Explore WARF Inventions and Patents

WARF Technologies

WARF’s portfolio of more than 1,900 technologies covers a wide range of categories, including analytical instrumentation, pharmaceuticals, food products, agriculture, research tools, medical devices, pluripotent stem cells, clean technology, information technology and semiconductors.

Information summaries, which describe each technology and its applications, benefits, inventors and patent status, can be downloaded, printed and shared by clicking on the technology category links to the left on this page.

Visit our subscription center to sign up for our monthly email updates and learn when new WARF technologies become available for licensing.

New Inventions

Novel Catalysts for Improved Remediation of Sulfur-Containing Pollutants

A professor of chemistry at the University of Wisconsin-La Crosse has developed a versatile suite of iron-based catalysts with the potential to promote rapid, efficient oxidation of deleterious sulfur-containing compounds present in crude oil, natural gas, and/or aqueous waste streams. With these novel catalysts, there is no need for corrosive base, elevated temperatures, expensive or dangerous oxidants, or high pressures.

Production of Medium-Chain Fatty Acids from Biorefinery Residue

UW–Madison researchers led by Profs. Daniel Noguera and Timothy Donohue have developed a method for converting unreacted chemical components in stillage to valuable medium-chain fatty acids, such as hexanoic and octanoic acids, using a mixture of microbes (e.g., anaerobic microbiome).

Operationally, a portion of the stillage stream is separated and fed to a bioreactor containing the mixture of microbes, which transforms a fraction of the stillage to MCFAs. The other fraction of the stillage can be sent on to the anaerobic digester to generate electricity (similar to existing biorefineries).

Porous Silicon Nanomembranes for the Rapid Separation of Macromolecules by Size and Shape

Researchers at the University of Wisconsin-Platteville have developed a unique nanomembrane for the separation of biomolecules based on their three-dimensional geometries. These “macromolecular sieves” are produced from laser-etched silicon nanomembranes. The pores in these membranes have openings in the sub-micron range but are designed to significantly reduce the flow impedance of the filtered solution. This design feature allows for faster filtration time when compared with traditional membranes. Nanomembranes with square and rectangular geometries have been produced. Desirable characteristics of the square opening membrane include a high open area of 45% and low standard deviation in opening size (less than 5%). Additionally, the fabricated membranes have been tested with vacuum pumps and show no signs of damage after repeated filtrations with 15 psi of applied pressure differential. Currently, reducing opening size below 100 nm and introducing openings of varying geometries is under development. Further efforts are also underway to decrease the manufacture time and increase the overall scalability of the membrane patterning process.

New Hormone Analogs for Treating Hypoparathyroidism

UW–Madison researchers have developed backbone-modified analogs of PTH(1-34). The analogs exhibit advantageous properties; they are biased toward Gs activation/cAMP production relative to β arrestin recruitment.

The analogs were generated via an unconventional strategy in which the backbone of a natural PTHR-1 agonist was altered, rather than the side-chain complement. More specifically, selected α-amino acid residues were systemically replaced with either β-amino acid residues or with unnatural D-stereoisomer α-amino acid residues.

The researchers have shown that backbone-modification can rapidly identify potent agonists with divergent receptor-state selectivity patterns relative to a prototype peptide.

Enzymatic Depolymerization of Lignin

UW–Madison researchers provide the first demonstration of an in vitro enzymatic system that can recycle NAD+ and GSH while releasing aromatic monomers from natural and engineered lignin oligomers, as well as model compounds composed of similar chemical building blocks. Nearly 10 percent of beta-ether units were cleaved when the system was tested on actual lignin samples.

The relevant enzymes include dehydrogenases, β-etherases and glutathione lyases. In an exemplary version, the system uses the known LigD, LigN, LigE and LigF enzymes from Sphingobium sp. strain SYK-6. A newly discovered heterodimeric β-aryl etherase (BaeA) can be used in addition to or instead of LigE.
View More

New Patents

Use of Salate Derivatives to Treat Multiple Sclerosis

UW–Madison researchers led by Prof. Hector DeLuca have discovered that two specific salate esters commonly found in sunscreen almost completely prevented experimental autoimmune encephalomyelitis (EAE) development in mice without affecting body weight. Salicylates are well-known nonsteroidal anti-inflammatory drugs (NSAIDs); the complete suppression of EAE by topical administration of homosalate and octyl salicylate is a novel finding.

Grass Modified for Easier Bioprocessing

The researchers have identified another gene of interest in rice, corn/maize and other grasses, called p-coumarate monolignol transferase (PMT). This is the first gene reportedly involved in the acylation of lignin monomers. In essence, interfering with this gene could make plants more amenable to biorefining.

Lipid-Free Emulsions for Delivering Anesthesia, Other Hydrophobic Drugs

UW–Madison researchers have developed non-lipid nanoemulsions for delivering propofol and other hydrophobic compounds. The formulations contain miniscule droplets of semifluorinated block copolymers and phospholipid surfactants, and are highly stable without the need for conventional lipid components like soybean oil.

The ingredients can be adjusted to (i) enhance stability, (ii) accelerate or slow drug release rates and (iii) increase shelf life.
View More