Technologies

Explore WARF Inventions and Patents

WARF Technologies

WARF’s portfolio of more than 1,700 technologies covers a wide range of categories, including analytical instrumentation, pharmaceuticals, food products, agriculture, research tools, medical devices, pluripotent stem cells, clean technology, information technology and semiconductors.

Information summaries, which describe each technology and its applications, benefits, inventors and patent status, can be downloaded, printed and shared by clicking on the technology category links to the left on this page.

Visit our subscription center to sign up for our monthly email updates and learn when new WARF technologies become available for licensing.

New Inventions

Low Maintenance Snowmobile Ski Design that Increases Traction, Maneuverability and Safety on Paved Surfaces

Students from the University of Wisconsin-Green Bay in partnership with UW-Platteville Senior Design have developed a snowmobile ski that offers improved steering and traction on pavement and other hard surfaces. The design incorporates a fixed wheel and runner system, which provides steering control when rolling on pavement and concrete yet allows the skis to function properly when driving on snow and ice surfaces. The design has been refined through multiple prototype iterations and has passed testing for mobility on hard surfaces, traction on ice, and functionality on snow. The present design increases maneuverability on pavement and requires less maintenance when compared with snowmobiles that are currently on the market.
T170041US01

Nylon-3 Polymers to Treat Fungal Infections

UW–Madison researchers have found that nylon-3 polymers developed in their lab display potent antifungal activity against a broad spectrum of common fungal pathogens, with minimal toxicity towards mammalian cells. The polymers have some activity alone, and when used in combination with existing drugs provide synergistic effects against Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus strains, including some resistant strains.

Synergistic combination offers efficacy with significantly reduced amounts of drug and corresponding toxicity, which could potentially expand the relevant patient population.

The polymers were designed to resemble host-defense peptides (HDPs), which are natural molecules that exhibit antimicrobial activities.
P170021US02

Analogs of Diptoindonesin G for Breast Cancer Drug Development

UW–Madison researchers have synthesized analogs of Dip G that have shown a greater ability than the parent molecule to decrease ERα expression and stabilize ERβ in cultured breast cancer cells. The compounds are active for ameliorating, attenuating and halting the growth/metastasis of breast cancers.
P170010US02

Use of Salate Derivatives to Treat Multiple Sclerosis

UW–Madison researchers led by Prof. Hector DeLuca have discovered that two specific salate esters commonly found in sunscreen almost completely prevented experimental autoimmune encephalomyelitis (EAE) development in mice without affecting body weight. Salicylates are well-known nonsteroidal anti-inflammatory drugs (NSAIDs); the complete suppression of EAE by topical administration of homosalate and octyl salicylate is a novel finding.
P160384US02

Physics ‘Office Hours’ educational learning platform

A physics education researcher at the University of Wisconsin-Green Bay has designed a novel and interactive app-based study aid platform for students in STEM disciplines. The platform’s interface is built around education research into how students conceptualize problems they do not understand. It is a novel tool to help students see why they are struggling with a particular problem, and what might help them solve it, rather than solving the problem for them. The team’s first working prototype, the Physics Office Hours app, has been designed for use in introductory-level college physics. The app is designed to mimic a scenario students might face during ‘office hours’ with a professor: Rather than offering an answer, the instructor guides the students through problems via a series of questions. A user-friendly online interface allows app content to be easily updated and changed over time and as more problem sets become available. In addition, the app architecture can easily be adapted to problem sets in other STEM disciplines and therefore serves as a platform technology.
T150035US01
View More

New Patents

Flux-Switching Permanent Magnet Machine for High Speed Operation

UW–Madison researchers have developed a new FSPM machine that can be run at high speed with less fundamental frequency required, therefore overcoming one of the largest barriers to adoption. The new design relies on innovative radial flux topology that features an offset rotor structure, dual stators and concentrated coil windings.
P140405US01

Boron- and Nitride-Containing Catalysts for Oxidative Dehydrogenation of Small Alkanes and Oxidative Coupling of Methane

UW–Madison researchers have developed improved ODH catalysts for converting short chain alkanes to desired olefins (e.g., propane to propene and ethene) with unprecedented selectivity (>90 percent).

The new catalysts contain boron and/or nitride and minimize unwanted byproducts including CO and CO2. They contain no precious metals, reduce the required temperature of the reaction and remain active for extended periods of time with no need for costly regenerative treatment.

In addition to driving ODH reactions, the new catalysts can be used to produce ethane or ethene via oxidative coupling of methane (OCM).
P150387US02

Tailored Radiopharmaceutical Dosimetry for 4-D Treatment Planning System

UW-Madison researchers have developed a system for precisely tailoring the quantity and timing of the administration of a radiopharmaceutical to a particular patient. To generate time-activity curves, an imaging radioisotope is first administered and the subject is scanned using dynamic PET/CT imaging. From the acquired datasets, the critical organ, which displays toxicity at the lowest injection level, is determined. A fractionation scheme is then developed for tumor control and toxicity avoidance, and precise, patient-specific administration schedules are created based on the effect that varying dose rates have on the critical organs and tumors. This two-step technique can provide sufficient precision to allow the combination of radiopharmaceutical treatment with other radiation treatment such as external-beam radiotherapy.
P09003US
View More