Technologies

Explore WARF Inventions and Patents

WARF Technologies

WARF’s portfolio of more than 1,700 technologies covers a wide range of categories, including analytical instrumentation, pharmaceuticals, food products, agriculture, research tools, medical devices, pluripotent stem cells, clean technology, information technology and semiconductors.

Information summaries, which describe each technology and its applications, benefits, inventors and patent status, can be downloaded, printed and shared by clicking on the technology category links to the left on this page.

Visit our subscription center to sign up for our monthly email updates and learn when new WARF technologies become available for licensing.

New Inventions

Industrial Furnace With Flameless Combustion and Impingement Flow for Increased Efficiency, Reduced Emissions and Intensified Heat Transfer

An assistant professor of mechanical engineering technology and inventor from the University of Wisconsin Oshkosh has developed an industrial natural gas furnace and oven design that combines flameless combustion with high velocity impingement gas and air jets directed toward the product being heated. This novel combination has the potential to provide advantages over conventional technology that include higher energy efficiency, uniform temperature distribution, reduced NOx emissions, and intensified convection heat transfer. The design also has the potential to increase productivity by allowing more material to be processed within the same combustion area. This innovative system can be used for production of new furnaces as well as retrofitting existing installations.
T170023US01

Low Maintenance Snowmobile Ski Design that Increases Traction, Maneuverability and Safety on Paved Surfaces

Students from the University of Wisconsin-Green Bay in partnership with UW-Platteville Senior Design have developed a snowmobile ski that offers improved steering and traction on pavement and other hard surfaces. The design incorporates a fixed wheel and runner system, which provides steering control when rolling on pavement and concrete yet allows the skis to function properly when driving on snow and ice surfaces. The design has been refined through multiple prototype iterations and has passed testing for mobility on hard surfaces, traction on ice, and functionality on snow. The present design increases maneuverability on pavement and requires less maintenance when compared with snowmobiles that are currently on the market.
T170041US01

Novel Transparent Dilatant Materials Comprised of Single Chemical Component

Research from the University of Wisconsin-Stevens Point has resulted in the synthesis of a series of materials exhibiting a range of dilatant properties. The materials show good transparency and are chemically uniform (e.g. consisting of a single chemical component). The degree of dilatancy is easily controlled by adjusting the compositions of the materials. Due to the range of dilatant properties, good transparency, and single chemical component nature of the dilatant samples, these materials show significant promise for novel uses in protective equipment and other areas related to impact protection, especially where transparency is desirable.
T170056WO01

Nylon-3 Polymers to Treat Fungal Infections

UW–Madison researchers have found that nylon-3 polymers developed in their lab display potent antifungal activity against a broad spectrum of common fungal pathogens, with minimal toxicity towards mammalian cells. The polymers have some activity alone, and when used in combination with existing drugs provide synergistic effects against Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus strains, including some resistant strains.

Synergistic combination offers efficacy with significantly reduced amounts of drug and corresponding toxicity, which could potentially expand the relevant patient population.

The polymers were designed to resemble host-defense peptides (HDPs), which are natural molecules that exhibit antimicrobial activities.
P170021US02

Wind Shield to Improve Overwinter Beehive Survival

University of Wisconsin-Superior researchers have developed a new technology that shields the beehive from wind while still promoting ventilation. This device has a curved structure that installs easily over the standard beehive entrance. Using an initial prototype, preliminary laboratory tests have indicated reduced wind infiltration, preventing 90% of entry of 20 mile per hour winds without inhibiting passive ventilation. Bees adapt to the device on the hive and are able to freely enter and leave the hive. Furthermore, 6 of 8 Wisconsin beehives fitted with prototypes survived the winter of 2017-2018. Although a small sample size, this 25% hive loss rate suggested a marked improvement over the local average 50% loss for the previous 5-10 winters estimated by the Wisconsin Department of Agriculture, Trade and Consumer Protection. Researchers have further optimized the device design and created new prototypes for testing on a larger scale in the winter of 2018-2019. If the larger study reinforces the preliminary outcomes seen in the previous winter, this new beehive wind shield will be a promising solution to minimize both condensation and cold winds, thereby improving winter beehive survival.
T180020US01
View More

New Patents

Ultrawideband, Frequency-Selective Transceiver Lens for Less Distortion

UW–Madison researchers have developed a microwave lens for ultrawideband signals that doesn’t introduce major distortion in the radiated pulse.

The design utilizes low-pass FSS layers of metallic grids. The grids are formed by inductive-capacitive (IC) cells that resonate in response to incoming electromagnetic radiation at frequencies that vary with cell shape. The two-dimensional grids are mounted on both sides of stacked dielectric sheets in alignment with each other to form a time-delay circuit, or filter.

To receive and transmit a pulse, a processor first receives a digital data stream and transforms it into an analog signal. An electromagnetic wave feed element, like a dipole antenna, receives the signal and radiates a spherical radio wave toward the first capacitive grid. The time-delay circuit is selected to reradiate the wave in the form of a second radio wave. Consistent time delays across the desired band and calculated phase shifts ensure that the incident wave is not distorted.
P120192US01

New and More Potent UGM Inhibitors for Treating Tuberculosis, Other Microbial Infections

UW–Madison researchers have developed a new set of UGM inhibitors to fight tuberculosis and other diseases caused by microbial infections. The compounds feature an N-acylsulfonamide motif and are more potent in vitro than inhibitors previously identified by the researchers.
P160093US02

New System for Producing Fungal Secondary Metabolites

UW–Madison researchers have developed a new system for producing fungal secondary metabolites using test plasmids and a genetically modified strain of Aspergillus nidulans (TPMW2.3). The strain begins producing secondary metabolites when a gene promoter in the plasmid is triggered by culture conditions. This allows researchers to induce or repress production.
P150029US02
View More