
1111111111111111 IIIIII IIIII 1111111111 11111 1111111111 1111111111 1111111111 1111111111 11111111
US 20250181584Al

c19) United States
c12) Patent Application Publication

Yu et al.
(10) Pub. No.: US 2025/0181584 Al
(43) Pub. Date: Jun. 5, 2025

(54) PREDICATE TRANSFER PRE-FILTERING
ON MULTI-JOIN QUERIES

(52) U.S. Cl.
CPC G06F 16/2456 (2019.01); G06F 16/24544

(2019.01); G06F 16/248 (2019.01)
(71) Applicant: Wisconsin Alumni Research

Foundation, Madison, WI (US)

(72) Inventors: Xiangyao Yu, Madison, WI (US); (57) ABSTRACT

Paraschos Koutris, Madison, CT (US)

(21) Appl. No.: 18/537,081

(22) Filed: Dec. 12, 2023
Described herein are systems and methods for predicate
transfer pre-filtering on multi-join queries for a database.
According to an aspect, a method includes receiving a query
of a database including a plurality of tables, constructing a
join graph, and constructing a local predicate including a
filter. The method also includes transferring the local predi­
cate across the join graph, applying the local filter and one
or more transferred filters to the tables of the join graph,
performing join operations on the filtered tables of the join
graph, and returning a result of the query based on joining
the filtered tables.

(30) Foreign Application Priority Data

Nov. 30, 2023 (GR) 20230100993

Publication Classification

(51) Int. Cl.
G06F 1612455
G06F 1612453
G06F 16/248

(2019.01)
(2019.01)
(2019.01)

500

~
Receive a query of a database including a plurality of tables

l
Construct a join graph including a plurality of vertices and
edges, where each of the vertices corresponds to one of

the tables to be accessed in response to the query and each
of the edges corresponds to a join operation

1
Construct a local predicate including a filter

\ I

Transfer the local predicate across the join graph such that
two or more of the tables of the join graph have a local

filter and one or more transferred filters

\ I

Apply the local filter and one or more transferred filters to
the tables of the join graph

"
Perform join operations on the filtered tables of the join

graph

\I/

Return a result of the query based on joining the filtered
tables

505

~ 510

315

I'-- 520

i\.525

I'-- 530

_535

Patent Application Publication Jun. 5, 2025 Sheet 1 of 5 US 2025/0181584 Al

r 100

Remote Remote

Systems Systems

Network
126 126

140

~
114

ri;:: 142

ts
110 Database

Processing 102 Management

User
System System

Interface
1 104 t 1 106 1

Predicate
Transfer
Control

128
116

130 Data Storage System

\Predicate Database
136 Transfer

Database Schema
System

101

138

Tables

FIG. 1

Patent Application Publication Jun. 5, 2025 Sheet 2 of 5 US 2025/0181584 Al

r 200

204 208

nation nation key supplier suppkey

25 210 SF*lOK
216

region key 206 I) nation key ..._,/ 210
cit:

region 'olJ. customer 212 lineitem ~e;,,
5 202 SF*lSOK SF*6000K

predicate custkey 220
on r_name

orders
224 218 SF*lSOOK

222
predicate on
o_orderdate

226

FIG. 2

r 300

302
Forward pass ---------

316

304 Backward pass,_ ______ _

FIG. 3

Patent Application Publication Jun. 5, 2025 Sheet 3 of 5 US 2025/0181584 Al

Table N-1

418

Index 404

Index 404

414

Incoming

Join Key

416

r 400

r Table N
-, 402

Data 406 Data 408 Index 410 Data 412

•

•

•

Data 406 Data 408 Index 410 Data 412

420

Outgoing

Join Key

422

FIG. 4

Table N+1

424

Patent Application Publication Jun. 5, 2025 Sheet 4 of 5 US 2025/0181584 Al

500

~
Receive a query of a database including a plurality of tables

505

Construct a join graph including a plurality of vertices and
edges, where each of the vertices corresponds to one of

the tables to be accessed in response to the query and each i\.
of the edges corresponds to a join operation 510

Construct a local predicate including a filter
315

"
Transfer the local predicate across the join graph such that

~ two or more of the tables of the join graph have a local 520

filter and one or more transferred filters

' I

Apply the local filter and one or more transferred filters to
the tables of the join graph ~525

\ I

Perform join operations on the filtered tables of the join
graph ~530

' I

Return a result of the query based on joining the filtered
tables ~535

FIG. 5

Patent Application Publication Jun. 5, 2025 Sheet 5 of 5 US 2025/0181584 Al

600

~

Create an outgoing filter for a table based on receiving an ~
incoming filter 605

I /

Scan the table for an incoming join key and an outgoing join key
610

I /

Probe the incoming filter with the incoming join key
615

I /

Add the outgoing join key to the outgoing filter based on
detecting a match between the incoming join key and the

i\..620

incoming filter

I /

Send the outgoing filter to one or more downstream tables of the
predicate transfer graph !\.625

FIG. 6

US 2025/0181584 Al

PREDICATE TRANSFER PRE-FILTERING
ON MULTI-JOIN QUERIES

FIELD OF THE DISCLOSURE

[0001] The present disclosure is related to computer sys­
tems, particularly to predicate transfer pre-filtering on multi­
join queries in database systems.

BACKGROUND

[0002] Large scale database systems can be time and
resource intensive to search, particularly where complex
relationships exist between records in multiple tables. Query
operations can be used to search databases for records that
may be distributed across multiple tables. Tables can include
many rows of records that can be related by key or index
values distributed across tables. As table size and relation­
ship complexity increases, the process of searching for
records with related values distributed across tables can
consume greater amounts of processing and memory
resources, resulting in slower responsiveness of database
systems.

BRIEF SUMMARY

[0003] In an aspect a method includes receiving, by a
predicate transfer system including at least one processor
and a memory system, a query of a database including a
plurality of tables. The method also includes constructing,
by the predicate transfer system, a join graph including a
plurality of vertices and edges, where each of the vertices
corresponds to one of the tables to be accessed in response
to the query and each of the edges corresponds to a join
operation. The method additionally includes constructing,
by the predicate transfer system, a local predicate including
a filter. The method further includes transferring, by the
predicate transfer system, the local predicate across the join
graph such that two or more of the tables of the join graph
have a local filter and one or more transferred filters. The
local filter and one or more transferred filters can be applied
to the tables of the join graph. Join operations can be
performed on the filtered tables of the join graph and a result
of the query returned based on joining the filtered tables.
[0004] According to an aspect, a system includes a
memory system having a plurality of computer readable
instructions and one or more processors configured to
execute the computer readable instructions to perfom1 a
plurality of operations. The operations include receiving
query of a database including a plurality of tables and
constructing a join graph including a plurality of vertices
and edges. Each of the vertices corresponds to one of the
tables to be accessed in response to the query and each of the
edges corresponds to a join operation. The operations also
include constructing a local predicate including a filter,
transferring the local predicate across the join graph such
that two or more of the tables of the join graph have a local
filter and one or more transferred filters, and applying the
local filter and one or more transferred filters to the tables of
the join graph. The operations can further include perform­
ing join operations on the filtered tables of the join graph and
returning a result of the query based on joining the filtered
tables.
[0005] According to a further aspect, a computer program
product includes a computer readable storage medium
embodied with computer program instructions that when

Jun.5,2025

executed by one or more processors cause the one or more
processors to perfom1 a plurality of operations including
receiving a query of a database including a plurality of tables
and constructing a join graph including a plurality of verti­
ces and edges, where each of the vertices corresponds to one
of the tables to be accessed in response to the query and each
of the edges corresponds to a join operation. The operations
can also include constructing a local predicate including a
filter, transferring the local predicate across the join graph
such that two or more of the tables of the join graph have a
local filter and one or more transferred filters, applying the
local filter and one or more transferred filters to the tables of
the join graph, and performing join operations on the filtered
tables of the join graph. The operations can further include
returning a result of the query based on joining the filtered
tables.
[0006] Additional features and advantages are realized
through the techniques of the present invention. Other
embodiments and aspects of the invention are described in
detail herein and are considered a part of the claimed
invention. For a better understanding of the invention with
the advantages and the features, refer to the description and
to the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The specifics of the exclusive rights described
herein are particularly pointed out and distinctly claimed in
the claims at the conclusion of the specification. The fore­
going and other features and advantages of the embodiments
of the invention are apparent from the following detailed
description taken in conjunction with the accompanying
drawings in which:
[0008] FIG. 1 depicts a system in accordance with one or
more embodiments;
[0009] FIG. 2 depicts a join graph example in accordance
with one or more embodiments;
[0010] FIG. 3 depicts a predicate transfer graph example
in accordance with one or more embodiments;
[0011] FIG. 4 depicts filter creation and processing to
support predicate transfer in accordance with one or more
embodiments;
[0012] FIG. 5 depicts a predicate transfer process in accor­
dance with one or more embodiments; and
[0013] FIG. 6 depicts a filter transformation process in
accordance with one or more embodiments.
[0014] The diagrams depicted herein are illustrative.
There can be many variations to the diagrams or the opera­
tions described therein without departing from the spirit of
the invention. For instance, the actions can be performed in
a differing order or actions can be added, deleted or modi­
fied. All of these variations are considered a part of the
specification.

DETAILED DESCRIPTION

[0015] Described herein are methods, systems, and com­
puter program products for predicate transfer that include
pre-filtering on multi-join queries in database systems. In an
aspect, join performance can be improved by pre-filtering
tables to reduce join input sizes. In performing queries, join
operations can combine data from multiple tables.
[0016] Joins constitute a substantial portion of query
execution time in database systems. One effective approach
for enhancing join performance is to reduce join input sizes

US 2025/0181584 Al

by pre-filtering rows that will not appear in the join result.
Predicate pushdown exemplifies this principle by applying
local predicates on a table before executing a join operation.
ABioom join extends this principle beyond a single table. In
a Bloom join, a Bloom filter is constructed using a join key
in one table, and the join key is sent to another table to filter
out rows that do not pass the filter. The filtered out rows do
not match any keys in the first table and will not participate
in the join. A Bloom join can effectively reduce the join input
sizes, thereby reducing the query runtime. However, Bloom
join solutions typically can perform such pre-filtering only
within a single join operation. According to an aspect, the
pre-filtering principle can be extended across multiple joins.
Using predicates on individual tables to pre-filter multiple
other tables in a query can further reduce the join input sizes.
This is referred to as a predicate transfer. As one example,
a predicate on one table Tl can be transferred (e.g., in the
form of a Bloom filter) to a table T2 that joins with Tl. T2
can apply the predicate and further transfer it to a table T3
that joins with T2 (but Tl does not necessarily join with T3).
The transfer process can propagate further sueh that the
original predicate can filter multiple other tables (e.g., T2,
T3, etc.). A Bloom join is a special case of a more gener­
alized predicate transfer. A Bloom join can be a one-hop
predieate transfer.
[0017] Rather than semi-joining the tables following the
tree structure of a query until every predicate is spread
across all joining tables, embodiments can avoid potentially
costly hash table probes and memory consumption in a
semi-join phase. Predicate transfer ean address practical
limitations of conventional approaches. Predicate transfer
can significantly reduce the overhead of semi-joins by
passing succinct data structures, such as Bloom filters.
[0018] A Bloom filter is a compact probabilistic data
structure that detennines whether an element exists in a set.
A Bloom filter has no false negative but may have false
positives. In a Bloom join of two tables, a Bloom filter is
constrncted on one table (typically the smaller one) using a
join key. The filter is then sent and applied to each row in the
other table. If a row does not pass the filter, it matches no
row in the first table and should not participate in the join.
Since testing a Bloom filter is generally faster than perform­
ing a join, perfom1ing a Bloom join can speedup query
processing, especially when the join is selective.
[0019] Contemporary Bloom join algorithms typically can
be applied to only a single join operation. This means that
the predicate on one table can only be used to pre-filter rows
in the other table it joins with; namely, the predicate is
transferred in one-hop and one-direction.
[0020] Another approach can prefilter out all rows from
tables that do not appear in the final join result, thereby
achieving the theoretically maximlllll filtering selectivity.
This approach can be applied to acyclic join queries. The
acyclicity is more formally termed as a-acyclicity. This
approach can be proven to rnn in O(N+OUT) time, where N
is the size of input relations and OUT is the query output
size. Thus, this approach can be instance optimal since
N+OUT is an unavoidable time cost of reading input and
enumerating output for a query. This approach can start by
choosing a rooted join tree arbitrarily, and then proceeds
with a semi-join phase and a join phase.
[0021] A semi-join phase can contain two passes: a for­
ward pass and a backward pass. The forward pass traverses
a join tree in a bottom-up fashion. At each vertex, a table can

2
Jun.5,2025

be filtered by a sequence of semi-joins with its children. A
semi-join of two tables R and S can be defined as R

1>< S=IIattr(R) (Re><J S), which effectively removes all tuples
in R that do not join with any tuple in S. The forward pass
stops when the root node is reached. Similarly, the backward
pass traverses the join tree in a top-down fashion. At each
vertex, the table is filtered by a semi-join with its parent. The
backward pass stops when all leaf nodes are reached. It can
be shown that both passes can be executed in O(N) time and
tuples that will not contribute to the output are removed.

[0022] A join phase can join filtered tables in any order. It
can be shown that regardless of the chosen join order, the
join phase can be executed in O(OUT) time. The semi-join
phase filters redundant tuples, and the join phase executes
the join with automatic robustness. Thus, tables can be
joined in any order without any intermediate table size
blow-up over the output size.

[0023] Turning now to FIG. 1, a system 100 is depicted
according to an aspect of the disclosure. The system 100 of
FIG. 1 can include processing system 102 including a
memory system 106 having a plurality of computer readable
instmctions stored therein and one or more processors 104
operable to execute software instructions embodied in one or
more applications, such as a database management system
114 with a predicate transfer control 116. The processing
system 102 may be a single computer system such as a
workstation, a personal computer, a laptop computer, a tablet
computer, a mobile device, or the like. Alternatively, the
processing system 102 can be distributed between multiple
computing devices such as a mainframe, a cloud-based
computing system, or other type of processing resources
including one or more networked devices. The processing
system 102 can interface with multiple systems and data
sources through a network 108.
[0024] The network 108 can include any type of computer
conllllunication technology within the system 100 and can
extend beyond the system 100 as depicted. Examples
include a wide area network (WAN), a local area network
(LAN), a global network (e.g., Internet), a virtual private
network (VPN), and an intranet. C011llllunication within the
network 108 may be implemented using a wired network, an
optical network, a wireless network and/or any kind of
physical network implementation known in the art. The
network 108 can be further subdivided into multiple sub­
networks that may provide different levels of accessibility or
prevent access to some elements of the system 100. For
example, some systems, devices, applications, or users may
have limited access to a data storage system 128 and/or other
elements of the system 100.
[0025] A user interface 110 can be provided to interact
with the processing system 102, such as one or more of a
keyboard, a mouse or pointer device, a camera, speakers, a
microphone, a video display, and/or a touch-sensitive dis­
play. The database management system 114 can be accessed
through the user interface 110 and/or accessed by one or
more remote systems 126 through the network 108. The
remote systems 126 can be various types of computing
devices, such as mobile devices, tablet computers, laptop
computers, personal computers, workstations, internet con­
nected devices, and/or other such devices capable of execut­
ing applications and/or interfacing to a website. Remote
systems 126 can have various pennissions with respect to
the system 100, such as administrative privileges, private
user privileges, and/or public user privileges. For instance,

US 2025/0181584 Al

an administrative user may be able to updates aspects of the
database management system 114, predicate transfer control
116, and/or a database 130 stored in the data storage system
128. A private user may have access to query the database
130 with a wider set of access permissions than a public user.
For example, a user at one of the remote systems 126 can
send a query 140 to the database management system 114,
which can use the predicate transfer control 116 to perform
pre-filtering on multiple join operations associated with the
query 140 to select relevant rows of tables 138 and return
results 142 back to the user at the corresponding remote
system 126.
[0026] The data storage system 128 can be used to store
the database 130, files, and/or other data. The database 130
can be a relational database with a database schema 136 that
defines relationships between a plurality of tables 134,
which may vary in size having different numbers of rows
and columns per table 134. The database schema 136 can
define which aspects of the tables 134 are used as index or
key values in relation to other tables 134. In some aspects,
index or key values can be inherent, such as a row number.
The combination of the processing system 102, database
management system 114 with predicate transfer control 116,
and the data storage system 128 may be collectively referred
to as a predicate transfer system 101.
[0027] FIG. 2 depicts an example of a join graph 200 in
accordance with one or more embodiments. The join graph
200 can include a plurality of vertices and edges, where each
of the vertices corresponds to one of the tables to be
accessed in response to a query and each of the edges
corresponds to a join operation. In this example, the query
140 of FIG. 1 is associated with six tables, six im1er joins,
and two predicates on a region table 202 and orders table
218 respectively. The example assumes an equi-join
between tables. The query 140 of FIG. 1 may seek infor­
mation regarding a region name and an order date for data
within the database 130 of FIG. 1. The tables 138 of FIG. 1
can have a joining relationship, where a region table 202 is
related to a nation table 204 by a region key 206. The nation
table 204 is related to a supplier table 208 by a nation key
210 and to a customer table 212. The supplier table 208 and
the customer table 212 can be related to each other by the
nation key 210. The supplier table 208 can be related to a
line item table 214 by a supplier key 216. The customer table
212 can be related to an orders table 218 by a customer key
220. The orders table 218 can also be related to the line item
table 214 by an order key 222. In the example join graph 200
of FIG. 2, a first predicate 224 can be a filter on region name
applied to the region table 202, and a second predicate 226
can be a filter on order date applied to the orders table 218.
The example of FIG. 2 also illustrates how the join graph
200 can have cyclic relationships which may not be handled
by other approaches that require acyclic relationships.

[0028] FIG. 3 depicts a predicate transfer graph 300 in
accordance with one or more embodiments. The predicate
transfer graph 300 illustrates the first predicate 224 of the
region table 202 of FIG. 2 (e.g., region node 302 and
predicate 304) and the second predicate 226 of orders table
218 (e.g., orders node 312 and predicate 314) can be passed
with pre-filtering between other nodes 306, 308, 310, 316 in
a semi-join phase. For example, a forward pass from region
node 302 can proceed as a sequence of semi-joins to nation
node 306, supplier node 308, customer node 310, orders
node 312, and line item node 316. Forward passes can also

3
Jun.5,2025

be made between nation node 306 and customer node 310
and between supplier node 308 and line item node 316.
Backward passes can then be performed in the opposite
direction.

[0029] As one example, the predicate transfer control 116
of FIG. 1 can execute the query 140 in two phases. The first
phase is a predicate transfer phase. The predicate transfer
control 116 can construct the join graph 200 for the query
140, where each vertex is a table and each edge is a join
operation. A local predicate can be constructed as a filter
(e.g., a Bloom filter) and be transferred across the join graph
200. The schedule of the predicate transfer phase introduces
a large design space.
[0030] In the second phase, after the transfer phase fin­
ishes, each table can have multiple filters, including both
local filters and transferred filters. The database manage­
ment system 114 ofFIG. l can apply the filters and perfom1
regular joins. The actual inputs of each join can be substan­
tially smaller if the transferred filters are selective.

[0031] When transferring a filter across edges that have
different join keys, the filter may be transfonned. For
example, a filter constructed on the region table 202 can be
transferred to the nation table 204, but the same filter cannot
be directly sent to the supplier table 208 since the join keys
do not match. This is illustrated in FIG. 4, where filter
creation and processing to support predicate transfer are
depicted in block diagram 400. A table N 402 can include a
plurality of rows, with a first index column 404, data value
columns 406, 408, a second index colunm 410, and addi­
tional data value colunms 412, for example. An incoming
filter 414 can include an incoming join key 416 received
from an upstream table N-1 418, where the incoming join
key 416 aligns with the first index colunm 404. An outgoing
filter 420 can be created by the predicate transfer control 116
with an outgoing join key 422 based on the second index
colllllll1 410 that aligns with a downstream table N+l 424.
Although referred to herein as index colunms, the first index
column 404 and the second index column 410 need not hold
index values; rather, the first index colunm 404 and the
second index column 410 can be any type of data colunms
that support join operations and thus may also be referred to
as join colunms.
[0032] With respect to the example of FIG. 2, a join key
mismatch between incoming and outgoing edges on the
nation table 204 can be seen where region key 206 differs
from nation key 210. When an incoming filter is received, an
empty outgoing filter can be created. Colunms for both
incoming and outgoing join keys in the nation table 204 can
be scanned (e.g., assuming columnar store; otherwise, scan
the entire table). Inherent filters of nation table 204 can be
applied during the scan. For each row, the incoming join key
can be used to probe the incoming filter. If a match occurs,
the outgoing join key can be added to the outgoing filter. At
the end of the scan, the outgoing filter can be sent to
downstream tables (i.e., supplier table 208 and customer
table 212). These operations can be performed efficiently,
the join keys may only be scanned once. The join graph 200
determines the topology of the predicate transfer graph 300.
In the example of FIG. 2, each equi-join is represented as an
edge. The predicate transfer graph 300 can be a directed
subgraph of the join graph 200. Transfers can happen along
selected edges in the subgraph-local predicates of the source
vertex are transferred to the target vertex as a filter. The
topology of the predicate transfer graph 300 affects the

US 2025/0181584 Al

performance of the predicate transfer phase and also the
selectivity of the transferred filters. One heuristic that can be
used points an edge from a smaller table to a bigger table.
This can reduce Bloom filter size and increase filter selec­
tivity. Other heuristics can remove one or more edges from
the join graph 200 when generating the predicate transfer
graph 300. The resulting graph can be a Directed Acyclic
Graph (DAG).

[0033] A transfer schedule can determine when and how
predicates are transferred across the predicate transfer graph
300. Numerous design decisions can be made in the transfer
schedule. In particular, the transfer schedule can specify
which tables 138 in the query 140 should construct initial
local filters to start the transfer process and the order of
issuing the remaining transfers. For each table that sends a
local filter out, the schedule detem1ines when the transfer
happens-multiple transfers may happen in serial or parallel.
Moreover, the transfer can happen back and forth, following
both directions of certain edges. Prnning may be adopted to
avoid non-beneficial transfers, and the transfer direction
may be dynamically adjusted at rnntime. Identifying an
efficient transfer schedule can improve system performance.

[0034] A heuristic that builds the transfer schedule using
one forward pass and one backward pass can be imple­
mented by the predicate transfer control 116. The predicate
transfer graph 300 can be determined at planning time and
remain fixed during nmtime. In the forward pass, initial
local filters can be built on the leaf nodes in the predicate
transfer graph (i.e., nodes with only outgoing edges but no
incoming edge). These filters can be transferred following
the topological order of the predicate transfer graph 300,
which exist because the graph is a DAG. If one node has one
or more incoming edges, the node can collect all the
incoming filters before perfom1ing the transformation to
produce outgoing filters (incoming filter ordering can be
utilized for further optimization). The transformation can
scan a table only once, regardless of the number of incoming
or outgoing edges. The forward pass finishes once all filters
are fully transferred. The predicate transfer control 116 can
then start the backward pass, where the direction of edges
are traversed in reverse and the same process can be repeated
as in the forward pass. After both passes are done, each table
has been reduced based on the transformed filters it received.
A later join phase can start from the pre-filtered tables. For
example, a first Bloom filter can be constrncted for region
node 302 and sent to the nation node 306 of PIG. 3. The filter
can be transformed into two outgoing filters and sent to the
customer node 310 and the supplier node 308 respectively.
Similarly, the supplier node 308 can transfer two outgoing
filters following the edges to the customer node 310 and the
line item node 316. At the customer node 310, two separate
incoming filters can be applied with one outgoing filter
produced and sent to the orders node 312, which is then
transformed and sent to the line item node 316. The forward
pass finishes when both incoming filters arrive at the line
item node 316, and after that the backward pass can begin
in a symmetric way.

[0035] In some aspects, other representation of filters can
also be used other than Bloom filters. If a precise represen­
tation is used, i.e., the filter precisely encodes all the join
keys, then a transfer becomes a semi-join. The filters should
be efficient to constrnct and check, and achieve low false
positive rates. Predicate transfer may benefit from other
filtering techniques.

4
Jun.5,2025

[0036] In some aspects, scheduling heuristics can make
two full passes of the predicate transfer graph 300. Some
transfers may not increase filter selectivity but consume
computational resources. A transfer scheduler of the predi­
cate transfer control 116 can identify such scenarios and stop
transferring these filters further to avoid wasting processor
cycles. Such transfer path pruning can be done at either
planning time or rnntime.
[0037] After the predicate transfer phase completes, each
table may have already been processed by several filters,
including the inherent filters from the query 140 and the
transferred filters. The join phase can execute the original
query with the reduced input tables. In some aspects, the
database management system 114 can directly execute a
query plan as a regular query in the join phase, with the leaf
nodes (i.e .. scan) replaced by the filtered tables produced by
the predicate transfer phase. A predicate transfer schedule is
essentially also a query plan. The two query plans can be
concatenated such that the leaf nodes in the join plan are the
output nodes of the predicate transfer schedule. This can
avoid rescanning in the join phase and requires no changes
to the executor-the executor can be oblivious to the predi­
cate transfer phase and execute the modified query plan
regularly.

[0038] The predicate transfer phase can update the cardi­
nality of the input tables in the join phase. Therefore, the
original query plan generated beforehand may become sub­
optimal based on the stale cardinalities. A replanning step
between the two phases may produce a better plan that leads
to further performance improvement. Although join perfor­
mance may be more robust to join orders, performance can
still be affected by the quality of the query plan, with the
factors including the size of materialized intermediate
tables, which table to build the hash table and which table to
probe, etc. Moreover, predicate transfer can bound the size
of the intennediate join tables in the join phase, which can
be utilized to improve cardinality estimation.

[0039] In the previous example, table joins were per­
formed as inner equi-joins and cover queries with only joins
and local filters (filters over base tables). Predicate transfer
can be extended to support outer joins as well. In particular,
a left outer join operation can be incorporated into a predi­
cate transfer graph by allowing predicate transfer in only one
direction, i.e., from the left table to the right table, but the
other transfer direction can be blocked. Therefore, such a
transfer can happen in either forward pass or backward pass,
but not in both passes. A right outer join can be supported in
a similar way. A full outer join, however, may not be
incorporated into the predicate transfer graph. Considering
more general operators, it is noted that an operator can block
predicate transfer if it does not preserve the join key during
the computation (e.g., perform aggregations on the join key).
In particular, the following operators that can also be incor­
porated into the predicate transfer graph, such as: operators
including filters between intermediate join tables, column
projection, sorting, and top-K do not block predicate trans­
fer; grouped aggregation does not block predicate transfer
when the join key is a subset of the group key; scalar
user-defined functions does not block the transfer to the
downstream join, but may block the transfer to the upstream
join if the function is not invertible.

[0040] Some queries may contain operators that cam1ot be
incorporated into a predicate transfer graph. Example opera­
tors can include but are not limited to full outer joins, scalar

US 2025/0181584 Al

aggregations, and group-by aggregations where the join key
is being aggregated. When such a scenario is encountered,
predicate transfer can be applied on a subset or several
subsets of the query execution plan, and conventional meth­
ods can be used to execute the remainder of the query. For
example, a query can be partially executed first, leading to
a subquery plan that can be represented as a predicate
transfer graph in order to apply predicate transfer. After the
predicate transfer phase and the join phase, the rest of the
query can continue execution. It is also possible that predi­
cate transfer can be applied multiple times to different parts
of a query plan. For instance, a predicate transfer phase and
regular query execution can alternate. In some aspects,
heuristics can be applied by the predicate transfer control
116 to first identify and execute single-table subquery plans
(e.g., group by aggregation on a single table) before the
predicate transfer phase begins.

[0041] Predicate transfer can support both precise filters
(e.g., semi-join) and Bloom filters, any join-graph topology,
outer joins and cyclic queries, more operators, and complex
predicate transfer schedules. Predicate transfer can be more
efficient and robust than other approaches and may achieve
close to optimal pre-filtering efficiency. Using Bloom filters
can drastically reduce processing resource usage as com­
pared to the use of excessive hash probes in the semi-join
phase, filter out most tuples not participating in the join, and
may only incur relatively small overhead in the join phase.
For example, let t be the number of tables in a given join
query and N be the input size (i.e., the total number of tuples
in all joining tables). A unit cost can be assigned to each
per-tuple scan, hash table insertion or probe, and a p cost
per-tuple for Bloom filter insertion or probe. As a Bloom
filter is of a small size and thus likely to be cache resident,
Bloom filter operations are typically much less resource
intensive than hash table operations, i.e. B<<l. The Bloom
filter can have a false positive rate of E<<l that can be
appropriately configured (e.g., tune E to be smaller by
increasing the Bloom filter size or number of hash functions,
but this makes B larger). At the semi-join phase, scamJ.ing
tables to build or probe hash tables can cost N units,
independent of the direction of the forwarcl/back"Ward semi­
join passes. The cost of building or probing intermediate
hash tables can be bounded by cy·N, where cy is a constant
highly sensitive to the choice of the rooted join tree of the
query. An ideal join tree and orientation can drastically
reduce the size of intermediate hash tables, leading to a
cheaper semi-join phase (smaller cy). At the predicate trans­
fer phase, scanning tables to build or probe Bloom filters can
cost N units. By building and probing with Bloom filters, the
cost can be bounded by B·cp·N units, where cp is a constant
that depends on the choice of the join graph topology and
transfer schedule. As B<<l, the sensitivity of the runtime to
the constant cp can shrink by a factor of B. In the join phase,
tab Jes can be slightly larger than the maximum filtered tab Jes
after semi-joins phase of other approaches, by a factor of
about (l+E)t .. l+Et. Thus, in the join phase, the cost of
predicate transfer can be approximated ast·OUT·(l +E) units.
The choice of the join order can affect the extra Et·OUT term.
Assuming E<<l (and so Et·OUT is small), the join phase can
attain near-perfect robustness. Other approaches can have a
higher cost and may result in an unstable/less stable semi­
join phase. In contrast, predicate transfer can address such
shortcomings via a more stable and efficient Bloom filter

5
Jun.5,2025

transfer scheme, while maintaining near-maximum filtering
capabilities at the predicate transfer phase and near-perfect
robustness in the join phase.
[0042] FIG. 5 depicts a predicate transfer process 500 in
accordance with one or more embodiments. The predicate
transfer process 500 can be performed by the database
management system 114 with the predicate transfer control
116 of FIG. 1. The process 500 is described in reference to
FIGS. 1-5.
[0043] At block 505, a predicate transfer system 101
including at least one processor 104 and a memory system
106, can receive a query 140 of a database 130 including a
plurality of tables 138. The database 130 can be a relational
database, for example.
[0044] At block 510, the predicate transfer system 101 can
construct a join graph 200 including a plurality of vertices
and edges, where each of the vertices corresponds to one of
the tables (e.g., tables 202, 204, 208, 212, 214, 218) to be
accessed in response to the query 140 and each of the edges
corresponds to a join operation (e.g., through keys 206, 210,
216, 222).
[0045] At block 515, the predicate transfer system 101 can
construct a local predicate including a filter, such as first
predicate 224 and/or second predicate 226. The filter can use
a join key in one of the tables to filter out one or more rows
in one or more of the tables to prevent participation in join
operations of the one or more rows that do not match the join
key.
[0046] At block 520, the predicate transfer system 101 can
transfer the local predicate across the join graph 200 such
that two or more of the tables of the join graph 200 have a
local filter and one or more transferred filters.
[0047] At block 525, the predicate transfer system 101 can
apply the local filter and one or more transferred filters to the
tables of the join graph 200.
[0048] At block 530, the predicate transfer system 101 can
perfonn join operations on the filtered tables of the join
graph 200.
[0049] At block 535, the predicate transfer system 101 can
return a result 142 of the query 140 based on joining the
filtered tables.
[0050] According to some aspects, the predicate transfer
system 101 can construct a predicate transfer graph 300 to
establish an order of transferring the local predicate across
the tables of the join graph 200. As one example, the
predicate transfer graph 300 can order the tables of the join
graph 200 from smallest to largest (e.g., fewest mnnber of
rows to greatest number of rows). In some aspects, filtering
can be performed in the order of transferring the local
predicate across the tables of the join graph 200 in a forward
pass to semi-join the tables in a bottom-up filtering by a
backward pass to semi-join the tables in a top-down filtering
to remove tuples that do not contribute to the result 142 of
the query 140. The predicate transfer system 101 may also
determine whether a filter transfer will increase filter selec­
tivity and prevent a filter transfer based on determining that
the filter transfer will not increase filter selectivity. In some
aspects, the predicate transfer system 101 can concatenate
one or more leaf nodes of a join plan associated with the join
graph 200 with one or more output nodes of a predicate
transfer schedule of the predicate transfer graph 300.
[0051] Query plans can be generated as a combination of
multiple subquery plans. For example, the predicate transfer
system 101 can generate a query plan that includes a

US 2025/0181584 Al

plurality of subquery plans based on determining that the
query 140 includes a foll outer join or aggregation operation.
The predicate transfer system 101 can construct the predi­
cate transfer graph 300 to establish an order of transferring
the local predicate across the tables of the join graph 200
based on one or more of the subquery plans.
[0052] Although depicted in a particular order, it will be
understood that some steps of the process 500 can be
performed in an alternate order, can be combined, farther
subdivided, and/or expanded upon.
[0053] FIG. 6 depicts a filter transformation process 600 in
accordance with one or more embodiments. The process 600
can be performed by the predicate transfer system 101 of
FIG. 1, for example. The process 600 can be performed in
combination with the process 500 of FIG. 5.
[0054] At block 605, the predicate transfer system 101 can
create an outgoing filter 420 for a table 402 based on
receiving an incoming filter 414.
[0055] At block 610, the predicate transfer system 101 can
scan the table 402 for an incoming join key 416 and an
outgoing join key 422.
[0056] At block 615, the predicate transfer system 101 can
analyze rows of the table 402 and probe the incoming filter
414 with the incoming join key 416.
[0057] At block 620, the predicate transfer system 101 can
add the outgoing join key 422 to the outgoing filter 420
based on detecting a match between the incoming join key
416 and the incoming filter 414.
[0058] At block 625, the predicate transfer system 101 can
send the outgoing filter 420 to one or more downstrean1
tables (e.g., table 424) of the predicate transfer graph 300.
[0059] Although depicted in a particular order, it will be
understood that some steps of the process 600 can be
performed in an alternate order, can be combined, farther
subdivided, and/or expanded upon.
[0060] As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a
system, method, or computer program product. Accordingly,
aspects of the present invention may take the form of an
entirely hardware embodiment, an entirely software embodi­
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a
"circuit," "module" or "system." Furthermore, aspects of the
present invention may take the fonn of a computer program
product embodied in one or more computer readable medi­
um(s) having computer readable program code embodied
thereon.
[0061] Any combination of one or more computer read­
able medium(s) may be utilized. The computer readable
medium may be a non-transitory computer readable storage
medium. A computer readable storage medium may be, for
example, but not limited to, an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system, appa­
ratus, or device, or any suitable combination of the forego­
ing. More specific examples (a non-exhaustive list) of the
computer readable storage medium would include the fol­
lowing: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
progrannnable read-only memory (EPROM or Flash
memory), phase change memory, an optical fiber, a portable
compact disc read-only memory (CD-ROM), an optical
storage device, a magnetic storage device, or any suitable

6
Jun.5,2025

combination of the foregoing. In the context of this docu­
ment, a computer readable storage medium may be any
tangible medium that can contain. or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.
[0062] Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wire line, optical fiber
cable, RF, etc., or any suitable combination of the foregoing.
[0063] Computer progran1 code for carrying out opera­
tions for aspects of the present invention may be written in
any combination of one or more programming languages,
including an object oriented programming language such as
Java, Python, Smalltalk, C++ or the like and conventional
procedural programming languages, such as the "C" pro­
gramming language or similar progrannning languages. The
program code may execute entirely on the user's computer,
partly on the user's computer, as a stand-alone software
package, partly on the user's computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
cormected to the user's computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider).
[0064] Aspects of the present invention are described
above with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer
program products according to embodiments of the inven­
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a computer or other programmable data pro­
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com­
puter or other programmable data processing apparatus,
create means for implementing the fonctions/acts specified
in the flowchart and/or block diagram block or blocks.
[0065] These computer progran1 instructions may also be
stored in a computer readable medium that can direct a
computer, other progrannnable data processing apparatus, or
other devices to fonction in a particular ma1lller, such that the
instrnctions stored in the computer readable medium pro­
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.
[0066] The computer program instructions may also be
loaded onto a computer, other progrannnable data process­
ing apparatus, or other devices to cause a series of opera­
tional steps to be performed on the computer, other pro­
grammable apparatus or other devices to produce a
computer implemented process such that the instructions
which execute on the computer or other programmable
apparatus provide processes for implementing the fimctions/
acts specified in the flowchart and/or block diagram block or
blocks.
[0067] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com­
puter program products according to various embodiments
of the present invention. In this regard, each block in the

US 2025/0181584 Al

flowchart or block diagrams may represent a module, seg­
ment, or portion of code, which comprises one or more
executable instructions for implementing the specified logi­
cal fonction(s). It should also be noted that, in some alter­
native implementations, the functions noted in the block
may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function­
ality involved. It will also be noted that each block of the
block diagrams and/or flowchart illustration, and combina­
tions of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard­
ware-based systems that perform the specified fonctions or
acts, or combinations of special purpose hardware and
computer instructions.

[0068] While the invention has been described with ref­
erence to exemplary embodiments, it will be understood by
those skilled in the art that various changes may be made and
equivalents may be substituted for elements thereof without
departing from the scope of the invention. In addition, many
modifications may be made to adapt a particular situation or
material to the teachings of the invention without departing
from the essential scope thereof. Therefore, it is intended
that the invention not be limited to the particular embodi­
ments disclosed for carrying out this invention, but that the
invention will include all embodiments falling within the
scope of the present application. Numerical values, ranges,
index selection, calibration, validation, and other parameters
and/or processes described herein are provided for purposes
of explanation, and the invention is not limited to using these
examples.

[0069] In general, the invention may alternately comprise,
consist of; or consist essentially of; any appropriate com­
ponents herein disclosed. The invention may additionally, or
alternatively, be fornmlated so as to be devoid, or substan­
tially free, of any components, materials, ingredients, adju­
vants or species used in the prior art compositions or that are
otherwise not necessary to the achievement of the fonction
and/or objectives of the present invention.

[0070] The terms "first," "second," and the like, herein do
not denote any order, quantity, or importance, but rather are
used to denote one element from another. The use of the
terms "a" and "an" and "the" and similar referents (espe­
cially in the context of the following claims) are to be
construed to cover both the singular and the plural, unless
otherwise indicated herein or clearly contradicted by con­
text. The terms first, second etc. as used herein are not meant
to denote any particular ordering, but simply for conve­
nience to denote a plurality of, for example, layers. The
terms "comprising", "having", "including", and "contain­
ing" are to be construed as open-ended terms (i.e., meaning
"including, but not limited to") unless otherwise noted.
"About" or "approximately" as used herein is inclusive of
the stated value and means within an acceptable range of
deviation for the particular value as determined by one of
ordinary skill in the art. considering the measurement in
question and the error associated with measurement of the
particular quantity (i.e., the limitations of the measurement
system). For example, "about" can mean within one or more
standard deviations, or within ±10% or 5% of the stated
value. Recitation ofranges of values are merely intended to
serve as a shorthand method of referring individually to each
separate value falling within the range, unless otherwise

7
Jun.5,2025

indicated herein, and each separate value is incorporated into
the specification as if it were individually recited herein. The
endpoints of all ranges are included within the range and
independently combinable. All methods described herein
can be perfonned in a suitable order unless otherwise
indicated herein or otherwise clearly contradicted by con­
text. The use of any and all examples, or exemplary lan­
guage (e.g., "such as"), is intended merely to better illustrate
the invention and does not pose a limitation on the scope of
the invention unless otherwise claimed. No language in the
specification should be construed as indicating any non­
claimed element as essential to the practice of the invention
as used herein.
[0071] While the invention has been described with ref­
erence to an exemplary embodiment, it will be understood
by those skilled in the art that various changes may be made
and equivalents may be substituted for elements thereof
without departing from the scope of the invention. In addi­
tion, many modifications may be made to adapt a particular
situation or material to the teachings of the invention with­
out departing from the essential scope thereof. Therefore, it
is intended that the invention not be limited to the particular
embodiment disclosed as the best mode contemplated for
carrying out this invention, but that the invention will
include all embodiments falling within the scope of the
appended claims. Any combination of the above-described
elements in all possible variations thereof is encompassed by
the invention unless otherwise indicated herein or otherwise
clearly contradicted by context.

What is claimed is:
1. A method, comprising:

receiving, by a predicate transfer system comprising at
least one processor and a memory system, a query of a
database comprising a plurality of tables;

constructing, by the predicate transfer system, a join
graph comprising a plurality of vertices and edges,
wherein each of the vertices corresponds to one of the
tables to be accessed in response to the query and each
of the edges corresponds to a join operation;

constructing, by the predicate transfer system, a local
predicate comprising a filter;

transferring, by the predicate transfer system, the local
predicate across the join graph such that two or more of
the tables of the join graph have a local filter and one
or more transferred filters;

applying the local filter and one or more transferred filters
to the tables of the join graph;

performing join operations on the filtered tables of the
join graph; and

returning a result of the query based on joining the filtered
tables.

2. The method of claim 1, wherein the database is a
relational database.

3. The method of claim 1, wherein the filter comprises
using a join key in one of the tables to filter out one or more
rows in one or more of the tables to prevent participation in
the join operations of the one or more rows that do not match
the join key.

4. The method of claim l, further comprising:

constructing a predicate transfer graph to establish an
order of transferring the local predicate across the
tables of the join graph.

US 2025/0181584 Al

5. The method of claim 4, wherein the predieate transfer
graph orders the tables of the join graph from smallest to
largest.

6. The method of claim 4, further eomprising:
performing filtering in the order of transferring the local

predicate across the tables of the join graph in a forward
pass to semi-join the tables in a bottom-up filtering by
a backward pass to semi-join the tables in a top-down
filtering to remove tuples that do not contribute to the
result of the query.

7. The method of claim 6, further comprising:
determining whether a filter transfer will increase filter

selectivity; and
preventing a filter transfer based on determining that the

filter transfer will not increase filter selectivity.
8. The method of claim 4, further comprising:
creating an outgoing filter for a table based on receiving

an incoming filter;
scanning the table for an incoming join key and an

outgoing join key;
probing the incoming filter with the incoming join key;
adding the outgoing join key to the outgoing filter based

on detecting a match between the incoming join key
and the incoming filter; and

sending the outgoing filter to one or more downstream
tables of the predicate transfer graph.

9. The method of claim 4, further comprising:
concatenating one or more leaf nodes of a join plan

associated with the join graph with one or more output
nodes of a predicate transfer schedule of the predicate
transfer graph.

10. The method of claim 1, further comprising:
generating a query plan that includes a plurality of sub­

query plans based on determining that the query
includes a full outer join or aggregation operation; and

constructing a predicate transfer graph to establish an
order of transferring the local predicate across the
tables of the join graph based on one or more of the
subquery plans.

11. A system comprising:
a memory system having a plurality of computer readable

instructions; and
one or more processors configured to execute the com­

puter readable instructions to perform a plurality of
operations comprising:
receiving query of a database comprising a plurality of

tables;
constructing a join graph comprising a plurality of

vertices and edges, wherein each of the vertices
corresponds to one of the tables to be accessed in
response to the query and each of the edges corre­
sponds to a join operation;

constmcting a local predicate comprising a filter;
transferring the local predicate across the join graph

such that two or more of the tables of the join graph
have a local filter and one or more transferred filters;

applying the local filter and one or more transferred
filters to the tables of the join graph;

performing join operations on the filtered tables of the
join graph; and

returning a result of the query based on joining the
filtered tables.

12. The system of claim 11, wherein the database is a
relational database.

8
Jun.5,2025

13. The system of claim 11, wherein the filter comprises
using a join key in one of the tables to filter out one or more
rows in one or more of the tables to prevent participation in
the join operations of the one or more rows that do not match
the join key.

14. The system of claim 11, wherein the computer read­
able instructions are executable by the one or more proces­
sors to perform the operations further comprising:

constructing a predicate transfer graph to establish an
order of transferring the local predicate across the
tables of the join graph.

15. The system of claim 14, wherein the predicate transfer
graph orders the tables of the join graph from smallest to
largest.

16. The system of claim 14, wherein the computer read­
able instructions are executable by the one or more proces­
sors to perform the operations further comprising:

performing filtering in the order of transferring the local
predicate across the tables of the join graph in a forward
pass to semi-join the tables in a bottom-up filtering by
a backward pass to semi-join the tables in a top-down
filtering to remove tuples that do not contribute to the
result of the query;

determining whether a filter transfer will increase filter
selectivity; and

preventing a filter transfer based on determining that the
filter transfer will not increase filter selectivity.

17. The system of claim 14, wherein the computer read­
able instructions are executable by the one or more proces­
sors to perform the operations further comprising:

creating an outgoing filter for a table based on receiving
an incoming filter;

scanning the table for an incoming join key and an
outgoing join key;

probing the incoming filter with the incoming join key;
adding the outgoing join key to the outgoing filter based

on detecting a match between the incoming join key
and the incoming filter; and

sending the outgoing filter to one or more downstream
tables of the predicate transfer graph.

18. A computer program product comprising a computer
readable storage medium embodied with computer program
instmctions that when executed by one or more processors
cause the one or more processors to perform a plurality of
operations comprising:

receiving a query of a database comprising a plurality of
tables;

constructing a join graph comprising a plurality of verti­
ces and edges, wherein each of the vertices corresponds
to one of the tables to be accessed in response to the
query and each of the edges corresponds to a join
operation;

constructing a local predicate comprising a filter;
transferring the local predicate across the join graph such

that two or more of the tables of the join graph have a
local filter and one or more transferred filters;

applying the local filter and one or more transferred filters
to the tables of the join graph;

performing join operations on the filtered tables of the
join graph; and

returning a result of the query based on joining the filtered
tables.

19. The computer program product of claim 18, further
comprising computer program instructions that when

US 2025/0181584 Al

executed by the one or more processors cause the one or
more processors to perform the operations further compris­
ing:

constructing a predicate transfer graph to establish an
order of transferring the local predicate across the
tables of the join graph, wherein the filter comprises
using a join key in one of the tables to filter out one or
more rows in one or more of the tables to prevent
participation in the join operations of the one or more
rows that do not match the join key.

20. The computer program product of claim 18, further
comprising computer program instructions that when
executed by the one or more processors cause the one or
more processors to perform the operations further compris­
ing:

constructing a predicate transfer graph to establish an
order of transferring the local predicate across the
tables of the join graph;

creating an outgoing filter for a table based on receiving
an incoming filter;

scam1ing the table for an incoming join key and an
outgoing join key;

probing the incoming filter with the incoming join key;
adding the outgoing join key to the outgoing filter based

on detecting a match between the incoming join key
and the incoming filter; and

sending the outgoing filter to one or more downstream
tables of the predicate transfer graph.

* * * * *

Jun.5,2025
9

	Bibliography
	Abstract
	Drawings
	Description
	Claims

