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ABSTRACT 

A scheduling system for heterogeneous processors having 
similar cores grouped by clusters employs a differentiable 
decision tree having nodes operating on multiple feature 
values indicating a current runtime state of the processor. By 
implementing the scheduling with a trained decision tree, 
extremely fast scheduling decisions can be made. 
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HETEROGENEOUS PROCESSOR WITH 
HIGH-SPEED DECISION TREE SCHEDULER 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

[0001] This invention was made with government support 
under FA8650- l 8-2-7860 awarded by the USAF/ AFMC and 
under CNS2114499 awarded by the National Science Foun­
dation. The government has certain rights in the invention. 

CROSS REFERENCE TO RELATED 
APPLICATION 

BACKGROUND OF THE INVENTION 

[0002] The present invention relates generally to hetero­
geneous computer architectures and more particularly to a 
system and methods for scheduling application tasks in such 
systems. 
[0003] The growing demand for high-performance and 
energy-efficient processing in machine learning, image pro­
cessing, and wireless communication has led to the rise of 
computer architectures combining general purpose proces­
sors with specialized hardware accelerators such as digital 
signal processors (DSPs ), image signal processors (ISPs ), 
and fixed function accelerators performing fast Fourier 
transform encoding and Viterbi decoding operations. 
[0004] Scheduling application tasks on such heteroge­
neous architectures is difficult. Simple heuristics can be used 
but they are typically limited to specific use cases that, by 
their nature, fall short of an optimal solution. More sophis­
ticated approaches, such as machine learning, incur high 
runtime overheads. 
[0005] Desirably a scheduling system could be developed 
to make near-optimal scheduling decisions within nanosec­
onds to be on par with the task execution times in such 
heterogeneous architectures. 

SUMMARY OF THE INVENTION 

[0006] The present invention provides a scheduling sys­
tem employing a decision tree scheduler capable of sophis­
ticated nanosecond scheduling decisions with relatively few 
calculations. The decision tree is designed to be differen­
tiable allowing it to be pre-trained using a simulation of the 
heterogeneous architecture. The training system may inte­
grate multiple objectives allowing runtime adjustment of the 
objectives with a single trained model. 
[0007] More specifically, in one embodiment, the inven­
tion provides a computer architecture having a plurality of 
heterogeneous processor cores having clusters of homoge­
neous processor cores. A computer memory stores the oper­
ating program instructions that, when executed on the com­
puter, cause the computer to: (1) collect a set of feature 
values related to the performance of the heterogeneous 
processor cores during up execution of an application pro­
gram instructions comprised of tasks; (2) identify a task of 
the application program instructions to be executed on a 
plurality of heterogeneous processor cores; (3) apply the 
feature values to a decision tree providing a set of nodes 
selecting among branches to other nodes according to a node 
function the feature values to identify a leaf node associated 
with a cluster; and ( 4) assign the task to the cluster identified 
by the identified leaf node. 
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[0008] It is thus a feature of at least one embodiment of the 
invention to provide a computationally fast and efficient 
mechanism for task scheduling consistent with the high­
speed operation of heterogeneous cores. 
[0009] The computer may further assign the task to a 
processor core of the identified cluster according to an 
availability of the processor cores. 
[001 OJ It is thus a feature of at least one embodiment of the 
invention to enlist a simple heuristic for selecting cores in a 
cluster where sophisticated analysis of the operating state of 
the computer is not required. 
[0011] The feature values may include any of a position of 
a task in a directed graph of the application, the application 
type, and the availability of processor cores within the 
clusters. 
[0012] It is thus a feature of at least one embodiment of the 
invention to identify important features that can affect 
scheduling efficiency and be readily determined during 
runtime. 
[0013] The operating program when executed on the com­
puter may receive an objective value indicating the desired 
trade-off between different scheduling objectives and 
wherein performance value is applied as a feature value to 
the decision tree. 
[0014] It is thus a feature of at least one embodiment of the 
invention to allow design-and run-time changes in schedul­
ing objectives, for example, to emphasize power consump­
tion or to emphasize execution speed. 
[0015] The decision tree maybe differentiable. 
[0016] It is thus a feature of at least one embodiment of the 
invention to provide a decision tree whose weights can be 
trained by reinforcement learning. 
[0017] The node functions in the decision tree maybe 
differentiable functions of multiple feature values. 
[0018] It is thus a feature of at least one embodiment of the 
invention to provide for effective use of a shallow decision 
tree for each node that can look at a full set of feature values. 
[0019] At least some node functions may be a vector 
multiplication of a weight factor times a vector of feature 
values. 
[0020] It is thus a feature of at least one embodiment of the 
invention to provide a scheduling system that greatly 
reduces the calculation burden compared to, for example, a 
neural network type structure. 
[0021] The node functions include multiple weight values 
trained using a simulation of the computer. 

[0022] It is thus a feature of at least one embodiment of the 
invention to provide a simple method of determining node 
weights. 

[0023] The training may employ multiple different appli­
cation programs and multiple objective values selected from 
the group consisting of: computer energy usage and appli­
cation program execution time. 

[0024] It is thus a feature of at least one embodiment of the 
invention to allow the scheduling system to accommodate 
multiple objective functions with a single set of trained 
weights, eliminating disruption when scheduling objectives 
change. 

[0025] These particular objects and advantages may apply 
to only some embodiments falling within the claims and thus 
do not define the scope of the invention. 
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BRIEF DESCRIPTION OF THE DRAWINGS 

[0026] FIG. 1 is a representation of a heterogeneous 
computer architecture suitable for incorporation of the 
scheduling system of the present invention and providing 
multiple cluster processing elements for executing applica­
tion programs and showing a representation of an applica­
tion program and its tasks as a directed flow graph (DFG); 

[0027] FIG. 2 is a flowchart showing operation of the 
scheduling system on the architecture of FIG. 1 using a 
differentiable decision tree; 

[0028] FIG. 3 is a logical representation a differentiable 
decision tree suitable for use in the present invention having 
leaf nodes identifying particular clusters for task scheduling; 
and 

[0029] FIG. 4 is a block diagram of a training system for 
training the differentiable decision tree of FIG. 3 prior to use. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

[0030] Referring now to FIG. 1, a heterogeneous computer 
10 suitable for use by the present invention may include a 
number of processing elements 12 grouped functionally by 
clusters 14. Example processing elements include, but are 
not limited to, the above-described digital signal processors 
(DSPs), image signal processors (ISPs), fixed function 
accelerators for matrix multiplication, fast Fourier transform 
encoding, and Viterbi decoding operations. The heteroge­
neous computer may provide an interface 11 to a user 
terminal, other computers, the Internet or the like. 

[0031] The heterogeneous computer 10 will also include 
one or more general purpose processing units (CPU) 16 and 
a memory structure 18, for example, comprising multiple 
levels of cache, main memory (DRAM), and disk memories 
as is generally understood in the art. 

[0032] The memory structure 18 may hold one or more 
application programs 26 to be executed by the heteroge­
neous computer 10 and a scheduling runtime program 22 as 
will be described below being part of a standard operating 
system 23. 

[0033] Generally, each application program 26 may pro­
vide a set of tasks 28 executing in a sequence that may be 
represented as a directed flow graph 29 comprised of nodes 
representing the tasks 28 and edges representing dependen­
cies between tasks 28. The scheduling runtime program 22 
operating in conjunction with the operating system 23 will 
monitor an operating state of the heterogeneous computer 10 
and will guide the allocation of the tasks 28 to particular 
processing elements 12 and clusters 14 to optimize objec­
tives such as execution speed and power consumption as 
may change from time to time during operation. 

[0034] Referring now to FIG. 2, the scheduling runtime 
program 22, and as indicated by process block 30, may 
receive from the operating system 23, a task 28 of the 
application program 26 to be assigned to a processing 
element 12. Concurrently or during idle time as indicated by 
process block 32 the scheduling runtime program 22 moni­
tors a number of performance features relevant to scheduling 
objectives as indicated in Table I 
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TABLE I 

Feature Information Description 

Task ID a unique identifier of the task within an 
application of the task being scheduled 

Depth of task in DFG a position of the task being scheduled 
within the directed flow graph 

Application type The type of application (e.g., wireless 
connnunication) of the task being 
scheduled 

Execution time on C a set of values indicating how quickly 
clusters the processing elements in each given 

cluster execute 
Application ID a unique identifier of the application of 

the task being scheduled 
Earliest availability of a set of values providing earliest 
C clusters availability of any processing element 

within each given cluster 
Objective preference a value indicating a desired trade-off 

between two objectives, for example, 
energy consumption and execution 
speed. 

[0035] Each of these features may be determined during 
run time and represents a state of the heterogeneous com­
puter 10 with the exception of the objective preference. The 
objective preference instead will be provided independently 
by the operating system according to a user preference or 
other system parameter, for example, assessing battery life, 
ambient temperature, or the like, and may vary during 
runtime. 

Decision Tree Run Time Scheduling 

[0036] Referring now also to FIG. 3, when a task 28 for 
scheduling arrives at process block 30, the values of the 
features of Table I are applied as a vector xi to a decision tree 
40 for determining a cluster 14 to which the task 28 will be 
assigned. 

[0037] As is generally understood in the art, a decision tree 
is a hierarchical arrangement of nodes 42 in a tree-like 
structure extending between a root node 42' and a set of leaf 
nodes 42". At each of the root nodes 42' and the intermediate 
nodes 42 above the leaf nodes 42", a feature value x is 
compared to a corresponding threshold cp to make a binary 
decision determining along which path to proceed to one of 
a next pair of nodes 42 ( either to the left or to the right node). 
Traversing the decision tree 40 from a root node 42' to a leaf 
node 42" results in a decision indicated by the single leaf 
node 42"arrived at after the cumulative branch decisions. 

[0038] The present invention employs a variation on a 
standard decision tree to provide a differentiable decision 
tree 40 where the decisions about proceeding to a next node 
42 are based on a continuous function of all feature values. 
The function at each node 42 result is non-binary (continu­
ous) value representing a decision to go down both branches 
to the next nodes 42 carrying different weight values deter­
mined by the continuous function. So, for example, the 
continuous function may produce a value between O and 1, 
with the value of zero indicating the path down the left 
branch carrying a weight of 1 and a value of one indicating 
a path down the right branch carrying a weight of 1 and the 
value of 0.6 indicating a path down the left branch carrying 
a weight of 0.6 and a path down the right branch carrying a 
weight of 0.4. This structure is described in A. Silva, M. 
Gombolay, T. Killian, I. Jimenez, and S.-H. Son, Optimiza­
tion Methods for Interpretable Differentiable Decision Trees 
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Applied to Reinforcement Leaming, in International Con­
ference on Artificial Intelligence and Statistics, pages 1855-
1865. PMLR, 2020. 
[0039] The resulting leaf node 42" selected during this 
process will be the leaf node 42" whose path from the leaf 
node 42' to itself is associated with the largest accumulated 
weight. Each given leaf node 42" is associated with a 
particular cluster 14 thus a determination of a leaf node 42 
also determines the cluster 14 to which a task 28 should be 
assigned. 
[0040] In one embodiment, the function at each node will 
take as arguments a vector of each feature value x, that will 
be multiplied by a vector of learned weights w,. The result­
ing sum then has a bias value cp subtracted from it ( analogous 
to the threshold value of a normal decision tree), and this 
result is applied to a sigmoid function after being multiplied 
by a scaling value a. The sigmoid function operates to 
provide a continuous and thus differentiable value bounded 
between O and 1 that determines the relative weights 
assigned to each of the different branches from that node that 
will ultimately be accumulated at the leaf nodes 42". 
[0041] The number of levels of nodes 42 in the decision 
tree 40 (that is the number of nodes from the root node 42' 
to any leaf node 42") can be constrained to less than the 
number of features x because each feature is evaluated at 
each level. In experimental evaluations with five clusters, as 
few as three levels of nodes may be used to evaluate sixteen 
features. It will therefore be appreciated that the computa­
tional burden of implementing the nodes 42 and the decision 
tree 40 is relatively small compared to a typical neural 
network having neurons that are multiply connected. Sig­
nificantly, a review of the weights w at each node 42 can 
provide an intuitive understanding of the relative evaluation 
being performed in contrast to reviewing of the weights of 
a neural network which provide little intuitive understanding 
of their operation with respect to the final output. 
[0042] Referring again to FIG. 2, once the cluster 14 is 
identified from the leaf node 42", as indicated by process 
block 36, a simple heuristic may be employed to identify a 
particular processing element 12 within the cluster 14, for 
example, choosing the processing element 12 having the 
earliest availability. 
[0043] At process block 38 the task is assigned to the 
identified processing element and the program repeats. 

Off-Line Decision Tree Training 

[0044] Referring now to FIGS. 1 and 4, training of the 
decision tree 40 requires determining the weight values w 
for each node 42 above the leaf nodes 42". This may be done 
by constructing a simulator 50 for the particular heteroge­
neous computer 10, for example, as described in S. E. Arda 
et al. DS3: A System-Level Domain-Specific System-on­
Chip Simulation Framework. IEEE Trans. on Computers, 
69(8): 1248-1262, 2020. A training system 52 using rein­
forcement learning may then read a current operating state 
54 from the simulator 50 (representing the feature values) 
and provide scheduling instructions 56 controlling how 
tasks 28 of application programs 26 received by the simu­
lator 50 are allocated to the simulated processing elements 
12. These scheduling instructions 56 may originally be 
quasi-random but after many iterations of training converge 
on a Pareto optimal solution. In this regard, the simulator 50 
receives tasks 28 from a library of different application 
programs 26 representative of the intended workload of the 
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heterogeneous computer 10. Each of the application pro­
grams 26 may be manually identified as to application type 
or this labeling may be performed automatically by static 
analysis of the application program 26. 
[0045] As application programs 26 are run and tasks 28 
are scheduled, a reward generator 60 monitors simulated 
measures of the scheduling objectives (e.g., power con­
sumption, execution time) and develops a multidimensional 
reward vector 62 which is received by the training system 52 
to incrementally adjust the weights to optimize the desired 
scheduling objectives. 
[0046] As a preliminary step, a masking is performed to 
prevent scheduling of a task 28 on a processing clement 12 
functionally incapable of executing that task. Optimization 
of the weights is then performed using any of a variety of 
optimization techniques to determine the weights w, for 
example, PPO as discussed in this application. 

MO-PPO Training 

[0047] In one nonlimiting embodiment, the invention may 
employ a multi-objective reinforcement learning such as 
Multi-Objective Reinforcement Leaming (MORL) to extend 
Proximal Policy Optimization (PPO). PPO is described in J. 
Schulman, F. Wolski, P. Dhariwal, A. Radford, and 0. 
Klimov, Proximal Policy Optimization Algorithms, arXiv 
preprint arXiv: 1707.06347, 2017and MORL is described 
generally in X. Chen, A. Ghadirzadeh, M. Bjealunan, and P. 
Jensfelt, Meta-learning for multi-objective reinforcement 
learning, in 2019 IEEE/RS.7 International Conference on 
Intelligent Robots and Systems (IROS), pages 977-983. 
IEEE, 2019; and in J. Xu, Y. Tian, P. Ma, D. Rus, S. Sueda, 
and W. Matusik, Prediction-guided multi-objective rein­
forcement learning for continuous robot control, in Interna­
tional Conference on Machine Learning, pages 10607-
10616. PMLR, 2020. 
[0048] Considering this process in more detail, task sched­
uling, at its core, is an NP-hard sequential decision-making 
problem. It can be formulated as a Markov Decision Process 
(MDP) defined by the tuple($, A, P, r, y), where$, cA, 
P(s'ls, a), r, and y represent state space, action space, 
transition distribution, reward vector, and discount factor, 
respectively. Reinforcement Leaming (RL) is a class of 
algorithms that aims to find an optimal policy for an agent 
to maximize its cumulative reward in an MDP. According to 
the state s of the environment and the current policy it, the 
agent chooses an action a. Based on this action, the envi­
ronment returns the next state s' and reward r. The expected 
cumulative rewards starting from state s following a policy 
it can be represented as state value function, V"(s). The RL 
algorithm then iteratively updates the agent's policy (it) and 
value function (V") based on the feedback received from the 
environment in the form of rewards. This process continues 
until the agent reaches a terminal state or a maximum 
number of steps. 
[0049] In a multi-objective setting, each objective is asso­
ciated with a reward signal, which transforms the scalar 
reward into a vector r=[ri, r2, ... , rMf, where Mis the 
number of objectives. This vectorized reward can be repre­
sented by a vectorized state value function MV90 (s). In the 
RL domain, scalarization is the most commonly used 
approach to solve multi-objective optimization problems. 
This approach transforms the reward vector into a single 
scalar, fw(r)=wrr. The MDP is then transformed into a 
multi-objective Markov decision process (MOMDP), 
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defined by the tuple (S , cfl , J>, r, .Q, fro), where r and .Q 

represent the reward vector and preference space, respec­
tively. Using a preference COE .Q, the function f'°(r)=coTr 
yields a scalarized reward. If we fix co as a vector, the 
MOMDP can be treated as a standard MDP and solved using 
conventional RL methods. Nonetheless, if we consider all 
possible returns and preferences in .Q, we can obtain a set of 
non-dominated policies referred to as the Pareto front. This 
set includes non-optimal solutions. A policy n: is considered 
Pareto optimal if no other policy n:' enhances the expected 
return for an objective without causing degradation in the 
expected return of any other objective. 
[0050] In this optimization, we extend the standard proxi­
mal policy optimization (PPO) algorithm to a multi-objec­
tive (MO-PPO) variant by considering a vectorized reward 
(r) and state value function (VTC). Both the policy and the 
state value function take preference vector co as input, 
efficiently learning the multi-dimensional objective space. 
[0051] The value network is vectorized to efficiently learn 
to model multiple objectives for a given preference vector co. 
Specifically, the value network takes state s and preference 
vector co as inputs and outputs I cA IXM state values, where 
M is the number of objectives. Therefore, the state value 
function becomes V q,(s, co), which returns a vector of 
expected returns for a given state s and preference co by 
following a current policy n:0 . During training, the vector­
ized value network is updated by minimizing the mean­
squared error between estimated and target values using 
gradient descent as the optimization algorithm: 

[0052] The vectorization of the reward and state value 
function results in a vectorized advantage function, as fol­
lows: 

[0053] To compute the modified advantage function, COT A 
(s,, a,, co), a weighted-sum scalarization is applied to the 
advantage function, similar to the state value function. 
Furthermore, in our implementation, the policy takes the 
preference vector, co, as an additional input along with the 
state s, to make a decision. The policy loss for the multi­
objective PPO 
[0054] (MO-PPO) is then given by: 

1 IT • ( T • T ) Le= - mm p(0)w A(s,, a,, w), chp(p(0), 1 - E, 1 + e)w A(s,, a,, w) 
T t=O 

where 

[0055] To ensure efficient runtime task scheduling, having 
a neural network with high inference overhead is not desir­
able. Instead, we use a differentiable decision tree (DDT) as 
the policy with sigmoid as the activation function at each 
node. The MO-PPO algorithm can be used for the DDT 
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policy without requiring modifications. For the value net­
work, fully connected layers with hyperbolic tangent acti­
vation functions are employed. 
[0056] Algorithm I (below) outlines the training process of 
the DTRL framework. At the beginning of each episode 
during training, we randomly sample a preference vector 
(COE .Q: L;_0 L CO;=l) from a uniform distribution. To deter­
mine the workload intensity of the task scheduling problem, 
the simulation framework takes the target throughput (e.g., 
frames per milliseconds) as input. Thus, at the start of each 
episode, we randomly sample a target throughput y. 

Algorithm I 

Input: Total number of time steps N, Number of steps to run 
per policy rollout T, Discount factory, Number of epochs to 
update the policy and value network K, Minibatch size b, 
Number of child processes P, Clipping value E . 
Initialize: DDT policy n:0 and value network V <i' with param­
eters 0 and <p, Random policy n:0 . 

[0057] while Total Number of Steps<N do 
[0058] //Child Process 
[0059] Reset the environment to state s0 and randomly 

initialize target throughput y. 
[0060] Sample a preference vector co from the subspace 

n. 
[0061] for t=O: T do 

[0062] Choose a, according the current policy n:0 and 
invalid action mask a,m. 

[0063] Collect samples {s,, a,, r,, s',, done} by inter­
acting with the environment using action a,. 

[0064] Obtain A,, r,+V q,(St+1' co), and 1t80ja,ls,, n:) using 
DDT and the value network. 

[0065] Transfer populated (s, a, r, s', co, am, A, r+V q,(s, 
co), 1t

80
jals, co)) to main process. 

[0066] //Main Process 
[0067] Store the incoming transitions from child pro­

cesses in a trajectory buffer with size PxT. 
[0068] for k=l: K do 

[0069] for i=O: (PX T/b) do 
[0070] idxs,ar,=dX(b-1) 
[0071] idxencdX(b) 
[0072] Sample a minibatch from the trajectory 

buffer according to start and end indices. 
[0073] Obtain value estimates and new n:0 . 

[0074] Calculate L0 and L<i' 
[0075] Update 0 and <p by applying SGD to L0 and 

L<i'. 
[0076] A vectorized architecture with a single policy to 
gather transitions from multiple environments is described 
in J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and 0. 
Klimov. Proximal Policy Optimization Algorithms. arXiv 
preprint arXiv: 1707.06347, 2017 and used to increase the 
sample efficiency of this algorithm. We initialize P child 
processes with different seeds. The DDT policy and the 
value network are shared among child processes and the 
main process. We divide the preference space into P sub­
spaces (Q) and assign a subspace to each child process. Each 
child process is responsible for its own preference sub­
space, and in each child process, a preference vector is 
randomly sampled from its assigned sub-space. Using the 
policy n:0 , we collect T amount of samples. Using these 
samples, advantages A,, target values r,+ V q,(st+1, co), and the 
probabilities 1t801d (a,ls,, co) are obtained. The original PPO 
implementation uses generalized advantage estimation 
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(GAE) to calculate advantages. We also employ this tech­
nique with a GAE parameter of 0.95. These child processes 
run in parallel to collect transitions and do necessary com­
putations using the same DDT policy and value network. 
The obtained transitions are then transmitted to the main 
process, where they are stored in a trajectory buffer of size 
PxT. 

[0077] The algorithm then updates both the value network 
and the DDT policy parameters (<p, 0) according to the loss 
functions described in equations 1 and 3. The total number 
of optimization steps required to update the parameters is 
determined by the number of epochs K and the minibatch 
size b. We use an Adam optimizer with a learning rate of 
3E-4 for both the DDT policy and the value network. The 
hyperparameters for DTRL are presented in Table I. 

TABLE I 

Hyperparameter Description Value 

p Number of parallel processes 10 

NLayer Number of hidden layers in the 1 
value network 

NNeuron Number of hidden neurons in 64 
the value network 

depth Depth of DDT policy 3 
N Total number of time steps for 3 X 107 

the entire training 
T Number of steps to run per 1024 

policy rollout 
y Discount factor 0.99 
A GAE Parameter 0.95 
E Clipping factor 0.1 
K Number of epochs to update 20 

the policy and value network 
b Minibatch size 64 
lr Leaming Rate 3 X 10--4 

[0078] The heterogeneous computers 10, as noted, typi­
cally consist of general-purpose cores and fixed-function 
accelerators (e.g., fast Fourier transform (FFT), forward 
error correction (FEC), finite impulse response (FIR). These 
accelerators do not support all tasks streaming into the 
DSSoC. Consequently, some tasks involve invalid actions 
during training. DTRL should be able to manage invalid 
actions for efficient and stable training. The most common 
approach to penalize invalid actions is giving a high nega­
tive reward such that the agent learns to maximize the 
reward by not taking any invalid action. However, this 
approach suffers from low explorative capabilities and 
spends a vast amount of time learning invalid actions at each 
state, especially when the action space dimension is large. 
Therefore, in our work, we use invalid action masking per S. 
Huang and S. Ontafion. A closer look at invalid action 
masking in policy gradient algorithms. arXiv preprint arXiv: 
2006.14171, 2020 to constrain the DTRL agent to only 
choose clusters of PEs that support the given task. 

[0079] In our algorithm, the policy (re0 ) generates logits (l;, 
i=l, ... , I .A I), which are subsequently converted to action 
probabilities (res( a;I s)) via a softmax operation. During train­
ing, an action is selected by sampling from a distribution of 
these probabilities, denoted as ree(-ls). The policy is updated 
using gradient descent, similar to other policy gradient 
approaches. Invalid action masking is applied by setting the 
logits of invalid actions to a large negative number, typically 
- lxl08

. This ensures that the probability of these masked 
actions is zero, without compromising the gradient update. 
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In fact, this technique enhances the gradient update, as the 
gradient corresponding to the logits of masked actions 
becomes zero. 

Background on PPO 

[0080] Proximal policy optimization (PPO), described in 
J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and 0. 
Klimov. Proximal Policy Optimization Algorithms. arXiv 
preprint arXiv: 1707.06347, 2017, is a policy gradient 
algorithm that aims to improve the training stability of the 
policy by updating it conservatively according to a certain 
surrogate objective function. Policy gradient algorithms 
typically update the policy network by computing the gra­
dient of the policy, multiplied by the discounted cumulative 
rewards, and using it as a loss function with a gradient ascent 
algorithm. This update is typically performed using samples 
from multiple episodes since the discounted cumulative 
rewards can vary widely due to the different trajectories 
followed by each episode. To mitigate this variance, an 
advantage function is introduced as a bias to quantify the 
benefits of the goodness of taking action a in state s and is 
represented as: 

[0081] Here, ')'E[O,l] is the discount factor, and Vq,(s) is 
the value network that estimates the expected discounted 
sum of rewards for a given state s. 
[0082] At each optimization step during training, the PPO 
algorithm forces the distance between the new policy (re0 

(als)) and the old policy (re80jals)) to be small. It achieves 
its goal using the following loss function and the advantage 
function: 

!Ir Le = - min(p(0)A,, clip(p(0), 1 - E, 1 +E)A,) 
T t=O 

where, T is the total time steps of collected data. The 
equation presented involves two policies: re0 jals), which is 
used to collect samples by interacting with the environment, 
and ree(als), which is being updated using the loss function. 
PPO introduces a constraint on the difference between 
re80Jals) and ree(als) by applying a clipping operation on the 
ratio p(0) between two distributions, with the clipping 
threshold E being a hyperparameter of the algorithm. Addi­
tionally, an entropy term may be added to the loss function 
to promote sufficient exploration. 
[0083] During training, the value network V q,(s) is also 
updated by minimizing the mean-squared error between 
estimated and target values using gradient descent as the 
optimization algorithm: 

[0084] Certain terminology is used herein for purposes of 
reference only, and thus is not intended to be limiting. For 
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example, terms such as "upper", "lower", "above", and 
"below" refer to directions in the drawings to which refer­
ence is made. Terms such as "front", "back", "rear", "bot­
tom" and "side", describe the orientation of portions of the 
component within a consistent but arbitrary frame of refer­
ence which is made clear by reference to the text and the 
associated drawings describing the component under dis­
cussion. Such terminology may include the words specifi­
cally mentioned above, derivatives thereof, and words of 
similar import. Similarly, the terms "first", "second" and 
other such numerical terms referring to structures do not 
imply a sequence or order unless clearly indicated by the 
context. 

[0085] When introducing elements or features of the pres­
ent disclosure and the exemplary embodiments, the articles 
"a", "an", "the" and "said" are intended to mean that there 
are one or more of such elements or features. The terms 
"comprising", "including" and "having" are intended to be 
inclusive and mean that there may be additional elements or 
features other than those specifically noted. It is further to be 
understood that the method steps, processes, and operations 
described herein are not to be construed as necessarily 
requiring their performance in the particular order discussed 
or illustrated, unless specifically identified as an order of 
performance. It is also to be understood that additional or 
alternative steps may be employed. 

[0086] References to "a microprocessor" and "a proces­
sor" or "the microprocessor" and "the processor," can be 
understood to include one or more microprocessors that can 
communicate in a stand-alone and/or a distributed environ­
ment(s ), and can thus be configured to communicate via 
wired or wireless communications with other processors, 
where such one or more processor can be configured to 
operate on one or more processor-controlled devices that can 
be similar or different devices. Furthermore, references to 
memory, unless otherwise specified, can include one or more 
processor-readable and accessible memory elements and/or 
components that can be internal to the processor-controlled 
device, external to the processor-controlled device, and can 
be accessed via a wired or wireless network. 

[0087] It is specifically intended that the present invention 
not be limited to the embodiments and illustrations con­
tained herein and the claims should be understood to include 
modified forms of those embodiments including portions of 
the embodiments and combinations of elements of different 
embodiments as come within the scope of the following 
claims. All of the publications described herein, including 
patents and non-patent publications, are hereby incorporated 
herein by reference in their entireties. 

[0088] To aid the Patent Office and any readers of any 
patent issued on this application in interpreting the claims 
appended hereto, applicants wish to note that they do not 
intend any of the appended claims or claim elements to 
invoke 35 U.S.C. 112 (f) unless the words "means for" or 
"step for" are explicitly used in the particular claim. 

What we claim is: 

1. A computer architecture of a computer comprising: 

a plurality of heterogeneous processor cores having clus­
ters of homogeneous processor cores; and 
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a computer memory storing operating program instruc­
tions that when executed on the computer cause the 
computer to: 

(1) collect a set of feature values related to performance 
of the heterogeneous processor cores during up execu­
tion of application program instructions comprised of 
tasks; 

(2) identify a task of the application program instructions 
to be executed on a plurality of heterogeneous proces­
sor cores; 

(3) apply the feature values to a decision tree providing a 
set of nodes selecting among branches to other nodes 
according to a node function and the feature values to 
identify to a leaf node associated with a cluster; and 

( 4) assign the task to the cluster identified by the identified 
leaf node. 

2. The computer architecture of claim 1 wherein the 
operating program when executed on the computer further 
assigns the task to a processor core of the identified cluster 
according to an availability of the processor cores. 

3. The computer architecture of claim 1 wherein the 
feature values are selected from the group consisting of: a 
position of a task in a directed graph of the application, an 
application type, and an availability of processor cores 
within the clusters. 

4. The computer architecture of claim 1 wherein the 
operating program when executed on the computer receives 
an objective value indicating desired trade-off between 
different scheduling objectives and wherein performance 
value is applied as a feature value to the decision tree. 

5. The computer architecture of claim 4 wherein the 
objective value indicates a desired balance between energy­
power consumption of the computer and execution speed of 
the application program. 

6. The computer architecture of claim 1 wherein the 
decision tree is differentiable. 

7. The computer architecture of claim 1 wherein at least 
some node functions are differentiable functions of multiple 
feature values. 

8. The computer architecture of claim 7 wherein at least 
some node functions are a vector multiplication of a weight 
factor times a vector of feature values. 

9. The computer architecture of claim 1 wherein the node 
functions include multiple weight values trained using a 
simulation of the computer. 

10. The computer architecture of claim 9 wherein the 
training employs multiple different application programs 
and multiple objective values selected from the group con­
sisting of: computer energy usage and application program 
execution time. 

11. A method of scheduling tasks on a computer archi­
tecture having a plurality of heterogeneous processor cores 
having clusters of homogeneous processor cores, compris­
ing: 

(1) collecting a set of feature values related to perfor­
mance of the heterogeneous processor cores during up 
execution of application program instructions com­
prised of tasks; 

(2) identifying a task of the application program instruc­
tions to be executed on a plurality of heterogeneous 
processor cores; 

(3) applying the feature values to a decision tree providing 
a set of nodes selecting among branches to other nodes 
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according to a node function the feature values to 
identify to a leaf node associated with a cluster; and 

( 4) assigning the task to the cluster identified by the 
identified leaf node. 

12. The method of claim 11 further including assigning 
the task to a processor core of the identified cluster accord­
ing to an availability of the processor cores. 

13. The method of claim 11 wherein the feature values are 
selected from the group consisting of: a position of a task in 
a directed graph of the application, an application type, and 
an availability of processor cores within the clusters. 

14. The method of claim 11 including receiving an 
objective value indicating desired trade-off between differ­
ent scheduling objectives and wherein performance value is 
applied as a feature value to the decision tree. 

15. The method of claim 14 wherein the objective value 
indicates a desired balance between energy consumption of 
the computer and execution speed of the application pro­
gram. 
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16. The method of claim 11 wherein the decision tree is 
differentiable. 

17. The method of claim 11 wherein at least some node 
functions are differentiable functions of multiple feature 
values. 

18. The method of claim 17 wherein at least some node 
functions are a vector multiplication of a weight factor times 
a vector of feature values. 

19. The method of claim 11 wherein the node functions 
include multiple weight values trained using a simulation of 
the computer. 

20. The method of claim 19 wherein the training employs 
multiple different application programs and multiple objec­
tive values selected from the group consisting of: 

computer energy usage and application program execu­
tion time. 

* * * * * 
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