr1-1

Y, Nrxn1-1
-, 

and Pten-1
+ genetic rat models of ASD were commercially 

obtained (Horizon Discovery, St. Louis, MO, USA). These 
models were generated via zinc finger nuclease (ZFN) 
genome editing yielding a hemizygous, homozygous, and 
heterozygous genotype on the outbred Sprague Dawley 
background, respectively. Endonuclease hemizygous dele­
tion of the Fmrl gene mirrors the gene silencing observed 
with expansion of the CGG trinucleotide. Monoallelic dele­
tion of the Pten gene recapitulates the clinically encountered 
heterozygous genotype as the homozygous deletion is 
embryonic lethal. These animals used in our data analyses 
were born, weaned, and matured to adulthood in the same 
housing facility. 

MRI Acquisition 

[0067] Animals (Nrxn1-1
-, Pten-1

+, Fmr1-1
Y [n=4 each]; 

Disc 1-1
- [ n=6] and their controls [ n=5]) at postnatal 45 days 

were brought to a surgical plane of anesthesia with isoflu­
rane, then transcardially perfused with ice-cold phosphate­
buffered solution (PBS) followed by 4% paraformaldehyde 
(PFA). The animals were decapitated, and the skin, muscle 
and fascia were removed from the dorsal and posterior parts 
of the skull. Rongeurs were used to remove the skull and 
scissors were used to cut the meninges and cranial nerves at 
the base of the brain. Extracted brains were post-fixed in 4% 
PF A for 24 h and then immersed in Fluorinert and placed in 
a custom-built holder. Brains were imaged with a 4.7 T 
Agilent MRI system with a 3.5 cm diameter quadrature 
volume RF coil. Multi-slice, diffusion-weighted, spin echo 
images were used to acquire 10 non-diffusion-weighted 
images (b=0 s-mm-2

) and 75 diffusion-weighted images (25: 
b=800 s-mm-2

, 50: b=2000 s-mm-2
), using non-colinear 

diffusion-weighting directions. Other imaging parameters: 
TE/TR=24.17/2000 ms, FOV=30x30 mm2, matrix=192x 
192 reconstructed to 256x256 for an isotropic voxel size of 
0.25 mm over two signal averages; d=6 ms; D=12.20 ms. All 
imaging was performed in a temperature-controlled room 
with imaging performed between 20 and 21 degrees C. Raw 
data files were converted to NifTI (Neuroimaging Informat­
ics Technology Initiative) format for use with the DTITK 
software package. Following correction for eddy currents 
and standard preprocessing, tensors are reconstructed, reg­
istered, and normalized to a study-specific template. Multi­
shell diffusion data were then fitted to the NODDI model 
with the microstructure diffusion toolbox (MDT) and the 
quantitative indices were calculated. 
[0068] Following spatial normalization, ROis were 
masked and segmented using a standard DTI-based rat brain 
atlas. Regions of interest (ROI) are defined via automated 
atlas-based anatomic segmentation using a diffusion tensor­
based reference label set. Analytical pipelines were specifi­
cally designed for imaging data collected from fixed samples 
(e.g., using recommended diffusivity assumptions dll=0.6x 
10-3 mm2/s and the diso=2x10-3 mm2/s and using the 
'WatsonSHStickTortisoVIsoDot_BO' fitting model as rec­
ommended). 

Region of Interest (ROI) Mean Signal Analysis 

[0069] The amygdala, hippocampus, and corpus striatum 
were a priori selected for analysis due to their biological 
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relevance in autism spectrum disorder. For each of the three 
NODDI signals (ODI, NDI, CSF), a 5xl ANOVAregressing 
mean signal intensity on genotype for each region of interest 
was performed, while controlling the false discovery rate to 
0.05 using the Benjamini-Hochberg FDR correction to iden­
tify significant differences in mean signal intensity. The 
Tukey HSD test was performed for post-hoc pairwise com­
parisons for a significant model (as defined with FDR 
corrected p-value<0.05). Significant pairwise differences 
were those with Tukey HSD corrected p-value<0.05. All 
p-values reported are Tukey HSD corrected p-values unless 
otherwise indicated. All analyses were performed with 
GraphPad Prism 9 and Python 3. 

Image Texture Feature Extraction and Radiomic Analysis 

[0070] Following masking and segmentation, each ROI 
was then processed using the open-source Pyradiomics 
package to extract image texture features. A fixed bin-width 
of 0.1 was used for gray-level discretization for all the 
images and feature extraction was performed for 18 first­
order statistic, 24 gray-level cooccurrence matrix (GLCM), 
14 gray-level dependence matrix (GLDM), 16 gray-level 
run length matrix (GLRLM), and 16 gray-level size zone 
matrix (GLSZM) radiomic features. A Pearson correlation 
cutoff of 0.9 is used to select non-redundant features and 51 
ANOVA models were fit for each selected feature within a 
region of interest for a given imaging signal to determine the 
main effect of genotype on these features. The Benjamini­
Hochberg procedure was used to control the FDR of a 
significant model to 0.05. The Tukey HSD test was per­
formed for post-hoc pairwise comparisons for a significant 
model. Significant pairwise differences were those with 
Tukey HSD corrected p-value<0.05. All p-values reported 
are Tukey HSD corrected p-values unless otherwise indi­
cated. All analyses were performed with GraphPad Prism 9 
and Python 3. 

Clustering Analyses 

[0071] Hierarchical clustering was performed using the 
Python library sci-kit learn. All features used for clustering 
were standardized across samples to have a mean of 0 and 
standard deviation of 1 before using the Ward's Minimum 
Variance clustering method with Euclidean distance metric. 

Mean Differences Between ROis are Only Present in the 
ODI Signal 

[0072] Recapitulating our prior work, no significant mean 
differences were identified between any of the preselected 
ROis in the NDI or vISO diffusion signals. However, 
significant ODI mean signal ROI differences were identified 
in the right hippocampus (R HC), left hippocampus (L HC), 
and right corpus striatum (F-statistics for each ROI respec­
tively, F( 4,18)=5.450, FDR-adjusted p-value=0.0260; F(4, 
18)=3.776, FDR-adjusted p-value=0.0424; F(4,18)=3.848, 
FDR-adjusted p-value=0.0424). Specifically, pairwise test­
ing demonstrates a significant increase in mean ODI of the 
right and left hippocampus of the Nrxnl KO compared to 
control animals (R HC: mean diff.=0.0455, 95% CI=[0. 
0128, 0.0782], p-value=0.0043; L HC: mean diff.=0.0319, 
95% CI=[0.00250, 0.0613], p-value=0.0298). Nrxnl KO 
animals also had significantly higher mean signal in the right 
hippocampus when compared to the Pten KO animals (mean 
diff.=0.0347, 95% CI=[0.0002, 0.0682], p-value=0.0478) 
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and in the right corpus striatum when compared to the Discl 
KO animals (mean diff.=0.0649, 95% CI=[0.0103, 0.120], 
p-value=0.0156). The Fmrl KO animals had significantly 
higher mean signal in the right hippocampus when com­
pared to control (mean diff.=0.0346, 95% CI=[0.00190, 
0.0673], p-value=0.0352). 
ODI Mean Signal Cannot Generate Discrete Genetic Sub­
type Clustering with Hierarchical Clustering 
[0073] In our previously reported work, k-means cluster­
ing on principal components generated from the mean signal 
from FA and NDI from 12 ROis failed to separate the data 
into genetic subtypes. However, with the presence of mean 
ODI signal intensity differences between ROis, unsuper­
vised hierarchical clustering was next performed with the 
three mean ODI signals with significant differences amongst 
the animal models. By using the mean signal from these 
ROis identified through theANOVA, we aimed to maximize 
the amount of relevant information provided to the cluster­
ing algorithm as the mean ODI signal from all ROis did not 
produce meaningful clustering. The clustering generates 
three clusters. The Pten KO animals are all located within 
one cluster. However, we observed that all clusters contain 
a mix of several genotypes each, indicating poor clustering 
and sub-typing of genetic models based on mean ODI signal 
intensity information alone. 

Differences in Radiomic Features Identified for Bilateral 
Hippocampus in ODI Signal 

[0074] To test our hypothesis that radiomic features 
encode greater discriminatory information than mean ROI 
signal intensity alone, all three NODDI signals (NDI, ODI, 
and vISO) for each region of interest underwent radiomics 
processing. 88 texture features, consisting of the first order 
(histogram) and second order (texture) features, per signal 
per region of interest were extracted. No transformations, 
such as wavelet decomposition, were applied to the images 
to maintain the highest degree of interpretability for each 
radiomic feature. These extracted features underwent unsu­
pervised correlation cutoff feature selection (i.e., filtering 
features that had >0.9 Pearson correlation with each other). 
Each of the remaining features were individually fit to a 5xl 
ANOVA and the Benjamini-Hochberg FDR correction was 
used to identify significant ANOVA results. These signifi­
cant models then underwent post-hoc Tukey pairwise sig­
nificance testing. From all the signals, ROis, and radiomic 
features tested, 7 total features were identified as signifi­
cantly different following FDR correction. 5 were identified 
in the ODI signal from the right hippocampus (GLRLM 
Long Run Low Gray Level Emphasis: F(4,18)=11.470, 
FDR-adjusted p-value=0.009; GLRLM Run Variance: F(4, 
18)=7.838, FDR-adjusted p-value=0.0261; GLSZM High 
Gray Level Zone Emphasis: F(4,18)=7.960, FDR-adjusted 
p-value=0.0435; First Order Uniformity: F(4,18)=5.488, 
FDR-adjusted p-value=0.0209; GLCM Difference Variance: 
F(4,18)=7.310, FDR-adjusted p-value=0.0472) and 2 were 
identified in the ODI signal from the left hippocampus 
(GLRLM Long Run Low Gray Level Emphasis: F(4,18)=8. 
158, FDRadjusted p-value=0.0120; 5b, GLSZM Small Area 
High Gray Level Emphasis: F(4,18)=8.656, FDR-adjusted 
p-value=0.0481). 
[0075] As for the significant pairwise differences, for the 
right hippocampus, Nrxnl KO animals were significantly 
lower in First Order Uniformity when compared to control 
and Pten KO animals (Nrxnl KO vs. control: mean diff.=-
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0.0315, 95% CI32 [-0.0616, -0.00164], p-value=0.0359; 
Nrxnl KO vs. Pten KO: mean diff.=-0.0439, 95% CI=[-0. 
07548, -0.0123], p-value=0.0043). Nrxnl KO animals were 
significantly lower in Long Run Low Gray Level Emphasis 
and Run Variance compared to control (Long Run Low Gray 
Level Emphasis, Nrxnl KO vs. control: mean diff.=-0.751, 
95% CI=[-1.162, -0.3398], p-value=0.0003; Run Variance, 
Nrxnl KO vs. control: mean diff.=-0.5310, 95% CI=[-0. 
9072, -0.1549], p-value=0.0037). Nrxnl KO animals were 
significantly higher in High Gray Level Zone Emphasis 
compared to control and Pten KO animals (Nrxnl KO vs. 
control: mean diff.=4.510, 95% CI=[l.284, 7.730], 
p-value=0.0040; Nrxnl KO vs. Pten KO: mean diff.=4.745, 
95% CI=[l.348, 8.143], p-value=0.0041) Fmrl KO animals 
were significantly lower in Long Run Gray Level Emphasis 
and Run Variance compared to control (Long Run Low Gray 
Level Emphasis, Fmrl KO vs. control: mean diff.=-0.771, 
95% CI=[-1.182, 0.3597], p-value=0.0002; Run Variance, 
Fmrl KO vs. control: mean diff.=-0.521, 95% CI=[-0.897, 
-0.145], p-value=0.0044). Discl KO animals were signifi­
cantly higher in High Gray Level Zone Emphasis and 
Difference Variance compared to control and Pten KO 
animals (High Gray Level Zone Emphasis, Discl KO vs. 
control: mean diff.=3.544, 95% CI=[0.634, 6.453], 
p-value=0.0129; Discl KO vs. Pten KO: mean diff.=3.782, 
95% CI=[0.6802, 6.883], p-value=0.0128; Difference Vari­
ance, Discl KO vs. control: mean diff.=0.163, 95% CI=[0. 
055, 0.268], p-value=0.002; Discl KO vs. Pten KO: mean 
diff.=0.156, 95% CI=[0.042, 0.270], p-value=0.0049). Discl 
KO animals were significantly lower in the Long Run Low 
Gray Level Emphasis and Run Variance compared to control 
animals (Long Run Low Gray Level Emphasis, Discl KO 
vs. control: mean diff.=-0.5954, 95% CI=[-0.9667, 
-0.2241], p-value=0.0011; Run Variance, Discl KO vs. 
control: mean diff.=-0.5567, 95 % CI=[-0.8962, -0.2172], 
p-value=0.0009). Discl KO animals were significantly 
lower in Uniformity compared to Pten KO animals (Discl 
KO vs. Pten KO: mean diff.=-0.0300, 95 % CI=[-0.0589, 
-0.00117], p-value=0.392). Pten KO animals were signifi­
cantly lower in Long Run Low Gray Level Emphasis 
compared to control animals (Pten KO vs. control: mean 
diff.=-0.6155, 95% CI=[-1.027, -0.204], p-value=0.0021). 

[0076] For the left hippocampus, Nrxnl, Fmrl, and Discl 
KO animals were significantly lower in Long Run Low Gray 
Level Emphasis when compared to control animals (Nrxnl 
KO vs. control: mean diff.=-0.4177, 95 % CI=[-0.683, 
-0.153], p-value=0.0013; Fmrl KO vs. control: mean diff. 
=-0.4185, 95% CI=[-0.684, -0.153], p-value=0.0013; 
Discl KO vs. control: mean diff.=-0.313, 95% CI=[-0.552, 
-0.074], p-value=0.0072). Nrxnl, Fmrl, and Discl KO 
animals were significantly higher in Small Area High Gray 
Level Emphasis than Pten KO animals (Nrxnl KO vs. Pten 
KO: mean diff.=4.642, 95% CI=[0.944, 8.340], p-value=0. 
0102; Fmrl KO vs. Pten KO: mean diff.=4.537, 95% 
CI=[0.839, 8.234], p-value=0.0122; Discl KO vs. Pten KO: 
mean diff=6.061, 95% CI=[2.685, 9.437], p-value=0.0003). 
Discl KO animals were also significantly higher than con­
trols for this this feature (Discl KO vs. control: mean 
diff=3.705, 95% CI=[0.538, 6.872], p-value=0.0175). No 
significant features were identified in either the NDI or CSF 
signals across all regions of interest tested. 

Hierarchical Clustering ofRadiomic Features Derived from 
the ODI Signal Improves Performance of Genetic Subtyping 
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[0077] Using all radiomic features from the bilateral hip­
pocampus after correlation filtration, unsupervised hierar­
chical clustering was again performed as previously 
described with the mean ODI signal. Three distinct clusters 
are generated as illustrated in FIG. 9 and identified as "a", 
"b", and "c". Cluster a contains only Pten KO animals. 
Cluster c contains all Disc! KO animals. Clusters b and c 
contain a mix of Fmrl KO and Nrxnl KO animals. When 
compared to the hierarchical clustering performed on mean 
ODI signal intensity only, we find improved discrimination, 
clustering, and subtyping of our genetic models using 
radiomic data. However, when performing hierarchical clus­
tering using only the significant features from the ANOVA, 
the clustering performs more poorly, suggesting that features 
that did not survive the strict FDR cutoff still contain 
relevant discriminatory information. 
[0078] Improved autism diagnostics are paramount for 
advancing the development of new, precise therapeutics for 
this patient population. Thus, the above-described study 
shows that the concept of cluster analysis can be used to for 
analysis ofNODDI diffusion data and its use for identifying 
genetic subtypes of autism. As described above, the present 
disclosure provides a way to use MR data to understand the 
underlying gene expression and, thus, this shows that the 
systems and methods provided herein can be used to inves­
tigate, diagnose, track, and understand, underlying condi­
tions, in this non-limiting example, autism, which is a 
complex and wildly-varied condition. 
[0079] In the non-limiting example of a study focused on 
autism, we employed this analysis on four monogenetic rat 
models of autism spectrum disorder and demonstrate 
improved sensitivity and specificity of a combined NODDI­
radiomics approach over more conventional and traditional 
ROI mean signal analyses. 
[0080] The radiomics analysis identified the ODI signal 
from the bilateral hippocampus as being different between 
the different genetic models and their control. While this 
result ostensibly matches the conventional mean signal 
analysis, our radiomics analysis provides greater granular 
insight into the nature of these differences in the ODI signal 
as multiple texture differences are identified per region of 
interest. In the conventional mean signal analysis, both the 
Fmrl and Nrxnl models demonstrated an increase in mean 
ODI signal compared to control. While this distinguishes 
them from the Disc! and Pten models, this conventional 
ROI-based neuroimaging analysis lacks enough specificity 
to provide further distinctions between the models despite 
the fact these data suggest significant neurobiological 
changes are occurring in the extra-neurite space. However, 
when comparing radiomic data of the ODI signal from the 
four ASD models and their control, a unique set of differ­
ences is established for all four models, illuminating under­
lying information in the signal that was not previously 
apparent with conventional mean intensity analysis. Further, 
our radiomics analysis of the right hippocampus (when 
comparing to control animals) identified unique features 
able to discriminate Fmrl from Nrxnl KO, suggesting that 
the extra-neurite microstructural information encoded in the 
ODI signal for these genetically different animals is not the 
same, as illustrated in FIG. 10. Interestingly, common fea­
tures exist between all four models, which demonstrates 
aspects of convergence as previously reported by our group 
and further highlights and emphasizes the additional gene­
specific information that is extracted via our NODDI-ra-
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diomics approach. This indicates that the increased param­
etrization of the ODI signal enables higher discrimination of 
the data, thus improving the specificity of the information 
provided by the ODI signal. 
[0081] Previous studies from both our laboratory and 
others have demonstrated convergence of microstructural 
alterations across autism models and have characterized the 
macrostructural relationships between the brains of different 
models of autism. Our results demonstrate the possibility of 
individual genetic subtyping of autism models, a task that 
has not been directly addressed with genetic models of 
autism. 
[0082] Ellegood et al. (Ellegood J, Anagnostou E, 
Babineau B A, Crawley J N, Lin L, Genestine M, et al. 
Clustering autism: using neuroanatomical differences in 26 
mouse models to gain insight into the heterogeneity. Mo! 
Psychiatry 2015;20: 118-25. https://doi.org/10.1038/MP. 
2014.98.) performed a large clustering analysis of genetic 
autism mouse models using volumetric measurements of 
neuroanatomy. This work established group-based differ­
ences and similarities between various models of autism 
through hierarchical clustering but did not explore indi­
vidual animal subtyping with their volumetric measure­
ments. Using our hippocampal ODI radiomic data, we 
produced three distinct clusters in which genetic information 
is contained: one cluster comprised solely of Pten animals, 
another cluster containing all Disc! animals, and a mixed 
cluster of Fmrl and Nrxnl animals. While two of the 
clusters contain all animals of a particular genetic subtype, 
the mixed cluster of Fmrl and Nrxnl suggests that these 
animals are more difficult to discriminate. This combined 
clustering ofFmrl and Nrxnl based upon neuroimaging has 
been previously reported by Ellegood et al., suggesting there 
is shared underlying neurobiology captured at both the gross 
structural scale and the microstructural scale in this analysis 
for these disease models. Also, performing clustering of the 
7 significant radiomic features as identified through ANO VA 
did not disambiguate Fmrl from Nrxnl and overall pro­
duced less distinct genetic clustering. This difference in 
clustering performance may suggest that the stringent sta­
tistical selection of radiomic features reduced the amount of 
biological information truly captured in the imaging signal. 
[0083] Overall, our analytical approach indicates that 
unsupervised hierarchical clustering of NODDI radiomic 
data can meaningfully categorize a mixed genetic popula­
tion, which proves to be a highly salient advance as we move 
towards the clinical translation of advanced neuroimaging 
methods. Although genetic subtyping of monogenetic ASD 
is important, the polygenetic and sporadic nature of de nova 
mutations commonly found in ASD suggests the methods 
that are able to capture, quantify, and discriminate biologi­
cally-related subtypes of ASD will be critical for under­
standing how genetic alterations associated with ASD are 
related to brain microstructure. As highlighted with our 
Fmrl and Nxml example above, our NODDI-radiomics 
approach mirrors a likely clinical vignette where most 
patients with autism are unlikely to have monogenetic 
disease but rather novel sporadic mutations. With further 
data or metrics, such as described above, the systems and 
methods provided herein can better subgroup and cluster 
patients based on neural microstructure rather than more 
subjective clinical evaluations or broad genetic categories. 
Doing so, creates neuro-microstructurally (and thus neuro­
biologically) relevant and related subgroups of ASD patients 
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for further study and tailored treatment beyond what is 
possible with current neuroimaging analyses. 
[0084] Strikingly, the ODI signal provided all the signifi­
cant differences identified in this study. Our previous analy­
ses focused on the axonal (FA) and intraneuritic (NDI) 
signals ofDTI and NODDI, respectively, which were unable 
to disambiguate these animal models from each other. On 
the other hand, the ODI signal captures the extra-neurite 
compartment of NODDI. Recent research suggests that 
non-neuronal cells and extracellular components in the brain 
contribute meaningfully to neuropsychiatric disease. Our 
group has found that changes in the ODI signal can corre­
spond to changes in microglia number, morphology, and 
activation state in various disease models. For this study, the 
observed changes in the ODI signal of the NODDI model 
may suggest potential differences in microglia or other 
cellular and molecular components of the extra-neurite 
space across these models of autism. The Disc! KO model 
has been characterized to have altered microglial number 
and morphology in the dentate gyrus and recent studies have 
implicated perineuronal nets (a specific component of the 
extracellular matrix) and altered hippocampal stem cell 
niche in in the pathogenesis of autism behaviors in genetic 
mouse models such as Fmrl. Our new findings in conjunc­
tion with our previous results highlight how MC-DWI 
models, such as but not limited to NODD I, can capture more 
complete, sensitive neurobiological signals that are beyond 
conventional imaging approaches used today. 
[0085] A common critique of radiomic studies is the lack 
of standardization and reproducibility. It has been demon­
strated repeatedly that a common source of discrepancy 
arises from non-standardized region of interest segmenta­
tion. Small alterations in brain alignment and ROI segmen­
tation can have drastic effects on the radiomic features 
calculated and thus affect the reproducibility of downstream 
analyses and generalizability of predictive models. This is of 
particular of concern in calculating radiomic features of 
neuroglial tumors in which the shape and borders of the 
tumors can be heterogenous and non-distinct. To account for 
this known limitation, we aligned all brains to a common 
subject space and performed automated ROI segmentation 
of annotated neuroanatomical regions. Similarly, radiomic 
feature extraction and calculation can use gray-level dis­
cretization which is determined by a user-set parameter or 
can be automated using rules that apply more consistently 
than human selection. Studies have demonstrated that vary­
ing discretization level in MRI and CT radiomic analyses 
can also drastically affect the calculated features and thus the 
method for discretization can be standardized. Though no 
formal guidelines exist for discretizing NODDI diffusion 
MRI images, previous MRI radiomics papers have sug­
gested using a fixed bin-width rather than a fixed bin­
number to improve reproducibility across processed images. 
To this recommendation, we performed gray-level discreti­
zation with a fixed bin-width of 0.1 for all images and 
signals analyzed. By following these methods of standard­
ization, our radiomics analysis pipeline ensures higher 
reproducibility than many radiomics studies that have been 
published. 
[0086] Experiment 2 demonstrates the ability to employ 
radiomic analyses of NODDI diffusion data to facilitate 
meaningful categorization and neuroimaging-based subtyp­
ing. The results identified differences in the extra-neurite 
compartment of the hippocampus between these models of 
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autism, which is a previously unreported finding. Using 
these radiomics data, we also demonstrated the potential to 
perform hierarchical clustering that could potentially cluster 
monogenetic sub-types of autism in an unsupervised man­
ner. Developing this ability to subtype based on underlying 
microstructural difference represents an important first step 
towards improved, biologically informed sub-grouping that 
is helpful as we seek to advance our understanding of ASD 
and the development of novel therapies for this underserved 
group of patients. The systems and methods provided herein 
also apply to other pathologies or conditions that can be 
identified, understood, tracked, or studied via neurobiology 
or pathophysiology, such as gene expression. As non-limit­
ing examples, the systems and methods can be applied to 
neurodegenerative diseases. The system and methods pro­
vided herein can be applied to Alzheimer's disease. 
[0087] Despite modem efforts aiming to describe the 
effect of gene expression on imaging-derived phenotypes 
(IDPs), a more precise relationship between the MR signal 
and gene expression remains was previously unavailable. As 
described above, the present disclosure uncovered and dem­
onstrated an intrinsic relationship between gene expression 
and the biophysically modeled diffusion signal and defined 
a new heuristic to understand the relationship between 
quantitative neuroimaging and gene expression in the brain. 
Specifically, multi-compartment diffusion data, such as NDI 
and ODI, can be used to understand spatially defined func­
tional gene expression. The presence of biologically salient 
intrinsic gene expression correlates in dMRI further and the 
present disclosure provides a genetic mechanisms for a 
given neural phenotype and expands the understanding of 
the fundamental relationship between the MR signal and 
neurobiology. 
[0088] The present disclosure provides system and meth­
ods for using non-invasively-acquired diffusion-weighted 
MR imaging to provide diagnosis and prognosis of neuro­
logical pathology. Biological inferences into molecular 
pathophysiology is performed through analysis of texture 
features from multi-compartment diffusion weighted MR. 
To improve the specificity of imaging data, highly param­
eterized texture features from multi-compartment diffusion 
weighted medical imaging data can be quantified. Texture 
features capture the spatial relationship between signals in 
an image. 
[0089] The use of these features for biomarker develop­
ment is predicated on the new understanding that texture 
features capture specific information about the underlying 
pathophysiology of the imaged region. The studies 
described above show that texture features are correlated 
with underlying gene expression of the cells in the imaged 
region. In the non-limiting studies, the correlation between 
MC-DWI modeled texture features of an imaged region and 
gene expression of the same imaged region has been dem­
onstrated to meaningfully capture the molecular pathophysi­
ology with non-invasive diffusion weighted MR imaging. 
[0090] In some implementations, devices or systems dis­
closed herein can be utilized or installed using methods 
embodying aspects of the invention. Correspondingly, 
description herein of particular features or capabilities of a 
device or system is generally intended to inherently include 
disclosure of a method of using such features for intended 
purposes and of implementing such capabilities. Similarly, 
express discussion of any method of using a particular 
device or system, unless otherwise indicated or limited, is 
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intended to inherently include disclosure, as embodiments of 
the invention, of the utilized features and implemented 
capabilities of such device or system. 
[0091] As used herein, unless otherwise limited or defined, 
"or" indicates a non-exclusive list of components or opera­
tions that can be present in any variety of combinations, 
rather than an exclusive list of components that can be 
present only as alternatives to each other. For example, a list 
of"A, B, or C" indicates options of: A; B; C; A and B; A and 
C; Band C; and A, B, and C. Correspondingly, the term "or" 
as used herein is intended to indicate exclusive alternatives 
only when preceded by terms of exclusivity, such as "only 
one of," or "exactly one of." For example, a list of"only one 
of A, B, or C" indicates options of: A, but not B and C; B, 
but not A and C; and C, but not A and B. In contrast, a list 
preceded by "one or more" (and variations thereon) and 
including "or" to separate listed elements indicates options 
of one or more of any or all of the listed elements. For 
example, the phrases "one or more of A, B, or C" and "at 
least one of A, B, or C" indicate options of: one or more A; 
one or more B; one or more C; one or more A and one or 
more B; one or more B and one or more C; one or more A 
and one or more C; and one or more A, one or more B, and 
one or more C. Similarly, a list preceded by "a plurality of' 
(and variations thereon) and including "or" to separate listed 
elements indicates options of one or more of each of 
multiple of the listed elements. For example, the phrases "a 
plurality of A, B, or C" and "two or more of A, B, or C" 
indicate options of: one or more A and one or more B; one 
or more B and one or more C; one or more A and one or more 
C; and one or more A, one or more B, and one or more C. 
[0092] The above-described system may be configured or 
otherwise used to carry out processes in accordance with the 
present disclosure. In particular, as will be described in 
further detail, the present invention has been described in 
terms of one or more preferred embodiments, and it should 
be appreciated that many equivalents, alternatives, varia­
tions, and modifications, aside from those expressly stated, 
are possible and within the scope of the invention. 

1. A magnetic resonance imaging (MRI) system compris­
ing: 

a magnet system configured to generate a polarizing 
magnetic field about at least a portion of a subject 
arranged in the MRI system; 

a plurality of gradient coils configured to apply a gradient 
field to the polarizing magnetic field; 

a radio frequency (RF) system configured to apply an 
excitation field to the subject and acquire MR image 
data from the subject; 

a computer system programmed to: 
control the plurality of gradient coils and the RF system 

to acquire diffusion-weighted MR image data; 
process the diffusion-weighted MR image data using a 

radiomic analysis to generate texture features; 
analyze the texture features to determine diagnostic or 

prognostic information about the subject; and 
generate a report communicating the diagnostic or 

prognostic information about the subject. 
2. The MRI system of claim 1, wherein the diagnostic or 

prognostic information about the subject includes an indi­
cation of a neurocognitive, a neurodegenerative, a neuro­
psychological, or a cancer pathology. 
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3. The MRI system of claim 1, wherein analyzing the 
texture features includes performing an unsupervised hier­
archical clustering analysis. 

4. The MRI system of claim 1, wherein analyzing the 
texture features includes accessing at least one look-up table 
that correlates the texture features to diagnostic or prognos­
tic information about the subject. 

5. The MRI system of claim 1, wherein processing the 
diffusion-weighted MR image data includes using a multi­
compartment diffusion model. 

6. The MRI system of claim 1, wherein the diffusion­
weighted MR image data includes neurite orientation dis­
persion and density imaging (NODDI) data. 

7. The MRI system of claim 6, wherein the computer 
system is further configured to process the NODDI data to 
determine at least one of a neurite density index (NDI) or an 
orientation dispersion index (ODI) component of the 
NODDI data. 

8. The MRI system of claim 1, wherein analyzing the 
texture features to determine diagnostic or prognostic infor­
mation about the subject includes providing the texture 
features to a trained neural network or machine learning 
system. 

9. The MRI system of claim 1, wherein generating the 
report communicating the diagnostic or prognostic informa­
tion about the subject includes providing the texture features 
to a trained neural network or machine learning system. 

10. The MRI system of claim 1, wherein analyzing the 
texture features to determine diagnostic or prognostic infor­
mation about the subject includes determining, using the 
texture features, information about gene expression in the 
subject. 

11. A method for performing transcriptomic MRI (TMRI) 
analysis of a subject, the method comprising: 

accessing diffusion-weighted MR image data acquired 
from the subject; 

processing the diffusion-weighted MR image data using a 
multi-compartment model; 

processing the diffusion-weighted MR image data using a 
radiomic analysis to generate texture features; 

analyzing the texture features to determine diagnostic or 
prognostic information about the subject; and 

generating a report communicating the diagnostic or 
prognostic information about the subject. 

12. The method of claim 11, wherein the diagnostic or 
prognostic information about the subject includes an indi­
cation of a neurocognitive, a neurodegenerative, a neuro­
psychological, or a cancer pathology. 

13. The method of claim 11, wherein analyzing the texture 
features includes performing an unsupervised hierarchical 
clustering analysis. 

14. The method of claim 11, wherein analyzing the texture 
features includes accessing at least one look-up table that 
correlates the texture features to diagnostic or prognostic 
information about the subject. 

15. The method of claim 11, wherein processing the 
diffusion-weighted MR image data includes using a multi­
compartment diffusion model. 

16. The method of claim 11, wherein the diffusion­
weighted MR image data includes neurite orientation dis­
persion and density imaging (NODDI) data. 

17. The method of claim 16, further comprising process­
ing the NODDI data to determine at least one of a neurite 
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density index (NDI) or an orientation dispersion index 
(ODI) component of the NOD DI data. 

18. The method of claim 10, wherein analyzing the texture 
features to determine diagnostic or prognostic information 
about the subject includes providing the texture features to 
a trained neural network or machine learning system. 

19. The method of claim 10, wherein generating the report 
communicating the diagnostic or prognostic information 
about the subject includes providing the texture features to 
a trained neural network or machine learning system. 

20. The method of claim 10, wherein analyzing the texture 
features to determine diagnostic or prognostic information 
about the subject includes determining, using the texture 
features, information about gene expression in the subject. 

* * * * * 
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