
1111111111111111 IIIIII IIIII 1111111111 11111 11111 111111111111111 lllll 111111111111111 11111111
US 20250068462Al

c19) United States
c12) Patent Application Publication

Ogras et al.
c10) Pub. No.: US 2025/0068462 Al
(43) Pub. Date: Feb. 27, 2025

(54) HETEROGENEOUS PROCESSOR WITH
HIGH-SPEED DECISION TREE SCHEDULER

(71) Applicant: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(72) Inventors: Umit Ogras, Middleton, WI (US);
Toygun Basaklar, Madison, WI (US);
Ahmet Goksoy, Madison, WI (US);
Anish Krishnakumar, Madison, WI
(US)

(21) Appl. No.: 18/236,638

(22) Filed: Aug. 22, 2023

22

\
~ '

NEXT TASK

i

Publication Classification

(51) Int. Cl.
G06F 9/38 (2006.01)

(52) U.S. Cl.
CPC G06F 9/4881 (2013.01); G06F 2209/501

(57)

(2013.01); G06F 2209/503 (2013.01); G06F
2209/505 (2013.01)

ABSTRACT

A scheduling system for heterogeneous processors having
similar cores grouped by clusters employs a differentiable
decision tree having nodes operating on multiple feature
values indicating a current runtime state of the processor. By
implementing the scheduling with a trained decision tree,
extremely fast scheduling decisions can be made.

,30 r 32
MEASURE SYSTEM - STATE

,34
APPLY FEATURES TO - OBJECTIVE DECISION TREE

i ,36

SELECT CLUSTER

i ,38

SELECT PE

I

Patent Application Publication Feb. 27, 2025 Sheet 1 of 2 US 2025/0068462 Al

18
23
22
26

22

\

16 14 14 14

FIG. 1

30

NEXT TASK

34

APPLY FEATURES TO
DECISION TREE

36

SELECT CLUSTER

38

SELECT PE

FIG. 2

/10

11

MEASURE SYSTEM
STATE

OBJECTIVE

32

Patent Application Publication Feb. 27, 2025 Sheet 2 of 2 US 2025/0068462 Al

22

40~

FIG. 3

54
60

D
SIMULATOR 26

REWARD
50 GENERATOR

56
62

FIG. 4

US 2025/0068462 Al

HETEROGENEOUS PROCESSOR WITH
HIGH-SPEED DECISION TREE SCHEDULER

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

[0001] This invention was made with government support
under FA8650- l 8-2-7860 awarded by the USAF/ AFMC and
under CNS2114499 awarded by the National Science Foun­
dation. The government has certain rights in the invention.

CROSS REFERENCE TO RELATED
APPLICATION

BACKGROUND OF THE INVENTION

[0002] The present invention relates generally to hetero­
geneous computer architectures and more particularly to a
system and methods for scheduling application tasks in such
systems.
[0003] The growing demand for high-performance and
energy-efficient processing in machine learning, image pro­
cessing, and wireless communication has led to the rise of
computer architectures combining general purpose proces­
sors with specialized hardware accelerators such as digital
signal processors (DSPs), image signal processors (ISPs),
and fixed function accelerators performing fast Fourier
transform encoding and Viterbi decoding operations.
[0004] Scheduling application tasks on such heteroge­
neous architectures is difficult. Simple heuristics can be used
but they are typically limited to specific use cases that, by
their nature, fall short of an optimal solution. More sophis­
ticated approaches, such as machine learning, incur high
runtime overheads.
[0005] Desirably a scheduling system could be developed
to make near-optimal scheduling decisions within nanosec­
onds to be on par with the task execution times in such
heterogeneous architectures.

SUMMARY OF THE INVENTION

[0006] The present invention provides a scheduling sys­
tem employing a decision tree scheduler capable of sophis­
ticated nanosecond scheduling decisions with relatively few
calculations. The decision tree is designed to be differen­
tiable allowing it to be pre-trained using a simulation of the
heterogeneous architecture. The training system may inte­
grate multiple objectives allowing runtime adjustment of the
objectives with a single trained model.
[0007] More specifically, in one embodiment, the inven­
tion provides a computer architecture having a plurality of
heterogeneous processor cores having clusters of homoge­
neous processor cores. A computer memory stores the oper­
ating program instructions that, when executed on the com­
puter, cause the computer to: (1) collect a set of feature
values related to the performance of the heterogeneous
processor cores during up execution of an application pro­
gram instructions comprised of tasks; (2) identify a task of
the application program instructions to be executed on a
plurality of heterogeneous processor cores; (3) apply the
feature values to a decision tree providing a set of nodes
selecting among branches to other nodes according to a node
function the feature values to identify a leaf node associated
with a cluster; and (4) assign the task to the cluster identified
by the identified leaf node.

1
Feb.27,2025

[0008] It is thus a feature of at least one embodiment of the
invention to provide a computationally fast and efficient
mechanism for task scheduling consistent with the high­
speed operation of heterogeneous cores.
[0009] The computer may further assign the task to a
processor core of the identified cluster according to an
availability of the processor cores.
[001 OJ It is thus a feature of at least one embodiment of the
invention to enlist a simple heuristic for selecting cores in a
cluster where sophisticated analysis of the operating state of
the computer is not required.
[0011] The feature values may include any of a position of
a task in a directed graph of the application, the application
type, and the availability of processor cores within the
clusters.
[0012] It is thus a feature of at least one embodiment of the
invention to identify important features that can affect
scheduling efficiency and be readily determined during
runtime.
[0013] The operating program when executed on the com­
puter may receive an objective value indicating the desired
trade-off between different scheduling objectives and
wherein performance value is applied as a feature value to
the decision tree.
[0014] It is thus a feature of at least one embodiment of the
invention to allow design-and run-time changes in schedul­
ing objectives, for example, to emphasize power consump­
tion or to emphasize execution speed.
[0015] The decision tree maybe differentiable.
[0016] It is thus a feature of at least one embodiment of the
invention to provide a decision tree whose weights can be
trained by reinforcement learning.
[0017] The node functions in the decision tree maybe
differentiable functions of multiple feature values.
[0018] It is thus a feature of at least one embodiment of the
invention to provide for effective use of a shallow decision
tree for each node that can look at a full set of feature values.
[0019] At least some node functions may be a vector
multiplication of a weight factor times a vector of feature
values.
[0020] It is thus a feature of at least one embodiment of the
invention to provide a scheduling system that greatly
reduces the calculation burden compared to, for example, a
neural network type structure.
[0021] The node functions include multiple weight values
trained using a simulation of the computer.

[0022] It is thus a feature of at least one embodiment of the
invention to provide a simple method of determining node
weights.

[0023] The training may employ multiple different appli­
cation programs and multiple objective values selected from
the group consisting of: computer energy usage and appli­
cation program execution time.

[0024] It is thus a feature of at least one embodiment of the
invention to allow the scheduling system to accommodate
multiple objective functions with a single set of trained
weights, eliminating disruption when scheduling objectives
change.

[0025] These particular objects and advantages may apply
to only some embodiments falling within the claims and thus
do not define the scope of the invention.

US 2025/0068462 Al

BRIEF DESCRIPTION OF THE DRAWINGS

[0026] FIG. 1 is a representation of a heterogeneous
computer architecture suitable for incorporation of the
scheduling system of the present invention and providing
multiple cluster processing elements for executing applica­
tion programs and showing a representation of an applica­
tion program and its tasks as a directed flow graph (DFG);

[0027] FIG. 2 is a flowchart showing operation of the
scheduling system on the architecture of FIG. 1 using a
differentiable decision tree;

[0028] FIG. 3 is a logical representation a differentiable
decision tree suitable for use in the present invention having
leaf nodes identifying particular clusters for task scheduling;
and

[0029] FIG. 4 is a block diagram of a training system for
training the differentiable decision tree of FIG. 3 prior to use.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

[0030] Referring now to FIG. 1, a heterogeneous computer
10 suitable for use by the present invention may include a
number of processing elements 12 grouped functionally by
clusters 14. Example processing elements include, but are
not limited to, the above-described digital signal processors
(DSPs), image signal processors (ISPs), fixed function
accelerators for matrix multiplication, fast Fourier transform
encoding, and Viterbi decoding operations. The heteroge­
neous computer may provide an interface 11 to a user
terminal, other computers, the Internet or the like.

[0031] The heterogeneous computer 10 will also include
one or more general purpose processing units (CPU) 16 and
a memory structure 18, for example, comprising multiple
levels of cache, main memory (DRAM), and disk memories
as is generally understood in the art.

[0032] The memory structure 18 may hold one or more
application programs 26 to be executed by the heteroge­
neous computer 10 and a scheduling runtime program 22 as
will be described below being part of a standard operating
system 23.

[0033] Generally, each application program 26 may pro­
vide a set of tasks 28 executing in a sequence that may be
represented as a directed flow graph 29 comprised of nodes
representing the tasks 28 and edges representing dependen­
cies between tasks 28. The scheduling runtime program 22
operating in conjunction with the operating system 23 will
monitor an operating state of the heterogeneous computer 10
and will guide the allocation of the tasks 28 to particular
processing elements 12 and clusters 14 to optimize objec­
tives such as execution speed and power consumption as
may change from time to time during operation.

[0034] Referring now to FIG. 2, the scheduling runtime
program 22, and as indicated by process block 30, may
receive from the operating system 23, a task 28 of the
application program 26 to be assigned to a processing
element 12. Concurrently or during idle time as indicated by
process block 32 the scheduling runtime program 22 moni­
tors a number of performance features relevant to scheduling
objectives as indicated in Table I

2
Feb.27,2025

TABLE I

Feature Information Description

Task ID a unique identifier of the task within an
application of the task being scheduled

Depth of task in DFG a position of the task being scheduled
within the directed flow graph

Application type The type of application (e.g., wireless
connnunication) of the task being
scheduled

Execution time on C a set of values indicating how quickly
clusters the processing elements in each given

cluster execute
Application ID a unique identifier of the application of

the task being scheduled
Earliest availability of a set of values providing earliest
C clusters availability of any processing element

within each given cluster
Objective preference a value indicating a desired trade-off

between two objectives, for example,
energy consumption and execution
speed.

[0035] Each of these features may be determined during
run time and represents a state of the heterogeneous com­
puter 10 with the exception of the objective preference. The
objective preference instead will be provided independently
by the operating system according to a user preference or
other system parameter, for example, assessing battery life,
ambient temperature, or the like, and may vary during
runtime.

Decision Tree Run Time Scheduling

[0036] Referring now also to FIG. 3, when a task 28 for
scheduling arrives at process block 30, the values of the
features of Table I are applied as a vector xi to a decision tree
40 for determining a cluster 14 to which the task 28 will be
assigned.

[0037] As is generally understood in the art, a decision tree
is a hierarchical arrangement of nodes 42 in a tree-like
structure extending between a root node 42' and a set of leaf
nodes 42". At each of the root nodes 42' and the intermediate
nodes 42 above the leaf nodes 42", a feature value x is
compared to a corresponding threshold cp to make a binary
decision determining along which path to proceed to one of
a next pair of nodes 42 (either to the left or to the right node).
Traversing the decision tree 40 from a root node 42' to a leaf
node 42" results in a decision indicated by the single leaf
node 42"arrived at after the cumulative branch decisions.

[0038] The present invention employs a variation on a
standard decision tree to provide a differentiable decision
tree 40 where the decisions about proceeding to a next node
42 are based on a continuous function of all feature values.
The function at each node 42 result is non-binary (continu­
ous) value representing a decision to go down both branches
to the next nodes 42 carrying different weight values deter­
mined by the continuous function. So, for example, the
continuous function may produce a value between O and 1,
with the value of zero indicating the path down the left
branch carrying a weight of 1 and a value of one indicating
a path down the right branch carrying a weight of 1 and the
value of 0.6 indicating a path down the left branch carrying
a weight of 0.6 and a path down the right branch carrying a
weight of 0.4. This structure is described in A. Silva, M.
Gombolay, T. Killian, I. Jimenez, and S.-H. Son, Optimiza­
tion Methods for Interpretable Differentiable Decision Trees

US 2025/0068462 Al

Applied to Reinforcement Leaming, in International Con­
ference on Artificial Intelligence and Statistics, pages 1855-
1865. PMLR, 2020.
[0039] The resulting leaf node 42" selected during this
process will be the leaf node 42" whose path from the leaf
node 42' to itself is associated with the largest accumulated
weight. Each given leaf node 42" is associated with a
particular cluster 14 thus a determination of a leaf node 42
also determines the cluster 14 to which a task 28 should be
assigned.
[0040] In one embodiment, the function at each node will
take as arguments a vector of each feature value x, that will
be multiplied by a vector of learned weights w,. The result­
ing sum then has a bias value cp subtracted from it (analogous
to the threshold value of a normal decision tree), and this
result is applied to a sigmoid function after being multiplied
by a scaling value a. The sigmoid function operates to
provide a continuous and thus differentiable value bounded
between O and 1 that determines the relative weights
assigned to each of the different branches from that node that
will ultimately be accumulated at the leaf nodes 42".
[0041] The number of levels of nodes 42 in the decision
tree 40 (that is the number of nodes from the root node 42'
to any leaf node 42") can be constrained to less than the
number of features x because each feature is evaluated at
each level. In experimental evaluations with five clusters, as
few as three levels of nodes may be used to evaluate sixteen
features. It will therefore be appreciated that the computa­
tional burden of implementing the nodes 42 and the decision
tree 40 is relatively small compared to a typical neural
network having neurons that are multiply connected. Sig­
nificantly, a review of the weights w at each node 42 can
provide an intuitive understanding of the relative evaluation
being performed in contrast to reviewing of the weights of
a neural network which provide little intuitive understanding
of their operation with respect to the final output.
[0042] Referring again to FIG. 2, once the cluster 14 is
identified from the leaf node 42", as indicated by process
block 36, a simple heuristic may be employed to identify a
particular processing element 12 within the cluster 14, for
example, choosing the processing element 12 having the
earliest availability.
[0043] At process block 38 the task is assigned to the
identified processing element and the program repeats.

Off-Line Decision Tree Training

[0044] Referring now to FIGS. 1 and 4, training of the
decision tree 40 requires determining the weight values w
for each node 42 above the leaf nodes 42". This may be done
by constructing a simulator 50 for the particular heteroge­
neous computer 10, for example, as described in S. E. Arda
et al. DS3: A System-Level Domain-Specific System-on­
Chip Simulation Framework. IEEE Trans. on Computers,
69(8): 1248-1262, 2020. A training system 52 using rein­
forcement learning may then read a current operating state
54 from the simulator 50 (representing the feature values)
and provide scheduling instructions 56 controlling how
tasks 28 of application programs 26 received by the simu­
lator 50 are allocated to the simulated processing elements
12. These scheduling instructions 56 may originally be
quasi-random but after many iterations of training converge
on a Pareto optimal solution. In this regard, the simulator 50
receives tasks 28 from a library of different application
programs 26 representative of the intended workload of the

3
Feb.27,2025

heterogeneous computer 10. Each of the application pro­
grams 26 may be manually identified as to application type
or this labeling may be performed automatically by static
analysis of the application program 26.
[0045] As application programs 26 are run and tasks 28
are scheduled, a reward generator 60 monitors simulated
measures of the scheduling objectives (e.g., power con­
sumption, execution time) and develops a multidimensional
reward vector 62 which is received by the training system 52
to incrementally adjust the weights to optimize the desired
scheduling objectives.
[0046] As a preliminary step, a masking is performed to
prevent scheduling of a task 28 on a processing clement 12
functionally incapable of executing that task. Optimization
of the weights is then performed using any of a variety of
optimization techniques to determine the weights w, for
example, PPO as discussed in this application.

MO-PPO Training

[0047] In one nonlimiting embodiment, the invention may
employ a multi-objective reinforcement learning such as
Multi-Objective Reinforcement Leaming (MORL) to extend
Proximal Policy Optimization (PPO). PPO is described in J.
Schulman, F. Wolski, P. Dhariwal, A. Radford, and 0.
Klimov, Proximal Policy Optimization Algorithms, arXiv
preprint arXiv: 1707.06347, 2017and MORL is described
generally in X. Chen, A. Ghadirzadeh, M. Bjealunan, and P.
Jensfelt, Meta-learning for multi-objective reinforcement
learning, in 2019 IEEE/RS.7 International Conference on
Intelligent Robots and Systems (IROS), pages 977-983.
IEEE, 2019; and in J. Xu, Y. Tian, P. Ma, D. Rus, S. Sueda,
and W. Matusik, Prediction-guided multi-objective rein­
forcement learning for continuous robot control, in Interna­
tional Conference on Machine Learning, pages 10607-
10616. PMLR, 2020.
[0048] Considering this process in more detail, task sched­
uling, at its core, is an NP-hard sequential decision-making
problem. It can be formulated as a Markov Decision Process
(MDP) defined by the tuple($, A, P, r, y), where$, cA,
P(s'ls, a), r, and y represent state space, action space,
transition distribution, reward vector, and discount factor,
respectively. Reinforcement Leaming (RL) is a class of
algorithms that aims to find an optimal policy for an agent
to maximize its cumulative reward in an MDP. According to
the state s of the environment and the current policy it, the
agent chooses an action a. Based on this action, the envi­
ronment returns the next state s' and reward r. The expected
cumulative rewards starting from state s following a policy
it can be represented as state value function, V"(s). The RL
algorithm then iteratively updates the agent's policy (it) and
value function (V") based on the feedback received from the
environment in the form of rewards. This process continues
until the agent reaches a terminal state or a maximum
number of steps.
[0049] In a multi-objective setting, each objective is asso­
ciated with a reward signal, which transforms the scalar
reward into a vector r=[ri, r2, ... , rMf, where Mis the
number of objectives. This vectorized reward can be repre­
sented by a vectorized state value function MV90 (s). In the
RL domain, scalarization is the most commonly used
approach to solve multi-objective optimization problems.
This approach transforms the reward vector into a single
scalar, fw(r)=wrr. The MDP is then transformed into a
multi-objective Markov decision process (MOMDP),

US 2025/0068462 Al

defined by the tuple (S , cfl , J>, r, .Q, fro), where r and .Q

represent the reward vector and preference space, respec­
tively. Using a preference COE .Q, the function f'°(r)=coTr
yields a scalarized reward. If we fix co as a vector, the
MOMDP can be treated as a standard MDP and solved using
conventional RL methods. Nonetheless, if we consider all
possible returns and preferences in .Q, we can obtain a set of
non-dominated policies referred to as the Pareto front. This
set includes non-optimal solutions. A policy n: is considered
Pareto optimal if no other policy n:' enhances the expected
return for an objective without causing degradation in the
expected return of any other objective.
[0050] In this optimization, we extend the standard proxi­
mal policy optimization (PPO) algorithm to a multi-objec­
tive (MO-PPO) variant by considering a vectorized reward
(r) and state value function (VTC). Both the policy and the
state value function take preference vector co as input,
efficiently learning the multi-dimensional objective space.
[0051] The value network is vectorized to efficiently learn
to model multiple objectives for a given preference vector co.
Specifically, the value network takes state s and preference
vector co as inputs and outputs I cA IXM state values, where
M is the number of objectives. Therefore, the state value
function becomes V q,(s, co), which returns a vector of
expected returns for a given state s and preference co by
following a current policy n:0 . During training, the vector­
ized value network is updated by minimizing the mean­
squared error between estimated and target values using
gradient descent as the optimization algorithm:

[0052] The vectorization of the reward and state value
function results in a vectorized advantage function, as fol­
lows:

[0053] To compute the modified advantage function, COT A
(s,, a,, co), a weighted-sum scalarization is applied to the
advantage function, similar to the state value function.
Furthermore, in our implementation, the policy takes the
preference vector, co, as an additional input along with the
state s, to make a decision. The policy loss for the multi­
objective PPO
[0054] (MO-PPO) is then given by:

1 IT • (T • T) Le= - mm p(0)w A(s,, a,, w), chp(p(0), 1 - E, 1 + e)w A(s,, a,, w)
T t=O

where

[0055] To ensure efficient runtime task scheduling, having
a neural network with high inference overhead is not desir­
able. Instead, we use a differentiable decision tree (DDT) as
the policy with sigmoid as the activation function at each
node. The MO-PPO algorithm can be used for the DDT

4
Feb.27,2025

policy without requiring modifications. For the value net­
work, fully connected layers with hyperbolic tangent acti­
vation functions are employed.
[0056] Algorithm I (below) outlines the training process of
the DTRL framework. At the beginning of each episode
during training, we randomly sample a preference vector
(COE .Q: L;_0 L CO;=l) from a uniform distribution. To deter­
mine the workload intensity of the task scheduling problem,
the simulation framework takes the target throughput (e.g.,
frames per milliseconds) as input. Thus, at the start of each
episode, we randomly sample a target throughput y.

Algorithm I

Input: Total number of time steps N, Number of steps to run
per policy rollout T, Discount factory, Number of epochs to
update the policy and value network K, Minibatch size b,
Number of child processes P, Clipping value E .
Initialize: DDT policy n:0 and value network V <i' with param­
eters 0 and <p, Random policy n:0 .

[0057] while Total Number of Steps<N do
[0058] //Child Process
[0059] Reset the environment to state s0 and randomly

initialize target throughput y.
[0060] Sample a preference vector co from the subspace

n.
[0061] for t=O: T do

[0062] Choose a, according the current policy n:0 and
invalid action mask a,m.

[0063] Collect samples {s,, a,, r,, s',, done} by inter­
acting with the environment using action a,.

[0064] Obtain A,, r,+V q,(St+1' co), and 1t80ja,ls,, n:) using
DDT and the value network.

[0065] Transfer populated (s, a, r, s', co, am, A, r+V q,(s,
co), 1t

80
jals, co)) to main process.

[0066] //Main Process
[0067] Store the incoming transitions from child pro­

cesses in a trajectory buffer with size PxT.
[0068] for k=l: K do

[0069] for i=O: (PX T/b) do
[0070] idxs,ar,=dX(b-1)
[0071] idxencdX(b)
[0072] Sample a minibatch from the trajectory

buffer according to start and end indices.
[0073] Obtain value estimates and new n:0 .

[0074] Calculate L0 and L<i'
[0075] Update 0 and <p by applying SGD to L0 and

L<i'.
[0076] A vectorized architecture with a single policy to
gather transitions from multiple environments is described
in J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and 0.
Klimov. Proximal Policy Optimization Algorithms. arXiv
preprint arXiv: 1707.06347, 2017 and used to increase the
sample efficiency of this algorithm. We initialize P child
processes with different seeds. The DDT policy and the
value network are shared among child processes and the
main process. We divide the preference space into P sub­
spaces (Q) and assign a subspace to each child process. Each
child process is responsible for its own preference sub­
space, and in each child process, a preference vector is
randomly sampled from its assigned sub-space. Using the
policy n:0 , we collect T amount of samples. Using these
samples, advantages A,, target values r,+ V q,(st+1, co), and the
probabilities 1t801d (a,ls,, co) are obtained. The original PPO
implementation uses generalized advantage estimation

US 2025/0068462 Al

(GAE) to calculate advantages. We also employ this tech­
nique with a GAE parameter of 0.95. These child processes
run in parallel to collect transitions and do necessary com­
putations using the same DDT policy and value network.
The obtained transitions are then transmitted to the main
process, where they are stored in a trajectory buffer of size
PxT.

[0077] The algorithm then updates both the value network
and the DDT policy parameters (<p, 0) according to the loss
functions described in equations 1 and 3. The total number
of optimization steps required to update the parameters is
determined by the number of epochs K and the minibatch
size b. We use an Adam optimizer with a learning rate of
3E-4 for both the DDT policy and the value network. The
hyperparameters for DTRL are presented in Table I.

TABLE I

Hyperparameter Description Value

p Number of parallel processes 10

NLayer Number of hidden layers in the 1
value network

NNeuron Number of hidden neurons in 64
the value network

depth Depth of DDT policy 3
N Total number of time steps for 3 X 107

the entire training
T Number of steps to run per 1024

policy rollout
y Discount factor 0.99
A GAE Parameter 0.95
E Clipping factor 0.1
K Number of epochs to update 20

the policy and value network
b Minibatch size 64
lr Leaming Rate 3 X 10--4

[0078] The heterogeneous computers 10, as noted, typi­
cally consist of general-purpose cores and fixed-function
accelerators (e.g., fast Fourier transform (FFT), forward
error correction (FEC), finite impulse response (FIR). These
accelerators do not support all tasks streaming into the
DSSoC. Consequently, some tasks involve invalid actions
during training. DTRL should be able to manage invalid
actions for efficient and stable training. The most common
approach to penalize invalid actions is giving a high nega­
tive reward such that the agent learns to maximize the
reward by not taking any invalid action. However, this
approach suffers from low explorative capabilities and
spends a vast amount of time learning invalid actions at each
state, especially when the action space dimension is large.
Therefore, in our work, we use invalid action masking per S.
Huang and S. Ontafion. A closer look at invalid action
masking in policy gradient algorithms. arXiv preprint arXiv:
2006.14171, 2020 to constrain the DTRL agent to only
choose clusters of PEs that support the given task.

[0079] In our algorithm, the policy (re0) generates logits (l;,
i=l, ... , I .A I), which are subsequently converted to action
probabilities (res(a;I s)) via a softmax operation. During train­
ing, an action is selected by sampling from a distribution of
these probabilities, denoted as ree(-ls). The policy is updated
using gradient descent, similar to other policy gradient
approaches. Invalid action masking is applied by setting the
logits of invalid actions to a large negative number, typically
- lxl08

. This ensures that the probability of these masked
actions is zero, without compromising the gradient update.

5
Feb.27,2025

In fact, this technique enhances the gradient update, as the
gradient corresponding to the logits of masked actions
becomes zero.

Background on PPO

[0080] Proximal policy optimization (PPO), described in
J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and 0.
Klimov. Proximal Policy Optimization Algorithms. arXiv
preprint arXiv: 1707.06347, 2017, is a policy gradient
algorithm that aims to improve the training stability of the
policy by updating it conservatively according to a certain
surrogate objective function. Policy gradient algorithms
typically update the policy network by computing the gra­
dient of the policy, multiplied by the discounted cumulative
rewards, and using it as a loss function with a gradient ascent
algorithm. This update is typically performed using samples
from multiple episodes since the discounted cumulative
rewards can vary widely due to the different trajectories
followed by each episode. To mitigate this variance, an
advantage function is introduced as a bias to quantify the
benefits of the goodness of taking action a in state s and is
represented as:

[0081] Here, ')'E[O,l] is the discount factor, and Vq,(s) is
the value network that estimates the expected discounted
sum of rewards for a given state s.
[0082] At each optimization step during training, the PPO
algorithm forces the distance between the new policy (re0

(als)) and the old policy (re80jals)) to be small. It achieves
its goal using the following loss function and the advantage
function:

!Ir Le = - min(p(0)A,, clip(p(0), 1 - E, 1 +E)A,)
T t=O

where, T is the total time steps of collected data. The
equation presented involves two policies: re0 jals), which is
used to collect samples by interacting with the environment,
and ree(als), which is being updated using the loss function.
PPO introduces a constraint on the difference between
re80Jals) and ree(als) by applying a clipping operation on the
ratio p(0) between two distributions, with the clipping
threshold E being a hyperparameter of the algorithm. Addi­
tionally, an entropy term may be added to the loss function
to promote sufficient exploration.
[0083] During training, the value network V q,(s) is also
updated by minimizing the mean-squared error between
estimated and target values using gradient descent as the
optimization algorithm:

[0084] Certain terminology is used herein for purposes of
reference only, and thus is not intended to be limiting. For

US 2025/0068462 Al

example, terms such as "upper", "lower", "above", and
"below" refer to directions in the drawings to which refer­
ence is made. Terms such as "front", "back", "rear", "bot­
tom" and "side", describe the orientation of portions of the
component within a consistent but arbitrary frame of refer­
ence which is made clear by reference to the text and the
associated drawings describing the component under dis­
cussion. Such terminology may include the words specifi­
cally mentioned above, derivatives thereof, and words of
similar import. Similarly, the terms "first", "second" and
other such numerical terms referring to structures do not
imply a sequence or order unless clearly indicated by the
context.

[0085] When introducing elements or features of the pres­
ent disclosure and the exemplary embodiments, the articles
"a", "an", "the" and "said" are intended to mean that there
are one or more of such elements or features. The terms
"comprising", "including" and "having" are intended to be
inclusive and mean that there may be additional elements or
features other than those specifically noted. It is further to be
understood that the method steps, processes, and operations
described herein are not to be construed as necessarily
requiring their performance in the particular order discussed
or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or
alternative steps may be employed.

[0086] References to "a microprocessor" and "a proces­
sor" or "the microprocessor" and "the processor," can be
understood to include one or more microprocessors that can
communicate in a stand-alone and/or a distributed environ­
ment(s), and can thus be configured to communicate via
wired or wireless communications with other processors,
where such one or more processor can be configured to
operate on one or more processor-controlled devices that can
be similar or different devices. Furthermore, references to
memory, unless otherwise specified, can include one or more
processor-readable and accessible memory elements and/or
components that can be internal to the processor-controlled
device, external to the processor-controlled device, and can
be accessed via a wired or wireless network.

[0087] It is specifically intended that the present invention
not be limited to the embodiments and illustrations con­
tained herein and the claims should be understood to include
modified forms of those embodiments including portions of
the embodiments and combinations of elements of different
embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications, are hereby incorporated
herein by reference in their entireties.

[0088] To aid the Patent Office and any readers of any
patent issued on this application in interpreting the claims
appended hereto, applicants wish to note that they do not
intend any of the appended claims or claim elements to
invoke 35 U.S.C. 112 (f) unless the words "means for" or
"step for" are explicitly used in the particular claim.

What we claim is:

1. A computer architecture of a computer comprising:

a plurality of heterogeneous processor cores having clus­
ters of homogeneous processor cores; and

6
Feb.27,2025

a computer memory storing operating program instruc­
tions that when executed on the computer cause the
computer to:

(1) collect a set of feature values related to performance
of the heterogeneous processor cores during up execu­
tion of application program instructions comprised of
tasks;

(2) identify a task of the application program instructions
to be executed on a plurality of heterogeneous proces­
sor cores;

(3) apply the feature values to a decision tree providing a
set of nodes selecting among branches to other nodes
according to a node function and the feature values to
identify to a leaf node associated with a cluster; and

(4) assign the task to the cluster identified by the identified
leaf node.

2. The computer architecture of claim 1 wherein the
operating program when executed on the computer further
assigns the task to a processor core of the identified cluster
according to an availability of the processor cores.

3. The computer architecture of claim 1 wherein the
feature values are selected from the group consisting of: a
position of a task in a directed graph of the application, an
application type, and an availability of processor cores
within the clusters.

4. The computer architecture of claim 1 wherein the
operating program when executed on the computer receives
an objective value indicating desired trade-off between
different scheduling objectives and wherein performance
value is applied as a feature value to the decision tree.

5. The computer architecture of claim 4 wherein the
objective value indicates a desired balance between energy­
power consumption of the computer and execution speed of
the application program.

6. The computer architecture of claim 1 wherein the
decision tree is differentiable.

7. The computer architecture of claim 1 wherein at least
some node functions are differentiable functions of multiple
feature values.

8. The computer architecture of claim 7 wherein at least
some node functions are a vector multiplication of a weight
factor times a vector of feature values.

9. The computer architecture of claim 1 wherein the node
functions include multiple weight values trained using a
simulation of the computer.

10. The computer architecture of claim 9 wherein the
training employs multiple different application programs
and multiple objective values selected from the group con­
sisting of: computer energy usage and application program
execution time.

11. A method of scheduling tasks on a computer archi­
tecture having a plurality of heterogeneous processor cores
having clusters of homogeneous processor cores, compris­
ing:

(1) collecting a set of feature values related to perfor­
mance of the heterogeneous processor cores during up
execution of application program instructions com­
prised of tasks;

(2) identifying a task of the application program instruc­
tions to be executed on a plurality of heterogeneous
processor cores;

(3) applying the feature values to a decision tree providing
a set of nodes selecting among branches to other nodes

US 2025/0068462 Al

according to a node function the feature values to
identify to a leaf node associated with a cluster; and

(4) assigning the task to the cluster identified by the
identified leaf node.

12. The method of claim 11 further including assigning
the task to a processor core of the identified cluster accord­
ing to an availability of the processor cores.

13. The method of claim 11 wherein the feature values are
selected from the group consisting of: a position of a task in
a directed graph of the application, an application type, and
an availability of processor cores within the clusters.

14. The method of claim 11 including receiving an
objective value indicating desired trade-off between differ­
ent scheduling objectives and wherein performance value is
applied as a feature value to the decision tree.

15. The method of claim 14 wherein the objective value
indicates a desired balance between energy consumption of
the computer and execution speed of the application pro­
gram.

7
Feb.27,2025

16. The method of claim 11 wherein the decision tree is
differentiable.

17. The method of claim 11 wherein at least some node
functions are differentiable functions of multiple feature
values.

18. The method of claim 17 wherein at least some node
functions are a vector multiplication of a weight factor times
a vector of feature values.

19. The method of claim 11 wherein the node functions
include multiple weight values trained using a simulation of
the computer.

20. The method of claim 19 wherein the training employs
multiple different application programs and multiple objec­
tive values selected from the group consisting of:

computer energy usage and application program execu­
tion time.

* * * * *

	Front Page
	Drawings
	Specification
	Claims

