Through Technologies

Explore WARF Inventions and Patents

WARF Technologies

WARF’s portfolio of more than 1,600 patented technologies covers a wide range of categories, including analytical instrumentation, pharmaceuticals, food products, agriculture, research tools, medical devices, pluripotent stem cells, clean technology, information technology and semiconductors.

Information summaries, which describe each technology and its applications, benefits, inventors and patent status, can be downloaded, printed and shared by clicking on the technology category links to the left on this page.

Visit our subscription center to sign up for our monthly email updates and learn when new WARF technologies become available for licensing.

New Inventions

Combination Therapy Kills Cancer Cells

UW–Madison researchers have developed a new cancer treatment that combines a TRAIL receptor agonist with the diabetes drug metformin. Metformin sensitizes even resistant cancer cells to the TRAIL receptor agonists (e.g., lexatumumab) that induce cell death.

Metformin is attractive because its safety has been established over decades in diabetic patients worldwide. As such, there seem to be few barriers to its clinical implementation as a cancer therapeutic in combination with TRAIL receptor agonists. Metformin is commercially available as Glucophage® or in generic form.
P140221US02

New System for Producing Fungal Secondary Metabolites

UW–Madison researchers have developed a new system for producing fungal secondary metabolites using test plasmids and a genetically modified strain of Aspergillus nidulans (TPMW2.3). The strain begins producing secondary metabolites when a gene promoter in the plasmid is triggered by culture conditions. This allows researchers to induce or repress production.
P150029US01

Peptide Mimics Last Longer, Target Protein-Protein Interactions

UW–Madison researchers have developed modified Z-domain peptides that last longer in vivo while retaining strong binding properties. The researchers removed one of the helices and stabilized the remaining two with a disulfide bond. They substituted some residues with alpha and beta amino acid residues; the latter helps resist degradation by proteolytic enzymes.

The α/β-peptide mimics (or foldamers) can be tailored to target a variety of different proteins and protein-protein interactions. Given their small size (39 amino acids) relative to full-length Z-domains (59 amino acids), the new peptide mimics are easier to synthesize and modify.
P140148US02

New Protein Production Strategy for Plants

UW–Madison researchers have identified a new plant viral IRES that can facilitate the efficient expression of multiple proteins from a single mRNA. The researchers discovered the new IRES in the Triticum mosaic virus (TriMV), a wheat virus that expresses 10 proteins from a single mRNA strand.
P140069US02

Solar Cells Turn HMF to Valuable Platform Molecules

UW–Madison researchers have developed a new method using solar cells to electrochemically oxidize HMF to highly prized furan compounds, specifically FDCA (2,5-furandicarboxylic acid) and DFF (2,5-diformylfuran). These important compounds are used to produce polymer materials, pharmaceuticals, antifungal agents, organic conductors and much more.

The reaction takes place at ambient temperature and pressure using a TEMPO mediator. Unlike previous methods, the process does not require a precious metal catalyst.
P150132US01
View More

New Patents

Better Biomass Conversion with Recyclable GVL Solvent

UW–Madison researchers have developed a method for producing soluble C6 and C5 carbohydrate oligomers and monomers from biomass. These include glucose, xylose and other sugars.

In the process, lignocellulosic material is reacted with water and gamma-valerolactone (GVL) – an organic solvent derived from biomass. This occurs in the presence of an acid catalyst under moderate temperatures, and results in the conversion of water-insoluble to water-soluble carbohydrates. These desired products are partitioned into an aqueous layer, where they can be recovered, concentrated and purified. The GVL separates into another layer to be recycled.
P130123US01

Antimicrobial Polymers

UW-Madison researchers have developed novel amphiphilic compounds that can be used to treat microbial infections in humans and other animals. They combined a synthetic backbone of poly(styrene), poly(acrylate), poly(acrylamide) or poly(C1-C6alkylene glycol) with side-chains that can readily accept a hydrogen atom to become water-soluble. These compounds inhibited the growth of four test microorganisms to the same extent as known antimicrobials.
P03315US

Synstatin “SSTNHER2” Fights Cancer

A UW–Madison researcher has discovered that the HER2/α6β4 assembly is brokered by the syndecan family of matrix receptors. In particular, syndecan-1 (Sdc1) links the two receptors together and helps tumor cells survive.

To obstruct this process, the researcher has created a recombinant peptide that competes with Sdc1 for binding partners. The new peptide mimics Sdc1 but is harmless. It is called SSTNHER2. It can be administered as a drug and combined with cancer patients’ other therapies.
P120259US03
View More